Omron SGLGW, SGLFW, SGLTW User Manual

Linear Series SGL□□/SGDH
USER'S MANUAL
SGLGW/SGLFW/SGLTW Linear Servomotors SGDH SERVOPACK
YASKAWA
YASKAWA
YA S K A WA
 MANUAL NO. SIEP S800000 19C
Copyright © 2003 YASKAWA ELECTRIC CORPORATION

About this Manual

Intended Audience
This manual is intended for the following users.
Those selecting Σ-II Series servodrives or peripheral devices for Σ-II Series servodrives.
Those wanting to know about the ratings and characteristics of Σ-II Series servodrives.
Description of Technical Terms
The terms in this manual are defined as follows:
• Servomotor or motor =
• SERVOPACK = Σ-II Series SGDH amplifier.
• Servodrive = A set including a servomotor and servo amplifier.
• Servo System = A servo control system that includes the combination of a servodrive with a host
• Parameter number = Numbers that the user inputs toward the SERVOPACK.
Indication of Reverse Signals
In this manual, the names of reverse signals (ones that are valid when low) are written with a forward slash (/) before the signal name, as shown in the following example:
• S-ON
• P-CON
designing Σ-II Series servodrive systems.
Those
Those installing or wiring Σ-II Series servodrives.
Those performing trial operation or adjustments of Σ-II Series servodrives.
Those maintaining or inspecting Σ-II Series servodrives.
Linear Σ Series SGLGW, SGLFW and SGLTW linear servomotor
computer and peripheral devices.
/S-ON
 = 
/P-CON
 = 
iii
Quick access to your required information
Read the chapters marked with 9 to get the information required for your purpose.
Chapter
Chapter 1 Outline
Chapter 2 Selections
Chapter 3 Linear Servomotor Specifications and
Dimensional Drawings
Chapter 4 SERVOPACK Specifications
and Dimensional Drawings
Chapter 5 Serial Converter Unit Specifications and Drawings
Chapter 6 Specifications and Drawings of Cables and Peripheral
Devices
Chapter 7 Installation and Wiring
Chapter 8 Panel Operator
Chapter 9 Operation
Chapter 10 Adjustment
Chapter 11 Inspection, Maintenance, and Troubleshooting
Chapter 12 Appendix
SERVOPACK
s, Linear
Servomotors,
and Peripheral
Devices
Ratings and
Characteristics
System
Design
Panel
Configuration
and Wiring
Trial Operation and Servo
Adjustment
Inspection
and
Maintenance
9
9
9999
9999
9999
9999
99 9
99
9
9
9
9999
IMPORTANT
INFO
EXAMPLE
TERMS
iv
Visual Aids
The following aids are used to indicate certain types of information for easier reference.
• Indicates important information that should be memorized, including precautions such as alarm dis­plays to avoid damaging the devices.
• Indicates supplemental information.
• Indicates application examples.
• Indicates definitions of difficult terms or terms that have not been previously explained in this man­ual.

Related Manuals

Refer to the following manuals as required.
Manual Name Manual Number Contents
-II Series
Σ
AC SERVOPACK SGDH/SGDM SAFETY PRECAUTIONS
-II Series SGMH/SGDM
Σ
Digital Operator Operation Manual
-II Series SERVOPACKs
Σ
Personal Computer Monitoring Software Operation Manual
-II Series SGDH MECHATROLINK
Σ
Interface Unit User’s Manual Model: JUSP-NS100
-II Series SGDH MECHATROLINK-II
Σ
Application Module User’s Manual Model: JUSP-NS115
-II Series SGDH
Σ
DeviceNet Interface Unit User’s Manual Model: JUSP-NS300
-II Series SGDH PROFIBUS-DP
Σ
IF UNIT User’s Manual Model: JUSP-NS500
-II Series Indexer Application Module
Σ
User’s Manual Model: JUSP-NS600
TOBPS80000004 Describes the safety precautions on using a
TOE-S800-34 Provides detailed information on the operating method
SIE-S800-35 Describes the using and the operating methods on soft-
SIE-C718-4 Provides detailed information on MECHATROLINK
SIEPC71080001 Provides detailed information on MECHATROLINK-II
SIE-C718-6 Describes the DeviceNet communications.
SIE-C718-8 Describes the PROFIBUS-DP communications.
SIE-C718-9 Provides detailed information on positioning by com-
SERVOPACK in the Σ-
of the JUSP-OP02A-2 digital operator (option).
ware that changes the local personal computer into the monitor equipment for the Σ-II Series servomotor.
communications.
communications.
munications and the contact points.
II Series.
v

Safety Information

The following conventions are used to indicate precautions in this manual. Failure to heed precautions provided in this manual can result in serious or possibly even fatal injury or damage to the products or to related equipment and systems.
WARNING
CAUTION
PROHIBITED
MANDATORY
Indicates precautions that, if not heeded, could possibly result in loss of life or serious
injury.
Indicates precautions that, if not heeded, could result in relatively serious or minor
injury, damage to the product, or faulty operation.
In some situations, the precautions indicated could have serious consequences if not heeded.
Indicates prohibited actions that must not be performed. For example, this symbol
would be used as follows to indicate that fire is prohibited: .
Indicates compulsory actions that must be performed. For example, this symbol would
be used as follows to indicate that grounding is compulsory: .
vi
The warning symbols for ISO and JIS standards are different, as shown below.
ISO JIS
The ISO symbol is used in this manual. Both of these symbols appear on warning labels on Yaskawa products. Please abide by these warning labels
regardless of which symbol is used.

Notes for Safe Operation

Read this manual thoroughly before checking products on delivery, storage and transportation, installation, wiring, operation and inspection, and disposal of the AC servodrive.
WARNING
• If you have a pacemaker or any other electronic medical device, do not go near the magnetic way of the linear servomotor.
Failure to observe this warning may result in the malfunction of the medical device.
• Be sure to use nonmagnetic tools when installing or working close to the linear servomotor. (Example: a beryllium-copper alloy hexagonal wrench set, made by NGK Insulators, Ltd.)
• If starting an operation with the linear servomotor in a machine, set the linear servomotor to always allow emergency stops.
Failure to observe this warning may result in injury.
• Never touch the linear servomotor or machinery during operation.
Failure to observe this warning may result in injury.
• Before wiring, install the SERVOPACK and the linear servomotor.
Failure to observe this warning may result in electric shock.
• Do not operate switches with wet hands.
Failure to observe this warning may result in electric shock.
• Never touch the inside of the SERVOPACKs.
Failure to observe this warning may result in electric shock.
• Do not touch terminals for five minutes after the power is turned OFF.
Residual voltage may cause electric shock.
• Do not touch terminals for five minutes after voltage resistance test.
Residual voltage may cause electric shock.
• Make sure that the main circuit power cable, the control power cable, and the linear servomotor main circuit cable are wired correctly.
Failure to observe this warning may result in damage to the SERVOPACK.
• Follow the procedures and instructions for trial operation precisely as described in this man­ual.
Malfunctions that occur after the servomotor is connected to the equipment not only damage the equipment, but may also cause an accident resulting in death or injury.
• The SGDH SERVOPACK supports both AC and DC power. If DC power is supplied to the SERVOPACK without setting Pn001=n.1 (DC power input), the internal components of the SERVOPACK will burn and may result in fire or serious damage.
Before using a DC power supply, be sure to check the parameter Pn001 setting.
• Do not remove the front cover, cables, connectors, or optional items while the power is ON.
Failure to observe this warning may result in electric shock.
• Do not damage, press, exert excessive force or place heavy objects on the cables.
Failure to observe this warning may result in electric shock, stopping operation of the product, or burning.
vii
WARNING
• Provide an appropriate stopping device on the machine side to ensure safety.
Failure to observe this warning may result in injury.
• Do not come close to the machine immediately after resetting momentary power loss to avoid an unexpected restart. Take appropriate measures to ensure safety against an unexpected restart.
Failure to observe this warning may result in injury.
• Connect the ground terminal to electrical codes (ground resistance: 100 Ω or less).
Improper grounding may result in electric shock or fire.
• Installation, disassembly, or repair must be performed only by authorized personnel.
Failure to observe this warning may result in electric shock or injury.
• Do not modify the product.
Failure to observe this warning may result in injury or damage to the product.
Checking on Delivery
CAUTION
• Always use the linear servomotor and SERVOPACK in one of the specified combinations.
Failure to observe this caution may result in fire or malfunction.
Storage and Transportation
CAUTION
• Be sure to store the magnetic way of the linear servomotor in the same way as it was originally packaged.
• Do not store or install the product in the following places.
• Locations subject to direct sunlight.
• Locations subject to temperatures outside the range specified in the storage or installation temperature conditions.
• Locations subject to humidity outside the range specified in the storage or installation humidity conditions.
• Locations subject to condensation as the result of extreme changes in temperature.
• Locations subject to corrosive or flammable gases.
• Locations subject to dust, salts, or iron dust.
• Locations subject to exposure to water, oil, or chemicals.
• Locations subject to shock or vibration.
Failure to observe this caution may result in fire, electric shock, or damage to the product.
• Do not carry the linear servomotor by its cables.
Failure to observe this caution may result in injury or malfunction.
viii
• Do not place any load exceeding the limit specified on the packing box.
Failure to observe this caution may result in injury or malfunction.
Installation
CAUTION
• When unpacking and installing magnetic way, check that no metal fragments or magnetized objects near the stator because they may be affected by the magnetic attraction of the magnetic way.
Failure to observe this caution may result in injury or damage to the magnetic way's magnets.
• Do not use the magnetic way near metal or other magnetized objects.
Failure to observe this caution may result in injury.
• Do not place clocks, magnetic cards, floppy disks, or measuring instruments close to the magnetic way.
Failure to observe this caution may result in malfunction or damage to these items by the magnetic force.
• Securely mount the linear servomotor on to the machine.
If the linear servomotor is not mounted securely, it may loosen during operation.
• Do not carry the magnetic way by its antimagnetic cover.
Failure to observe this caution may result in injury by the cover’s edge or the shape of the cover may become dis­torted.
Cover
Magnetic way
• Install SERVOPACKs, linear servomotors, and regenerative resistors on nonflammable objects.
Mounting directly onto or near flammable objects may result in fire.
• Never use the products in an environment subject to water, corrosive gases, inflammable gases, or combustibles.
Failure to observe this caution may result in electric shock or fire.
• Do not step on or place a heavy object on the product.
Failure to observe this caution may result in injury.
• Do not cover the inlet or outlet parts and prevent any foreign objects from entering the product.
Failure to observe this caution may cause internal elements to deteriorate resulting in malfunction or fire.
• Be sure to install the product in the correct direction.
Failure to observe this caution may result in malfunction.
• Provide the specified clearances between the SERVOPACK and the control panel or with other devices.
Failure to observe this caution may result in fire or malfunction.
• Do not apply any strong impact.
Failure to observe this caution may result in malfunction.
ix
Wiring
CAUTION
• Securely tighten the cable connector screws and securing mechanism.
If the connector screws and securing mechanism are not secure, they may loosen during operation.
• Use power lines and cables with a radius, heat resistance, and flexibility suitable for the system.
• If the SERVOPACK malfunctions, turn OFF the main circuit’s power supply of the SERVOPACK.
The continuous flow of a large current may cause fire.
• Use a noise filter to minimize the effects of electromagnetic damage.
Failure to observe this caution may result in electromagnetic damage to electronic devices used near the SERVOPACK.
• Do not connect a three-phase power supply to the U, V, or W output terminals.
Failure to observe this caution may result in injury or fire.
• Securely connect the power supply terminals and motor output terminals.
Failure to observe this caution may result in fire.
• Do not bundle or run power and signal lines together in the same duct. Keep power and signal lines separated by at least 30 cm (11.81 in).
Failure to observe this caution may result in malfunction.
• Use shielded twisted-pair wire or shielded multi-core twisted-pair wire for the signal lines and feedback lines of the serial converter unit (SC).
The maximum wiring length is 3 m for the reference input line and 20 m for the SC feedback line.
• Do not touch the power terminals for five minutes after turning power OFF because high voltage may still remain in the SERVOPACK.
Make sure the charge indicator is turned OFF first before starting an inspection.
• Avoid frequently turning power ON and OFF. Do not turn power ON or OFF more than once per minute.
Since the SERVOPACK has a capacitor in the power supply, a high charging current flows for 0.2 seconds when power is turned ON. Frequently turning power ON and OFF causes main power devices such as capacitors and fuses to deteriorate, resulting in unexpected problems.
• Observe the following precautions when wiring main circuit terminal blocks.
• Remove the terminal block from the SERVOPACK prior to wiring.
• Insert only one wire per terminal on the terminal block.
• Make sure that the core wire is not electrically shorted to adjacent core wires.
• Do not connect the SERVOPACK for 100 V and 200 V directly to a voltage of 400 V.
The SERVOPACK will be destroyed.
• Be sure to wire correctly and securely.
Failure to observe this caution may result in motor overrun, injury, or malfunction.
• Always use the specified power supply voltage.
An incorrect voltage may result in burning.
• Make sure that the polarity is correct.
Incorrect polarity may cause ruptures or damage.
• Take appropriate measures to ensure that the input power supply is supplied within the specified voltage fluctuation range. Be particularly careful in places where the power supply is unstable.
An incorrect power supply may result in damage to the product.
x
CAUTION
• Install external breakers or other safety devices against short-circuiting in external wiring.
Failure to observe this caution may result in fire.
• Take appropriate and sufficient countermeasures for each when installing systems in the following locations.
• Locations subject to static electricity or other forms of noise.
• Locations subject to strong electromagnetic fields and magnetic fields.
• Locations subject to possible exposure to radioactivity.
• Locations close to power supplies including power supply lines.
Failure to observe this caution may result in damage to the product.
Operation
CAUTION
• Do not stand within the machine's range of motion during operation.
Failure to observe this caution may result in injury.
• Before operation, install a limit switch or stopper on the end of the slider to prevent unexpected movement.
Failure to observe this caution may result in injury.
• Before starting operation with a machine connected, change the settings to match the parameters of the machine.
Starting operation without matching the proper settings may cause the machine to run out of control or malfunction.
• Forward run prohibited (P-OT) and reverse run prohibited (N-OT) signals are not effective during zero point search mode using parameter Fn003.
• If using the linear servomotor on a vertical axis, install a safety device such as a counterbalance so that the workpiece does not fall if an alarm or overtravel occurs. Set the linear servomotor so that it will stop in the zero clamp state at occurrence of overtravel.
The workpiece may fall during overtraveling.
• When not using the online autotuning, set to the correct mass ratio.
Setting to an incorrect moment of inertia ratio may cause vibration.
• Do not touch the SERVOPACK heatsinks, regenerative resistor, or servomotor while power is ON or soon after the power is turned OFF.
Failure to observe this caution may result in burns due to high temperatures.
• Do not make any extreme adjustments or setting changes of parameters.
Failure to observe this caution may result in injury due to unstable operation.
• When an alarm occurs, remove the cause, reset the alarm after confirming safety, and then resume operation.
Failure to observe this caution may result in injury.
xi
Maintenance and Inspection
CAUTION
• When replacing the SERVOPACK, transfer the previous SERVOPACK parameters to the new SERVOPACK before resuming operation.
Failure to observe this caution may result in damage to the product.
• Do not attempt to change wiring while the power is ON.
Failure to observe this caution may result in electric shock or injury.
• Do not disassemble the linear servomotor.
Failure to observe this caution may result in electric shock or injury.
Disposal
CAUTION
• When disposing of the products, treat them as ordinary industrial waste.
General Precautions
Note the following to ensure safe application.
• The drawings presented in this manual are sometimes shown without covers or protective guards. Always replace the cover or protective guard as specified first, and then operate the products in accordance with the manual.
• The drawings presented in this manual are typical examples and may not match the product you received.
• This manual is subject to change due to product improvement, specification modification, and manual improvement. When this manual is revised, the manual code is updated and the new manual is published as a next edition.
• If the manual must be ordered due to loss or damage, inform your nearest Yaskawa representative or one of the offices listed on the back of this manual.
• Yaskawa will not take responsibility for the results of unauthorized modifications of this product. Yaskawa shall not be liable for any damages or troubles resulting from unauthorized modification.
xii

CONTENTS

About this Manual - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - iii Related Manuals - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - v Safety Information - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - vi Notes for Safe Operation - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - vii
1 Outline
1.1 Checking Products - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 1-2
1.1.1 Check Items - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 1-2
1.1.2 Linear Servomotors - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 1-2
1.1.3 SERVOPACKs - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 1-3
1.1.4 Serial Converter Units - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 1-4
1.2 Product Part Names - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 1-5
1.2.1 Linear Servomotors - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 1-5
1.2.2 SERVOPACKs - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 1-6
1.3 Examples of Servo System Configurations - - - - - - - - - - - - - - - - - - - - - - - - - - - 1-8
1.3.1 Single-phase, 200 V Main Circuit - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 1-8
1.3.2 Three-phase, 200 V Main Circuit- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 1-9
1.3.3 Three-phase, 400 V Main Circuit- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 1-10
1.4 Applicable Standards - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 1-11
1.4.1 North American Safety Standards (UL, CSA) - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 1-11
1.4.2 CE Marking- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 1-11
2 Selections
2.1 Linear Servomotor Model Designation - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 2-2
2.1.1 Coil Assembly - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 2-2
2.1.2 Magnetic Way - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 2-2
2.2 SERVOPACK Model Designation - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 2-3
2.3 Σ-II Series SERVOPACKs and Applicable Linear Servomotors
2.4 Serial Converter Units Models - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 2-6
2.5 Selecting Cables - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 2-7
2.6 Selecting Peripheral Devices - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 2-9
2.6.1 Special Options- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 2-9
2.6.2 Molded-case Circuit Breaker and Fuse Capacity - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 2-11
2.6.3 Noise Filters, Magnetic Contactors, Surge Suppressors and DC Reactors - - - - - - - - - - - - - 2-12
2.6.4 Regenerative Resistors - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 2-13
2.6.5 Linear Scales - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 2-14
- - - - - - - - - - - - 2-4
xiii
3 Specifications and Dimensional Drawings
3.1 Ratings and Specifications of SGLGW/SGLGM- - - - - - - - - - - - - - - - - - - - - - - - 3-2
3.2 Ratings and Specifications of SGLFW/SGLFM - - - - - - - - - - - - - - - - - - - - - - - - 3-6
3.3 Ratings and Specifications of SGLTW/SGLTM- - - - - - - - - - - - - - - - - - - - - - - - - 3-9
3.4 Mechanical Specifications of Linear Servomotors - - - - - - - - - - - - - - - - - - - - - 3-15
3.5 Quick Guide to Linear Servomotor Dimensional Drawings - - - - - - - - - - - - - - - 3-16
3.6 Dimensional Drawings of SGLGW/SGLGM Linear Servomotors - - - - - - - - - - - 3-17
3.6.1 SGLG-30 Linear Servomotors- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 3-17
3.6.2 SGLG-40 Linear Servomotors- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 3-20
3.6.3 SGLG-60 Linear Servomotors- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 3-24
3.6.4 SGLG-90 Linear Servomotors- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 3-28
3.7 Dimensional Drawings of SGLFW/SGLFM Linear Servomotors - - - - - - - - - - - 3-30
3.7.1 SGLF-20 Linear Servomotors - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 3-30
3.7.2 SGLF-35 Linear Servomotors - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 3-32
3.7.3 SGLF-50 Linear Servomotors - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 3-35
3.7.4 SGLF-1Z Linear Servomotors - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 3-38
3.8 Dimensional Drawings of SGLTW / SGLTM Linear Servomotors - - - - - - - - - - - 3-41
3.8.1 SGLT-20 Linear Servomotors - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 3-41
3.8.2 SGLT-35A Linear Servomotors- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 3-44
3.8.3 SGLT-35H Linear Servomotors- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -3-47
3.8.4 SGLT-40 Linear Servomotors - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 3-50
SGLT-50
3.8.5
3.8.6 SGLT-80 Linear Servomotors - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 3-56
Linear Servomotors - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 3-53
4 SERVOPACK Specifications and Dimensional Drawings
4.1 SERVOPACK Ratings and Specifications - - - - - - - - - - - - - - - - - - - - - - - - - - - - 4-3
4.1.1 Single-phase/Three-phase 200 V - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -4-3
4.1.2 Three-phase 400 V - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -4-3
4.1.3 SERVOPACK Ratings and Specifications - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -4-4
4.2 SERVOPACK Installation - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 4-6
4.3 SERVOPACK Internal Block Diagrams - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 4-8
4.3.1 Single-phase 200 V, 50 W to 400 W Models - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -4-8
4.3.2 Three-phase 200 V, 500 W to 1.5 kW Models - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -4-9
4.3.3 Three-phase 200 V, 2.0 kW to 5.0 kW Models - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -4-9
4.3.4 Three-phase 200 V, 7.5 kW Models - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -4-10
4.3.5 Three-phase 400 V, 500 W to 3.0 kW Models - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -4-10
4.3.6 Three-phase 400 V, 5.0 kW Model - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 4-11
4.3.7 Three-phase 400 V, 7.5 kW Models - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 4-11
xiv
4.4 SERVOPACK’s Power Supply Capacities and Power Losses - - - - - - - - - - - - - 4-12
4.5 SERVOPACK Overload Characteristics and Allowable Load Mass - - - - - - - - - 4-13
4.5.1 Overload Characteristics - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 4-13
4.5.2 Starting Time and Stopping Time- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 4-14
4.6 SERVOPACK Dimensional Drawings - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 4-15
4.7 Dimensional Drawings of Base-mounted SERVOPACK Model - - - - - - - - - - - - 4-16
4.7.1 Single-phase 200 V: 50 W/100 W/200 W (A5AE/01AE/02AE) - - - - - - - - - - - - - - - - - - - - - - 4-16
4.7.2 Single-phase 200 V: 400 W (04AE) - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 4-17
4.7.3 Three-phase 200 V: 500 W/750 W/1.0 kW (05AE/08AE/10AE) - - - - - - - - - - - - - - - - - - - - - 4-18
4.7.4 Three-phase 200 V: 1.5 kW (15AE) Three-phase 400 V: 500 W/750 W/1.0 kW/1.5 kW (05DE/08DE/10DE/15DE) - - - - - - - - - - - 4-19
4.7.5 Three-phase 200 V: 2.0 kW/3.0 kW (20AE/30AE) Three-phase 400 V: 2.0 kW/3.0 kW (20DE/30DE) - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 4-20
4.7.6 Three-phase 200 V: 5.0 kW (50AE) Three-phase 400 V: 5.0 kW (50DE) - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 4-21
4.7.7 Three-phase 200 V: 7.5 kW (75AE)- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 4-22
4.7.8 Three-phase 400 V: 7.5 kW (75DE)- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 4-23
4.8 Dimensional Drawings of Rack-mounted SERVOPACK Model - - - - - - - - - - - - 4-24
4.8.1 Single-phase 200 V: 50 W/100 W/200 W (A5AE-R/01AE-R/ 02AE-R)- - - - - - - - - - - - - - - - - 4-24
4.8.2 Single-phase 200 V: 400 W (04AE-R) - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 4-25
4.8.3 Three-phase 200 V: 500 W/750 W/1.0 kW (05AE-R/08AE-R/10AE-R) - - - - - - - - - - - - - - - - 4-26
4.8.4 Three-phase 200 V: 1.5 kW (15AE-R) Three-phase 400 V: 500 W/750 W/1.0 kW/1.5 kW (05DE-R/08DE-R/10DE-R/15DE-R) - - - - 4-27
4.8.5 Three-phase 200 V: 2.0 kW/3.0 kW (20AE-R/30AE-R) Three-phase 400 V: 2.0 kW/3.0 kW (20DE-R/30DE-R) - - - - - - - - - - - - - - - - - - - - - - - - - - - 4-28
4.8.6 Three-phase 200 V: 5.0 kW (50AE-R) Three-phase 400 V: 5.0 kW (50DE-R)- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 4-29
4.9 Dimensional Drawings of Duct-ventilated SERVOPACK Model - - - - - - - - - - - - 4-30
4.9.1 Three-phase 200 V: 7.5 kW (75AE-P) - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 4-30
4.9.2 Three-phase 400 V: 7.5 kW (75DE-P) - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 4-31
5 Specifications and Dimensional Drawings of Serial Converter Unit
5.1 Serial Converter Unit Specifications - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 5-2
5.2 Analog Signal Input Timing - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 5-3
5.3 Dimensional Drawings of Serial Converter Unit - - - - - - - - - - - - - - - - - - - - - - - - 5-4
5.3.1 Linear Scale without Cable for Hall Sensor by Heidenhain - - - - - - - - - - - - - - - - - - - - - - - - - 5-4
5.3.2 Linear Scale without Cable for Hall Sensor by Renishaw- - - - - - - - - - - - - - - - - - - - - - - - - - - 5-5
5.3.3 Linear Scale with Cable for Hall Sensor by Heidenhain - - - - - - - - - - - - - - - - - - - - - - - - - - - - 5-6
5.3.4 Linear Scale with Cable for Hall Sensor by Renishaw - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 5-8
xv
6 Specifications and Dimensional Drawings of Cables and Peripheral Devices
6.1 Linear Servomotor Main Circuit Cables- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 6-2
6.2 Cables for Connecting Serial Converter Units - - - - - - - - - - - - - - - - - - - - - - - - - 6-8
6.3 Cables for Connecting Linear Scales - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 6-9
6.4 Cables for Connecting Hall Sensors - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 6-10
6.5 Flexible Cables- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 6-11
6.6 SERVOPACK Main Circuit Wire Size - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 6-13
6.6.1 Cable Types- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -6-13
6.6.2 Single-phase 200 V - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -6-14
6.6.3 Three-phase 200 V - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -6-14
6.6.4 Three-phase 400 V - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -6-15
6.7 I/O Signal Cables for CN1 Connector - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 6-16
6.7.1 Standard Cables- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -6-16
6.7.2 Connector Type and Cable Size- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 6-16
6.7.3 Connection Diagram - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -6-18
6.8 Peripheral Devices - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 6-19
6.8.1 Cables for Connecting Personal Computers - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -6-19
6.8.2 Digital Operator - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 6-19
6.8.3 Cables for Analog Monitor - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -6-20
6.8.4 Connector Terminal Block Converter Unit - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 6-21
6.8.5 External Regenerative Resistor - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -6-22
6.8.6 Regenerative Resistor- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -6-25
6.8.7 Molded-case Circuit Breaker (MCCB) - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -6-26
6.8.8 Noise Filter - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -6-27
6.8.9 Magnetic Contactor- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -6-31
6.8.10 Surge Suppressor- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -6-35
6.8.11 DC Reactor for Harmonic Suppression - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 6-37
6.8.12 Variable Resistor for Speed and Force Setting- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 6-39
6.8.13 Encoder Signal Converter Unit - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -6-40
6.8.14 MECHATROLINK I/F Unit - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -6-41
6.8.15 DeviceNet I/F Unit- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -6-42
6.8.16 PROFIBUS-DP I/F Unit - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 6-43
6.8.17 INDEXER Module - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 6-45
7 Wiring
xvi
7.1 Linear Servomotor Installation - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 7-2
7.1.1 Introduction - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -7-2
7.1.2 SGLGW and SGLGM Linear Servomotors (Coreless Types)- - - - - - - - - - - - - - - - - - - - - - - - -7-3
7.1.3 SGLFW and SGLFM Linear Servomotor (F-shaped with Core) - - - - - - - - - - - - - - - - - - - - - - -7-6
7.1.4 SGLTW and SGLTM Linear Servomotor (T Type with Iron Core) - - - - - - - - - - - - - - - - - - - - -7-10
7.2 Wiring Main Circuit - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 7-15
7.2.1 Names and Functions of Main Circuit Terminals - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 7-15
7.2.2 Wiring Main Circuit Power Supply Connector (Spring Type) - - - - - - - - - - - - - - - - - - - - - - - 7-17
7.2.3 Typical Main Circuit Wiring Examples - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 7-18
7.3 Wiring Encoders - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 7-21
7.3.1 Connecting an Encoder (CN2) and Output Signals from the SERVOPACK - - - - - - - - - - - - - 7-21
7.3.2 Encoder Connector (CN2) Terminal Layout - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 7-21
7.4 Examples of I/O Signal Connections- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 7-22
7.4.1 Speed Control Mode - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 7-22
7.4.2 Position Control Mode - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 7-23
7.4.3 Force Control Mode- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 7-24
7.4.4 I/O Signal Connector (CN1) Terminal Layout - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 7-25
7.4.5 I/O Signal (CN1) Names and Functions - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 7-26
7.4.6 Interface Circuit- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 7-28
7.5 Others - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 7-31
7.5.1 Wiring Precautions - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 7-31
7.5.2 Wiring for Noise Control - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 7-32
7.5.3 Using More Than One SERVOPACK- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 7-35
7.5.4 Operating Conditions on 400-V Power Supply Voltage - - - - - - - - - - - - - - - - - - - - - - - - - - - 7-36
7.5.5 DC Reactor for Harmonic Suppression - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 7-37
7.6 Connecting Regenerative Resistors - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 7-38
7.6.1 Regenerative Power and Regenerative Resistance - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 7-38
7.6.2 Connecting External Regenerative Resistors - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 7-38
8 Digital Operator/Panel Operator
8.1 Functions on Digital Operator/Panel Operator - - - - - - - - - - - - - - - - - - - - - - - - - 8-2
8.1.1 Connecting the Digital Operator - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 8-2
8.1.2 Key Names and Functions - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 8-3
8.1.3 Basic Mode Selection and Operation- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 8-4
8.1.4 Status Display - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 8-6
8.2 Operation in Utility Function Mode (Fn) - - - - - - - - - - - - - - - - - - - - - - - - - 8-8
8.2.1 List of Utility Function Modes - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 8-8
8.2.2 Alarm Traceback Data Display (Fn000) - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 8-9
8.2.3 JOG Mode Operation (Fn002) - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 8-10
8.2.4 Zero-point Search Mode (Fn003) - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 8-11
8.2.5 Parameter Settings Initialization (Fn005) - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 8-12
8.2.6 Alarm Traceback Data Clear (Fn006) - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 8-13
8.2.7 Automatic Offset-adjustment of Motor Current Detection Signal (Fn00E) - - - - - - - - - - - - - - 8-14
8.2.8 Manual Offset-adjustment of Motor Current Detection Signal (Fn00F) - - - - - - - - - - - - - - - - 8-15
8.2.9 Password Setting (Protects Parameters from Being Changed) (Fn010) - - - - - - - - - - - - - - - 8-16
8.2.10 Motor Models Display (Fn011) - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 8-17
8.2.11 Software Version Display (Fn012) - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 8-18
xvii
8.2.12 Application Module Detection Results Clear (Fn014) - - - - - - - - - - - - - - - - - - - - - - - - - - - - 8-19
8.3 Operation in Parameter Setting Mode (Pn)- - - - - - - - - - - - - - - - - - - - - - 8-20
8.3.1 Setting Parameters - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -8-20
8.3.2 Input Circuit Signal Allocation - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -8-24
8.3.3 Output Circuit Signal Allocation - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -8-28
8.4 Operation in Monitor Mode (Un) - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 8-30
8.4.1 List of Monitor Modes - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -8-30
8.4.2 Sequence I/O Signal Monitor Display - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -8-31
8.4.3 Operation in Monitor Mode - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 8-32
8.4.4 Monitor Display of Reference Pulse Counter and Feedback Pulse Counter - - - - - - - - - - - - -8-33
8.4.5 Allowable Maximum Motor Speed for Dividing Ratio Monitor (For the software version 32 or later) - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -8-34
8.4.6 Hall Sensor Signal Monitor (For the software version 32 or later) - - - - - - - - - - - - - - - - - - - - 8-35
9 Operation
9.1 Trial Operation - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 9-4
9.2 Trial Operation Using SERVOPACK Internal References - - - - - - - - - - - - - - - - - 9-6
9.2.1 SERVOPACK Setup Procedure - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -9-6
9.2.2 Setup Procedure Using Linear Servomotors with Hall Sensors - - - - - - - - - - - - - - - - - - - - - - -9-6
9.2.3 Setup Procedure Using Linear Servomotors without Hall Sensors - - - - - - - - - - - - - - - - - - - - 9-12
9.3 Trial Operation for Linear Servomotor without Load from Host Reference - - - - 9-22
9.3.1 Servo ON Command from the Host - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 9-22
9.3.2 Operating Procedure in Speed Control Mode (Pn000 = n.0)- - - - - - - - - - - - - - - - - - - -9-24
9.3.3 Operating Procedure in Position Control Mode (Pn000 = n.1) - - - - - - - - - - - - - - - - - -9-26
Trial Operation with the Linear Servomotor Connected to the Machine
9.4
- - - - - - 9-28
9.5 Control Mode Selection- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 9-29
9.6 Setting Common Basic Functions - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 9-30
9.6.1 Setting the Servo ON Signal - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -9-30
9.6.2 Switching the Linear Servomotor Movement Direction - - - - - - - - - - - - - - - - - - - - - - - - - - - -9-31
9.6.3 Setting the Overtravel Limit Function - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -9-32
9.6.4 Selecting the Stopping Method After Servo OFF - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -9-34
9.6.5 Instantaneous Power Loss Settings - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 9-35
9.6.6 Motor Maximum Speed (For the software version 32 or later) - - - - - - - - - - - - - - - - - - - - - - -9-35
xviii
9.7 Operating Using Speed Control with Analog Reference - - - - - - - - - - - - - - - - - 9-36
9.7.1 Setting Parameters - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -9-36
9.7.2 Setting Input Signals - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 9-37
9.7.3 Adjusting Offset - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 9-38
9.7.4 Soft Start - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -9-41
9.7.5 Speed Reference Filter - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -9-41
9.7.6 Using the Zero Clamp Function - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -9-41
9.7.7 Encoder Signal Output - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -9-43
9.7.8 Speed Coincidence Output- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 9-46
9.8 Operating Using Position Control - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 9-47
9.8.1 Setting Parameters - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 9-47
9.8.2 Setting the Electronic Gear- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 9-49
9.8.3 Position Reference - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 9-52
9.8.4 Smoothing - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 9-55
9.8.5 Positioning Completed Output Signal - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 9-57
9.8.6 Positioning Near Signal - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 9-58
9.8.7 Reference Pulse Inhibit Function (INHIBIT) - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 9-59
9.9 Operating Using Force Control- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 9-60
9.9.1 Setting Parameters - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 9-60
9.9.2 Force Reference Input - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 9-60
9.9.3 Adjusting the Force Reference Offset - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 9-61
9.9.4 Limiting Linear Servomotor Speed during Force Control - - - - - - - - - - - - - - - - - - - - - - - - - - 9-63
9.10 Operating Using Speed Control with an Internally Set Speed - - - - - - - - - - - - 9-65
9.10.1 Setting Parameters - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 9-65
9.10.2 Input Signal Settings - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 9-66
9.10.3 Operating Using an Internally Set Speed - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 9-66
9.11 Limiting Force - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 9-68
9.11.1 Internal Force Limit (Limiting Maximum Output Force)- - - - - - - - - - - - - - - - - - - - - - - - - - - 9-68
9.11.2 External Force Limit (Output Force Limiting by Input Signals)- - - - - - - - - - - - - - - - - - - - - - 9-69
9.11.3 Force Limiting Using an Analog Voltage Reference- - - - - - - - - - - - - - - - - - - - - - - - - - - - - 9-71
9.11.4 Force Limiting Using an External Force Limit and Analog Voltage Reference- - - - - - - - - - - 9-72
9.11.5 Checking Output Force Limiting during Operation - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 9-73
9.12 Control Mode Selection - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 9-74
9.12.1 Setting Parameters - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 9-74
9.12.2 Switching the Control Mode - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 9-74
9.13 Other Output Signals- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 9-76
9.13.1 Servo Alarm Output (ALM) and Alarm Code Output (ALO1, ALO2, ALO3) - - - - - - - - - - - - 9-76
9.13.2 Warning Output (/WARN) - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 9-77
9.13.3 Running Output Signal (/TGON) - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 9-77
9.13.4 Servo Ready (/S-RDY) Output - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 9-78
10 Adjustments
10.1 Autotuning - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 10-2
10.1.1 Servo Gain Adjustment Methods - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 10-2
10.1.2 List of Servo Adjustment Functions - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 10-3
10.2 Online Autotuning - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 10-5
10.2.1 Online Autotuning - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 10-5
10.2.2 Online Autotuning Procedure - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 10-6
10.2.3 Selecting the Online Autotuning Execution Method - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 10-7
xix
10.2.4 Machine Rigidity Setting for Online Autotuning - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 10-8
10.2.5 Method for Changing the Machine Rigidity Setting - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 10-9
10.2.6 Saving the Results of Online Autotuning - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 10-10
10.2.7 Procedure for Saving the Results of Online Autotuning- - - - - - - - - - - - - - - - - - - - - - - - - - 10-11
10.3 Manual Tuning - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 10-12
10.3.1 Explanation of Servo Gain - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 10-12
10.3.2 Servo Gain Manual Tuning - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 10-13
10.3.3 Position Loop Gain - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -10-13
10.3.4 Speed Loop Gain - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 10-14
10.3.5 Speed Loop Integral Time Constant - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 10-14
10.4 Servo Gain Adjustment Functions - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 10-15
10.4.1 Feed-forward Reference - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 10-15
10.4.2 Force Feed-forward - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 10-16
10.4.3 Speed Feed-forward - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 10-17
10.4.4 Proportional Control Operation (Proportional Operation Reference) - - - - - - - - - - - - - - - - - 10-18
10.4.5 Using the Mode Switch (P/PI Switching) - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 10-19
10.4.6 Setting the Speed Bias - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 10-22
10.4.7 Speed Feedback Filter - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 10-22
10.4.8 Speed Feedback Compensation- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 10-23
10.4.9 Switching Gain Settings- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 10-25
10.4.10 Force Reference Filter- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 10-26
10.5 Analog Monitor - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 10-29
11 Inspection, Maintenance, and Troubleshooting
11.1 Troubleshooting - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 11-2
11.1.1 Alarm Display Table- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 11-2
11.1.2 Warning Display - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 11-4
11.1.3 Alarm Display Table when the Application Module is Used - - - - - - - - - - - - - - - - - - - - - - - - 11-5
11.1.4 Warning Display Table when the Application Module is Used - - - - - - - - - - - - - - - - - - - - - - 11-6
11.1.5 Troubleshooting of Alarm and Warning - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 11-7
11.1.6 Troubleshooting for Malfunction without Alarm Display - - - - - - - - - - - - - - - - - - - - - - - - - - 11-17
11.2 Inspection and Maintenance - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 11-22
11.2.1 Linear Servomotor Inspection
11.2.2 SERVOPACK Inspection - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 11-22
11.2.3 Parts Replacement Schedule - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 11-23
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 11-22
12 Appendix
12.1 Linear Servomotor Capacity Selection Examples- - - - - - - - - - - - - - - - - - - - - 12-2
12.2 Calculating the Required Capacity of Regenerative Resistors - - - - - - - - - - - - 12-4
12.2.1 Simple Calculation - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 12-4
12.2.2 Calculating the Regenerative Energy - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -12-7
xx
12.3 Connection to Host Controller - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 12-16
12.3.1 Example of Connection to MP2200/MP2300 2-axes Motion Module SVA-01 - - - - - - - - - - 12-16
12.3.2 Example of Connection to OMRON’s Motion Control Unit - - - - - - - - - - - - - - - - - - - - - - - 12-17
12.3.3 Example of Connection to OMRON’s Position Control Unit - - - - - - - - - - - - - - - - - - - - - - 12-18
12.3.4 Example of Connection to OMRON’s Position Control Unit C500-NC221 (SERVOPACK in Speed Control Mode) - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 12-19
12.3.5 Example of Connection to OMRON’s Position Control Unit C500-NC112 (SERVOPACK in Position Control Mode) - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 12-20
12.3.6 Example of Connection to Mitsubishi’s AD72 Positioning Unit (SERVOPACK in Speed Control Mode) - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 12-21
12.3.7 Example of Connection to Mitsubishi’s AD75 Positioning Unit (SERVOPACK in Position Control Mode)- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 12-22
12.4 List of Parameters- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 12-23
12.4.1 Utility Functions List - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 12-23
12.4.2 List of Parameters - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 12-24
12.4.3 Monitor Modes - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 12-40
12.5 Parameter Recording Table - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 12-41
INDEX
Revision History
xxi
1

Outline

1.1 Checking Products - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 1-2
1.1.1 Check Items - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 1-2
1.1.2 Linear Servomotors - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 1-2
1.1.3 SERVOPACKs - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 1-3
1.1.4 Serial Converter Units - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 1-4
1.2 Product Part Names - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 1-5
1.2.1 Linear Servomotors - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 1-5
1.2.2 SERVOPACKs - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 1-6
1.3 Examples of Servo System Configurations - - - - - - - - - - - - - - - - - - - - - - - 1-8
1.3.1 Single-phase, 200 V Main Circuit - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 1-8
1.3.2 Three-phase, 200 V Main Circuit - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 1-9
1.3.3 Three-phase, 400 V Main Circuit - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 1-10
1
1.4 Applicable Standards - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 1-11
1.4.1 North American Safety Standards (UL, CSA) - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 1-11
1.4.2 CE Marking - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 1-11
1-1
1 Outline

1.1.1 Check Items

1.1 Checking Products

1.1.1 Check Items
Check the following items when the products are delivered.
Check Items Comments
Are the delivered products the ones that were ordered?
Is there any damage? Check the overall appearance, and check for damage or scratches that
If any of the above items are faulty or incorrect, contact your Yaskawa representative or the dealer from whom you purchased the products.

1.1.2 Linear Servomotors

The location of the nameplate varies depending on the model of the linear servomotor. The nameplate is affixed on both the coil assembly and the magnetic way.
(1) Coreless SGLGW and SGLGM Linear Servomotors
Check the model numbers marked on the nameplates on the linear servomotor and SERVOPACK. (Refer to the descriptions of model numbers in the following section.)
may have occurred during shipping.
CoilassemblyandMagneticway
Nameplate
Servomotor model
Ratings
OrderNo. SerialNo.
CORELESSLINEARSERVOMOTOR
SGLGW-40A140B
WA
94 0.8
N
47
O/N
S/N
YASKAWAELECTRICCORPORATIONJAPAN
Ins.
B
1-2
(2) SGLFW and SGLFM Linear Servomotors with F-type Iron Core and
SGLTW and SGLTM Linear Servomotors with T-type Iron Core
1.1 Checking Products
SGLFWandSGLFM
SGLTWandSGLTM
Note: The location of the nameplate varies depending on the model and capacity of the linear servomotor.

1.1.3 SERVOPACKs

Coilassembly
Servomotor model
Ratings
OrderNo. SerialNo.
Magneticway
Servomotor model
OrderNo. SerialNo.
Nameplate
LinearSERVOMOTOR
TYPE
SGLFW-35A120A
200 W
1.3 A
80 N 200 V
2.5 m/s
O/N S/N
YASKAWAELECTRICMADEINJAPAN
DATE
Nameplate
YASKAWA
TYPE:
SGLFM-20756A
O/N
S/N
MADEINJAPAN DATE
ins.B
1
SGDHfor50Wto5.0kW SGDHfor7.5kW
SERVOPACK SERVOPACK model
Applicable powersupply
Serial number
MODEL
AC-INPUT AC-OUTPUT VOLTS Hz PHASE AMPS
S/N
YASKAWAELECTRIC
SGDH-30AE
200-230 50/60 3
18.6
VOLTS PHASE AMPS KU(MP)
412808-15-1
MADEINJAPAN
0-230 3
24.8
3.0(4.0)
Applicable motor capacity
1-3
1 Outline

1.1.4 Serial Converter Units

1.1.4 Serial Converter Units
Nameplate
Serial converter model
OrderNo.
SerialNo.
SERIALCONVERTER
MODELJZDP-D006-156
For:-
O/N
S/N
YASKAWAELECTRICCORPORATION
--
JAPAN
1-4

1.2 Product Part Names

1.2.1 Linear Servomotors

Coreless SGLGW and SGLGM
(1)
Magneticway
Hallsensorcable
Maincircuitcableforlinearservomotor
1.2 Product Part Names
1
Coilassembly
Hallsensorunit
(2) SGLFW and SGLFM With F-type Iron Core
Coilassembly
Hallsensorcable
Hallsensor unit
Maincircuitcablefor linearservomotor
SGLTW and SGLTM With T-type Iron Core
(3)
Coilassembly
Hallsensorcable
Magneticway
Spacerfor installation
Hallsensorunit
Maincircuitcablefor linearservomotor
Magneticway
1-5
1 Outline

1.2.2 SERVOPACKs

1.2.2 SERVOPACKs
(1) SGDH for 50 W to 5.0 kW
Withthefrontcoveropen
MODE/SET DATA/
CHARGE POWER
CN5Analogmonitorconnector
Usedtomonitormotorspeed,force reference,andothervaluesthrough aspecialcable. Referto6.8.3CablesforAnalogMonitoror
10.5AnalogMonitor.
Paneldisplay
5-digit,7-segmentLEDusedtodisplay SERVOPACKstatus,alarmstatus,andother valueswhenparametersareinput. Referto8.1.2KeyNamesandFunctions.
Paneloperator Chargeindicator
Lightswhenthemaincircuitpowersupplyis ONandstayslitaslongasthemaincircuitpower supplycapacitorremainscharged.Therefore, donottouchtheSERVOPACKevenafterthepower supplyisturnedOFFiftheindicatorislit.
Maincircuitpower supplyterminals
Usedformaincircuitpowersupplyinput. Referto7.2WiringMainCircuit.
Controlpowersupplyterminals
Usedforcontrolpowersupplyinput. Referto7.2WiringMainCircuit.
Regenerative resistorconnectingterminals
Usedtoconnectexternalregenerativeresistors. Referto7.6ConnectingRegenerativeResistors.
Servomotorterminals
Connectstotheservomotorpowerline. Referto7.2WiringMainCircuit.
Groundterminal
Besuretoconnecttoprotectagainstelectricalshock. Referto7.2WiringMainCircuit.
YASKAWA
MODE/SET
YASKAWA
SERVOPACK
SGDH-
CHARGE POWER
DATA/
Frontcover
SERVOPACKmodel
Referto2.3SERVOPACKModel
Designations.
Panelkeys
Usedtosetparameters. Referto8.1.2KeyNamesandFunctions.
PowerONindicator

LightswhenthecontrolpowersupplyisON.
CN3Connectorforpersonalcomputermonitoring anddigitaloperator
Usedtocommunicatewithapersonalcomputer ortoconnectadigitaloperator.
Referto6.8.1CablesforConnectingPersonal Computerand6.8.2DigitalOperator.
CN1I/Osignalconnector
Usedforreferenceinputsignalsand sequenceI/Osignals. Referto7.4ExamplesofI/OSignalConnections.
Nameplate(sideview)
IndicatestheSERVOPACKmodelandratings. Referto1.1.3SERVOPACKs.
CN2Encoderconnector
Connectstotheserialconverterunit. Referto7.3WiringEncoders.
INFO
1-6
Connecting terminal of DC Reactor
For connecting a reactor, refer to 7.5.5 DC Reactor for Harmonic Suppression.
(2) SGDH for 7.5 kW
1.2 Product Part Names
SERVOPACKmodel
CN3Connectorfor personalcomputer monitoringand digitaloperator
Chargeindicator
Controlcircuit
terminal
SERVOPACK 200V
SGDH-
Ve r.
YASKAWA
CHARGE
L1C
L2C
Powerindicator
POWER
MODE/SET
CN3
CN1 CN2
Paneloperator
DATA/
CN8
CN5
BATTERY
!
WARNING
Paneldisplay
1
CN5Analog monitorconnector
Panelswitch
CN2Encoderconnector
CN1I/Osignalconnector
Nameplate(sideview)
Servomotorterminals:U,V,W
Groundterminal
Maincircuitpowersupply terminals:L1,L2,L3
L1 L2 L3
+
B2B1
U
VW
Regenerativeresistor connectingterminals:B1,B2
* Control circuit terminal and regenerative resistor connecting terminals differ the position of the termi-
nal block by the SERVOPACK model. Refer to Chapter 4 SERVOPACK Specifications and Dimensional Drawings for details.
SERVOPACK model SGDH-75AE: Refer to 4.7.7 Three-phase 200 V: 7.5 kW (75AE) and
4.9.1 Three-phase 200 V: 7.5 kW (75AE-P).
SERVOPACK model SGDH-75DE: Refer to 4.7.8 Three-phase 400 V: 7.5 kW (75DE) and
4.9.2 Three-phase 400 V: 7.5 kW (75DE-P).
1-7
1 Outline

1.3.1 Single-phase, 200 V Main Circuit

1.3 Examples of Servo System Configurations

This section describes examples of basic servo system configuration.
1.3.1 Single-phase, 200 V Main Circuit
Powersupply Single-phase200VAC
Molded-case circuitbreaker (MCCB)
Protectsthepowersupply linebyshuttingthecircuit OFFwhenanovercurrent isdetected.
(Referto2.6.2)
Noisefilter
Eliminatesexternal noisefromthepower line.
(Referto2.6.3)
RT
Magnetic contactor
TurnstheservoON andOFF. Installasurge suppressor.
Referto
2.6.3)
SGDH-AE SERVOPACK
YASKAWA SERVOPACK
SGDH-
Note:To connectaDCreactor,referto
7.5.5DCReactorforHarmonic Suppression.
200V
Digital operator
(Referto2.6.1.)
Regenerative resistor
Connectanexternal regenerativeresistor toterminalsB1andB2 iftheregenerative capacityisinsufficient.
(Referto2.6.4.)
MODE/SET
CHARGE POWER
L1
L2
+1
+2
-
L1C L2C
B1 B2
U
V
W
Maincircuitcablefor linearservomotor
(Referto2.5.)
DATA/
C N 3
C N 1
C N
Encoder cable
(Referto2.5.)
Connectioncable fordigitaloperator
Connectioncable forpersonalcomputer
I/Osignalcable
(Referto2.6.1.)
(Referto2.6.1.)
Connectioncable forserialconverterunit
(Referto2.5.)
Serialconverterunit
(Referto2.4.)
Personalcomputer
Hostcontroller
Connectioncable forhallsensor
(Referto2.5.)
1-8
Linearscale
(Tobeprovidedby users.)
(Referto2.6.5.)
Hallsensorunit
CorelessLinearServomotor

1.3.2 Three-phase, 200 V Main Circuit

Powersupply Three-phase200VAC
Molded-case circuitbreaker (MCCB)
Protectsthepower supplylinebyshutting thecircuitOFFwhen anovercurrentis detected.
(Referto2.6.2.)
Noisefilter
Eliminatesexternalnoise fromthepowerline.
(Referto2.6.3.)
RST
*1:Thepositiveterminalforthemaincircuitisonlyavailableforuse
inthethree-phase(200VAC,7.5kW)SERVOPACKs. Donotusethepositiveterminals1or2.
*2:Beforeconnectinganexternalregenerativeresistorto theSERVOPACK,besuretodisconnecttheleadbetweenterminals B2andB3.
*3:To connectaDCreactor,referto7.5.5DCReactorforHarmonic
Suppression.
1.3 Examples of Servo System Configurations
1
Regenerative resistor
Connectanexternal regenerativeresistor toterminalsB1andB2 iftheregenerative capacityisinsufficient.
(Referto2.6.4.)
Magnetic contactor
Turnstheservo ONandOFF. Installasurge suppressor.
(Referto
2.6.3.)
*2
*1 *3
SGDH-AE SERVOPACK
YASKAWA
200V
SERVOPACK
SGD
H-
MODE/SET
DATA/
CHARGE POWER
L1
C N
L2
3
L3
1
2
C N 1
L1C
L2C
B1
B2
B3
C
U
N 2
V
W
Connectioncablefor digitaloperator
Connectioncablefor personalcomputer
(Referto2.6.1.)
I/Osignalcable
(Referto2.6.1.)
Digital operator
(Referto2.6.1.)
Personalcomputer
Hostcontroller
Connectioncablefor serialconverterunit
(Referto2.5.)
Serialconverterunit
(Referto2.4.)
Maincircuitcablefor linearservomotor
(Referto2.5.)
Linearscale (Tobeprovidedby users)
(Referto2.6.5.)
Encoder cable
(Referto2.5.)
Connectioncable forhallsensor
(Referto2.5.)
Linearservomotorwithcore
1-9
1 Outline

1.3.3 Three-phase, 400 V Main Circuit

1.3.3 Three-phase, 400 V Main Circuit
Powersupply Three-phase400VAC
RST
Molded-case circuitbreaker (MCCB)
Protectsthepower supplylinebyshutting thecircuitOFFwhen anovercurrentis detected.
(Referto2.6.2.)
Noisefilter
Eliminatesexternal noisefromthepower line.
(Referto2.6.3.)
Magnetic contactor
Turnstheservo ONandOFF. Installasurge suppressor.
Referto
2.6.3.)
*1:Usea24VDCpowersupply(Tobeprovidedbyusers).
*2:Beforeconnectinganexternalregenerativeresistorto theSERVOPACK,besuretodisconnecttheleadbetweenterminals B2andB3.
*3:To connectaDCreactor,referto7.5.5DCReactorforHarmonic
Suppression.
Digital
SGDH-DE
operator
(Referto2.6.1.)
SERVOPACK
Connectioncable
YASKAWA SERVOPACK
SGD
H-
200V
fordigitaloperator
Personalcomputer
*1
+
DCpower supply (24VDC)
Regenerative resistor
Connectanexternal regenerativeresistor toterminalsB1andB2 ifthergenerativecapacity isinsufficient.
(Referto2.6.4.)
*2
*3
MODE/SET
DATA/
CHARGE POWER
L1
C N
L2
3
L3
1
2
C N 1
24V
0V
B1
B2
B3
C
U
N 2
V
W
Maincircuitcablefor linearservomotor
(Referto2.5.)
Linearscale (Tobeprovidedby users.)
(Referto2.6.5.)
Connectioncable forpersonalcomputer
I/Osignalcable
(Referto2.6.1.)
Encoder cable
(Referto2.5.)
(Referto2.6.1.)
Hostcontroller
Connectioncablefor serialconvertrunit
(Referto2.5.)
Serialconvertrunit
(Referto2.4.)
Connectioncable forhallsensor
(Referto2.5.)
1-10
Linearservomotor wirhcore

1.4 Applicable Standards

Σ-II Series servodrives conform to the following overseas standards.

1.4.1 North American Safety Standards (UL, CSA)

1.4 Applicable Standards
1.4.2
U
R
C
L
LISTED
Model
SERVOPACK • SGDH
* 1. Underwriters Laboratories Inc. * 2. Canadian Standards Association.

CE Marking

Model
SERVOPACK • SGDH
* TÜV Product Services GmbH Note: For installation conditions, refer to 7.5.2 Wiring for Noise Control.
Because SERVOPACKs and linear servomotors are built-in type, reconfirmation is required after being installed in the final product.
1
UL
Standards (UL File No.) CSA∗2 Standards
UL508C(E147823)
Low Voltage
Directive
EN50178
US
C
EMC Directive
EMI EMS
EN55011
class A group 1
CSA C22.2
No.14
EN50082-2
EN61000-6-2
R
or
US
Certifications
UL
Certifications
TÜV PS
1
1-11
2

Selections

2.1 Linear Servomotor Model Designation - - - - - - - - - - - - - - - - - - - - - - - - - - 2-2
2.1.1 Coil Assembly - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 2-2
2.1.2 Magnetic Way - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 2-2
2.2 SERVOPACK Model Designation - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 2-3
2.3 Σ-II Series SERVOPACKs and Applicable Linear Servomotors - - - - - - - - - 2-4
2.4 Serial Converter Units Models - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 2-6
2.5 Selecting Cables - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 2-7
2.6 Selecting Peripheral Devices - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 2-9
2.6.1 Special Options - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 2-9
2.6.2 Molded-case Circuit Breaker and Fuse Capacity - - - - - - - - - - - - - - - - - - - - - - - - - - 2-11
2.6.3 Noise Filters, Magnetic Contactors, Surge Suppressors and DC Reactors - - - - - - - - 2-12
2.6.4 Regenerative Resistors - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 2-13
2.6.5 Linear Scales - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 2-14
2
2-1
2 Selections

2.1.1 Coil Assembly

2.1 Linear Servomotor Model Designation

This section describes how to check the model and ratings of the linear servomotor. The alphanumeric codes after SGL- indicate the specifications.
2.1.1 Coil Assembly
SGLGW 40A140APD
LinearΣSeries Linearservomotor
ServomotorModel
Code
Specifications
G
Coreless
F-typeironcore
F
T-typeironcore
T
Code
MSconnectororconnector
madebyTycoElectronics AMPK.K.(Standard)
Connectormadeby
D
Interconnectron
CableConnectorforMainCircuitCable
Specifications
ApplicableModel
Allmotormodels
SGLGW-30A,-40A,-60ASGLFW-35D,-50D,-1ZDSGLTW-35DH,
-50DH
W:Coilassembly
Magnetheight
Voltage
200VAC
A
400VAC
D

2.1.2 Magnetic Way

SGL 40 225 A C
LinearΣSeries Linearservomotor
Code
G
F
F-typeironcore
T
T-typeironcore
M:Magneticway
Magnetheight
GM
Model
Specifications
Coreless
Specifications
Code
Withhallsensor(standard)
P
C
Forcedcooling
Withhallsensorandforcedcooling
H
Withouthallsensor
Designrevisionorder
A,B,C
Lengthofcoilassembly
Code
-M
Specifications ApplicableModel
Standard Allmotormodels
C
Withmagnetcover
Highthrustforce
Withbaseand
Y
magneticcover
HallSensor/Cooling
Applicablemodels
Allmotormodels
SGLGW-40A,-60A,-90A
Allmotormodels
Options
OnlyforallIron-coretypes
SGLFMSGLTM
Onlyforthefollowingcorelesstypes SGLGM-40,-60
OnlyfortheT-typeironcoretypes SGLTM-20,-35,-40,-80
Note:Themagneticwayswithbasefor
SGLTM-35H,-50H arenotavailable.
2-2
Designrevisionorder A,B,C
Note:Thecorelesslinear
servomotorhas revisionCT.
Lengthofmagneticway

2.2 SERVOPACK Model Designation

Select the SERVOPACK according to the applied linear servomotor.
10SGDH-AE
Σ-IISeriesSGDH SERVOPACK
2.2 SERVOPACK Model Designation
RatedOutputofApplicableServomotor(kW)
Code
A5
01
02
04
05
08
RatedOutput
0.05
0.10
0.20
0.40
0.45
0.75
Code
Code
10
15
20
30
50
75
PowerSupplyVoltage
A
D
Single/Three-phase,200V
RatedOutput
Voltage
Three-phase,400V
1.0
1.5
2.0
3.0
5.0
7.5
Code Specifications
-
Base-mounted
-P
Duct-ventilated
-R
Rack-mounted
Code
Forforce,speed,andpositioncontrol
E
Applicableforvariousapplicationmodules
MountingMethod
RatedOutputof ApplicableServomotor(kW)
0.05to7.5
7.5
0.05to5.0
Model(Fixed)
Remarks
2
2-3
2 Selections
2.3
Σ-II Series SERVOPACKs and Applicable Linear Servomotors
Linear Σ Series Linear Servomotor
SGLGW (Coreless)
17 models
SGLFW (With F-type iron core)
14 models
When a Standard­force Magnetic Way is used.
When a High-force Magnetic Way is used.
30A050C
30A080C
40A140C
40A253C
40A365C
60A140C
60A253C
60A365C
90A200C
90A370C
90A535C
40A140C
40A253C
40A365C
60A140C
60A253C
60A365C
20A090A
20A120A
35A120A
35A230A
50A200B
50A380B
1ZA200B
1ZA380B
35D120A
35D230A
50D200B
50D380B
1ZD200B
1ZD380B
Σ-II Series SGDH SERVOPACK
Single-phase
200 VAC
A5AE −−
01AE −− 01AE −− 02AE −− 04AE −− 02AE −− 04AE −−
08AE
15AE
20AE
30AE
02AE −− 04AE −−
05AE
02AE −−
05AE
10AE
02AE −− 02AE −− 02AE −−
05AE
08AE
15AE
15AE
30AE
−−05DE
−−05DE
−−10DE
−−15DE
−−15DE
−−30DE
Three-phase
200 VAC
Three-phase
400 VAC
2-4
Linear Σ Series Linear Servomotor
SGLTW (With T-type iron core)
22 models
Note: The model combinations shown in this table are used when the maximum rated force of the appli-
cable linear servomotor is required. To suppress rises in temperature, larger linear servomotors are used in some cases. If so, the SERVOPACK capacity can be lowered if using a motor at a lower force than the rated force. Calculate the required current and select a model with a margin of approximately 20%. An allowance can be made for up to 1/3 of the combined capacity of the linear servomotor and SERVOPACK in the table.
20A170A
20A320A
20A460A
35A170A
35A320A
35A460A
35A170H
35A320H
50A170H
50A320H
40A400B
40A600B
80A400B
80A600B
35D170H
35D320H
50D170H
50D320H
40D400B
40D600B
80D400B
80D600B
2.3 Σ-II Series SERVOPACKs and Applicable Linear Servomotors
Σ-II Series SGDH SERVOPACK
Single-phase
200 VAC
05AE
10AE
15AE
08AE
15AE
20AE
08AE
15AE
08AE
15AE
20AE
50AE
50AE
75AE
−−10DE
−−20DE
−−10DE
−−20DE
−−30DE
−−50DE
−−50DE
−−75DE
Three-phase
200 VAC
Three-phase
400 VAC
2
2-5
2 Selections

2.4 Serial Converter Units Models

D003JZDP 001
Symbol
D003
D005
D006
D008
SerialConverterUnitModel
Appearance
Applicable
LinearScale
Madeby
Heidenhain
Madeby
Renishaw
Heidenhain
Madeby
Renishaw
Madeby
HallSensor
None
None
Yes
Yes
ServomotorModel
SGLGW-
(Coreless)
Whena standard­force magnetic wayisused.
SGLGW­+
SGLGM­-M
(Coreless)
Whena high-force magnetic wayisused.
SGLFW-
(Ironcore,
F-type)
ApplicableLinearServomotor
Symbol
30A050C
30A080C
40A140C
40A253C
40A365C
60A140C
60A253C
60A365C
90A200C
90A370C
90A535C
40A140C
40A253C
40A365C
60A140C
60A253C
60A365C
20A090A
20A120A
35A120A
35A230A
50A200B
50A380B
1ZA200B
1ZA380B
35D120A
35D230A
50D200B
50D380B
1ZD200B
1ZD380B
250
251
252
253
254
258
259
260
264
265
266
255
256
257
261
262
263
017
018
019
020
181
182
183
184
211
212
189
190
191
192
ServomotorModel
SGLTW-
(Ironcore,
T-type)
20A170A
20A320A
20A460A
35A170A
35A320A
35A460A
35A170H
35A320H
50A170H
50A320H
40A400B
40A600B
80A400B
80A600B
35D170H
35D320H
50D170H
50D320H
40D400B
40D600B
80D400B
80D600B
Symbol
011
012
013
014
015
016
105
106
108
109
185
186
187
188
193
194
195
196
197
198
199
200
2-6
Note: When using a 400-V winding linear servomotor with a 200-V SERVOPACK, the parameters in the
serial converter should be changed. Contact your Yaskawa representatives.

2.5 Selecting Cables

L1
L2
L3
U
V
W
L1C
L2
B1
B2
B3
1
2
C N 3
C N 1
C N 2
r
YASKAWA
200V
SERVOPACK
SGDH-
MODE/SET DATA/
POWER
CHARGE
CN2
Serialconverter unit
SERVOPACK
Note:Thefollowingtwomaincircuitcables areavailableforthelinearservomotor. 
MSconnectororconnectormadeby
 TycoElectronicsAMPK.K. 
ConnectormadebyInterconnectron
2.5 Selecting Cables
2
Linearscale (Tobeprovided byusers.)
Name Connection
c
Linear Servo­motor Main Circuit Cables
Between SERVO­PACK and linear servomotor
Linearservomotor
Applicable
Linear Servo-
motor Model
SGLGW-30,-40 and -60 SGLFW-20
SGLFW-35
SGLGW-90 SGLFW-50 and
-1Z SGLTW-20,-35 and -50
SGLTW-40 and
-80
Hallsensor unit
Cable
Length
1 m 3 m 5 m 10 m 15 m 20 m 1 m 3 m 5 m 10 m 15 m 20 m 1 m 3 m 5 m 10 m 15 m 20 m
Cable Type Specifications
JZSP-CLN11-01
JZSP-CLN11-03
JZSP-CLN11-05
JZSP-CLN11-10
JZSP-CLN11-15
JZSP-CLN11-20
JZSP-CLN21-01
JZSP-CLN21-03
JZSP-CLN21-05
JZSP-CLN21-10
JZSP-CLN21-15
JZSP-CLN21-20
JZSP-CLN39-01
JZSP-CLN39-03
JZSP-CLN39-05
JZSP-CLN39-10
JZSP-CLN39-15
JZSP-CLN39-20
SERVOPACK end
SERVOPACK end
SERVOPACK end
Linearservomoto end
Linearservomotor end
Refer-
ence
Linearservomotor end
6.1
2-7
2 Selections
Name Connection
c
Linear Servo­motor Main Circuit Cables
d
Encoder Cables
e
Connection cables for seri­al converter unit
f
Connection cables for hall sensor
Between SERVO­PACK and linear servomotor
Between serial convert­er unit and linear scale
Between SERVO­PACK connector CN2 and serial converter unit
Between serial convert­er unit and hall sensor unit
* The main circuit’s cable connector is made by Interconnectron.
A connector is not provided on the linear servomotor end of the main circuit cable, type JZSP-
Note:
CLN39-. The user must provide the connector on the linear servomotor end. For details on the required connector, refer to
Applicable
Linear Servo-
motor Model
SGLGW-
-30A

-40A

-60A

For 200 VAC *
SGLFW-
-35D

-50D

-1ZD

SGLTW-
-35D
H
-50D
H
For 400 VAC *
All models
All models
All models
D D D
D D D
D D
Cable
Length
1 m 3 m 5 m 10 m 15 m 20 m 1 m 3 m 5 m 10 m 15 m
20 m 1 m
3 m 5 m 10 m 15 m 1 m 3 m 5 m 10 m 15 m 20 m 1 m 3 m 5 m 10 m 15 m
Cable Type Specifications
JZSP-CLN14-01
JZSP-CLN14-03
JZSP-CLN14-05
JZSP-CLN14-10
JZSP-CLN14-15
JZSP-CLN14-20
JZSP-CLN15-01
JZSP-CLN15-03
JZSP-CLN15-05
JZSP-CLN15-10
JZSP-CLN15-15
JZSP-CLN15-20
JZSP-CLL00-01
JZSP-CLL00-03
JZSP-CLL00-05
JZSP-CLL00-10
JZSP-CLL00-15
JZSP-CLP70-01
JZSP-CLP70-03
JZSP-CLP70-05
JZSP-CLP70-10
JZSP-CLP70-15
JZSP-CLP70-20
JZSP-CLL10-01
JZSP-CLL10-03
JZSP-CLL10-05
JZSP-CLL10-10
JZSP-CLL10-15
6.1 Linear Servomotor Main Circuit Cables
SERVOPACK end
SERVOPACK end
Serialconverterunit
end
SERVOPACK end
Serialconverterunit
end
.
Linearservomotor end
Linearservomotor end
Linearscale end
Serialconverterunit
end
Hallsensorunit
end
Refer-
ence
6.1
6.3
6.2
6.4
2-8

2.6 Selecting Peripheral Devices

L1
L2
L3
U
V
W
L1C
L2
B1
B2
B3
1
2
C N 3
C N 1
C N 2
L1
L2
L3
U
V
W
L1C
L2
B1
B2
B3
1
2
C N 3
C N 1
C N 2

2.6.1 Special Options

Connectioncable
fordigitaloperator
YASKAWA
200V
SERVOPACK
SGDH-
MODE/SET DATA/
CHARGE
POWER
CN3
Connectioncable
forpersonalcomputer
Digitaloperator
2.6 Selecting Peripheral Devices
Personal computer
2
YASKAWA SERVOPACK
SGDH-
MODE/SET DATA/
CHARGE
I/Osignalcable
Hostcontroller
CN1
Analogmonitorcable
CN5
CN8
CN6A
CN6B
CN4
NS300
CN11
CN6
CN4
NS600
CN7
CN4
CN6
7
8
6
9 0
X 5 4
10
1
3
2
7
8
6
9
X
0 5 4
1
1
3
2
CN11
7
8
6
9
D
0 5
R
4
1
3
2
C N
11
M S
N S
CN6
NS500
6
CN4
CN10
NS100
S W
200V
Connector
POWER
1
A R
S W 2
C N 6 A
C N 6 B
C N 4
CN6A
CN6B
CN4
NS115
S W
1
A R
S W
2
C N
6
A
C N
6
B
C N
4
MECHATROLINK-I I/FUnit (NS100)
MECHATROLINK-II I/FUnit (NS115)
DeviceNet I/FUnit (NS300)
PROFIBUS-DP I/FUnit (NS500)
INDEXER Module (NS600)
2-9
2 Selections
2.6.1 Special Options
Name Length Type Specifications
Connector terminal block
c
CN1
converter unit
I/O Signal Cables
Cable with loose wires at one end
d Digital Operator
CN3
e
Connection Cable for Digital Operator
CN3
f
Connection Cable for Personal Computer
Terminal block and 0.5 m connection cable
JUSP-TA50P
1 m JZSP-CKI01-1 Loose wires at host controller end 2 m JZSP-CKI01-2
3 m JZSP-CKI01-3
With connection cable (1 m)
JUSP-OP02A-2
1 m JZSP-CMS00-1
1.5 m JZSP-CMS00-2
Only required when using Σ series Digital Operator JUSP-OP02A-1.
SERVOPACK
end
Operator
end
2 m JZSP-CMS00-3
D-Sub 9-pin (For DOS/V)
2 m JZSP-CMS02
SERVOPACK
end
Personal
computerend
Refer-
ence
6.8.4
6.7.1
6.8.2
6.8.1
CN5
g
1 m JZSP-CA01
Analog Monitor Cable
Name Type
MECHATROLINK-I I/F Unit (NS100) JUSP-NS100 MECHATROLINK-II I/F Unit (NS115) JUSP-NS115
Application Module
h
DeviceNet I/F Unit (NS300) JUSP-NS300 PROFIBUS-DP I/F Unit (NS500) JUSP-NS500 INDEXER Module (NS600) JUSP-NS600
* For details, refer to the manuals of each application module.
SERVOPACKend
Monitorend
6.8.3
Refer-
ence
6.8.14
6.8.14
6.8.15
6.8.16
6.8.17
2-10

2.6.2 Molded-case Circuit Breaker and Fuse Capacity

Current Capacity of the
Main Circuit Power
Supply
Single­phase 200 V
Three­phase 200 V
Three­phase 400 V
SERVOPACK
Model
Power Supply
Capacity per
SERVOPACK
Capacity
(kW)
SGDH-
(kVA)
0.05 A5AE 0.25
0.10 01AE 0.40
0.20 02AE 0.75
0.40 04AE 1.2 8
0.45 05AE 1.4 4
0.75 08AE 1.9
1.0 10AE 2.3
1.5 15AE 3.2 10
2.0 20AE 4.3 13
3.0 30AE 5.9 17
5.0 50AE 7.5 28 67A
7.5 75AE 15.5 41
0.45 05DE 1.1 1.6
1.0 10DE 2.3 3.4
1.5 15DE 3.2 4.6
2.0 20DE 4.9 7.1
3.0 30DE 6.7 9.7
5.0 50DE 10.3 14.9 78A
7.5 75DE 15.4 22.3
Molded-case Circuit Breaker
and the Fuse (A
(Refer to 6.8.7)
Main Circuit
Power Supply
4
7
2.6 Selecting Peripheral Devices
1,2
)
rms
Control Cir-
cuit Power
Supply
Power Supply
Inrush Current
Main Circuit
0.13 63A 60A
118A
4
0.15
63A
4
0.27
40A
10A
4
0.7 20A
4
1.2
20A
Control Cir-
cuit Power
Supply
60A
(24 VDC)
2
3
IMPORTANT
* 1. Nominal value at the rated load. The specified derating is required to select an appropriate
fuse capacity. * 2. Cutoff characteristics (25°C): 300% five seconds min. and inrush current of 20ms. * 3. A preventive circuit for inrush current is not built in the 24 VDC control power supply. The
protective circuit must be designed by the customer. * 4. Make sure the current capacity is accurate. For the SERVOPACK with the cooling fan built-
in, an inrush current flows; 200 % of the current capacity in the table above for two seconds,
when turning ON the control circuit power supply to start the fan working. Note: Do not use a fast-acting fuse. Because the SERVOPACK’s power supply is a capacitor
input type, a fast-acting fuse may blow when the power is turned ON.
The SGDH SERVOPACK does not include a protective grounding circuit. Install a ground-fault protector to protect the system against overload and short-circuit or protective grounding combined with the molded­case circuit breaker.
2-11
2 Selections

2.6.3 Noise Filters, Magnetic Contactors, Surge Suppressors and DC Reactors

2.6.3 Noise Filters, Magnetic Contactors, Surge Suppressors and DC Reactors
Main Circuit
Power
Supply
Single-phase 200 V
Three-phase 200 V
Three-phase 400 V
Note: 1. If some SERVOPACKs are wired at the same time, select the proper magnetic contactors accord-
SERVOPACK Model
Capacity
(kW)
0.05 A5AE
0.10 01AE X5071
0.20 02AE X5070
0.40 04AE FN2070-10/07
0.45 05AE FN258L-7/07
0.75 08AE
1.0 10AE
1.5 15AE
2.0 20AE
3.0 30AE FN258L-30/07
5.0 50AE FMAC-0934-5010
7.5 75AE FMAC-0953-6410
0.45 05DE
1.0 10DE
1.5 15DE
2.0 20DE
3.0 30DE
5.0 50DE
7.5 75DE
ing to the total capacity.
2. The following table shows the manufacturers of each device.
SGDH
Recommended Noise Filter
(Refer to 6.8.8.)
-
Type Specifications
FN2070-6/07
FN258L-16/07
FN258L-7/07
FN258L-16/07
FS5559-35-33
Single-phase
250 VAC, 6 A
Single-phase
250 VAC, 10 A
Three-phase
480 VAC, 7 A
Three-phase
480 VAC, 16 A
Three-phase
480 VAC, 30 A
Three-phase
440 VAC, 50 A
Three-phase
440 VAC, 64 A
Three-phase
480 VAC, 7 A
Three-phase
480 VAC, 16 A
Three-phase
480 VAC, 35 A
Magnetic Contac-
tor
(Refer to 6.8.9.)
HI-11J (20 A)
HI-11J (20 A)
HI-15J (35 A)
HI-20J (35 A)
HI-25J (50 A)
HI-35J (65 A)
HI-15JCU (35 A)
HI-20JCU (35 A)
HI-25JCU (50 A) HI-35JCU (65 A)
Surge
Suppressor
(Refer to
6.8.10.)
TU-25C240
TU-65C240
Built-in
DC
Reactor
(Refer to
6.8.11.)
X5069
X5061
X5060
X5059
X5068
X5074
X5075
X5076
X5077
2-12
Peripheral Device Manufacturer
Noise Filter
Magnetic Contactor Yaskawa Controls Co., Ltd. Surge Suppressor Yaskawa Controls Co., Ltd. DC Reactor Yaskawa Controls Co., Ltd.
FN, FS type: Schaffner Electronic FMAC type: SCHURTER (formely TIMONTA)

2.6.4 Regenerative Resistors

2.6 Selecting Peripheral Devices
SERVOPACK Model
Main Circuit
Power Supply
Single-phase 200 V
Three-phase 200 V
Three-phase 400 V
* 1. For the optional JUSP-RA05 Regenerative Resistor Unit. * 2. For the optional JUSP-RA18 Regenerative Resistor Unit.
Capacity
(kW)
0.05 A5AE
0.10 01AE
0.20 02AE
0.40 04AE
0.45 05AE
0.75 08AE
1.0 10AE
1.5 15AE 30 70
2.0 20AE 25 140
3.0 30AE 12.5 140
5.0 50AE 8 280
7.5 75AE
0.45 05DE
1.0 10DE
1.5 15DE
2.0 20DE
3.0 30DE
5.0 50DE 32 180
SGDH-
Resistance
Regenerative Resistor
(Refer to 6.8.5, 6.8.6, and 7.6.)
Built-in
()
−−−
50 60
1
(3.13)
108 70
45 140
2
(18)
Capacity
(W)
1
(1760)
2
(880)
Externally
connected
2
JUSP-RA05
JUSP-RA187.5 75DE
Note: 1. If the SERVOPACK cannot process the regenerative power, an external regenerative resistor is
required. Refer to 6.8.5 External Regenerative Resistor, 6.8.6 Regenerative Resistor, and 7.6 Connecting Regenerative Resistors.
2. The following table shows the manufacturers of each device.
Peripheral Device Manufacturer
External Regenerative Resistor Iwaki Wireless Research Institute External Regenerative Unit Yaskawa Electric Corporation
2-13
2 Selections

2.6.5 Linear Scales

2.6.5 Linear Scales
Max. Value of Encoder
Output
Resolution
Manufacturer Type Output Signal
Resolution (µm/pulse)
Scale Pitch
(µm)
(Pn281)
31 5
Renishaw Inc. RGH22B
0.078 20
63 4 127 2 255 1
63 5
LIDA187
0.156 40
127 4 255 2
Heidenhain Corp.
LIDA487 LIDA489
1Vpp Analog voltage
0.078 20
31 5
63 4 127 2 255 1
31 1.0
LIF181
0.016 4
63 0.8 127 0.4 255 0.2
Note: 1. The linear scale signal is multiplied by eight bits (256 segmentation) inside the serial converter
unit.
2. Using the zero-point signal with a linear scale made by Renishaw Inc. may cause a deviation in the home position. If so, adjust the setting so that the zero-point is output only in one direction by using BID/DIR signal.
3. This list does not cover all the applicable types of linear scales. And, the linear scales listed in the table may not be applicable or available if their specifications have been modified or their production has been stopped. Check the most recent catalog of the linear scale manufacturer to select a linear scale that meets the specifications described in 5.1 Serial Converter Unit Specifications.
4. Select a linear scale so that the current consumption of the linear scale is 190 mA max.
5. At parameter (Pn280), set the scale pitch of the linear scale so that it satisfies the following con­dition. Otherwise, satisfactory control cannot be obtained.
Max. Speed of
Applicable Linear
Servomotor
(m/s)
2-14
64000
Pn280(Scale pitch (µm))
Examples Correct: 1,2,4,8,10,16,20,40 Incorrect: 3,12,18
must result in an integer number
3

Specifications and Dimensional Drawings

3.1 Ratings and Specifications of SGLGW/SGLGM - - - - - - - - - - - - - - - - - - - - 3-2
3.2 Ratings and Specifications of SGLFW/SGLFM - - - - - - - - - - - - - - - - - - - -3-6
3.3 Ratings and Specifications of SGLTW/SGLTM - - - - - - - - - - - - - - - - - - - - - 3-9
3.4 Mechanical Specifications of Linear Servomotors - - - - - - - - - - - - - - - - - 3-15
3.5 Quick Guide to Linear Servomotor Dimensional Drawings - - - - - - - - - - - 3-16
3.6 Dimensional Drawings of SGLGW/SGLGM Linear Servomotors - - - - - - - 3-17
3.6.1 SGLG-30 Linear Servomotors - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 3-17
3.6.2 SGLG-40 Linear Servomotors - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 3-20
3.6.3 SGLG-60 Linear Servomotors - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 3-24
3.6.4 SGLG-90 Linear Servomotors - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 3-28
3
3.7 Dimensional Drawings of SGLFW/SGLFM Linear Servomotors - - - - - - - - 3-30
3.7.1 SGLF-20 Linear Servomotors - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 3-30
3.7.2 SGLF-35 Linear Servomotors - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 3-32
3.7.3 SGLF-50 Linear Servomotors - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 3-35
3.7.4 SGLF-1Z Linear Servomotors - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 3-38
3.8 Dimensional Drawings of SGLTW / SGLTM Linear Servomotors - - - - - - - 3-41
3.8.1 SGLT-20 Linear Servomotors - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 3-41
3.8.2 SGLT-35A Linear Servomotors - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 3-44
3.8.3 SGLT-35H Linear Servomotors - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 3-47
3.8.4 SGLT-40 Linear Servomotors - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 3-50
SGLT-50
3.8.5
3.8.6 SGLT-80 Linear Servomotors - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 3-56
Linear Servomotors - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 3-53
3-1
3 Specifications and Dimensional Drawings

3.1 Ratings and Specifications of SGLGW/SGLGM

(1) Ratings and Specifications
• Time Rating: Continuous
• Insulation Resistance: 500 VDC, 10 M min.
• Ambient Temperature: 0 to 40 °C (32 to 104°F)
• Excitation: Permanent magnet
• Dielectric Strength: 1500 VAC for 1 minute
• Protection Methods: Self-cooled, air-cooling
• Ambient Humidity: 20 to 80 % (no condensation)
• Allowable Winding Temperature: 130 °C (266°F) (Insulation class B)
(a) With Standard-force Magnetic Ways
The following table shows the ratings and specifications when the standard-force magnetic ways are used.
Linear Servomotor Model SGLGW-
Rated Speed m / s
Peak Speed m / s
Rated Force
Rated Current
Instantaneous Peak
Force
Instantaneous Peak
Current
Coil Assembly Mass kg
Force Constant N / A
BEMF Constant V /(m / s)
Motor Constant
Electrical Time Constant
Mechanical Time Constant
Thermal Resistance With Heat Sink
Thermal Resistance Without Heat Sink
Magnetic Attraction N
N
Arms
N
Arms
N /
ms
ms
K / W
K / W
rms
w
30A 40A 60A 90A
050C 080C 140C 253C 365C 140C 253C 365C 200C 370C 535C
1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 55555555555
12.5 25 47 93 140 70 140 210 325 550 750
0.51 0.79 0.8 1.6 2.4 1.2 2.2 3.3 4.4 7.5 10.2
40 80 140 280 420 220 440 660 1300 2200 3000
1.62 2.53 2.4 4.9 7.3 3.5 7.0 10.5 17.6 30.0 40.8
0.10 0.15 0.34 0.60 0.87 0.42 0.76 1.10 2.15 3.6 4.9
26.4 33.9 61.5 61.5 61.5 66.6 66.6 66.6 78 78 78
8.8 11.3 20.5 20.5 20.5 22.2 22.2 22.2 26.0 26.0 26.0
3.7 5.6 7.8 11.0 13.5 11.1 15.7 19.2 26.0 36.8 45.0
0.2 0.4 0.4 0.4 0.4 0.5 0.5 0.5 1.4 1.4 1.4
7.30 4.78 5.59 4.96 4.77 3.41 3.08 2.98 3.18 2.66 2.42
5.19 3.11 1.67 0.87 0.58 1.56 0.77 0.51 0.39 0.26 0.22
−−3.02 1.80 1.23 2.59 1.48 1.15
00000000000
3-2
3.1 Ratings and Specifications of SGLGW/SGLGM
(b) With High-force Magnetic Ways
The following table shows the ratings and specifications when the high-force magnetic ways are used.
Linear Servomotor Model SGLGM-C-M
+
SGLGW-
Rated Speed m / s
Peak Speed m / s
Rated Force
Rated Current
Instantaneous Peak
Force
Instantaneous Peak
Current
Coil Assembly Mass kg
Force Constant N / A
BEMF Constant V /(m / s)
Motor Constant
Electrical Time Constant
Mechanical Time Constant
Thermal Resistance With Heat Sink
Thermal Resistance Without Heat Sink
Magnetic Attraction N
N
Arms
N
Arms
N /
ms
ms
K / W
K / W
rms
w
40A 60A
140C 253C 365C 140C 253C 365C
1.5 1.5 1.5 1.5 1.5 1.5 555555
57 114 171 85 170 255
0.8 1.6 2.4 1.2 2.2 3.3
230 460 690 360 720 1080
3.2 6.5 9.7 5.0 10.0 14.9
0.34 0.60 0.87 0.42 0.76 1.10
76.0 76.0 76.0 77.4 77.4 77.4
25.3 25.3 25.3 25.8 25.8 25.8
9.6 13.6 16.7 12.9 18.2 22.3
0.4 0.4 0.4 0.5 0.5 0.5
3.69 3.24 3.12 2.52 2.29 2.21
1.67 0.87 0.58 1.56 0.77 0.51
3.02 1.80 1.23 2.59 1.48 1.15
000000
3
Note: 1. The items marked with an * and “Force and Speed Characteristics” are the values at a motor winding tem-
perature of 100 °C (212°F) during operation in combination with a SERVOPACK. The others are at 20 °C (68°F).
2. The above specifications show the values under the cooling condition when a heat sink (aluminium board) listed in the following table is mounted on the coil assembly.
Linear Servomotor
Model SGLGW-
30A050C 30A080C 40A140C 60A140C
40A253C 60A253C
40A365C 60A365C
90A200C 90A370C 90A535C
3. The values of peak speed in the table indicate the maximum speed that can be controlled from SERVOPACK. Refer to Force and Speed Characteristics for the actual motor peak speed.
Heat Sink Size
in mm (in)
200 × 300 × 12
(7.87 × 11.81 × 0.47)
300 × 400 × 12
(11.81 × 15.75 × 0.47)
400 × 500 × 12
(15.75 × 19.69 × 0.47)
800 × 900 × 12
(31.50 × 35.43 × 0.47)
3-3
3 Specifications and Dimensional Drawings
(2) Force and Speed Characteristics
(a) With Standard-force Magnetic Ways
A Continuous duty zone B
Intermittent duty zone
SGLGW-30A050C
6.0
SGLGW-30A080C
6.0
Motor speed
m/s
Motor
speed
m/s
5.0
4.0
3.0
2.0
1.0
A
0
0 1020304050
B
Force (N)
SGLGW-40A140C
6.0
5.0
4.0
3.0
2.0
1.0
0
A
0 30 60 90 120 150
Force (N)
SGLGW-60A140C
6.0
5.0
Motor
4.0
speed
3.0
m/s
2.0
1.0
A
0
0 20406080100
B
Force (N)
SGLGW-40A253C
6.0
5.0
Motor
4.0
speed
3.0
m/s
2.0
B
1.0
A
B
0
0 100 200 300 400
Motor
speed
m/s
Force (N)
SGLGW-60A253C
6.0
6.0
SGLGW-40A365C
6.0
5.0
4.0
3.0
2.0
1.0
A
B
0
0 150 300 450 600
Force (N)
SGLGW-60A365C
Motor speed
m/s
Motor speed
m/s
3-4
5.0
4.0
3.0
2.0
1.0
A
B
0
0 100 200 300
Force (N)
SGLGW-90A200C
6.0
5.0
4.0
A
3.0
2.0
1.0
0
0 300 600 900 1200 1500
Force (N)
B
Motor
speed
m/s
Motor
speed
m/s
5.0
4.0
3.0
2.0
1.0
A
B
0
0 200 400 600
Force (N)
SGLGW-90A370C
6.0
5.0
4.0
3.0
2.0
1.0
A
0
0 500 1000 1500 2000 2500
Force (N)
5.0
Motor
4.0
speed
m/s
3.0
2.0
1.0
A
B
0
0 300 600 900
Force (N)
SGLGW-90A535C
6.0
5.0
Motor
4.0
speed
m/s
B
A
3.0
2.0
1.0
0
0 700 1400 2100 2800 3500
Force (N)
B
(b) With High-force Magnetic Ways
A Continuous duty zone B
Intermittent duty zone
3.1 Ratings and Specifications of SGLGW/SGLGM
Motor
speed
m/s
Motor speed
m/s
SGLGW-40A140C
5
4
3
2
A
1
0
0 50 150100 200 250
B
Force N
SGLGW-60A140C
5
4
3
2
A
1
0
0 80 240160 320 400
B
Force (N)
Motor
speed
m/s
Motor
speed
m/s
SGLGW-40A253C
5
4
3
2
A
1
0
0 100 300200 400 500
B
Force N
SGLGW-60A253C
5
4
3
2
A
1
0
0 160 480320 640 800
B
Force (N)
Motor
speed
m/s
Motor
speed
m/s
SGLGW-40A365C
5
4
3
2
A
1
0
0 150 450300 600 750
B
Force N
SGLGW-60A365C
5
4
3
2
A
1
0
0 240 720480 960 1200
B
Force (N)
3
3-5
3 Specifications and Dimensional Drawings

3.2 Ratings and Specifications of SGLFW/SGLFM

(1) Ratings and Specifications
• Time Rating: Continuous
• Insulation Resistance: 500 VDC, 10 M min.
• Ambient Temperature: 0 to 40 °C (32 to 104°F)
• Excitation: Permanent magnet
• Dielectric Strength: 1500 VAC for 1 minute
• Protection Methods: Self-cooled
• Ambient Humidity: 20 to 80 % (no condensation)
• Allowable Winding Temperature: 130 °C (266°F) (Insulation class B)
Ratings and Specifications of SGLFW Linear Servomotors with F-type Iron Core
Voltage 200V 400V Linear Servomotor Model SGLFW-
Rated Speed m / s Peak Speed m / s
Rated Force
Rated Current
Instantaneous Peak
Force Instantaneous Peak
Current
N
Arms
N
Arms
Coil Assembly Mass kg Force Constant N / Arms BEMF Constant V /(m / s)
Motor Constant
Electrical Time Constant
Mechanical Time Constant
Thermal Resistance With Heat Sink
Thermal Resistance Without Heat Sink
N /
ms
ms
K / W
K / W
w
Magnetic Attraction N
20A 35A 50A 1ZA 35D 50D 1ZD
090A 120A 120A 230A 200B 380B 200B 380B 120A 230A 200B 380B 200B 380B
5 3.5 2.5 3 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 55555555555555
25 40 80 160 280 560 560 1120 80 160 280 560 560 1120
0.7 0.8 1.4 2.8 5.0 10.0 8.7 17.5 0.7 1.4 2.3 4.5 4.9 9.8
86 125 220 440 600 1200 1200 2400 220 440 600 1200 1200 2400
3.0 2.9 4.4 8.8 12.4 25.0 21.6 43.6 2.3 4.6 5.6 11.0 12.3 24.6
0.7 0.9 1.3 2.3 3.5 6.9 6.4 11.5 1.3 2.3 3.5 6.9 6.4 11.5
36.0 54.0 62.4 62.4 60.2 60.2 69.0 69.0 120.2 120.2 134.7 134.7 122.6 122.6
12.0 18.0 20.8 20.8 20.1 20.1 23.0 23.0 40.1 40.1 44.9 44.9 40.9 40.9
7.9 9.8 14.4 20.4 34.3 48.5 52.4 74.0 13.8 19.5 33.4 47.2 51.0 72.1
3.2 3.3 3.6 3.6 15.9 15.8 18.3 18.3 3.5 3.5 15.0 15.0 17.4 17.2
11.0 9.3 6.2 5.5 3.0 2.9 2.3 2.1 5.5 5.5 3.2 3.2 2.5 2.2
4.35 3.19 1.57 0.96 0.56 0.38 0.47 0.2 1.57 0.96 0.56 0.38 0.47 0.2
7.69 5.02 4.10 1.94 1.65 0.95 1.3 0.73 4.1 1.94 1.65 0.95 1.3 0.73
314 462 809 1586 1650 3260 3300 6520 810 1590 1650 3260 3300 6520
3-6
Note: 1. The items marked with an * and “Force and Speed Characteristics” are the values at a motor winding tem-
perature of 100 °C (212°F) during operation in combination with a SERVOPACK. The others are at 20 °C (68°F).
2. The above specifications show the values under the cooling condition when a heat sink (aluminium board)
listed in the following table is mounted on the coil assembly.
Linear Servomotor
Model SGLFW-
20A090A 20A120A
35120A 35230A 50200B 1Z200B 50380B
1Z380B
Heat Sink Size
in mm (in)
125 × 125 × 13
(4.92 × 4.92 × 0.51)
254 × 254 × 25
(10.0 × 10.0 × 0.98)
400 × 500 × 40
(15.75 × 19.69 × 1.57)
609 × 762 × 50
(23.98 × 30.00 × 1.97)
3. The values of peak speed in the table indicate the maximum speed that can be controlled from SERVOPACK. Refer to Force and Speed Characteristics for the actual motor peak speed.
(2) Force and Speed Characteristics
(a) 200-V Class
A: Continuous duty zone B: Intermittent duty zone
SGLFW-20A090A SGLFW-20A120A
6
5
Motor
4
speed
3
m/s
Motor
speed
m/s
Motor
speed
m/s
Motor
speed
m/s
A
2
1
0
0 20 40 60 80 100
B
Force (N)
SGLFW-35A120A SGLFW-35A230A
6
5
4
3
2
1
0
A
0 50 100 150 200 250
B
Force (N)
SGLFW-50A200B
6
5
4
3
A
2
1
0
0 200 400 600 800
B
Force (N)
SGLFW-1ZA200B
6
5
4
3
2
1
0
A
0 15001000500
B
Force (N)
Motor speed
m/s
Motor
speed
m/s
Motor
speed
m/s
Motor
speed
m/s
3.2 Ratings and Specifications of SGLFW/SGLFM
6
5
4
3
2
1
0
A
0 40 80 120 140
B
Force (N)
6
5
4
3
2
1
0
A
0 100 200 300 400 500
B
Force (N)
SGLFW-50A380B
6
5
4
3
2
1
0
A
0 500 1000 1500
B
Force (N)
SGLFW-1ZA380B
6
5
4
3
2
1
0
0 1000 2000 3000
A
Force (N)
B
3
3-7
3 Specifications and Dimensional Drawings
(b) 400-V Class
A: Continuous duty zone B: Intermittent duty zone
SGLFW-35D120A
6
5
Motor
4
speed
3
m/s
2
1
0
0 15050 100 200 250
Force (N)
SGLFW-50D200B
6
5
Motor
4
speed
3
m/s
2
1
0
0 200 400 600 800
A
Force (N)
SGLFW-35D230A
6
5
Motor
4
speed
m/s
BA
3
2
1
0
0 100 200 300 400 500
BA
Force (N)
SGLFW-50D380B
6
5
Motor
4
speed
3
B
m/s
2
1
0
0 500 1000 1500
A
Force (N)
B
SGLFW-1ZD380B
6
5
4
3
2
1
0
0 1000 2000 3000
A
Force (N)
B
Motor
speed
m/s
SGLFW-1ZD200B
6
5
4
3
2
1
0
0 15001000500
A
Force (N)
Motor speed
B
m/s
Note: The dotted line indicates characteristics when the linear servomotor for 400 VAC is used with an input power
supply for 200 VAC. In this case, the serial converter should be changed. Contact your Yaskawa representa­tives.
3-8

3.3 Ratings and Specifications of SGLTW/SGLTM

3.3 Ratings and Specifications of SGLTW/SGLTM
(1) Ratings and Specifications
• Time Rating: Continuous
• Insulation Resistance: 500 VDC, 10 M min.
• Ambient Temperature: 0 to 40 °C (32 to 104°F)
• Excitation: Permanent magnet
Ratings and Specifications of SGLTW Linear Servomotors with T-type Iron Core
Voltage 200V
Linear Servomotor Model SGLTW-
Rates Speed m / s
Peak Speed m / s
Rated Force
Rated Current
Instantaneous Peak
Force
Instantaneous Peak
Current
Coil Assembly Mass kg
Force Constant N / A
BEMF Constant V /(m / s)
Motor Constant
Electrical Time Constant
Mechanical Time Constant
Thermal Resistance With Heat Sink
Thermal Resistance Without Heat Sink
Magnetic
Attraction
Magnetic
Attraction
1
2
N
Arms
N
Arms
N /
ms
ms
K / W
K / W
N
N
rms
w
170A 320A 460A 170A 320A 460A 400B 600B 400B 600B
61.0 61.0 61.0 67.5 67.5 67.5 99.1 99.1 126 126
20.3 20.3 20.3 22.5 22.5 22.5 33 33 42 42
18.7 26.5 32.3 26.7 37.5 46.4 61.4 75.2 94.7 116
1.01 0.49 0.38 0.76 0.44 0.32 0.24 0.2 0.22 0.18
1.82 1.11 0.74 1.26 0.95 0.61 0.57 0.4 0.47 0.33
20A 35A 40A 80A
3 3 3 2.5 2.5 2.5 1.5 1.5 1.5 1.5 5555555555
130 250 380 220 440 670 670 1000 1300 2000
2.3 4.4 6.7 3.5 7 10.7 7.3 10.9 11.1 17.1
380 760 1140 660 1320 2000 2600 4000 5000 7500
7.7 15.4 23.2 12.1 24.2 36.7 39.4 60.6 57.9 86.9
2.5 4.6 6.7 3.7 6.8 10.0 15 23 24 35
5.9 5.9 5.9 6.9 6.8 7.0 15.2 15.2 17 17
7.56.56.45.24.84.64433
0000000000
802 1591 2380 1403 2784 4165 3950 5890 7650 11400
• Dielectric Strength: 1500 VAC for 1 minute
• Protection Method: Self-cooled
• Ambient Humidity: 20 to 80% (no condensation)
• Allowable Winding Temperature: 130 °C (266°F) (Insulation class B)
3
3-9
3 Specifications and Dimensional Drawings
Voltage 200V 400V
Linear Servomotor Model SGLTW-
Rated Speed m / s
Peak Speed m / s
Rated Force
Rated Current
Instantaneous Peak
Force
Instantaneous Peak
Current
N
Arms
N
Arms
Coil Assembly Mass kg
Force Constant N / A
rms
BEMF Constant V /(m / s)
Motor Constant
Electrical Time Constant
Mechanical Time Constant
Thermal Resistance With Heat Sink
Thermal Resistance Without Heat Sink
Magnetic
Attraction
1
Magnetic
Attraction
2
N /
ms
ms
K / W
K / W
N
N
w
35A 50A 35D 50D 40D 80D
170H 320H 170H 320H 170H 320H 170H 320H 400B 600B 400B 600B
1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 555555555555
300 600 450 900 300 600 450 900 670 1000 1300 2000
5.1 10.1 4.9 9.8 3.2 6.5 3.2 6.3 3.7 5.5 7.2 11.1
600 1200 900 1800 600 1200 900 1800 2600 4000 5000 7500
11.9 23.9 11.5 22.9 7.5 15.1 7.3 14.6 20.7 30.6 37.6 56.4
4.9 8.8 6 11 4.7 8.8 6 11 15 23 25 36
64 64 98.5 98.5 99.6 99.6 153.3 153.3 196.1 196.1 194.4 194.4
21.3 21.3 32.8 32.8 33.2 33.2 51.1 51.1 65.4 65.4 64.8 64.8
37.4 52.9 50.3 71.1 36.3 51.4 48.9 69.1 59.6 73 85.9 105.2
15.1 15.1 16.5 16.5 14.3 14.3 15.6 15.6 14.4 14.4 15.4 15.4
3.3 3.3 2.8 2.8 3.5 3.5 2.5 2.5 4.2 4.2 3.2 3.2
0.76 0.4 0.61 0.3 0.76 0.4 0.61 0.3 0.24 0.2 0.22 0.18
1.26 0.83 0.97 0.8 1.26 0.83 0.97 0.8 0.57 0.4 0.47 0.33
000000000000
1400 2780 2000 3980 1400 2780 2000 3980 3950 5890 7650 11400
* 1. The unbalanced magnetic gap resulted from the coil assembly installation condition causes a magnetic attrac-
tion on the coil assembly.
* 2. The value indicates the magnetic attraction generated on one side of the magnetic way.
3-10
3.3 Ratings and Specifications of SGLTW/SGLTM
Note: 1. The items marked with an * and “Force and Speed Characteristics” are the values at a motor winding tem-
perature of 100 °C (212°F) during operation in combination with a SERVOPACK. The others are at 20 °C (68°F).
2. The above specifications show the values under the cooling condition when a heat sink (aluminium board) listed in the following table is mounted on the coil assembly.
Linear Servomotor
Model SGLTW-
20A170A 35A170A 20A320A 20A460A
35170H
35A320A
35320H
35A460A
50170H 40400B 40600B 50320H 80400B 80600B
3. The values of peak speed in the table indicate the maximum speed that can be controlled from SERVOPACK. Refer to Force and Speed Characteristics for the actual motor peak speed.
Heat Sink Size
in mm (in)
254 × 254 × 25
(10.0 × 10.0 × 0.98)
400 × 500 × 40
(15.75 × 19.69 × 1.57)
609 × 762 × 50
(23.98 × 30.0 × 1.97)
3
3-11
3 Specifications and Dimensional Drawings
(2) Force and Speed Characteristics
(a) 200-V Class
A: Continuous duty zone B: Intermittent duty zone
Motor
speed
m/s
Motor
speed
m/s
Motor
speed
m/s
SGLTW-20A170A SGLTW-20A320A
6
5
4
3
A
2
1
0
0 100 200 300 400
B
Force (N)
Motor
speed
m/s
6
5
4
3
A
2
1
0
0 200 400 600 800
SGLTW-35A170A SGLTW-35A320A
6
5
4
3
2
1
0
A
0 200 400 600 700
B
Force (N)
Motor
speed
m/s
6
5
4
3
2
1
0
A
0 400 800 1200 1400
SGLTW-35A170H SGLTW-35A320H
5
4
3
BA
2
1
0
0 400200 600
Force (N) Force (N)
Motor
speed
m/s
6
5
4
3
2
1
0
0 800400 1200
Force (N)
Force (N)
SGLTW-20A460A
6
5
Motor
4
speed
3
m/s
B
2
1
0
A
0 200 600400 800 1000 1200
B
Force (N)
SGLTW-35A460A
6
5
Motor
4
speed
3
B
BA
m/s
A
2
1
0
0 500 20001000 1500 2500
Force (N)
B
Motor
speed
3-12
SGLTW-50A170H SGLTW-50A320H
5
4
3
m/s
2
1
0
0 600300 900
Force (N) Force (N)
5
4
Motor
3
speed
m/s
2
BA
1
0
0 1200600 1800
BA
A: Continuous duty zone B: Intermittent duty zone
SGLTW-40A400B SGLTW-40A600B
4
3.3 Ratings and Specifications of SGLTW/SGLTM
4
3
Motor speed
2
m/s
1
0
0 20001000 3000
Force (N) Force (N)
SGLTW-80A400B SGLTW-80A600B
4
3
Motor speed
2
m/s
1
0
0 4000 60002000
Force (N) Force (N)
3
Motor speed
2
m/s
BA
3
BA
Motor speed
m/s
1
0
0 40002000
4
3
2
1
0
0 4000 6000 80002000
BA
BA
3-13
3 Specifications and Dimensional Drawings
(b) 400-V Class
A: Continuous duty zone B: Intermittent duty zone
SGLTW-35D170H SGLTW-35D320H
5
4
Motor
3
speed
m/s
2
1
0
0 400200 600
Force (N)
SGLTW-50D170H SGLTW-50D320H
5
6
5
BA
Motor
4
speed
m/s
3
2
1
0
0 800400 1200
BA
Force (N)
5
4
Motor
3
speed
m/s
2
1
0
0 600300 900
Force (N) Force (N)
SGLTW-40D400B SGLTW-40D600B
4
3
Motor speed
m/s
A
2
1
0
0 20001000 3000
Force (N) Force (N)
SGLTW-80D400B SGLTW-80D600B
4
4
Motor
3
speed
BA
B
m/s
Motor speed
m/s
2
1
0
0 1200600 1800
4
3
A
2
1
0
0 40002000
4
BA
B
3-14
Motor speed
m/s
3
A
2
1
0
0 4000 60002000
B
Motor speed
m/s
3
2
1
0
0 4000 6000 80002000
A
B
Force (N) Force (N)
Note: The dotted line indicates characteristics when the linear servomotor for 400 VAC is used with an input power
supply for 200 VAC. In this case, the serial converter should be changed. Contact your Yaskawa representa­tives.

3.4 Mechanical Specifications of Linear Servomotors

3.4 Mechanical Specifications of Linear Servomotors
(1) Impact Resistance
• Impact acceleration: 196 m/s
• Impact occurrences: twice
(2) Vibration Resistance
The linear servomotors will withstand the following vibration acceleration in three directions: Vertical, side to side, and front to back
• Vibration acceleration: 49 m/s
2
2
3
3-15
3 Specifications and Dimensional Drawings

3.5 Quick Guide to Linear Servomotor Dimensional Drawings

Linear Servomotor Model Reference
3.6.1
3.6.2
3.6.3
3.6.4
3.7.1
3.7.2
3.7.3
3.7.4
3.8.1
3.8.2, 3.8.3
3.8.4
3.8.5
3.8.6
SGLGW / SGLGM (Coreless type)
SGLFW / SGLFM (With F-type iron core)
SGLTW / SGLTM (With T-type iron core)
SGLGW-30/SGLGM-30
SGLGW-40/SGLGM-40
SGLGW-60/SGLGM-60
SGLGW-90/SGLGM-90
SGLFW-20/SGLFM-20
SGLFW-35/SGLFM-35
SGLFW-50/SGLFM-50
SGLFW-1Z/SGLFM-1Z
SGLTW-20/SGLTM-20
SGLTW-35/SGLTM-35
SGLTW-40/SGLTM-40
SGLTW-50/SGLTM-50
SGLTW-80/SGLTM-80
3-16

3.6 Dimensional Drawings of SGLGW/SGLGM Linear Servomotors

3.6 Dimensional Drawings of SGLGW/SGLGM Linear Servomotors
3.6.1 SGLG-30 Linear Servomotors
(1) Coil Assembly: SGLGW-30AC
With a connector made by Tyco Electronics AMP K.K.
The following table and figures show the specifications when a main circuit’s cable connector made by Tyco Electronics is used for the coil assembly.
4×M4 mounting screw, depth 5 (0.20)
2×screw
#4-40 UNC
17 (0.67)
22 (0.87)
12 (0.47)
44 (1.73)
57 (2.24)*
1 (0.04)
G (Gap)
24 (0.94)
Hall Sensor Connector Specifications
9
5
Pin connector type: 17JE-23090-02 (D8C) made by DDK Ltd.
The mating connector
Socket connector type: 17JE-13090-02 (D8C) Stud type:17L-002C or 17L-002C1
6
1
Cable
UL20276,AWG26
G (Gap)
Pin No.
1
2
3
4
5
6
7
8
9
φ5.3 (φ0.21)*
φ5 (0.20)*
500±50 (19.69±1.97)
AW
N
Ins.
YASKAWA ELECTRIC CORPORATION JAPAN
Name
5V (Power supply)
Phase U
Phase V
Phase W
0V (Power supply)
Not used
Not used
Not used
Not used
±50
Cable
(19.69±1.97)
500
UL2517,AWG25
Nameplate
15 (0.59)
May cause injury.
Keep magnetic materials
away.
Linear Servomotor Connector Specifications
Plug type: 350779-1
Pin type: 350924-1 or 770672-1 made by Tyco Electronics AMP K.K.
The mating connector
Cap type: 350780-1 Socket type: 350925-1 or 770673-1
L5
The coil assembly moves in the direction indicated by the arrow when current flows in the order of phase U, V, and W.
2×2-M4
L1
Mounting screw depth: 5 (0.20) on both sides
L4
L3
3
(0.12)
L2
48.5 (1.91)
* Reference length Units: mm (in)
Hall Sensor Output Signals
When the coil assembly moves in the
Lead
Name
Pin No.
1
2
3
4
Phase U
Phase V
Phase W
FG
direction indicated by the arrow in the
Color
figure, the relationship between the hall
Red
sensor output signals Su, Sv, Sw and
White
the inverse power of each motor phase Vu, Vv, Vw becomes as shown in the
Blue
following figure.
Green
Vu
Su
Inverse
Vv
power (V)
Sv
3
Coil Assembly
Model SGLGW-
30A050C
30A080C
L1 L2 L3 L4 L5
50
(1.97)48(1.89)
80
(3.15)
72
(2.83)
30
(1.18)
50
(1.97)
20
(0.79)
30
(1.18)
20
(0.79)
25
(0.98)
* The value indicates the mass of coil assembly with a hall sensor unit.
G
(Gap)
0.85
(0.03)
0.95
(0.04)
Approx.
Mass kg (lb)
0.14
(0.31)
0.19
(0.42)
Vw
0 180 360 540
Sw
Electrical angle (° )
3-17
3 Specifications and Dimensional Drawings
3.6.1 SGLG-30 Linear Servomotors
(2)
Coil Assembly:
SGLGW-30A
C
D
With a connector made by Interconnectron
The following table and figures show the specifications when a main circuit’s cable connector made by Intercon­nectron is used for the coil assembly.
4×M4 mounting screw, depth 5 (0.20)
17 (0.67)
L5
L4
* Reference length Units: mm (in)
Hall Sensor Output Signals
When the coil assembly moves in the direction indicated by the arrow in the figure, the relationship between the hall sensor output signals Su, Sv, Sw and the inverse power of each motor phase Vu, Vv, Vw becomes as shown in the following figure.
Vu
Su
Inverse
Vv
power (V)
Vw
Sv
0 180 360 540
Electrical angle (°)
Cable UL20276,AWG26
22 (0.87)
12 (0.47)
57 (2.24)*
44 (1.73)
1 (0.04)
G (Gap)
24
(0.94)
Hall Sensor Connector Specifications
9
5
Pin connector type: 17JE-23090-02 (D8C) made by DDK Ltd.
The mating connector
Socket connector type: 17JE-13090-02 (D8C) Stud type:17L-002C or 17L-002C1
2×screw
#4-40 UNC
G (Gap)
6
1
500±50 (19.69±1.97)
N
YASKAWA ELECTRIC CORPORATION JAPAN
Pin No.
1
2
3
4
5
6
7
8
9
Nameplate
φ5.3 (φ0.21)*
φ5 (0.20)*
AW
Ins.
Name
5V (Power supply)
Phase U
Phase V
Phase W
0V (Power supply)
Not used
Not used
Not used
Not used
500±50
(19.69±1.97)
15 (0.59)
May cause injury.
Keep magnetic materials
away.
Linear Servomotor Connector Specifications
1 6
5
The coil assembly moves in the direction indicated by the arrow when current flows in the order of phase U, V, and W.
Cable UL2517,AWG25
L1 L3
L2
2
Extension: SROC06JMSCN169
3
Pin type: 021.423.1020 made by Interconnectron
4
The mating connector
Plug type: SPUC06KFSDN236 Socket type: 020.030.1020
Pin No.
Name
Phase U
1
Phase V
2
Phase W
3
Not used
4
5
Not used
FG
6
2×2-M4 Mounting screw depth: 5 (0.20) on both sides
3
(0.12)
48.5 (1.91)
Lead Color
Red
White
Blue
Green
Sw
3-18
Coil Assembly
Model SGLGW-
30A050CD
30A080CD
L1 L2 L3 L4 L5
50
(1.97)48(1.89)
80
(3.15)
72
(2.83)
30
(1.18)
50
(1.97)
20
(0.79)
30
(1.18)
20
(0.79)
25
(0.98)
* The value indicates the mass of coil assembly with a hall sensor unit.
G
(Gap)
0.85
(0.03)
0.95
(0.04)
Approx.
Mass kg (lb)
0.14
(0.31)
0.19
(0.42)
(3) Magnetic Way: SGLGM-30A
3.6 Dimensional Drawings of SGLGW/SGLGM Linear Servomotors
Nameplate
36 (1.42)
4.5 (0.18)
N×M4 Mounting holes, depth 6 (0.24)
27 (1.06)
Magnetic Way
Model SGLGM-
30108A
30216A
30432A
Warning label
May cause injury. Keep magnetic materials away.
WARNING
Pitch 54 (2.13)
Pitch 54 (2.13)
L1
mmL2mm
108
(4.25)54(2.13)2(0.08)
216
(8.50)
432
(17.01)
162
(6.38)4 (0.16)
378
(14.88)8 (0.31)
N×4.5 holes 8×counter boring 5 (0.20) L
L2
0.1
L1 1 unit)
0.3
L2
Approx.
N
Mass
kg (lb)
0.6
(1.32)
1.1
(2.43)
2.3
(5.07)
18
(0.71)*
27 (1.06)*
7.6 (0.23)
44 (1.73)
24 (0.94)
* Reference length Units: mm (in)
3
3-19
3 Specifications and Dimensional Drawings
3.6.2 SGLG-40 Linear Servomotors
3.6.2 SGLG-40 Linear Servomotors
(1) Coil Assembly: SGLGW-40AC
With a connector made by Tyco Electronics AMP K.K.
The following table and figures show the specifications when a main circuit’s cable connector made by Tyco Electronics is used for the coil assembly.
6.5 (0.26)
4.8 (0.19)
0.5
14
2×screw
#4-40 UNC
25.4 (1.0)
7.2 (0.28)
(0.02)
(0.55)
Hall Sensor Connector Specifications
Pin connector type: 17JE-23090-02 made by DDK Ltd.
The mating connector
15
1 (0.04)
7 (0.28)
Gap 0.8 (0.03)Gap 0.8 (0.03)
9
5
Sockt connector type: 17JE-13090-02 D8C Stud type: 17L-002C or
17L-002C1
500±50
(19.69±1.97)
(0.79)
78 (3.07)
6
1
D8C
φ5.3 (φ0.21)*
φ7 (φ0.28)*
Pin No.
5V (Power supply)
1
2
3
4
0V (Power supply)
5
6
7
8
9
500±50 (19.69±1.97)
30
(1.18)
Name
Phase U
Phase V
Phase W
Not used
Not used
Not used
Not used
L5
17
16
(0.63)
The coil assembly moves in the direction indicated by the arrow in the order of phase U, V, and W.
L4
45 (1.77)
4
(0.16)
Linear Servomotor Connector Specifications
Plug type: 350779-1 Pin type: 350561-3 or
350690-3(No.1 to 3) 350654-1 350669-1(No.4)
made by Tyco Electronics AMP K.K.
The mating connector
Cap type: 350780-1 Socket type: 350570-3 or 350689-3
45 (1.77)
Pin No.
1
2
3
4
L6
Mounting holes N2×M4 tapped, depth 6 (0.24)
L1 L3
Mounting holes on both sides N1×M4 tapped, depth 6 (0.24)
Lead
Name
Phase V
FG
Color
Red
White
Blue
Green
Inverse power (V)
Phase U
Phase W
Nameplate
W
N
Ins.
YASKAWA ELECTRIC CORPORATION JAPAN
15 (0.59)
63
(2.48)
7.5 (0.30)*
* Reference length Units: mm (in)
Hall Sensor Output Signals
When the coil assembly moves in the direc­tion indicated by the arrow in the figure, the relationship between the hall sensor output signals Su, Sv, Sw and the inverse power of each motor phase Vu, Vv, Vw becomes as shown in the figure below.
Vu
Su
Vv
Vw
Sv
Sw
0 180 360 540
Electrical angle
°
3-20
Coil Assembly
Model SGLGW-
40A140C
40A253C
40A365C
L1 L2 L3 L4 L5 L6 N1 N2
140
(5.51)
252.5 (9.94)
365
(14.37)
125
(4.92)90(3.54)30(1.18)
237.5
(9.35)
350
(13.76)
180
(7.09)
37.5
(1.48)60(2.36)
315
(12.40)30(1.18)
52.5
(2.07)45(1.77)3(0.12)4(0.16)
52.5
(2.07)
* The value indicates the mass of coil assembly with a hall sensor unit.
135
(5.31)5(0.20)8(0.31)
270
(10.53)8(0.31)14(0.55)
Approx.
Mass kg (lb)
0.40
(0.88)
0.66
(1.46)
0.93
(2.05)
3.6 Dimensional Drawings of SGLGW/SGLGM Linear Servomotors
(2) Coil Assembly: SGLGW-40ACD
With a connector made by Interconnectron
The following table and figures show the specifications when a main circuit’s cable connector made by Intercon­nectron is used for the coil assembly.
6.5 (0.26)
4.8 (0.19)
0.5 (0.02)
14
(0.55)
Gap 0.8 (0.03)
2×screw
#4-40 UNC
25.4 (1.0)
7.2 (0.28)
15
(0.79)
1 (0.04)
78 (3.07)
7 (0.28)
Gap 0.8 (0.03)
Hall Sensor Connector Specifications
9
5
Pin connector type: 17JE-23090-02 (D8C) made by DDK Ltd.
The mating connector
Sockt connector type: 17JE-13090-02 (D8C) Stud type: 17L-002C or
17L-002C1
L5
45 (1.77)
17
φ5.3 (φ0.21)*
500±50
φ
7 (φ0.28)*
(19.69±1.97)
500±50
16
(19.69±1.97)
(0.63)
30
(1.18)
The coil assembly moves in the direction indicated by the arrow in the order of phase U, V, and W.
L4
4
45 (1.77)
(0.16)
L6
Mounting holes N2×M4 tapped, depth 6 (0.24)
L1 L3
Mounting holes on both sides N1×M4 tapped, depth 6 (0.24)
W
N
YASKAWA ELECTRIC CORPORATION JAPAN
Nameplate
Ins.
15 (0.59)
7.5 (0.30)*
63
3
(2.48)
* Reference length Units: mm (in)
Linear Servomotor
6
1
Pin No.
1
2
3
4
0V (Power supply)
5
6
7
8
9
Name
5V (Power supply)
Phase U
Phase V
Phase W
Not used
Not used
Not used
Not used
Connector Specifications
2
1 6
5
Extension: SROC06JMSCN169
3
Pin type: 021.423.1020 made by Interconnectron
4
The mating connector
Plug type: SPUC06KFSDN236 Socket type: 020.030.1020
Name
Pin No.
Phase U
1
Phase V
2
Phase W
3
Not used
4
5
Not used
6
FG
Lead Color
Red
White
Blue
Green
Hall Sensor Output Signals
When the coil assembly moves in the direc­tion indicated by the arrow in the figure, the relationship between the hall sensor output signals Su, Sv, Sw and the inverse power of each motor phase Vu, Vv, Vw becomes as shown in the figure below.
Vu
Su
Inverse
Vv
power (V)
Vw
Sv
Sw
0 180 360 540
Electrical angle (° )
Coil Assembly
SGLGW-
Model
40A140CD
40A253CD
40A365CD
L1 L2 L3 L4 L5 L6 N1 N2
140
(5.51)
252.5
(9.94)
365
(14.37)
125
(4.92)90(3.54)30(1.18)
237.5
(9.35)
350
(13.76)
180
(7.09)
37.5
(1.48)60(2.36)
315
(12.40)30(1.18)
52.5
(2.07)45(1.77)3(0.12)4(0.16)
52.5
(2.07)
* The value indicates the mass of coil assembly with a hall sensor unit.
135
(5.31)5(0.20)8(0.31)
270
(10.53)8(0.31)14(0.55)
Approx.
Mass kg (lb)
0.40
(0.88)
0.66
(1.46)
0.93
(2.05)
3-21
3 Specifications and Dimensional Drawings
3.6.2 SGLG-40 Linear Servomotors
(3) Standard-force Magnetic Way: SGLGM-40C / SGLGM-40CT
SGLGM-
40C
L1
-0.1
(1 unit)
-0.3
7.4±0.2 (0.29±0.01)
25.4 (1.0)
4-C1
9
±0.2
(0.35
±0.01
7.4±0.2 (0.29±0.01)
4-C1
)
SGLGM­40CT
25.4 (1.0)
9
±0.2
(0.35
±0.01
)
7 (0.28)
22.5
(0.89)
22.5
(0.89)
Nameplate
X
X
X
X
Pitch 45 (1.77)
Pitch 45 (1.77)
Warning label
N×φ5.5 (φ0.22) mounting hole (per unit)
N×M5 mounting screws, depth 13 (0.51) (per unit)
Only for SGLGM- CT.)
(
Standard-force Magnetic Way
Model SGLGM-
40090C or 40090CT
40225C or 40225CT
Standard
Force
40360C or 40360CT
40405C or 40405CT
40450C or 40450CT
L2
L2
22.5
(0.89)*
22.5
(0.89)*
L1 L2 N
90
(3.54)45(1.77)2(0.08)
225
(8.86)
360
(14.17)
405
(15.94)
450
(17.72)
180
(7.09)5(0.20)
315
(12.40)8(0.31)
360
(14.17)9(0.35)
405
(15.94)10(0.39)
Approx.
Mass
kg (lb)
0.8
(1.76)
2.0
(4.41)
3.1
(6.83)
3.5
(7.72)
3.9
(8.60)
5.4 (0.21)
X-X
62 (2.44)
φ10 (φ0.39)
φ5.5 (φ0.22)
* Reference length Units: mm (in)
13 (0.51)*
5.4 (0.21)
X-X
62 (2.44)
12.7
(0.50)
φ5.5 (φ0.22)
φ10 (φ0.39)
3-22
3.6 Dimensional Drawings of SGLGW/SGLGM Linear Servomotors
(4) High-force Magnetic Way: SGLGM-40C-M / SGLGM-40CT-M
±0.2
7.4 (0.29±0.01)
4-C1
Nameplate
CORELESS LINEAR SERVO MOTOR  - 
A
W
Ins.
N
O/N -
S/N
YASKAWA ELECTRIC CORPORATION JAPAN
WARNING
May cause injury. Keep magnetic materials away.
-0.1
L1 (1 unit)
-0.3
Warning label
7.4±0.2 (0.29±0.01)
4-C1
SGLGM­40C-M
31.8
(1.25)
12.2±0.2 (0.48±0.01)
SGLGM­40CT-M
31.8
(1.25)
12.2
±0.2
(0.48±0.01)
X
X
7 (0.28)
22.5
(0.89)
22.5 (0.89)
X
X
Pitch 45
(1.77)
L2
N×φ5.5 (φ0.22) mounting holes (per unit)
L2
Pitch 45 (1.77)
N-M5 screws, depth 13 (0.51) (per unit)
(Only for SGLGM- CT-M.)
High-force Magnetic Way
Model SGLGM-
40090C-M or 40090CT-M
40225C-M or 40225CT-M
High Force
40360C-M or 40360CT-M
40405C-M or 40405CT-M
40450C-M or 40450CT-M
22.5
(0.89)*
22.5
(0.89)*
L1 L2 N
90
(3.54)45(1.77)2(0.08)
225
(8.86)
360
(14.17)
405
(15.94)
450
(17.72)
180
(7.09)5(0.20)
315
(12.40)8(0.31)
360
(14.17)9(0.35)
405
(15.94)10(0.39)
5.4 (0.21)
X-X
Approx.
Mass
kg (lb)
1.0
(2.20)
2.6
(5.73)
4.1
(9.04)
4.6
(10.14)
5.1
(11.24)
62 (2.44)
φ10 (φ0.39)
φ5.5 (φ0.22)
62 (2.44)
15.9
(0.63)
φ5.5 (φ0.22)
5.4 (0.21)
13 (0.51)*
X-X
* Reference length Units: mm (in)
3
φ10 (φ0.39)
3-23
3 Specifications and Dimensional Drawings
N
Ins.
A
W
3.6.3 SGLG-60 Linear Servomotors
3.6.3 SGLG-60 Linear Servomotors
(1) Coil Assembly: SGLGW-60AC
With a connector made by Tyco Electronics AMP K.K.
The following table and figures show the specifications when a main circuit’s cable connector made by Tyco Electronics is used for the coil assembly.
25.4 (1.0)
6.5 (0.26)
4.8 (0.19)
0.5
(0.02)
14
(0.55)
Gap 0.8 (0.03)
Hall Sensor Connector Specifications
9
5
Pin connector type: 17JE-23090-02 made by DDK Ltd.
The mating connector
Socket connector type: 17JE-13090-02 D8C Stud type: 17L-002C or
2×screw
4-40 UNC
7.2 (0.28)
15 (0.59)
1 (0.04)
7 (0.28)
Gap 0.8 (0.03)
D8C
17L-002C1
500±50
(19.69±1.97)
98 (3.86)
6
1
φ5.3 (φ0.21)*
φ7 (φ0.28)*
Pin No.
1
2
3
4
5
6
7
8
9
500±50
(19.69±1.97)
30
Name
+5V (Power supply)
Phase U
Phase V
Phase W
0V (Powr supply)
Not used
Not used
Not used
Not used
L5
17
(0.67)
The coil assembly moves in the direction indicated by the arrow when current flows in the
16
(0.63)
order of phase U, V, and W.
L4
4
(0.16)
(1.18)
Linear Servomotor Connector Specifications
Plug type: 350779-1
Pin type: 350561-3 or
350690-3(No.1 to 3) 350654-1 350669-1 (No.4)
made by Tyco Electronics AMP K.K.
The mating connector type
Cap type: 350780-1 Socket type: 350570-3 or
350689-3
45 (1.77)
45 (1.77)
Pin No.
1
2
3
4
L6
Mounting holes N2×M4 tapped, depth 6 (0.24)
L1 L3
Mounting holes on both sides N1×M4 tapped, depth 6 (0.24)
L2
Hall Sensor Output Signals
Lead
Name
Color
Phase U
Phase V
Phase W
FG
Red
White
Blue
Green
Inverse power (V)
Nameplate
15 (0.59)
7.5 (0.30)*
* Reference length Units: mm (in)
When the coil assembly moves in the di­rection indicated by the arrow in the fig­ure, the relationship between the hall sensor output signals Su, Sv, Sw and the inverse power of each motor phase Vu, Vv, Vw becomes as shown in the figure below.
Vu
Su
Vv
Vw
Sv
Sw
0 180 360 540
Electrical angle
°
83
(3.27)
3-24
Coil Assembly
Model SGLGW-
60A140C
60A253C
60A365C
L1 L2 L3 L4 L5 L6 N1 N2
140
(5.51)
252.5 (9.94)
365
(14.37)
125
(4.92)90(3.54)30(1.18)
237.5
(9.35)
350
(13.76)
180
(7.09)
37.5
(1.48)60(2.36)
315
(12.40)30(1.18)
52.5
(2.07)45(1.77)3(0.12)4(0.16)
52.5
(2.07)
* The value indicates the mass of coil assembly with a hall sensor unit.
135
(5.31)5(0.20)8(0.31)
270
(10.53)8(0.31)14(0.55)
Approx.
Mass kg (lb)
0.48
(1.06)
0.82
(1.81)
1.16
(2.56)
3.6 Dimensional Drawings of SGLGW/SGLGM Linear Servomotors
N
Ins.
A
W
(2) Coil Assembly:
With a connector made by Interconnectron
The following table and figures show the specifications when a main circuit’s cable connector made by Intercon­nectron is used for the coil assembly.
2×screw #4-40 UNC
25.4 (1.0)
6.5 (0.26)
4.8 (0.19)
0.5
14
(0.55)
(0.02)
7.2 (0.28)
15
1 (0.04)
7 (0.28)
500±50 (19.69±1.97)
(0.59)
98 (3.86)
SGLGW-60A
φ5.3 (φ0.21)*
φ7 (φ0.28)*
±50 (19.69±1.97)
500
30
C
16
(0.63)
(1.18)
L4
D
L5
17
The coil assembly moves in the direction indicated by the arrow in the order of phase U, V, and W.
4
(0.16)
45 (1.77)
(0.67)
45 (1.77)
L6
Mounting holes N2×M4 tapped, depth 6 (0.24)
L1 L3
Mounting holes on both sides N1×M4 tapped, depth 6 (0.24)
L2
Nameplate
7.5
(0.36)*
15 (0.59)
83 (3.27)
3
Gap 0.8 (0.03)
Hall Sensor Connector Specifications
Pin connector type: 17JE-23090-02 (D8C) made by DDK Ltd.
The mating connector
Sockt connector type: 17JE-13090-02 (D8C) Stud type: 17L-002C or
Gap 0.8 (0.03)
9
5
17L-002C1
Coil Assembly
Model
60A140CD
60A253CD
60A365CD
Linear Servomotor Connector Specifications
2
1 6
5
Extension: SROC06JMSCN169
3
Pin type: 021.423.1020 made by Interconnectron
4
The mating connector
Plug type: SPUC06KFSDN236 Socket type: 020.030.1020
Pin No.
Phase U
1
Phase V
2
Phase W
3
Not used
4
5
Not used
6
125
(4.92)90(3.54)30(1.18)
237.5
(9.35)
350
(13.76)
180
(7.09)
37.5
(1.48)60(2.36)
315
(12.40)30(1.18)
Name
Lead Color
Red
White
Blue
Green
FG
52.5
(2.07)45(1.77)3(0.12)4(0.16)
135
(5.31)5(0.20)8(0.31)
52.5
(2.07)
270
(10.53)8(0.31)14(0.55)
6
1
SGLGW-
Pin No.
5V (Power supply)
1
2
3
4
0V (Power supply)
5
6
7
8
9
Name
Phase U
Phase V
Phase W
Not used
Not used
Not used
Not used
L1 L2 L3 L4 L5 L6 N1 N2
140
(5.51)
252.5
(9.94)
365
(14.37)
* The value indicates the mass of coil assembly with a hall sensor unit.
* Reference length Units: mm (in)
Hall Sensor Output Signals
When the coil assembly moves in the direc­tion indicated by the arrow in the figure, the relationship between the hall sensor output signals Su, Sv, Sw and the inverse power of each motor phase Vu, Vv, Vw becomes as shown in the figure below.
Vu
Su
Inverse
Vv
power (V)
Vw
Sv
Sw
0 180 360 540
Electrical angle (° )
Approx.
Mass kg (lb)
0.48
(1.06)
0.82
(1.81)
1.16
(2.56)
3-25
3 Specifications and Dimensional Drawings
3.6.3 SGLG-60 Linear Servomotors
(3) Standard-force Magnetic Way: SGLGM-60C / SGLGM-60CT
SGLGM-
60C
7.4±0.2 (0.29±0.01)
4-C1
25.4 (1.0)
9
±0.2
(0.35
Nameplate
X
X
7 (0.28)
22.5
(0.89)
22.5 (0.89)
X
-0.1
(1 unit)
L1
-0.3
May cause injury. Keep magnetic materials away.
WARNING
Warning label
Pitch 45
(1.77)
N×φ5.5 (φ0.22) mounting holes (per unit)
Pitch 45 (1.77)
L2
L2
22.5
(0.89)*
22.5
(0.89)*
±0.01
)
82 (3.23)
φ10 (φ0.39)
φ5.5 (φ0.22)
7.4
±0.2
(0.29±0.01)
4-C1
SGLGM­60CT
25.4 (1.0)
13 (0.51)*
9
±0.2
(0.35
82 (3.23)
12.7 (0.50)
φ5.5 (φ0.22)
±0.01
φ10 (φ0.39)
)
N×M5 mounting screws, depth 13 (0.51) (per unit)
X
(
Only for SGLGM- CT.)
Standard-force Magnetic Way
Model SGLGM-
60090C or 60090CT
60225C or 60225CT
Standard
Force
60360C or 60360CT
60405C or 60405CT
60450C or 60450CT
L1 L2 N
90
(3.54)45(1.77)2(0.08)
225
(8.86)
360
(14.17)
405
(15.94)
450
(17.72)
180
(7.09)5(0.20)
315
(12.40)8(0.31)
360
(14.17)9(0.35)
405
(15.94)10(0.39)
Approx.
Mass
kg (lb)
1.1
(2.43)
2.6
(5.73)
4.1
(9.04)
4.6
(10.14)
5.1
(11.24)
5.4 (0.21)
X-X
5.4 (0.21)
X-X
* Reference length Units: mm (in)
3-26
3.6 Dimensional Drawings of SGLGW/SGLGM Linear Servomotors
(4) High-force Magnetic Way: SGLGM-60C-M / SGLGM-60CT-M
SGLGM­60CT-M
7.4
±0.2
(0.29±0.01)
4-C1
Nameplate
CORELESS LINEAR SERVO MOTOR  - 
A
W
Ins.
N
O/N - S/N
YASKAWA ELECTRIC CORPORATION JAPAN
WARNING
May cause injury. Keep magnetic materials away.
-0.1
L1 (1 unit)
-0.3
Warning label
7.4±0.2 (0.29±0.01)
4-C1
SGLGM-
60C-M
31.8
(1.25)
12.2±0.2 (0.48±0.01)
31.8
(1.25)
12.2
±0.2
(0.48±0.01)
X
X
7 (0.28)
22.5
(0.89)
22.5 (0.89)
X
X
Pitch 45 (1.77)
L2
N×φ5.5 (φ0.22) mounting holes (per unit)
Pitch 45 (1.77)
L2
N×M5 mounting screws, depth 13 (0.51) (per unit)
(Only for SGLGM- CT-M.)
High-force Magnetic Way
Model SGLGM-
60090C-M or 60090CT-M
60225C-M or 60225CT-M
High Force
60360C-M or 60360CT-M
60405C-M or 60405CT-M
60450C-M or 60450CT-M
22.5
(0.89)*
22.5
(0.89)*
L1 L2 N
90
(3.54)45(1.77)2(0.08)
225
(8.86)
360
(14.17)
405
(15.94)
450
(17.72)
180
(7.09)5(0.20)
315
(12.40)8(0.31)
360
(14.17)9(0.35)
405
(15.94)10(0.39)
5.4 (0.21)
X-X
Approx.
Mass
kg (lb)
1.3
(2.87)
3.3
(7.28)
5.2
(11.46)
5.9
(13.01)
6.6
(14.55)
82 (3.23)
φ10 (φ0.39)
φ5.5 (φ0.22)
82 (3.23)
15.9 (0.63)
φ5.5 (φ0.22)
5.4 (0.21)
X-X
13 (0.51)*
* Reference length Units: mm (in)
3
φ10 (φ0.39)
3-27
3 Specifications and Dimensional Drawings
3.6.4 SGLG-90 Linear Servomotors
3.6.4 SGLG-90 Linear Servomotors
(1) Coil Assembly: SGLGW-90AC
95 (3.74)
L6L5
N2×M6 mounting screws, depth 9 (0.35)
Gap1 (0.04)
Hall Sensor Connector Specifications
9
5
Pin connector type: 17JE-23090-02 made by DDK Ltd.
The mating connector
Socket connector type: 17JE-13090-02 D8C Stud type: 17L-002C or
49 (1.93)
50.8 (2.0)
26 (1.02)
110 (4.33)
Gap1 (0.04)
11.8 (0.46)
6
1
D8C
17L-002C1
2×screws #4-40 UNC
Cable
UL20276,AWG26
φ5.3 (φ0.21)*
2
(0.08)
138 (5.43)
Pin No.
1
2
3
4
5
6
7
8
9
500±50
(19.69±1.97)
Cable UL2517,AWG15
Name
5V (Power supply)
Phase U
Phase V
Phase W
0V (Power supply)
Not used
Not used
Not used
Not used
±50
Nameplate
(19.69±1.97)
500
65 (2.56)
φ10.5 (φ0.41)*
Note: The coil assembly moves in the direction indicated by the arrow when current flows in the order of phase U, V, and W.
Linear Servomotor Connector Specifications
Plug type: 350779-1 Pin type: 350218-3 or
350547-3 (No.1 to 3) 350654-1 350669-1 (No.4)
made by Tyco Electronics AMP K.K.
The mating connector
Cap type: 350780-1 Socket type: 350536-3 or
350550-3
Pin No.
1
2
3
4
L3L4
(See note.)
Name
Phase U
Phase V
Phase W
FG
L1
L2
2×N1-M6 Mounting screws, depth 9 (0.35) (on both sides)
Hall Sensor Output Signals
When the coil assembly moves in the di­rection indicated by the arrow in the fig-
Lead
ure, the relationship between the hall
Color
sensor output signals Su, Sv, Sw and the
Red
inverse power of each motor phase Vu,
White
Vv, Vw becomes as shown in the figure below.
Blue
Green
Inverse power (V)
Vu
Su
Vv
Vw
0 180 360 540
Electrical angle
32
8 (0.31)
* Reference length Units: mm (in)
Sv
Sw
°
(1.26)
121 (4.76)
3-28
Coil Assembly
Model SGLGW-
90A200C
90A370C
90A535C
L1 L2 L3 L4 L5 L6 N1 N2
199
(7.83)
367
(14.45)
535
(21.06)
189
(7.44)
357
(14.06)
525
(20.67)
130
(5.12)40(1.57)60(2.36)95(3.74)3(0.12)4(0.16)
260
(10.24)40(1.57)55(2.17)
455
(17.91)40(1.57)60(2.36)
* The value indicates the mass of coil assembly with a hall sensor unit.
285
(11.22)5(0.20)8(0.31)
380
(14.96)8(3.15)10(0.39)
Approx.
Mass kg (lb)
2.2
(4.85)
3.7
(8.16)
5.0
(11.02)
(2) Magnetic Way: SGLGM-90A
0.1
(1 unit)
L1
0.3
L2
L2
W N
YASKAWA ELECTRIC CORPORATION JAPAN
X
8.5 (0.33)
X
31.5
(1.24)
19 (0.75)
Nameplate
CORELESS LINEAR SERVO MOTOR
A
Ins.
WARNING
Pitch 63 (2.48)
N-mounting holes (per unit)
Pitch 63 (2.48)
May cause injury. Keep magnetic materials away.
Warning label
3.6 Dimensional Drawings of SGLGW/SGLGM Linear Servomotors
18.5 (0.73)
31.5
(1.24)*
44 (1.73)*
13.8 (0.54)
110 (4.33)
95.5 (3.76)
φ12 (φ0.47)
φ6.6 (φ0.26)
50.8 (2.0)
N-M6 mounting screws, depth 14.5 (0.57)
Magnetic Way
Model SGLGM-
90252A
90504A
L1 L2 N
252
(9.92)
504
(19.84)
189
(7.44)4 (0.16)
441
(17.36)8 (0.31)
Approx.
Mass
kg (lb)
7.3
(16.09)
14.7
(32.41)
6.5 (0.26)
X-X
* Reference length Units: mm (in)
3
3-29
3 Specifications and Dimensional Drawings
3.7.1 SGLF-20 Linear Servomotors

3.7 Dimensional Drawings of SGLFW/SGLFM Linear Servomotors

3.7.1 SGLF-20 Linear Servomotors
(1) Coil Assembly: SGLFW-20AA
22
(0.87)*
22
44 (1.73)*
(0.87)*
6 (0.24)*
(10.2 (0.40) With magnet cover)
(10 (0.39)
Without magnet cover)
20
Hall Sensor Connector Specifications
9
5
Pin connector type: 17JE-23090-02(D8C) made by DDK Ltd.
The mating connector
Socket connectoro type: 17JE-13090-02(D8C) Stud type: 17L-002C or
6
17L-002C1
2
32
(1.26)*
(0.08)
5.5 (0.22)
20
22
(0.79)
0.5 (0.02)
12.5
(4.2 (0.17): With magnet cover)
34
(4 (0.16): Without magnet cover)
(1.34)
(Gap 0.8 (0.03): With magnet cover) (Gap 1 (0.04): Without magnet cover)
45±0.1
(1.77±0.004)
SGLFW-20A090A
(0.79)
30
(1.18)
36
(1.42)
Pin No.
1
2
3
4
5
6
7
8
9
(0.49)
12.5
1
Magnetic way
17.5 (0.69)
40
(0.87)
(1.57)
22.5
(0.49)
(0.89)
2×screws #4-40 UNC
(φ0.17)*
2×M4 tapped holes, depth 5.5 (0.22)
22.5
(0.89)
Linear Servomotor
Name
+5V (Power supply)
Phase U
Phase V
Phase W
0V (Power supply)
Not used
Not used
Not used
Not used
Connector Specifications
Plug type: 350779-1
Pin type: 350218-3 or
350547-3 (No.1 to 3) 350654-1 350669-1 (No.4)
made by Tyco Electronics AMP K.K.
The mating connector
Cap type: 350780-1 Socket type: 350536-3 or
500
φ4.2
350550-3
Hall sensor
)
±1.97
(19.69
±50
±1.97
(19.69
φ6.1
±50
0.24)*
500
Nameplate
SGLFW-20A120A
20 (0.79)
12.5 (0.49)
50 min.
30
(1.18)
(1.18)
)
30 min.
Note: The coil assembly moves in the direction indicated by the arrow, when current flows in the order of phase U, V, and W.
36 (1.42)
30
(1.18)
Name
Pin No.
Phase U
1
Phase V
2
Phase W
3
FG
4
L1
L2
30
36 (1.42)
12
10
(0.39)*
See the figures and below.
12 (0.47)
3×M4 tapped holes, depth 5.5 (0.22)
72 (2.83)
Lead Color
Red
White
Black
Green
25
(0.98)*
7.5
(0.30)*
(0.47)*
AA
20 (0.79)
12.5
(0.49)*
L3
2.5
A A
Hall Sensor Output Signals When the coil assembly moves in the di-
rection indicated by the arrow in the fig­ure, the relationship between the hall sensor output signals Su, Sv, Sw and the inverse power of each motor phase Vu, Vv, Vw becomes as shown in the figure
below.
Vu
Inverse
Vv
power (V)
Vw
0 180 360 540
(See note.)
7 (0.28)
8
(0.31)
(0.98)
5.5 (0.22)
22.5
(0.89)
* Reference length Units: mm (in)
Su
Sv
Sw
Electrical angle(° )
3-30
Coil Assembly
Model SGLFW-
20A090A
20A120A
L1 L2 L3 N
91
(3.58)
127
(5.0)
36
(1.42)
72
(2.83)
72
(2.88)2 (0.08)
108
(4.25)3 (0.12)
Approx.
Mass
kg (lb)
0.7
(1.54)
0.9
(1.98)
(2) Magnetic Way: SGLFM-20A
Coil assembly
4.5 (0.18)*
44 (1.73)
35 (1.38)
4.5 (0.18)
Reference marks
6 (0.24)
10 (0.39)
4 (0.16)
34 (1.34)*
45±0.1
(1.77±0.004)
17.5 (0.69)*
22.5 (0.89)*
(Gap1 (0.04))
40
(1.57)*
(Two φ4 (φ0.16) marks are engraved.)
Mounting Screw
The height of screw head: 4.2 (0.17) max.
22
22
(0.87)*
(0.87)
9.9
0
30.8
-0.2
0
(1.21 )
-0.01
3.7 Dimensional Drawings of SGLFW/SGLFM Linear Servomotors
(L3)
2×N×φ4.8 (φ0.19) mounting holes
SNSN
YASKAWA
TYPE:
54 (2.13)
O/N S/N MADE IN JAPAN
Nameplate
Reference mark
L2
-0.1
L1
-0.3
SNSN
54
(2.13)*
30.8 (1.21)*
* Reference length Units: mm (in)
YASKAWA
YASKAWA
TYPE:
Reference mark
O/N S/N MADE
Note: 1. Multiple SGLFM-20A magnetic ways can be connected. Connect magnetic ways so that the refer-
ence marks match one on the other in the same direction as shown in the figure.
2. The magnet way may affect pacemakers. Keep a minimum distance of 200 mm from the magnetic way.
Magnetic Way
Model SGLFM-
20324A
20540A
20756A
-0.1
L1
-0.3
324
(12.80)
540
(21.26)
756
(29.76)
L2 L3* N
270 (10.63)
(54 (2.13) × 5 (0.20))
486 (19.13)
(54 (2.13) × 9 (0.35))
702 (27.64)
(54 (2.13) × 13 (0.51))
331.6
(13.06)6 (0.24)
547.6
(21.56)10(0.39)
763.6
(30.06)14(0.55)
Approx.
Mass
kg (lb)
0.9
(1.98)
1.4
(3.09)
2
(4.41)
* Reference length
3
3-31
3 Specifications and Dimensional Drawings
3.7.2 SGLF-35 Linear Servomotors
3.7.2 SGLF-35 Linear Servomotors
(1) Coil Assembly: SGLFW-35A
With a connector made by Tyco Electronics AMP K.K.
The following table and figures show the specifications when a main circuit’s cable connector made by Tyco Electronics is used for the coil assembly.
30
(1.18)*
60 (2.36)*
30
(1.18)*
6 (0.24)*
(10.2 (0.40): With magnet cover)
(10 (0.39): Without magnet cover)
SGLFW-35120A SGLFW-35230A
35 (1.38)
12.5 (0.49)
Hall Sensor Connector Specifications
9
5
Pin connector type: 7JE-23090-02(D8C) made by DDK Ltd.
The mating connector
Socket connector type: 17JE-13090-02(D8C) Stud type: 17L-002C or
17L-002C1
45±0.1
(1.77±0.004)
18 (0.71)
8.5 (0.33)
6
1
2 (0.08)
32
(1.26)*
34 (1.34)
30
(1.18)
36 (1.42)
5.5 (0.22)
37 (1.46)
35 (1.38)*
0.5 (0.02)
12.5
(4.2 (0.17): With magnet cover)
(4 (0.16): Without magnet cover)
(Gap 0.8 (0.03): With magnet cover)
(Gap1 (0.04): Without magnet cover)
6×M4 tapped holes, depth 5.5 (0.22)
72 (2.83)
Pin No.
1
2
3
4
5
6
7
8
9
25
(0.98)
30
55 (2.17)
(1.18)
(0.49)
30
Name
+5V (Power supply)
Phase U
Phase V
Phase W
0V (Power supply)
Not used
Not used
Not used
Not used
Magnetic way
2×screws #4-40 UNC
(1.18)
Linear Servomotor Connector Specifications
Plug type: 350779-1
Pin type: 350218-3 or
made by Tycon Electronics AMP K.K.
The mating connector
Cap type: 350780-1 Socket type: 350536-3 or
Hall sensor
±1.97
(19.69
±50
500
φ4.2
(φ0.17)*
(19.69
±50
500
Nameplate
350547-3 (No.1 to 3) 350654-1 350669-1 (No.4)
350550-3
)
(φ0.24)*
35 (1.38)
12.5 (0.49)
±1.97
φ6.1
18 (0.71)
8.5 (0.33)
50 min.
)
Pin No.
30
30
(1.18)
(1.18)
36
(1.42)
See the figures and below.
30 min.
12 (0.47)
2.5
A A
12×M4 tapped holes, depth 5.5 (0.22)
30
36 (1.42)
(1.18)
Name
Phase U
1
Phase V
Phase W
FG
White
Black
Green
2
3
4
L1 L2
10.5
(0.41)*
18 (0.71)
8.5
(0.33)*
AA
7.5
35 (1.38)
12.5
L3
The coil assembly moves in the
8
(0.31)
(0.98)
direction indicated by the arrow when current flows in the order of phase U, V, and W.
5.5
(0.22)
180 (7.09)
(36 (1.42) × 5 (0.20))
* Reference length Units: mm (in)
Hall Sensor Output Signals
When the coil assembly moves in the di-
Lead
rection indicated by the arrow in the fig-
Color
ure, the relationship between the hall
Red
sensor output signals Su, Sv, Sw and the inverse power of each motor phase Vu, Vv, Vw becomes as shown in the figure below.
Vu
Su
Inverse
Vv
power (V)
Vw
Sv
0 180 360 540
Electrical angle(° )
25 (0.98)
(0.30)*
(0.49)*
Sw
7 (0.28)
30
(1.18)
3-32
Coil Assembly
Model SGLFW-
35120A
35230A
L1 L2 L3 N
127
(5.0)
235
(9.25)
72
(2.83)
180
(7.09)
108
(4.25)6 (0.24)
216
(8.50)
12
(0.47)
Approx.
Mass
kg (lb)
1.3
(2.87)
2.3
(5.07)
3.7 Dimensional Drawings of SGLFW/SGLFM Linear Servomotors
(2) Coil Assembly:
SGLFW-35D
A
D
With a connector made by Interconnectron
The following table and figures show the specifications when a main circuit’s cable connector made by Intercon­nectron is used for the coil assembly.
30
(1.18)*
30
60 (2.36)*
(1.18)*
6 (0.24)*
(10.2 (0.40): With magnet cover)
(10 (0.39): Without magnet cover)
SGLFW-35D120AD
32
(1.26)*
34
(1.34)
45±0.1
(1.77±0.004)
2 (0.08)
5.5 (0.22)
25
(0.98)
37 (1.46)
35 (1.38)*
30
55 (2.17)
0.5 (0.02)
(4.2 (0.17): With magnet cover) (4 (0.16): Without magnet cover)
(Gap 0.8 (0.03): With magnet cover)
(Gap1 (0.04): Without magnet cover)
(1.18)
12.5
(0.49)
6×M4 tapped holes, depth 5.5 (0.22)
Magnetic way
2×screws #4-40 UNC
500
φ4.2
(φ0.17)*
±50
(19.69
500±50
50 min.
30
)
±1.97
φ6.1
(φ0.24)*
(1.18)
)
30 min.
Hall sensor
±1.97
(19.69
Nameplate
SGLFW-35D230AD
30
(1.18)
36
(1.42)
See the figures
12 (0.47)
2.5
A A
12×M4 tapped holes, depth 5.5 (0.22)
L1 L2
10.5
(0.41)*
AA
18 (0.71)
8.5
(0.33)*
and below.
L3
8
(0.31)
The coil assembly moves in the
(0.98)
direction indicated by the arrow when current flows in the order of phase U, V, and W.
5.5
(0.22)
25 (0.98)
7.5
(0.30)*
35 (1.38)
12.5
(0.49)*
7 (0.28)
3
35 (1.38)
18 (0.71)
8.5 (0.33)
12.5 (0.49)
Hall Sensor Connector Specifications
9
5
Pin connector type: 7JE-23090-02 (D8C) made by DDK Ltd.
The mating connector
Socket connector type: 17JE-13090-02 (D8C) Stud type: 17L-002C or
6
1
17L-002C1
Coil Assembly
SGLFW-
Model
35D120AD
35D230AD
30
(1.18)
30
(1.18)
36 (1.42)
72 (2.83)
Pin No.
+5V (Power supply)
1
2
3
4
0V (Power supply)
5
6
7
8
9
Name
Phase U
Phase V
Phase W
Not used
Not used
Not used
Not used
Extension: LRRA06AMRPN182 Pin type: 021.279.1020 made by Interconnectron
The mating connector
Plug type: LPRA06BFRDN170 Socket type: 020.105.1020
L1 L2 L3 N
127
(5.0)
235
(9.25)
72
(2.83)
180
(7.09)
108
(4.25)6 (0.24)
216
(8.50)
Linear Servomotor Connector Specifications
6
5
1
4
2
Approx.
12
(0.47)
35 (1.38)
18 (0.71)
8.5 (0.33)
12.5 (0.49)
Mass
kg (lb)
1.3
(2.87)
2.3
(5.07)
30
(1.18)
36 (1.42)
Pin No.
1
2
4
5
6
Name
Phase U
Phase V
Phase W
Not used
Not used
Ground
180 (7.09)
(36 (1.42) × 5 (0.20))
Units: mm
Hall Sensor Output Signals
When the coil assembly moves in the di­rection indicated by the arrow in the fig­ure, the relationship between the hall sensor output signals Su, Sv, Sw and the inverse power of each motor phase Vu, Vv, Vw becomes as shown in the figure below.
Vu
Su
Inverse power
Vv
(V)
Vw
Sv
Sw
0 180 360 540
Electrical angle (° )
30
(1.18)
3-33
3 Specifications and Dimensional Drawings
3.7.2 SGLF-35 Linear Servomotors
(3) Magnetic Way: SGLFM-35A
Coil assembly
4.5 (0.18)*
9.9°
(L3)
2×N-φ4.8 (φ0.19) mounting holes
6
(0.24)
10
(0.39)
(1.77±0.004)
60 (2.36)
51 (2.01)
4.5
Reference marks
30
30
(0.18)*
(1.18)*
(1.18)
32.2
(1.27 )
0
-0.2 0
-0.01
SSNSSNNN
YASKAWA
TYPE:
54 (2.13)
O/N
S/N MADE IN JAPAN
Nameplate
DATE
Reference mark
L2
-0.1
L1
-0.3
4 (0.16)
34
(1.34)*
45±
0.1
(Gap1)
25
(0.98)*
30
55 (2.17)*
(1.18)*
(Two φ4 (φ0.16) marks are engraved.)
* Reference length Units: mm (in)
The height of screw head must be 4.2 (0.17) max.
Assembly Dimensions
Note: 1. Multiple SGLFM-35A magnetic ways can be connected. Connect magnetic ways so that the refer-
ence marks match one on the other in the same direction as shown in the figure.
2. The magnetic way may affect pacemakers. Keep a minimum distance of 200 mm from the magnetic way.
Magnetic Way
Model SGLFM-
35324A
35540A
35756A
-0.1
L1
-0.3
324
(12.80)
540
(21.26)
756
(29.76)
L2 (L3) N
270 (10.63)
(54 (2.13) × 5 (0.20))
486 (19.13)
(54 (2.13) × 9 (0.35))
702 (27.64)
(54 (2.13) × 13 (0.51))
334.4
(13.17)6 (0.24)
550.4
(21.67)10(0.39)
766.4
(30.17)14(0.55)
Approx.
Mass
kg (lb)
1.2
(2.65)
2
(4.41)
2.9
(6.39)
54 (2.13)*
32.2 (1.27)*
YASKAWA
TYPE:
Reference mark
O/N
S/N
MADE
3-34
3.7.3 SGLF-50 Linear Servomotors
(1) Coil Assembly: SGLFW-50B
With a connector made by Tyco Electronics AMP K.K.
The following table and figures show the specifications when a main circuit’s cable connector made by Tyco Electronics is used for the coil assembly.
40 (1.57)*
37.5
(1.48)*
75 (2.95)*
37.5
(1.48)*
9 (0.35)*
(2.28±0.004)
(14.2 (0.56): With magnet cover)
(14 (0.55): Without magnet cover)
3
(0.12)
47.5 (1.87)*
0.5 (0.02)
(5.2 (0.20): With magnet cover)
43
(5 (0.20): Without magnet cover)
(1.69)
58±0.1
(Gap 0.8 (0.03): With magnet cover) (Gap 1 (0.04): Without magnet cover)
7 (0.28)
33.75
50.5 (1.99)
37.75
14
(0.55)
(1.33)
71.5 (2.81)
(1.49)
Magnetic way
2 × screws #4-40 UNC
500
500
φ4.2
(φ0.17)
±50
±50
(19.69
Hall sensor
(19.69
±1.97
)
±1.97
)
φ7.4
(φ0.29)
Nameplate
50 min.
30
(1.18)
50 min.
3.7 Dimensional Drawings of SGLFW/SGLFM Linear Servomotors
55 (2.17)
See the figures and below.
25
(0.98)
60 (2.36)
L1
L2
15
(0.59)*
AA
23.5
(0.93)
The coil assembly moves in the direction indicated by the arrow when current flows in the order of phase U, V, and W.
12 (0.47)*
L3
2.5
(0.10)
9.5
(0.37)
7
A
A
(0.28)
10
47.5
14
(0.39)*
(1.87)
(0.55)*
40
(1.57)
10 (0.39)
3
SGLFW-50200B SGLFW-50380B
47.5 (1.87)
23.5 (0.93)
12 (0.47)
14 (0.55)
Hall Sensor Connector Specifications
9
5
Pin connector type: 17JE-23090-02(D8C) made by DDK Ltd.
The mating connector
Socket connector type: 17JE-13090-02(D8C) Stud type: 17L-002C or
6
1
17L-002C1
Coil Assembly
Model SGLFW-
50200B
50380B
30
(1.18)
6 × M5 tapped holes, depth 7 (0.28)
60 (2.36)
120 (4.72)
Pin No.
+5V (Power supply)
1
2
3
4
0V (Power supply)
5
6
7
8
9
Name
Phase U
Phase V
Phase W
Not used
Not used
Not used
Not used
L1 L2 L3 N
215
(8.46)
395
(15.55)
120
(4.72)
300
(11.81)
23.5 (0.93)
47.5 (1.87)
(1.18)
12 (0.47)
14 (0.55)
Linear Servomotor Connector Specifications
Pin No.
Plug type: 350779-1
Pin type: 350218-3 or
350547-3 (No.1 to 3) 350654-1 350669-1 (No.4)
made by Tycon Electronics AMP K.K.
The mating connector
Cap type: 350780-1 Socket type: 350536-3 or
350550-3
Approx.
Mass
kg (lb)
180
(7.09)6 (0.24)
360
(14.17)
12
(0.47)
3.5
(7.72)
6.9
(15.21)
30
1
2
3
4
12 × M5 tapped holes, depth 7 (0.28)
60 (2.36)
(60 (2.36) × 5 (0.20))
Hall Sensor Output Signals
When the coil assembly moves in the di-
Lead
Name
Phase U
Phase V
Phase W
FG
rection indicated by the arrow in the fig-
Color
ure, the relationship between the hall
Red
sensor output signals Su, Sv, Sw and the
White
inverse power of each phase Vu, Vv, Vw becomes as shown in the figure below.
Black
Green
Inverse powr (V)
300 (11.81)
* Reference length Units: mm (in)
Vu
Su
Vv
Vw
Sv
Sw
0 180 360 540
Electrical angle (° )
3-35
3 Specifications and Dimensional Drawings
3.7.3 SGLF-50 Linear Servomotors
(2) Coil Assembly:
With a connector made by Interconnectron
The following table and figures show the specifications when a main circuit’s cable connector made by Intercon­nectron is used for the coil assembly.
40 (1.57)*
37.5 (1.48)*
75 (2.95)*
37.5 (1.48)*
9 (0.35)*
(2.28±0.004)
(14.2 (0.56): With magnet cover)
(14 (0.55): Without magnet cover)
3
(0.12)
47.5 (1.87)*
0.5 (0.02)
(5.2 (0.20): With magnet cover)
43
(5 (0.20): Without magnet cover)
(1.69)
58±0.1
(Gap 0.8 (0.03): With magnet cover) (Gap 1 (0.04): Without magnet cover)
SGLFW-50D200BD SGLFW-50D380BD
7 (0.28)
33.75
50.5 (1.99)
37.75
14
(0.55)
SGLFW-50D
Magnetic way
(1.33)
71.5 (2.81)
(1.49)
2×screws #4-40 UNC
6 × M5 tapped holes, depth 7 (0.28)
φ4.2
(φ0.17)
500
500
±50
±50
(19.69
Hall sensor
(19.69
Nameplate
B
50 min.
)
±1.97
50 min.
)
±1.97
φ7.4
(φ0.29)
30
(1.18)
D
55 (2.17)
See the figures
and below.
25
(0.98)
60 (2.36)
L1
L2
15
(0.59)*
AA
23.5
(0.93)
The coil assembly moves in the direction indicated by the arrow
12 (0.47)*
when current flows in the order of phase U, V, and W.
L3
2.5
(0.10)
9.5
(0.37)
7
A A
(0.28)
12 × M5 tapped holes, depth 7 (0.28)
10
(0.39)*
47.5 (1.87)
14
(0.55)*
40
(1.57)
10 (0.39)
23.5 (0.93)
47.5 (1.87)
12 (0.47)
(1.18)
14 (0.55)
Hall Sensor Connector Specifications
9
5
Pin connector type: 7JE-23090-02 (D8C) made by DDK Ltd.
The mating connector
Socket connector type: 17JE-13090-02 (D8C) Stud type: 17L-002C or
6
1
17L-002C1
Coil Assembly
SGLFW-
Model
50D200BD
50D380BD
47.5 (1.87)
23.5 (0.93)
60 (2.36)
30
60 (2.36)
30
120 (4.72)
Linear Servomotor Connector Specifications
Pin No.
1
+5V (Power supply)
2
3
4
5
0V (Power supply)
6
7
8
9
Name
Phase U
Phase V
Phase W
Not used
Not used
Not used
Not used
6
5
1
2
4
Extension: LRRA06AMRPN182 Pin type: 021.279.1020 made by Interconnectron
The mating connector
Plug type: LPRA06BFRDN170 Socket type: 020.105.1020
12 (0.47)
14 (0.55)
(1.18)
Pin No.
1
2
4
5
6
Name
Phase U
Phase V
Phase W
Not used
Not used
Ground
300 (11.81)
(60 (2.36) × 5 (0.20))
* Reference length Units: mm (in)
Hall Sensor Output Signals
When the coil assembly moves in the di­rection indicated by the arrow in the fig­ure, the relationship between the hall sensor output signals Su, Sv, Sw and the inverse power of each motor phase Vu, Vv, Vw becomes as shown in the figure below.
Vu
Su
Inverse power
Vv
(V)
Vw
Sv
Sw
0 180 360 540
Electrical angle (° )
Approx.
L1 L2 L3 N
Mass
kg (lb)
215
(8.46)
395
(15.55)
120
(4.72)
300
(11.81)
180
(7.09)6 (0.24)
360
(14.17)
12
(0.47)
3.5
(7.72)
6.9
(15.21)
3-36
(3) Magnetic Way: SGLFM-50A
8.6°
Coil assembly
5 (0.20)*
3.7 Dimensional Drawings of SGLFW/SGLFM Linear Servomotors
(L3)
2×N-φ5.8 (φ0.23) mounting holed
9
(0.35)
37.5
75 (2.95)
65 (2.56)
37.5
5
(0.20)
Reference marks
(1.48)*
(1.48)
39.4
(1.55 )
0
-0.2 0
-0.01
SSSNSNNN
YASKAWA
TYPE:
67.5 (2.66)
O/N S/N MADE IN JAPAN
DATE
Nameplate
Reference mark
L2
-0.1
L1
-0.3
5 (0.20)
14
43 (1.69)*
(0.55)
(Gap1 (0.04))
58±0.1
(2.28±0.004)
33.75
(1.33)*
71.5 (2.81)*
37.75
(1.49)*
(Two φ4 (φ0.16) marks are engraved.)
The height of screw head must be 5.2 (0.20) max.
Assembly Dimensions
Note: 1. Multiple SGLFM-50A magnetic ways can be connected. Connect magnetic ways so that the refer-
ence marks match one on the other in the same direction as shown in the figure.
2. The magnetic way may affect pacemakers. Keep a minimum distance of 200 mm from the magnetic way.
Magnetic Way
Model SGLFM-
50405A
50675A
50945A
-0.1
L1
-0.3
405
(15.94)
675
(26.57)
945
(37.20)
L2 L3* N
337.5 (13.29)
(67.5 (2.66) × 5 (0.20))
607.5 (23.92)
(67.5 (2.66) × 9 (0.35))
877.5 (34.55)
(67.5 (2.66) × 13 (0.51))
416.3
(16.39)6 (0.24)
686.3
(27.03)
956.3
(37.65)
10
(0.39)
14
(0.55)
Approx.
Mass
kg (lb)
2.8
(6.17)
4.6
(10.14)
6.5
(14.33)
67.5 (2.66)*
39.4 (1.55)*
* Reference length Units: mm (in)
YASKAWA
TYPE:
Reference mark
3
* Reference length
3-37
3 Specifications and Dimensional Drawings
3.7.4 SGLF-1Z Linear Servomotors
3.7.4 SGLF-1Z Linear Servomotors
(1) Coil Assembly: SGLFW-1ZB
With a connector made by Tyco Electronics AMP K.K.
The following table and figures show the specifications when a main circuit’s cable connector made by Tyco Electronics is used for the coil assembly.
40 (1.57)*
3
(0.12)
62.5 (2.46)*62.5 (2.46)*
125 (4.92)*
0.5
9 (0.35)*
(2.28±0.004)
(14.2 (0.56): With magnet cover)
(14 (0.55): Without magnet cover)
(0.02)
(5.2 (0.20): With magnet cover)
43
(5 (0.20): Without magnet cover)
(1.69)
(Gap 0.8 (0.03): With magnet cover)
58±0.1
(Gap 1 (0.04): Without magnet cover)
SGLFW-1Z 200B
35.5
(1.40)
95 (3.74)
35.5
(1.40)
7 (0.28)
98 (3.86)*
95 (3.74)*
14
(0.55)
Magnetic way
57.5 (2.26)
119 (4.69)
61.5 (2.42)
screws
2 #4-40 UNC
9×M5 tapped holes, depth 7 (0.28)
(φ0.17)
500
φ4.2
±50
500
(19.69
Hall sensor
(19.69
±50
±1.97
)
±1.97
)
φ8.4
(φ0.33)
Nameplate
SGLFW-1Z 380B
50 min.
(1.18)
50 min.
35.5
95 (3.74)
35.5
30
(1.40)
(1.40)
55 (2.17)
25
(0.98)
60 (2.36)
See the figures and below.
18×M5 tapped holes, depth 7 (0.28)
15
(0.59)*
A A
35.5
(1.40)
35.5
(1.40)
The coil assembly moves in the direction indicated by the arrow when current flows in the order of phase U, V, and W.
12 (0.47)*
L1
L3
A A
L2
2.5
9.5
(0.10)
(0.37)
7
(0.28)
10
(0.39)*
95 (3.74)
14
(0.55)*
40
(1.57)
10 (0.39)
55
(2.17)
12 (0.47)
14 (0.55)
Hall Sensor Connector Specifications
9
5
Pin connectoro type: 17JE-23090-02(D8C) made by DDK Ltd.
The mating connector
Socket connector type: 17JE-13090-02(D8C) Stud type: 17L-002C or
17L-002C1
Coil Assembly
Model SGLFW-
1Z200B
1Z380B
60 (2.36)
120 (4.72)
6
1
Linear Servomotor
Pin No.
1
2
3
4
5
6
7
8
9
Name
5V (Power supply)
Phase U
Phase V
Phase W
0V (Power supply)
Not used
Not used
Not used
Not used
Connector Specifications
Plug type: 350779-1 Pin type: 350218-3 or
made by Tyco Electronics AMP K.K.
The mating connector
Cap type: 350780-1 Socket type: 350536-3 or
L1 L2 L3 N
215
(8.46)
395
(15.55)
120
(4.72)
300
(11.81)
180
(7.09)9(0.35)
360
(14.17)18(0.71)
60 (2.36)
55
(2.17)
12 (0.47)
14 (0.55)
350547-3 (No.1 to 3) 350654-1 350669-1 (No.4)
350550-3
Approx.
Pin No.
Mass
kg (lb)
6.4
(14.11)
11.5
(25.35)
(60 (2.36) × 5 (0.20))
Name
Phase U
1
Phase V
2
Phase W
3
FG
4
300 (11.81)
Lead Color
Red
White
Blue
Green
Inverse power (V)
* Reference length Units: mm (in)
Hall Sensor Output Signals
When the coil assembly moves in the di­rection indicated by the arrow in the fig­ure, the relationship between the hall sensor output signals Su, Sv, Sw and the inverse power of each motor phase Vu, Vv, Vw becomes as shown in the figure below.
Vu
Su
Vv
Vw
Sv
Sw
0 180 360 540
Electrical angle (
° )
3-38
3.7 Dimensional Drawings of SGLFW/SGLFM Linear Servomotors
(2) Coil Assembly:
With a connector made by Interconnectron
The following table and figures show the specifications when a main circuit’s cable connector made by Intercon­nectron is used for the coil assembly.
40 (1.57)*
62.5 (2.46)*
125 (4.92)*
62.5 (2.46)*
9 (0.35)*
(2.28±0.004)
(14.2 (0.56): With magnet cover)
(14 (0.55): Without magnet cover)
SGLFW-1ZD200B D
3
(0.12)
95 (3.74)*
0.5 (0.02)
(5.2 (0.20): With magnet cover)
43
(5 (0.20): Without magnet cover)
(1.69)
(Gap 0.8 (0.03): With magnet cover)
(Gap 1 (0.04): Without magnet cover)
58±0.1
SGLFW-1ZD
7 (0.28)
57.5 (2.26)
98 (3.86)*
61.5 (2.42)
14
(0.55)
Magnetic way
119 (4.69)
2×screws #4-40 UNC
9×M5 tapped holes, depth 7 (0.28)
φ4.2
(φ0.17)*
±50
500
500
(19.69
±50
(19.69
Hall sensor
±1.97
Nameplate
B
50 min.
)
±1.97
50 min.
)
φ8.4
(φ0.33)
SGLFW-1ZD380B
D
30
(1.18)
55 (2.17)
25
(0.98)
60 (2.36)
See the figures
and below.
18×M5 tapped holes, depth 7 (0.28)
15
(0.59)*
A A
35.5
(1.40)
35.5
(1.40)
The coil assembly moves in the direction indicated by the arrow when current flows in the order of
12 (0.47)*
phase U, V, and W.
L3
L1
A A
L2
2.5 (0.10)
7
9.5
(0.28)
(0.37)
10
(0.39)*
95 (3.74)
14 (0.55)*
40
(1.57)
10 (0.39)
3
35.5
(1.40)
95 (3.74)
35.5
(1.40)
60 (2.36)
55
(2.17)
12 (0.47)
14 (0.55)
Hall Sensor Connector Specifications
9
5
Pin connector type: 17JE-23090-02 (D8C) made by DDK Ltd.
The mating connector
Socket connector type: 17JE-13090-02 (D8C) Stud type: 17L-002C or
6
1
17L-002C1
Coil Assembly
SGLFW-
Model
1ZD200BD
1ZD380BD
120 (4.72)
Pin No.
Linear Servomotor Connector Specifications
1
+5V (Power supply)
2
3
4
5
0V (Power supply)
6
7
8
9
Name
Phase U
Phase V
Phase W
Not used
Not used
Not used
Not used
5
4
Extension: LRRA06AMRPN182 Pin type: 021.279.1020 made by Interconnectron
The mating connector
Plug type: LPRA06BFRDN170 Socket type: 020.105.1020
L1 L2 L3 N
215
(8.46)
395
(15.55)
120
(4.72)
300
(11.81)
180
(7.09)9(0.35)
360
(14.17)18(0.71)
95 (3.74)
14 (0.55)
6
1
2
35.5
(1.40)
35.5
(1.40)
12 (0.47)
55
(2.17)
60 (2.36)
Approx.
Mass
kg (lb)
6.4
(14.11)
11.5
(25.35)
(60 (2.36) × 5 (0.20))
Name
Pin No.
Phase U
1
Phase V
2
Phase W
4
Not used
5
Not used
6
Ground
300 (11.81)
* Reference length Units: mm (in)
Hall Sensor Output Signals
When the coil assembly moves in the di­rection indicated by the arrow in the fig­ure, the relationship between the hall sensor output signals Su, Sv, Sw and the inverse power of each motor phase Vu, Vv, Vw becomes as shown in the figure below.
Vu
Su
Inverse power
Vv
(V)
Vw
Sv
Sw
0 180 360 540
Electrical angle (° )
3-39
3 Specifications and Dimensional Drawings
3.7.4 SGLF-1Z Linear Servomotors
(3) Magnetic Way: SGLFM-1ZA
Coil assembly
6.5 (0.26)*
8.6°
(L3)
2×N-φ7 (φ0.28) mounting holes
φ11.5 (φ0.45) counter boring, depth 1.5 (0.06)
9 (0.35)
14
(0.55)
(2.28±0.004)
5 (0.20)
43 (1.69)*
(Gap1 (0.04))
58±0.1
1.5 (0.06)
Assembly Dimensions
57.5 (2.26)*
119 (4.69)*
61.5 (2.42)*
Reference marks
(Tow φ4 (φ0.16) marks are engraved.)
φ11.5
The height of screw head must be 6.7 (0.26) max.
125 (4.92)
(φ0.45)
62.5 (2.46)*
112 (4.41)
62.5 (2.46)
6.5 (0.26)
0
43.2
-0.2
0
(1.70 )
-0.01
SSSSNNNN
YASKAWA
TYPE:
67.5 (2.66)
O/N S/N MADE IN JAPAN
Nameplate
DATE
Reference mark
L2
-0.1
L1
-0.3
Note: 1. Multiple SGFLM-1ZA magnetic ways can be connected. Connect magnetic ways so that the refer-
ence marks match one on the other in the same direction.
2. The magnetic way may affect pacemakers. Keep a minimum distance of 200 mm from the magnetic way.
Magnetic Way
Model SGLFM-
1Z405A
1Z675A
1Z945A
-0.1
L1
-0.3
405
(15.94)
675
(26.57)
945
(37.20)
L2 L3* N
337.5 (13.29)
(67.5 (2.66) × 5 (0.20))
607.5 (23.92)
(67.5 (2.66) × 9 (0.35))
877.5 (34.55)
(67.5 (2.66) × 13 (0.51))
423.9
(16.69)6 (0.24)
693.9
(27.32)
963.9
(37.95)
10
(0.39)
14
(0.55)
Approx.
Mass
kg (lb)
5
(11.02)
8.3
(18.30)
12
(26.46)
YASKAWA
TYPE:
67.5 (2.66)*
Reference mark
43.2 (1.70)*
* Reference length Units: mm (in)
3-40
* Reference length

3.8 Dimensional Drawings of SGLTW / SGLTM Linear Servomotors

3.8 Dimensional Drawings of SGLTW / SGLTM Linear Servomotors
3.8.1 SGLT-20 Linear Servomotors
(1) Coil Assembly: SGLTW-20AA
55 (2.17)*
51 (2.01)
47.5 (1.87)
15 (0.59)*
70 (2.76)*
60 (2.36)
15 (0.59)*
(19.2 (0.76): With magnet cover)
Hall Sensor Connector Specifications
Pin connector type: 17JE-23090-02(D8C) made by DDK Ltd.
The mating connector
Socket connector type: 17JE-13090-02(D8C) Stud type: 17L-002C or
12
(0.47)
1 (0.04)
28
20
(Gap 1 (0.04): Without magnet cover)
(19 (0.75): Without magnet cover)
(Gap 0.8 (0.03): With magnet cover)
9
5
6
1
17L-002C1
(1.10)
(0.79)
60 (2.36)
100 (3.94)
2×screws
4-40 UNC
Nameplate
500±50 (19.69±1.97)
Pin No.
1
2
3
4
5
6
7
8
9
Magnetic way
500±50
(19.69±1.97)
φ7.4
(φ0.29)*
Name
+5VDC
Phase U
Phase V
Phase W
0V
Not used
Not used
Not used
Not used
N×M6 tapped holes, depth 12 (0.47)
50 (1.97)
10
(0.39)
φ4.2 (φ0.17)*
63 min.
90 min.
Linear Servomotor Connector Specifications
Plug type: 350779-1 Pin type: 350218-3 or
made by Tycon Electronics AMP K.K.
The mating connector
Cap type: 350780-1 Socket type: 350536-3 or
48 (1.89)
80 (3.15)
Hall sensor
350547-3 (No.1 to 3) 350654-1 350669-1(No.4)
350550-3
Pin No.
1
2
3
4
Name
Phase U
Phase V
Phase W
Ground
L1 L2
The coil assembly moves in the direction indicated by the arrow when current flows in the order of phase U, V, and W.
(L3)
3
* Reference length Units: mm (in)
Hall Sensor Output Signals When the coil assembly moves in the di-
Lead
rection indicated by the arrow in the fig-
Color
ure, the relationship between the hall
Red
sensor output signals Su, Sv, Sw and the inverse power of each motoro phase Vu,
White
Vv, Vw becomes as shown in the figure
Black
below.
Green
Vu
Su
Inverse
Vv
power (V)
Vw
Sv
Sw
0 180 360 540
Electrical angle(° )
Coil Assembly
Model SGLTW-
20A170A
20A320A
20A460A
* Reference length
L1 L2 L3* N
170
(6.69)
315
(12.40)
460
(18.11)
144 (5.67)
(48 (1.89) × 3 (0.12))
288 (11.34)
(48 (1.89) × 6 (0.24))
432 (17.01)
(48 (1.89) × 9 (0.35))
16
(0.63)8 (0.31)
17
(0.67)
18
(0.71)
14
(0.55)
20
(0.79)
Approx.
Mass
kg (lb)
2.5
(5.51)
4.6
(10.14)
6.7
(14.77)
3-41
3 Specifications and Dimensional Drawings
3.8.1 SGLT-20 Linear Servomotors
(2) Magnetic Way: SGLTM-20A
55 (2.17)*
40 (1.57)
15 (0.59)
1
(0.04)
0.3
19 (0.75)
Gap1±
(0.04±0.01)
R1 max.
+0.6
62
+0.02
(2.44 )
70±0.3
( 2.76±0.01)
C1
C1
(1.26)
0
0
32
3 (0.12)
Mount the magnetic way so that its corner surfaces are flush with the inner step.
70±0.3
( 2.76±0.001)
71.5±1 ( 2.81±0.04) (preshipment)
103 ( 4.06) max (preshipment)
15 (0.59)
R0.5 max
Mount the magnetic way so that its corner surfaces are flush with the inner step.
Assembly Dimensions
Note: 1. Two magnetic ways for both ends of coil assembly make one set. Spacers are mounted on magnetic ways
for safety during transportation. Do not remove the spacers until the coil assembly is mounted on a machine.
2. The magnetic way may affect pacemakers. Keep a minimum distance of 200 mm from the magnetic way.
3. Two magnetic ways in a set can be connected to each other.
4. The dimensions marked with an are the dimensions between the magnetic ways. Be sure to follow exactly the dimensions specified in the figure above. Mount magnetic ways as shown in Assembly Dimensions. The values with an are the dimensions at preshipment.
5. Use socket headed screws of strength class 10.9 minimum for magnetic way mounting screws. Do not use stainless steel screws.
8 (0.31)*
Coil assembly
100 (3.94)
0
13.7
-0.2
0
(0.54 )
31.7
(1.25 )-0.01
2.4±
87 (3.43)
( 0.09±0.01)
29.3 (1.15)*
2.4±0.3
( 0.09±0.01)
27 (1.06)
(1.59 )
54 (2.13)
-0.01
9.9°
27 (1.06)
0
-0.2 0
0.3
2×N-M6 screws, depth 8 (0.31)
9.9
0
40.3
-0.2
0
-0.01
9.4
(0.37)*
-0.1
L1
-0.3
L2
TYPE:
YASKAWA
L2
O/N S/N MADE IN JAPAN
L1
DATE
Spacers: Do not remove until the coil assembly is mounted on a machine.
8 (0.31)
L2
-0.1
-0.3
54 (2.13)
Nameplate
R6
2×N-φ7 (φ0.28) mounting holes (See the sectional view for the depth.)
54 (2.13)
54
(2.13)*
29.3 (1.15)*
54 (2.13)*
(2.13)*
54
* Reference length Units: mm (in)
3-42
Magnetic Way
Model SGLTM-
20324A
20540A
20756A
-0.1
L1
-0.3
324
(12.76)
540
(21.26)
756
(29.76)
L2 N
270 (10.63)
(54 (2.13) × 5 (0.20))6(0.24)
486 (19.13)
(54 (2.13) × 9 (0.35))10(0.39)
702 (27.64)
(54 (2.13) × 13 (0.51))14(0.55)
Approx.
Mass
kg (lb)
3.4
(7.50)
5.7
(12.57)
7.9
(17.42)
3.8 Dimensional Drawings of SGLTW / SGLTM Linear Servomotors
(3) Magnetic Way with Base: SGLTM-20AY
70 (2.76)*
1
0.8 (0.03)*
60 (2.36)
(0.04)
0.8±0.3 (0.03±0.01)
55 (2.17)* 40 (1.57)
Coil assembly
15 (0.59)
Base
70±0.3
(2.76±0.01)
15 (0.59) 15 (0.59)
19.2(0.76)
Gap
Including magnet cover of plate
thickness 0.2 (0.01)
11.7 (0.46)
27 (1.06)
2.4±0.3
87 (3.43)
100 (3.94)*
2 × N1 - M6 bolts, depth 16 (0.63)
116 (4.57)
132 (5.20)
(0.09±0.01)
2 × N1 - M6 screws, depth 8 (0.31)
27
(2.4±0.3)
(1.06)
15
(0.59)
2.3 (0.09)
9.9
9.9
20 (0.79)
54 (2.13)
74 (2.91)
54 (2.13)
20 (0.79)
L2
MADE IN JAPAN
DATE
YASKAWA
TYPE:
L5
2 × N2 - φ10 (φ0.39)mounting holes (See the sectional view for the depth.)
TYPE:
S/N
YASKAWA
O/N
O/N
S/N
MADE IN JAPAN
DATE
L4
L2
L3
-0.1
L1
-0.3
74 (2.91)
54 (2.13)*
14 (0.55)*
162 (6.38)*
54 (2.13)*
11.7 (0.46)*
* Reference length Units: mm (in)
Note: 1. The magnetic way may affect pacemakers. Keep a minimum distance of 200 mm (7.87 in) from the
magnetic way.
2. Two magnetic ways in a set can be connected to each other.
3. The magnetic way with base has the same characteristics as those of the magnetic way without base. SGLTM-20
(

A)
3
Magnetic Way
Model SGLTM-
20324AY
20540AY
20756AY
-0.1
L1
-0.3
324
(12.76)
540
(21.26)
756
(29.76)
L2 L3 L4 L5 N1 N2
270
(10.63)
486
(19.13)
702
(27.64)
310
(12.20)
526
(20.71)
742
(29.21)
162
(6.38)
378
(14.88)
594
(23.39)
162
(6.38)
189
(7.44)
198
(7.80)
6
(0.24)
10
(0.39)
14
(0.55)
2
(0.08)
3
(0.12)
4
(0.16)
Approx.
Mass
kg (lb)
5.1
(11.24)
8.5
(18.74)
12
(26.46)
3-43
3 Specifications and Dimensional Drawings
3.8.2 SGLT-35A Linear Servomotors
3.8.2 SGLT-35A Linear Servomotors
(1) Coil Assembly: SGLTW-35A
70 (2.76)*
66 (2.60)
55 (2.17)
15 (0.59)*
60 (2.36)
70 (2.76)*
(0.47)
12
15 (0.59)*
(19.2 (0.76): With magnet cover)
(19 (0.75): Without magnet cover)
(Gap 0.8 (0.03): With magnet cover)
Hall Sensor Connector Specifications
Pin connector type: 17JE-23090-02(D8C) made by DDK Ltd.
The mating connector
Socket connector type: 17JE-13090-02(D8C) Stud type: 17L-002C or
(Gap 1 (0.04): Without magnet cover)
9
5
6
1
17L-002C1
1 (0.04)
28
(1.10)
20
(0.79)
60 (2.36)
100 (3.94)
2-screws #4×40 UNC
Nameplate
500±50 (19.69±1.97)
Pin No.
1
2
3
4
5
6
7
8
9
Magnetic way
500±50
(19.69±1.97)
φ8.4 (φ0.33)
Name
+5VDC
Phase U
Phase V
Phase W
0V
Not used
Not used
Not used
Not used
50 (1.97)
N×M6 tapped holes, depth 12 (0.47)
10
(0.39)
48 (1.89)
80 (3.15)
Hall sensor
φ4.2 (φ0.17)
63 min.
100 min.
Linear Servomotor Connector Specifications
Plug type: 350779-1
Pin type: 350218-3 or
350547-3 (No.1 to 3) 350654-1 350669-1 (No.4)
made by Tyco Electronics AMP K.K.
The mating connector
Cap type: 350780-1 Socket type: 350536-3 or
350550-3
Pin No.
1
2
3
4
Name
Phase U
Phase V
Phase W
Ground
L1 L2
The coil assembly moves in the direction indicated by the arrow when current flows in the order of phase U, V, and W.
* Reference length Units: mm (in)
Hall Sensor Output Signals
When the coil assembly moves in the di­rection indicated by the arrow in the fig-
Lead Color
ure, the relationship between the hall
Red
sensor output signals Su, Sv, Sw and the inverse power of each motor phase Vu,
White
Vv, Vw becomes as shown in the figure
Black
below
Green
Vu
Su
Inverse power
Vv
(V)
Vw
Sv
Sw
0 180 360 540
Electrical angle(° )
(L3)
3-44
Coil Assembly
Model SGLTW-
35170A
35320A
35460A
* Reference length
L1 L2 L3* N
170
(6.69)
315
(12.40)
460
(18.11)
144 (5.67)
(48 (1.89) × 3 (0.12))
288 (11.34)
(48 (1.89) × 6 (0.24))
432 (17.01)
(48 (1.89) × 9 (0.35))
16
(0.63)8 (0.31)
17
(0.67)
18
(0.71)
Approx.
Mass
kg (lb)
3.7
(8.16)
14
(0.55)
6.8
(14.99)
20
(0.79)10(22.05)
(2) Magnetic Way: SGLTM-35A
0
15
-0.2 0
-0.01
(0.59 )
9.9
3.8 Dimensional Drawings of SGLTW / SGLTM Linear Servomotors
-0.1
L1
54 (2.13)
-0.3
L2
54
(2.13)*
15 (0.59)
) (preshipment)
0.04
70±0.3
( 2.76±0.001)
71.5±1 ( 2.81±
103 ( 4.06) max (preshipment)
Mount the magnetic way so that its corner surfaces are flush with the inner step.
15 (0.59)
R0.5 max.
19 (0.75)
70 (2.76)* 55 (2.17)
1
(0.04)*
C1
0.3
C1
47
(1.85)
Gap1±
(0.04±0.01)
R1 max.
+0.6
62
0
+0.02
(2.44 )
0
70±
0.3
( 2.76±0.01)
Assembly Dimensions
Coil assembly
87 (3.43)
100 (3.94)*
8 (0.31)*
3 (0.12)
Mount the magnetic way so that its corner surfaces are flush with the inner step.
34.5 (1.36)
34.5 (1.36)
33
2.4±0.3
( 0.09±0.01)
30.6
(1.20)*
2×N×M6 screws, depth 8 (0.31)
9.9
2.4±0.3
( 0.09±0.01)
12
(0.47)*
0
0
(1.30 )
-0.2
-0.01
54 (2.13)
Nameplate
R6
YASKAWA
TYPE:
2×N-φ7 (φ0.28) mounting holes (See the sectional view for the depth)
54 (2.13)
0
39
-0.2 0
(1.54 )
-0.01
L2
O/N S/N MADE IN JAPAN
L1
DATE
Spacers: Do not remove them until the coil assembly is mounted on the machine.
L2
-0.1
-0.3
30.6 (1.20)*
4
54 (2.13)*
54
(2.13)*
* Reference length Units: mm (in)
Note: 1. Two magnetic ways for both ends of coil assembly make one set. Spacers are mounted on magnetic ways
for safety during transportation. Do not remove the spacers until the coil assembly is mounted on a machine.
2. The magnetic way may affect pacemakers. Keep a minimum distance of 200 mm (7.87 in) from the magnetic way.
3. Two magnetic ways in a set can be connected to each other.
4. The dimensions marked with an are the dimensions between the magnetic ways. Be sure to follow exactly the dimensions specified in the figure above. Mount magnetic ways as shown in Assembly Dimensions. The values with an are the dimensions at preshipment
5. Use socket headed screws of strength class 10.9 minimum for magnetic way mounting screws. Do not use stainless steel screws..
3
Magnetic Way
Model SGLTM-
35324A
35540A
35756A
-0.1
L1
-0.3
324
(12.76)
540
(21.26)
756
(29.76)
L2 N
270 (10.63)
(54 (2.13) × 5 (0.20))6(0.24)
486 (19.13)
(54 (2.13) × 9 (0.35))10(0.39)
702 (27.64)
(54 (2.13) × 13 (0.51))14(0.55)
Approx.
Mass
kg (lb)
4.8
(10.56)
8
(17.64)
11
(24.25)
3-45
3 Specifications and Dimensional Drawings
3.8.2 SGLT-35A Linear Servomotors
(3) Magnet Way with Base: SGLTM-35AY
85 (3.35)*
1
60 (2.36)
(0.04)
)
0.01
(0.03±
70 (2.76)*
55 (2.17)
15 (0.59)
Base
15 (0.59)
)
0.01
0.3
70±
0.8 (0.03)*
(2.76±
0.3
0.8±
15 (0.59)
19.2(0.76)
Including magnet cover of plate
thickness 0.2 (0.01)
Gap
87 (3.43)
116 (4.57)
100 (3.94)*
Coil assembly
2 × N1 - M6 bolts, depth 16 (0.63)
132 (5.20)
2 × N1 - M6 screws, depth 8 (0.31)
2.4±0.3
(0.09±0.01)*
34.5 (1.36)
15
(0.59)
13 (0.51)
9.9
34.5 (1.36)
2.4±
(0.09±
9.9
1 (0.04)
0.3
0.01
20 (0.79)
)
20 (0.79)
54 (2.13)
74 (2.91)
54 (2.13)
L2
MADE IN JAPAN
DATE
YASKAWA
TYPE:
L5
2 × N2 - φ10 (φ0.39)mounting holes (See the sectional view for the depth.)
TYPE:
S/N
YASKAWA
O/N
O/N
S/N
DATE
MADE IN JAPAN
L4
L2
L3
-0.1
L1
-0.3
54 (2.13)*
74 (2.91)
162 (6.38)*
Note: 1. The magnetic way may affect pacemakers. Keep a minimum distance of 200 mm (7.87 in) from the
magnetic way.
2. Two magnetic ways in a set can be connected to each other.
3. The magnetic way with base has the same characteristics as those of the magnetic way without base. SGLTM-35
(

A)
14 (0.55)*
54 (2.13)
13 (0.51)*
* Reference length Units: mm (in)
Magnetic Way
Model SGLTM-
35324AY
35540AY
35756AY
-0.1
L1
-0.3
324
(12.76)
540
(21.26)
756
(29.76)
L2 L3 L4 L5 N1 N2
270
(10.63)
486
(19.13)
702
(27.64)
310
(12.20)
526
(20.71)
742
(29.21)
162
(6.38)
378
(14.88)
594
(23.39)
162
(6.38)
189
(7.44)
198
(7.80)
6
(0.24)
10
(0.39)
14
(0.55)
2
(0.08)
3
(0.12)
4
(0.16)
Approx.
Mass
kg (lb)
6.4
(14.11)
11
(24.25)
15
(33.07)
3-46
3.8 Dimensional Drawings of SGLTW / SGLTM Linear Servomotors
3.8.3 SGLT-35H Linear Servomotors
(1) Coil Assembly:
SGLTW-35
H
With a connector made by Tyco Electronics AMP K.K.
The following table and figures show the specifications when a main circuit’s cable connector made by Tyco Electronics is used for the coil assembly.
0.15 (0.01)
15 (0.59)*
90 (3.54)*
X
±0.1
20
(0.79±0.004)
±0.002)
±0.05
80
30
(3.15
(1.18)
15 (0.59)*
(19.2 (0.76): With magnet cover)
(19 (0.75): Without magnet cover)
(Gap 0.8 (0.03): With magnet cover)
Wiring specifications
of hall sensor cable
96
5
Pin connector: 17JE-23090-02(D8C) made by DDK Ltd.
The mating connector
Socket connector type: 17JE-13090-02(D8C) Stud type: 17L-002C or
17L-002C1
28
(1.10)
30
(1.18)
70 (2.76)*
66 (2.60)
62.5 (2.46)
12
(0.47)
Linear SERVO MOTOR
TYPE
O/N
S/N
YASKAWA ELECTRIC MADE IN JAPAN
W
AV
DATE
ins.
m/sN
1
(0.04)
P
X
60 (2.36)
120±0.1 (4.72±0.004)
Nameplate
2×screws #4×40 UNC
Cable UL20276
(Gap 1 (0.04): Without magnet cover)
1
Pin No.
1
2
3
4
5
6
7
8
9
AWG28
Name
+5VDC
Phase U
Phase V
Phase W
0V
Not used
Not used
Not used
Not used
Magnetic way
Hall sensor
500±50
(19.69±1.97)
30 (1.18)
10 (0.39)
48±0.15
20
(1.89±0.01)
(0.79)
100±0.15
Protective tube
φ4.2
(φ0.17)
500±50
35 (1.38)
43 (1.69)
63 min.
Lead specifications of coil assembly
If this cable is bent repetitively, the cable will disconnect.
Phase V
Phase W
View from top of coil assembly
Phase U
Phase V
Phase W
Ground
N×M6 tapped holes, depth 12 (0.47)
L1
L2
±0.01)
(3.94
(19.69±1.97)
Phase U
Ground
Color Code
Black
Green
Wire sizeName U VW2mm
2mm
-
2
2
(L3)
The coil assembly moves in the direction indicated by the arrow when current flows in the order of phase U, V, and W.
Hall Sensor Output Signals
When the coil assembly moves in the di­rection indicated by the arrow in the fig­ure, the relationship between the hall sensor output signals Su, Sv, Sw and the inverse power of each motor phase Vu, Vv, Vw becomes as shown in the figure below
Vu
Su
Inverse
Vv
power (V)
Vw
Sv
Sw
0 180 360 540
Electrical angle(° )
3
* Reference length Units: mm (in)
Coil Assembly
SGLTW-
Model
35170H
35320H
* Reference length
L1 L2 L3* N
170
(6.69)
315
(12.40)
144 (5.67)
(48 (1.89) × 3 (0.12))
288 (11.34)
(48 (1.89) × 6 (0.24))
16
(0.63)8 (0.31)
17
(0.67)
14
(0.55)
Approx.
Mass
kg (lb)
4.7
(10.36)
8.8
(19.40)
3-47
3 Specifications and Dimensional Drawings
3.8.3 SGLT-35H Linear Servomotors
(2) Coil Assembly:
SGLTW-35D
H
D
With a connector made by Interconnectron
The following table and figures show the specifications when a main circuit’s cable connector made by Intercon­nectron is used for the coil assembly.
0.15 (0.01) X
±0.1
20
(0.79±0.004)
15 (0.59)*
±0.002)
±0.05
80
30
(3.15
90 (3.54)*
(1.18)
15 (0.59)*
(19.2 (0.76): With magnet cover)
(19 (0.75): Without magnet cover)
(Gap 0.8 (0.03): With magnet cover)
Wiring specification of hall sensor cable
96
5
Pin connector type: 17JE-23090-02(D8C) made by DDK Ltd.
The mating connector
Socket connector type: 17JE-13090-02(D8C) Stud type: 17L-002C or
1
17L-002C1
28
30
(1.18)
70 (2.76)*
66 (2.60)
62.5 (2.46)
(0.47)
YASKAWA ELECTRIC MADE IN JAPAN
(1.10)
S/N
DATE
O/N
12
W
AV
ins.
m/sN
Linear SERVO MOTOR
TYPE
1
(0.04)
P
X
60 (2.36)
±0.1 (4.72±0.004)
120
Nameplate
2×screws #4×40 UNC
(Gap 1 (0.04): Without magnet cover)
Cable UL20276
Pin No.
1
2
3
4
5
6
7
8
9
AWG28
Name
+5VDC
Phase U
Phase V
Phase W
0V
Not used
Not used
Not used
Not used
Magnetic way
Hall sensor
500±50
(19.69±1.97)
φ4.2
(φ0.17)
500±50
(19.69±1.97)
63 min.
Linear Servomotor Connector Specifications
6
5
1
4
Extension: LRRA06AMRPN182 Pin type: made by Interconnectron
The mating connector
Plug type: Socket type:
2
021.279.1020
LPRA06BFRDN170
020.105.1020
30 (1.18)
10 (0.39)
20
(0.79)
35 (1.38)
43 (1.69)
48±0.15 (1.89±0.01)
100±0.15
Protective tube
N×M6 tapped holes, depth 12 (0.47)
L1 L2
±0.01)
(3.94
The coil assembly moves in the direction indicated by the arrow when current flows in the order of phase U, V, and W.
Name
Pin No.
Phase U
1
Phase V
2
Phase W
4
Not used
5
Not used
6
Ground
Inverse power (V)
L3
* Reference length Units: mm (in)
Hall Sensor Output Signals
When the coil assembly moves in the di­rection indicated by the arrow in the fig­ure, the relationship between the hall sensor output signals Su, Sv, Sw and the inverse power of each motor phase Vu, Vv, Vw becomes as shown in the figure below
Vu
Su
Vv
Sv
3-48
Coil Assembly
SGLTW-
Model
35D170HD
35D320HD
* Reference length
L1 L2 L3* N
170
(6.69)
315
(12.40)
144 (5.67)
(48 (1.89) × 3 (0.12))
288 (11.34)
(48 (1.89) × 6 (0.24))
16
(0.63)8 (0.31)
17
(0.67)
14
(0.55)
Approx.
Mass
kg (lb)
4.7
(10.36)
8.8
(19.40)
Vw
0 180 360 540
Sw
Electrical angle(° )
3.8 Dimensional Drawings of SGLTW / SGLTM Linear Servomotors
(3)
Magnetic Way:
SGLTM-35

H
0
-0.2
0
(0.59 )
-0.01
54 (2.13)
-0.1
L1
-0.3
L215
54
(2.13)*
9.9°
70 (2.76)*
P
15±0.1 (0.59±0.004)
Y
0.8 (0.03)*
55 (2.17)
34.5 (1.36)
Coil Assembly
33
0
(1.30 )
-0.2
54 (2.13)
-0.01
0
L2
MADE IN JAPAN DATE
S/N
O/N
YASKAWA
TYPE:
30.6 (1.20)* 54
(2.13)*
0.2 Y
0.2 X
90±0.3 ( 3.54±0.01)
91.5±1 ( 3.60±0.04) (preshipment)
123 ( 4.84) max. (preshipment)
P
15±0.1 (0.59±0.004)
R0.5 max.
Mount the magnetic way so that its corner surfaces are flush with the inner step.
90±0.3 ( 3.54±0.01)
Assembly Dimensions
C1
C1
47
X
0.8±0.3
(0.03±0.01)
4.2±0.1
(0.17±0.004)
(1.85)
Gap
Includes a 0.2 (0.01) thick magnet cover.
R1 max.
+0.6
82
0
+0.02
(3.23 )
0
8 (0.31)*
2×N-M6 tapped holes, depth 8 (0.31)
3 (0.12)
Mount the magnetic way so that its corner surfaces are flush with the inner step.
( 0.09±0.01)
107 (4.21)
120 (4.72)*
( 0.09±0.01)
34.5 (1.36)
2.4±0.3
9.9°
2.4±0.3
12
(0.47)*
54 (2.13)
Nameplate
YASKAWA
TYPE:
O/N
S/N
MADE IN JAPAN DATE
L1
-0.1
-0.3
Spacer: Do not remove them until the coil assemb is mounted on the machine.
4
(0.16)*
L239
R6
2×N-φ7 (0.28) mounting holes (See the sectional view for the depth.)
30.6
(1.20)*
0
-0.2
0
(1.54 )
-0.01
* Reference length Units: mm (in)
Note: 1. Two magnetic ways for both ends of coil assembly make one set. Spacers are mounted on magnetic ways
for safety during transportation. Do not remove the spacers until the coil assembly is mounted on a machine.
2. The magnetic way may affect pacemakers. Keep a minimum distance of 200 mm (7.87 in) from the magnetic way.
3. Two magnetic ways in a set can be connected to each other.
4. The dimensions marked with an are the dimensions between the magnetic ways. Be sure to follow exactly the dimensions specified in the figure above. Mount magnetic ways as shown in Assembly Dimensions. The values with an are the dimensions at preshipment.
5. Use socket headed screws of strength class 10.9 minimum for magnetic way mounting screws. Do not use stainless steel screws.
3
54
(2.13)*
Coil Assembly
SGLTM-
Model
35324H
35540H
35756H
-0.1
L1
-0.3
324
(12.76)
540
(21.26)
756
(29.76)
L2 N
270 (10.63)
(54 (2.13) × 5 (0.20))6(0.24)
486 (19.13)
(54 (2.13) × 9 (0.35))10(0.39)
702 (27.64)
(54 (2.13) × 13 (0.51))14(0.55)
Approx.
Mass
kg (lb)
4.8
(10.56)
8
(17.64)
11
(24.25)
3-49
3 Specifications and Dimensional Drawings
3.8.4 SGLT-40 Linear Servomotors
3.8.4 SGLT-40 Linear Servomotors
(1) Coil Assembly: SGLTW-40B
83 (3.27)*
78 (3.07)
75 (2.95)
16
19.1 (0.75)*
97 (3.82)
111.8 (4.40)*
19.1 (0.75)*
(25.3 (1.0): With magnet cover)
Hall Sensor Connector Specifications
9
5
Pin connector type: 17JE-23090-02(D8C) made by DDK Ltd.
The mating connector
Socket connector type: 17JE-13090-02(D8C) Stud type: 17L-002C or
(0.63)
(25.1 (0.99): Without magnet cover)
(Gap 1.2 (0.05): With magnet cover)
(Gap 1.4 (0.06): Without magnet cover)
6
1
17L-002C1
1 (0.04)
38
30
(1.50)
(1.18)
98 (3.86)
Hall sensor
Receptacle
Magnetic way
150 (5.91)
2×screws #4-40 UNC
500±50
(19.69±1.97)
Pin No.
5V (Power supply)
1
2
3
4
0V (Power supply)
5
6
7
8
9
φ4.2
(φ0.17)
Name
Phase U
Phase V
Phase W
Not used
Not used
Not used
Not used
63 (2.48)
64 min.
Nameplate
N×M8 tapped holes, depth 16 mm
20 (0.79)
60 (2.36)
40
(1.57)
124 (4.88)
TYPE
O/N
Linear SERVO MOTOR
S/N
W
A
YASKAWA ELECTRIC
N
V
MADE IN JAPAN
ins.
DATE
m/s
Linear Servomotor Connector Specifications
Receptacle type: MS3102A-22-22P made by DDK Ltd.
The mating connector
L-shaped plug type: MS3108B22-22S Straight plug type: MS3106B22-22S Cable clamp type: MS3057-12A
L1
L2
The coil assembly moves in the direction indicated by the arrow when current flows in the order of phase U, V, and W.
(L3)
* Reference length Units: mm (in)
Hall Sensor Output Signals
Pin No.
A
B
C
D
Name
Phase U
Phase V
Phase W
Ground
When the coil assembly moves in the di­rection indicated by the arrow in the fig­ure, the relationship between the hall sensor output signals Su, Sv, Sw, and the inverse power of each motor phase Vu, Vv, Vw becomes as shown in the fig­ure below.
Vu
Su
Inverse
Vv
power (V)
Vw
Sv
Sw
0 180 360 540
Electrical angle(° )
3-50
Coil Assembly
Model SGLTW-
40400B
40600B
* Reference length
L1 L2 L3* N
395
(15.55)
585
(23.03)
360 (14.17)
(60 (2.36) × 6 (0.24))
540 (21.26)
(60 (2.36) × 9 (0.35))
15
(0.59)
25
(0.98)20(0.79)
Approx.
Mass
kg (lb)
14
(0.55)20(44.09)
30
(66.14)
(2) Magnetic Way: SGLTM-40A
3.8 Dimensional Drawings of SGLTW / SGLTM Linear Servomotors
3
Note: 1. Two magnetic ways for both ends of coil assembly make one set. Spacers are mounted on magnetic ways
for safety during transportation. Do not remove the spacers until the coil assembly is mounted on a machine.
2. The magnetic way may affect pacemakers. Keep a minimum distance of 200 mm (7.87 in) from the magnetic way.
3. Two magnetic ways in a set can be connected to each other.
4. The dimensions marked with an are the dimensions between the magnetic ways. Be sure to follow exactly the dimensions specified in the figure above. Mount magnetic ways as shown in Assembly Dimensions. The values with an are the dimensions at preshipment.
5. Use socket headed screws of strength class 10.9 minimum for magnetic way mounting screws. Do not use stainless steel screws.
Magnetic Way
Model SGLTM-
40405A
40675A
40945A
-0.1
L1
-0.3
405
(15.94)
675
(26.57)
945
(37.20)
L2 N
337.5 (13.29)
(67.5 (2.66) × 5 (0.20))6(0.24)
607.5 (23.92)
(67.5 (2.66) × 9 (0.35))10(0.39)
877.5 (34.55)
(67.5 (2.66) × 13 (0.51))14(0.55)
Approx.
Mass
kg (lb)
9
(19.34)
15
(33.07)
21
(46.30)
3-51
3 Specifications and Dimensional Drawings
3.8.4 SGLT-40 Linear Servomotors
(3) Magnetic Way with Base: SGLTM-40AY
5.6
39 (1.54)
5.6
25 (0.98)
67.5 (2.66)
92.5 (3.64)
67.5 (2.66)
25 (0.98)
5 (0.20)
L2
MADE IN JAPAN
DATE
TYPE:
S/N
YASKAWA
O/N
O/N
YASKAWA
S/N
TYPE:
DATE
MADE IN JAPAN
L5
L4
(See the sectional view for the depth.)
L2
L3
-0.1
L1
-0.3
92.5 (3.64)
1
1.2 (0.05)* 90 (3.54)
(0.04)
1.2±0.3
(0.05±0.01)
103 (4.06)*
83 (3.27)*
63 (2.48)
20 (0.79)
Base
19.1 (0.75)
111.8±0.3 (4.40±0.01)
19.1 (0.75)
25.3 (1.00)
Including magnet cover of plate
thickness 0.2 (0.01)
Gap
150 (5.91)*
Coil assembly
2 × N1 - M8 bolts, depth 25 (0.98)
12.5 (0.49)
1.4±0.3
131 (5.16)
170 (6.69)
190 (7.48)
(0.06±0.01)
2 × N1 - M8 screws, depth 10 (0.39) 2 × N2 - φ12 (φ0.47) mounting holes
1.4±0.3
(0.06±0.01)*
39 (1.54)
20
(0.79)
Note: 1. The magnetic way may affect pacemakers. Keep a minimum distance of 200 mm (7.87 in) from the
magnetic way.
2. Two magnetic ways in a set can be connected to each other.
3. The magnetic way with base has the same characteristics as those of the magnetic way without base. SGLTM-40
(
A)
67.5 (2.66)*
17.5 (0.69)*
202.5 (7.97)*
12.5 (0.49)*
67.5 (2.66)*
* Reference value Units: mm (in)
Magnetic Way
SGLTM-
Model
40405AY
40675AY
40945AY
-0.1
L1
-0.3
405
(15.94)
675
(26.57)
945
(37.20)
L2 L3 L4 L5 N1 N2
337.5
(13.29)
607.5
(23.92)
877.5
(34.55)
387.5
(15.26)
657.5
(25.89)
927.5
(36.52)
202.5
(7.97)
472.5
(18.60)
742.5
(29.23)
202.5
(7.97)
236.25 (9.31)
247.5
(9.74)
6
(0.24)
10
(0.39)
14
(0.55)
Approx.
Mass
kg (lb)
2
(0.08)
3
(0.12)
13
(28.67)
21
(46.30)
4
(0.16) 30(66.14)
3-52
3.8 Dimensional Drawings of SGLTW / SGLTM Linear Servomotors
3.8.5 SGLT-50
(1) Coil Assembly:
With a connector made by Tyco Electronics AMP K.K.
The following table and figures show the specifications when a main circuit’s cable connector made by Tyco Electronics is used for the coil assembly.
0.2
X
(0.01)
)
±0.004
20±0.1
19.1 (0.75)*
(0.79
±0.05
80
90 (3.54)*
(3.15±0.002)
19.1 (0.75)*
(23.3 (0.92): With magnet cover)
(23.1 (0.91): Without magnet cover)
Wiring specifications
of hall sensor cable
96
5
Pin connector: 17JE-23090-02(D8C) made by DDK Ltd.
The mating connector
Socket connector type: 17JE-13090-02(D8C) Stud type: 17L-002C or
85 (3.35)*
81 (3.19)
62.5 (2.46)
28
(1.10)
30
(1.18)
Hall sensor end connector
(Gap 0.8 (0.03): With magnet cover)
(Gap 1 (0.04): Without magnet cover)
1
17L-002C1
Linear Servomotors
12 (0.47)
Linear SERVO MOTOR
TYPE
O/N
S/N
YASKAWA ELECTRIC MADE IN JAPAN
W
AV
DATE
ins.
m/sN
Nameplate
2-screws #4×40 UNC
Cable UL20276
SGLTW-50
X
1
(0.04)
60 (2.36)
AWG28
Pin No.
1
2
3
4
5
6
7
8
9
P
4.1
(0.16)*
120±0.1 (4.72±0.004)
Name
+5VDC
Phase U
Phase V
Phase W
0V
Not used
Not used
Not used
Not used
Magnetic way
500±50
(19.69±1.97)
H
Hall sensor
φ4.2
N×M6 tapped holes, depth 12 (0.47)
30 (1.18)
10 (0.39)
48±0.15 (1.89±0.01)
20 (0.79)
±0.01)
100±0.15
(3.94
Protective tube
(φ0.17)*
500±50
(19.69±1.97)
35 (1.38)
43 (1.69)
63 min.
Lead specifications of coil assembly
If this cable is bent repetitively, the cable will disconnect.
Phase V
Phase W
View from top of coil assembly
Name
Phase U
Phase V
Phase W
Ground
Phase U
Ground
Color
Black
Green
Code Wire size
U VW2mm
L1 L2
The coil assembly moves in the direction indicated by the arrow when current flows in the order of phase U, V, and W.
Hall Sensor Output Signals When the coil assembly moves in the di-
rection indicated by the arrow in the fig­ure, the relationship between the hall sensor output signals Su, Sv, Sw and the inverse power of each motor phase Vu, Vv, Vw becomes as shown in the figure below
Vu
Inverse
Vv
power
2
(V)
2mm
2
Vw
(L3)
Su
Sv
0 180 360 540
Electrical angle(° )
3
* Reference length Units: mm (in)
Sw
Coil Assembly
SGLTW-
Model
50170H
50320H
* Reference length
L1 L2 L3* N
170
(6.69)
315
(12.40)
144 (5.67)
(48 (1.89) × 3 (0.12))
288 (11.34)
(48 (1.89) × 6 (0.24))
16
(0.63)8 (0.31)6(13.23)
17
(0.67)
Approx.
Mass
kg (lb)
14
(0.55)11(24.25)
3-53
3 Specifications and Dimensional Drawings
SGLT-50
3.8.5
Linear Servomotors
(2) Coil Assembly:
SGLTW-50D
H
D
With a connector made by Interconnectron
The following table and figures show the specifications when a main circuit’s cable connector made by Intercon­nectron is used for the coil assembly.
0.2 X
(0.01)
)
±0.004
20±0.1
19.1 (0.75)*
(0.79
±0.05
80
90 (3.54)*
28
30
(3.15±0.002)
19.1 (0.75)*
(23.3 (0.92): With magnet cover)
(23.1 (0.91): Without magnet cover)
(Gap 0.8 (0.03): With magnet cover)
(Gap 1 (0.04): Without magnet cover)
Wiring specification of hall sensor cable
96
5
Pin connector type: 17JE-23090-02(D8C) made by DDK Ltd.
The mating connector
Socket connector type: 17JE-13090-02(D8C) Stud type: 17L-002C or
1
17L-002C1
85 (3.35)* 81 (3.19)
62.5 (2.46)
12 (0.47)
O/N
S/N
YASKAWA ELECTRIC MADE IN JAPAN
(1.18)
AV
DATE
ins.
(1.10)
Nameplate
Cable UL20276,AWG28
1
Linear SERVO MOTOR
TYPE
(0.04)
W
m/sN
2×screws #4×40 UNC
Pin No.
1
2
3
4
5
6
7
8
9
P
X
60 (2.36)
Name
+5VDC
Phase U
Phase V
Phase W
0V
Not used
Not used
Not used
Not used
Magnetic way
(0.16)*
4.1
±0.1 (4.72±0.004)
120
500±50
(19.69±1.97)
500±50
(19.69±1.97)
30 (1.18)
10 (0.39)
20 (0.79)
Hall sensor
φ4.2
(φ0.17)*
35 (1.38)
43 (1.69)
63 min.
Linear Servomotor Connector Specifications
6
5
1
4
Extension: LRRA06AMRPN182 Pin type: 021.279.1020 made by Interconnectron
The mating connector
Plug type: LPRA06BFRDN170 Socket type: 020.105.1020
2
48±0.15 (1.89±0.01)
100±0.15
Protective tube
N×M6 tapped holes, depth 12 (0.47)
L1 L2
(3.94±0.01)
The coil assembly moves in the direction indicated by the arrow when current flows in the order of phase U, V, and W.
Name
Pin No.
Phase U
1
Phase V
2
Phase W
4
Not used
5
Not used
6
Ground
(L3)
* Reference length Units: mm (in)
Hall Sensor Output Signals When the coil assembly moves in the di-
rection indicated by the arrow in the fig­ure, the relationship between the hall sensor output signals Su, Sv, Sw and the inverse power of each motor phase Vu, Vv, Vw becomes as shown in the figure below
Vu
Su
Inverse
Vv
power (V)
Sv
3-54
Coil Assembly
SGLTW-
Model
50D170HD
50D320HD
* Reference length
L1 L2 L3* N
170
(6.69)
315
(12.40)
144 (5.67)
(48 (1.89) × 3 (0.12))
288 (11.34)
(48 (1.89) × 6 (0.24))
16
(0.63)8 (0.31)6(13.23)
17
(0.67)
Approx.
Mass
kg (lb)
14
(0.55)11(24.25)
Vw
0 180 360 540
Sw
Electrical angle(° )
Loading...