NSC CLC418AJP, CLC418AJE Datasheet

Features
130MHz bandwidth (Av = +2)
96mA output current
-85/-75dBc HD2/HD3
15ns settling to 0.2%
-74dBc input-referred crosstalk (5MHz)
Single version available (CLC408)
Applications
ADSL/HDSL driver
Coaxial cable driver
UTP differential line driver
Transformer/coil driver
High capacitive-load driver
Video line driver
Portable/battery-powered line driver
Differential A/D driver
V
o1
V
inv1
V
non-inv1
V
EE
V
o2
V
inv2
V
non-inv2
V
CC
+
-
1/2
CLC418
R
g2
+
V
o
-
-
+
R
t2
R
f2
R
f1
R
g1
1/2
CLC418
V
in
R
t1
R
m/2
R
m/2
R
L
Z
o
UTP
I
o
R
eq
I:n
V
d/2
-V
d/2
Typical Application Diagram
Differential Line Driver
with Load Impedance Conversion
Pinout
DIP & SOIC
General Description
The Comlinear CLC418 dual high-speed current-feedback operational amplifier is designed to drive low-impedance and high capacitance loads while maintaining high signal fidelity. Operating on ±5V power supplies, each of the CLC418’s amplifiers produces a continuous 96mA output current. Into a back-terminated 50
load, the devices produce -85/-64dBc
second/third harmonic distortion (Av = +2, Vo = 2Vpp, f = 1MHz). The CLC418’s current-feedback architecture maintains consistent
performance over a wide range of gain and signal levels. DC gain and bandwidth can be set independently. With proper resistor selection, either maximally flat gain response or linear phase response can be selected.
Requiring a mere 15mW quiescent power per amplifier, the CLC418 offers superior performance-vs-power with a 130MHz small-signal bandwidth, 350V/ms slew rate and quick 4.6ns rise/fall times (2Vstep). The combination of low quiescent power, high output current drive and high performance make the CLC418 a great choice for many battery-powered personal communication/computing systems.
Combining the CLC418’s two amplifiers (shown below) results in a powerful differential line driver for driving video signals over unshielded twisted-pair (UTP). The CLC418 can also be used for driving differential-input step-up transformers for applications such as Asynchronous Digital Subscriber Lines (ADSL) or High­Bit-Rate Digital Subscriber Lines (HDSL).
The CLC418’s amplifiers make excellent low-power high­resolution A-to-D converter drivers with their very fast 15ns set­tling time (to 0.2%) and ultra-low -85/-75dBc harmonic distortion (Av = +2, Vo = 2Vpp, f = 1MHz, RL= 1k).
Non-Inverting Frequency Response (Av = +2V/V, RL = 100)
Normalized Magnitude (1dB/div)
Frequency (Hz)
10M
1M 100M
Comlinear CLC418 Dual High-Speed, Low-Power Line Driver
N
August 1996
Comlinear CLC418
Dual High-Speed, Low-Power Line Driver
© 1996 National Semiconductor Corporation http://www.national.com
Printed in the U.S.A.
http://www.national.com 2
PARAMETERS CONDITIONS TYP MIN/MAX RATINGS UNITS NOTES Ambient Temperature CLC418AJ +25˚C +25˚C 0 to 70˚C -40 to 85˚C
FREQUENCY DOMAIN RESPONSE
-3dB bandwidth V
o
< 1.0V
pp
130 80 80 75 MHz B
V
o
< 4.0V
pp
45 33 29 28 MHz
-
0.1dB bandwidth Vo< 1.0V
pp
30 25 20 20 MHz
gain flatness V
o
< 1.0V
pp
peaking DC to 200MHz 0 0.5 0.9 1.0 dB B
rolloff <30MHz 0.2 0.45 0.6 0.6 dB B linear phase deviation <30MHz 0.2 0.4 0.5 0.5 deg differential gain NTSC, R
L
=150 0.1 %
differential phase NTSC, R
L
=150 0.4 deg
TIME DOMAIN RESPONSE
rise and fall time 2V step 4.6 7.0 7.5 8.0 ns settling time to 0.2% 2V step 15 30 38 40 ns overshoot 2V step 5 12 12 12 % slew rate A
V
= +2 2V step 350 260 225 215 V/µs
DISTORTION AND NOISE RESPONSE
2
nd
harmonic distortion 2Vpp, 1MHz -85 dBc
2V
pp
, 1MHz; RL= 1k -85 dBc
2V
pp
, 5MHz -65 -60 -58 -58 dBc B
3
rd
harmonic distortion 2Vpp, 1MHz -64 dBc
2V
pp
, 1MHz; RL= 1k -75 dBc
2V
pp
, 5MHz -50 -45 -44 -44 dBc B
crosstalk (input-referred) 2V
pp
, 5MHz -74 -68 -68 -68 dBc
equivalent input noise
voltage (e
ni
) >1MHz 5 6.3 6.6 6.7 nV/Hz
non-inverting current (i
bn
) >1MHz 1.4 1.8 1.9 2.3 pA/Hz
inverting current (i
bi
) >1MHz 13 16 17 18 pA/Hz
STATIC DC PERFORMANCE
input offset voltage 2 8 11 11 mV A
average drift 25 35 40 µV/˚C input bias current (non-inverting) 2 8 11 15 µA A
average drift 60 80 110 nA/˚C input bias current (inverting) 2 10 18 20 µA A
average drift 20 90 110 nA/˚C power supply rejection ratio DC 55 50 48 48 dB B common-mode rejection ratio DC 52 48 46 46 dB supply current R
L
= , 2 channels 3.0 3.4 3.6 3.6 mA A
MISCELLANEOUS PERFORMANCE
input resistance (non-inverting) 5 3 2.5 1 M input capacitance (non-inverting) 1 2 2 2 pF common mode input range
±
2.7
±
2.3
±
2.2
±
2.0 V
output voltage range R
L
= 100
±
3.3
±
2.9
±
2.8
±
2.6 V
output voltage range R
L
=
±
4.0
±
3.8
±
3.7
±
3.5 V output current 96 96 96 60 mA C output resistance, closed loop DC 0.03 0.15 0.2 0.3
CLC418 Electrical Characteristics
(AV= +2, Rf= 1k, Vcc= + 5V , RL= 100Ω, T = 25°C;unless specified)
Absolute Maximum Ratings
supply voltage
±
7V output current (see note C) 96mA common-mode input voltage
±
V
CC
maximum junction temperature +175°C storage temperature range -65°C to +150°C lead temperature (soldering 10 sec) +300°C ESD rating (human body model) 4000V
Notes
A) J-level: spec is 100% tested at +25°C, sample tested at +85°C.
L-level: spec is 100% wafer probed at +25°C. B)J-level: spec is sample tested at +25°C. C)The output current sourced or sunk by the CLC418 can
exceed the maximum safe output current limit.
2
Min/max ratings are based on product characterization and simulation. Individual parameters are tested as noted. Outgoing quality levels are determined from tested parameters.
3 http://www.national.com
Typical Performance Characteristics
(Av= +2, Rf= 1k, RL= 100, VCC= + 5V, T = 25°C; CLC418AJ; unless specified)
Non-Inverting Frequency Response
Normalized Magnitude (1dB/div)
Frequency (Hz)
10M
Phase (deg)
-90
-180
-450
-270
-360
1M 100M
Av+1
Av+2
Rf=953
Av+2
Av+5
Rf=402
Av+5
Av+10
Rf=200
Av+10
Av+1
Rf=3k
0
Vo = 1V
pp
Gain
Phase
Inverting Frequency Response
Normalized Magnitude (1dB/div)
Frequency (Hz)
10M
Phase (deg)
0
-270
-360
-450
-90
-180
1M 100M
Av-1
Av-2
Rf=681
Av-2
Av-5
Rf=301
Av-5
Av-10
Rf=200
Av-10
Av-1
R
f
=806
Gain
Phase
Vo = 1V
pp
Frequency Response vs. R
L
Normalized Magnitude (1dB/div)
Frequency (Hz)
10M
Phase (deg)
-90
-180
-450
-270
-360
1M 100M
RL=1k
R
f
=1.21k
RL=25
RL=100
RL=100
Rf=1k
RL=1k
RL=25
Rf=0.95k
0
Gain
Phase
Vo = 1V
pp
Frequency Response vs. V
out
Normalized Magnitude (1dB/div)
Frequency (Hz)
10M
1M 100M
0.10V
pp
2.0V
pp
4.0V
pp
1.0V
pp
Frequency Response vs. Capacitive Load
Magnitude (1dB/div)
Frequency (Hz)
10M
1M 100M
CL=100pF
Rs =24.9
CL=10pF
Rs =100
C
L
= 1000pF
Rs =5.7
C
L
1k
R
s
+
-
1k
1k
CL=0pF
Rs =0
V
o
= 1V
pp
Small Signal Channel Matching
Normalized Magnitude (1dB/div)
Frequency (Hz)
1M
10M
100M
Vo = 1V
pp
Phase (deg)
-180
-225
-135
-90
-45
0
Channel A
Channel B
Channel A
Channel B
PSRR and CMRR
PSRR/CMRR (dB)
Frequency (Hz)
60
50
20
10
0
1k
10k
100k
40
30
CMRR
1M 10M 100M
PSRR
Open Loop Transimpedance Gain, Z(s)
Magnitude ()
Frequency (Hz)
1M
100k
100
1k
10k
100M
10k
1k
Gain
Phase (deg)
180
140
20
100
60
Phase
100k 1M 10M
100
-
+
CLC418
V
o
I
i
Equivalent Input Noise
Noise Voltage (nV/Hz)
Frequency (Hz)
100
1
1k
10k
100M
10
i
bi
Noise Current (pA/Hz)
100
10
1
100k 1M 10M
e
ni
i
bn
Input-Referred Crosstalk
Crosstalk (dB)
Frequency (Hz)
-40
-60
-50
-90 1M
10M
100M
-70
-80
Vo = 1V
pp
2nd & 3rd Harmonic Distortion
Distortion (dBc)
Frequency (Hz)
-50
-40
-30
-20
-60
-90 1M
10M
-70
-80
2nd 
RL = 1k
3rd 
RL = 100
3rd 
RL = 1k
2nd 
RL = 100
Vo = 2V
pp
2nd Harmonic Distortion, RL = 25
Distortion (dBc)
Output Amplitude (Vpp)
-55
-50
-45
-60
-75 0
1
5
-65
-70
1MHz
2 3 4
2MHz
5MHz
10MHz
3rd Harmonic Distortion, RL = 25
Distortion (dBc)
Output Amplitude (Vpp)
-40
-30
-20
-50
-80 0
1
5
-60
-70
1MHz
2 3 4
2MHz
5MHz
10MHz
2nd Harmonic Distortion, RL = 100
Distortion (dBc)
Output Amplitude (Vpp)
-90
-85
-80
-75
-70
-65
-60
-55
-50
0
1
5
1MHz
2 3 4
2MHz
5MHz
10MHz
3rd Harmonic Distortion, RL = 100
Distortion (dBc)
Output Amplitude (Vpp)
-80
-70
-60
-50
-40
-30
0
1
5
1MHz
2 3 4
2MHz
5MHz
10MHz
http://www.national.com 4
Typical Performance Characteristics
(Av= +2, Rf= 1k, RL= 100, VCC= + 5V, T = 25°C; CLC418AJ; unless specified)
3rd Harmonic Distortion, RL = 1k
Distortion (dBc)
Output Amplitude (Vpp)
-95
-90
-85
-80
-75
-70
-65
-60
-55
0
1
5
1MHz
2 3 4
2MHz
5MHz
10MHz
2nd Harmonic Distortion, RL = 1k
Distortion (dBc)
Output Amplitude (Vpp)
-95
-90
-85
-80
-75
-70
-65
-60
0
1
5
1MHz
2 3 4
2MHz
5MHz
10MHz
Closed Loop Output Resistance
Output Resistance ()
Frequency (Hz)
100
0.1 10M
100M
10
1
Gain Flatness & Linear Phase Deviation
Magnitude (0.1dB/div)
Frequency (Hz)
1M
10M
Gain
Phase Deviation (0.1°/div)
Phase
Small Signal Pulse Response
Output Voltage
Time (10ns/div)
0.20
0.10
-0.20
0
-0.10
Av+2
Av-2
Large Signal Pulse Response
Output Voltage
Time (10ns/div)
4.0
2.0
-4.0
0
-2.0
Av+2
Av-2
Pulse Crosstalk
Active Channel Output (1V/div)
Time (10ns/div)
Active Output Channel
Other Channel Output (20mV/div)
Short Term Settling Time
V
o
(% Output Step)
Time (s)
0.2
0.1
-0.2 0
20n
100n
0
-0.1
V
out
= 2V
step
40n 60n 80n
Long Term Settling Time
V
o
(% Output Step)
Time (s)
0.4
-0.4 1
µ
1m
1
0
10
µ
100
µ
10m 100m
-0.2
0.2
Settling Time vs. Capacitive Load
Settling Time (ns)
CL (F)
70
60
30
20
10
100p20p
1000p
50
40
Rs ()
60
50
20
10
0
40
30
R
s
0.05%
0.1%
IBI, IBN, VOS vs. Temperature
Offset Voltage V
OS
(mV)
Temperature (°C)
7.0
6.0
1.0
-50
0
100
5.0
4.0
3.0
2.0
V
OS
I
BI
, I
BN
(µA)
3.5
3.0
1.5
1.0
0.5
2.5
2.0
50
I
BI
I
BN
Loading...
+ 8 hidden pages