Nokia 6130 System Module 03

PAMS Technical Documentation
NSK–3 Series Transceivers
Chapter 3
System Module
Original 05/98
NSK–3
PAMS
CONTENTS
Transceiver NSK–3 3 – 5. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Introduction 3 – 5. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Functional Description 3 – 5. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Interconnection Diagram 3 – 6. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
System Module 3 – 7. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
External and Internal Connectors 3 – 7. . . . . . . . . . . . . . . . . . . . .
System Connector Signals 3 – 8. . . . . . . . . . . . . . . . . . . . . . . .
RF–Connector 3 – 8. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Battery Contacts 3 – 9. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
SIM Reader 3 – 9. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
IR Link 3 – 10. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Operating Conditions 3 – 10. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Functional Description 3 – 11. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Modes of Operation 3 – 11. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Cellular Mode 3 – 11. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Power off 3 – 11. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Locals Mode 3 – 11. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Baseband Module 3 – 12. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Block Diagram 3 – 12. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Power Distribution Diagram 3 – 13. . . . . . . . . . . . . . . . . . . . . . . . . .
External interfaces 3 – 14. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Flash Programming connector 3 – 14. . . . . . . . . . . . . . . . . . . . . . .
Battery connector 3 – 15. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
SIM card connector 3 – 15. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Infrared transceiver module 3 – 16. . . . . . . . . . . . . . . . . . . . . . . . . .
Real time clock 3 – 17. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Signals between baseband and User Interface section 3 – 17. .
User Interface module connection 3 – 17. . . . . . . . . . . . . . . . . . . .
Earphone 3 – 17. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Buzzer 3 – 17. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Power Distribution 3 – 18. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Power up 3 – 20. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Acting Dead 3 – 20. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Active Mode 3 – 20. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Sleep Mode 3 – 21. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Charging 3 – 21. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2–wire charging 3 – 21. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
3–wire charging 3 – 21. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Power Off 3 – 22. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Audio control 3 – 22. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Microphone and Earphone 3 – 22. . . . . . . . . . . . . . . . . . . . . . . . . .
Speech processing 3 – 23. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Alert Signal Generation 3 – 23. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Technical Documentation
Page 3 – 2
Original 05/98
PAMS
NSK–3
Technical Documentation
Digital control 3 – 24. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
MAD 3 – 24. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Memories 3 – 25. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Program Memory 3 – 25. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
SRAM Memory 3 – 26. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
EEPROM Memory 3 – 26. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
MCU Memory Map 3 – 26. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Baseband EMC Strategy 3 – 27. . . . . . . . . . . . . . . . . . . . . . . . . . . .
RF Module 3 – 28. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
RF Frequency Plan 3 – 28. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
DC Characteristics 3 – 28. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Power Distribution Diagram 3 – 28. . . . . . . . . . . . . . . . . . . . . . . . . .
Power Distribution – Maximum Currents 3 – 29. . . . . . . . . . . . . . .
Power Distribution – Typical Currents 3 – 30. . . . . . . . . . . . . . . . .
Functional Description 3 – 31. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Receiver 3 – 32. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Transmitter 3 – 33. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Power Detection Circuit 3 – 34. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Frequency Synthesizers 3 – 37. . . . . . . . . . . . . . . . . . . . . . . . . . . .
AGC 3 – 38. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
AFC 3 – 39. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Software Compensations 3 – 39. . . . . . . . . . . . . . . . . . . . . . . . . . . .
Power Levels (TXC) vs. Channel 3 – 39. . . . . . . . . . . . . . . . . . .
Modulator Output Level 3 – 39. . . . . . . . . . . . . . . . . . . . . . . . . . .
Power Levels vs temperature 3 – 39. . . . . . . . . . . . . . . . . . . . . .
RSSI 3 – 39. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
TX power range 3 – 39. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
RF Block Specifications 3 – 40. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
DCS1800 Receive Interstage Filter 3 – 40. . . . . . . . . . . . . . . . . . .
First Mixer (UHF) in CRFU2a 3 – 40. . . . . . . . . . . . . . . . . . . . . . . .
First IF Filter 3 – 41. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
DCS1800 TX SAW filter 3 – 41. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
DCS1800 TX Ceramic Filter 3 – 41. . . . . . . . . . . . . . . . . . . . . . . . .
Power Amplifier MMIC 3 – 41. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
VHF VCO and Lowpass Filter 3 – 41. . . . . . . . . . . . . . . . . . . . . . . .
UHF PLL 3 – 42. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
DCS1800 UHF VCO module 3 – 42. . . . . . . . . . . . . . . . . . . . . . . . .
UHF LO signal into CRFU_2a 3 – 42. . . . . . . . . . . . . . . . . . . . . . . .
Connections 3 – 43. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
RF connector and antenna switch 3 – 43. . . . . . . . . . . . . . . . . . . .
RF–Baseband signals 3 – 43. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Data Interface and Timing 3 – 48. . . . . . . . . . . . . . . . . . . . . . . . . . .
Synthesizer Timing Control 3 – 48. . . . . . . . . . . . . . . . . . . . . . . . . .
Transmit Power Timing 3 – 50. . . . . . . . . . . . . . . . . . . . . . . . . . .
Original 05/98
Page 3 – 3
NSK–3
PAMS
Parts list of UR9E Europe (EDMS Issue 6.11) Code: 0201136 3 – 51 Parts list of UR9U APAC (EDMS Issue 12.10) Code: 0200961 3 – 60
Schematic Diagrams: UR9E Block Diagram of Baseband Blocks (Version 24 Edit 203) layout 24 3/A3E–1
Block Diagram of System/RF Blocks 3/A3E–2. . . . . . . . . . . . . . . . . . . . . .
Circuit Diagram of Power Supply (Version 24 Edit 353) layout 24 3/A3E–3 Circuit Diagram of UI Connector (Version 24 Edit 87) layout 24 3/A3E–4 Circuit Diagram of CTRLU Block (Version 24 Edit 233) layout 24 3/A3E–5 Circuit Diagram of Audio (Version 24 Edit 157) for layout version 24 3/A3E–6 Circuit Diagram of IR Module (Version 24 Edit 88) for layout 24 3/A3E–7 Circuit Diagram of RF–BB Interface (Version 24 Edit 114) layout 24 3/A3E–8
Technical Documentation
Circuit Diagram of MAD Module 3/A3E–9. . . . . . . . . . . . . . . . . . . . . . . . . .
Circuit Diagram of COBBA Module 3/A3E–10. . . . . . . . . . . . . . . . . . . . . . . .
Circuit Diagram of CCO Module 3/A3E–11. . . . . . . . . . . . . . . . . . . . . . . . . .
Circuit Diagram of RF Block (Version 24 Edit 469) for layout 24 3/A3E–12
Layout Diagram of UR9E (Layout version 24) 3/A3E–13. . . . . . . . . . . . . .
Schematic Diagrams: UR9U Block Diagram of Baseband Blocks (Version 24 Edit 203) layout 24 3/A3U–1
Block Diagram of System/RF Blocks 3/A3U–2. . . . . . . . . . . . . . . . . . . . . .
Circuit Diagram of Power Supply (Version 24 Edit 353) layout 24 3/A3U–3 Circuit Diagram of UI Connector (Version 24 Edit 87) layout 24 3/A3U–4 Circuit Diagram of CTRLU Block (Version 24 Edit 233) layout 24 3/A3U–5 Circuit Diagram of Audio (Version 24 Edit 157) for layout version 24 3/A3U–6 Circuit Diagram of IR Module (Version 24 Edit 88) for layout 24 3/A3U–7 Circuit Diagram of RF–BB Interface (Version 24 Edit 114) layout 24 3/A3U–8
Circuit Diagram of MAD Module 3/A3U–9. . . . . . . . . . . . . . . . . . . . . . . . . .
Circuit Diagram of COBBA Module 3/A3U–10. . . . . . . . . . . . . . . . . . . . . . . .
Circuit Diagram of CCO Module 3/A3U–11. . . . . . . . . . . . . . . . . . . . . . . . . .
Circuit Diagram of RF Block (Version 24 Edit 469) for layout 24 3/A3U–12
Layout Diagram of UR9U (Layout version 24) 3/A3U–13. . . . . . . . . . . . . .
Page 3 – 4
Original 05/98
PAMS
NSK–3
Technical Documentation
Transceiver NSK–3

Introduction

The NSK–3 is a radio transceiver unit for the PCN (GSM1800) network. It is a GSM phase 2 power class 4 transceiver providing 11 power levels with a maximum output power of 1 W. The transceiver is true 3 V trans­ceiver.
The transceiver consists of System/RF module ( UR9E/U ), User interface module ( UE4 ) and assembly parts.
The antenna is a fixed helix. External antenna connection is provided by rear RF connector
Integrated IR link provide connection for two NSK–3 transceivers or NSK–3 transceiver and PC.
The small SIM ( Subscriber Identity Module ) card is located inside the phone, under the battery pack.
Functional Description
There are five different operation modes: – power off mode – idle mode – active mode – charge mode – local mode
In the power off mode only the circuits needed for power up are supplied. In the idle mode circuits are powered down and only sleep clock is run-
ning. In the active mode all the circuits are supplied with power although some
parts might be in the idle state part of the time. The charge mode is effective in parallel with all previous modes. The
charge mode itself consists of two different states, i.e. the charge and the maintenance mode.
The local mode is used for alignment and testing.
Original 05/98
Page 3 – 5
NSK–3
PAMS

Interconnection Diagram

19 9
Technical Documentation
Keypad Display
User Interface
Module
UE4
28
6
SIM Battery
2
Earpiece
4
System/RF
Antenna
1
System
Connector
(including Mic)
Connector
Module
UR9U
2
Charger
RF
2
Side keys
3 + 36+2
2
IR
Link
Page 3 – 6
Original 05/98
PAMS
NSK–3
Technical Documentation

System Module

External and Internal Connectors
B side view
Fixing pads (2 pcs)
IBI connector
(6 pads)
8
1
7
14
Engine PCB
A side view
DC Jack
acoustic ports
Charger pads (3 pcs)
Microphone
Bottom
connector (6 pads)
Cable locking holes (3 pcs)
Cavity for microphone
Original 05/98
Page 3 – 7
NSK–3
PAMS
Technical Documentation
System Connector Signals
Pin Name Function Description
1 V_IN Bottom charger contacts Charging voltage. 2 L_GND DC Jack Logic and charging ground. 3 V_IN DC Jack Charging voltage. 4 CHRG_CTRL DC Jack Charger control. 5 CHRG_CTRL Bottom charger contacts Charger control. 6 MICP Microphone Microphone signal, positive node. 7 MICN Microphone Microphone signal, negative node. 8 XMIC Bottom & IBI connectors Analog audio input.
9 SGND Bottom & IBI connectors Audio signal ground. 10 XEAR Bottom & IBI connectors Analog audio output. 11 MBUS Bottom & IBI connectors Bidirectional serial bus. 12 FBUS_RX Bottom & IBI connectors Serial data in. 13 FBUS_TX Bottom & IBI connectors Serial data out. 14 L_GND Bottom charger contacts Logic and charging ground.
RF–Connector
The RF–connector is needed to utilize the external antenna with Car Cradle. The RF–connector is located on the back side of the transceiver on the top section. The connector is plug type connector with special me­chanical switching.
Accessory side of connector Part will be floating in
car holder
Phone side of connector
Page 3 – 8
Original 05/98
PAMS
NSK–3
Technical Documentation
Battery Contacts
Pin Name Function Description
1 BVOLT Battery voltage Battery voltage 2 BSI Battery Size Indicator Input voltage
3 BTEMP Battery temperature indication
Phone power up Battery power up PWM to VIBRA BA TTERY
4 BGND Ground
Input voltage Input voltage Output voltage PWM output signal frequency
SIM Reader
Original 05/98
Page 3 – 9
NSK–3
PAMS
IR Link
IR link module is located into the top of the phone under the IR lens, see Figure 2, Infra Red.
IR link is used as a data link to a PC or for transfering data between phones
FRONT
BACK
Technical Documentation
2mm
4mm
10mm
3mm
Operating Conditions
Environmental condition Ambient temperature Notes
Normal operation conditions +7 oC ... +40 oC Specifications fulfilled and fast
charging possible Extreme operation conditions –10 oC ... +55 oC Specifications fulfilled Reduced performance condi-
tions Intermittent operation condi-
tions
Cessation of operation <–25 oC and >80 oC No storage or operation at-
Long term storage conditions 0 oC ... +40 oC Battery only up to +30 oC !
+55 oC ... +65 oC Operational only for short peri-
ods
–25 oC ... –10 oC and +65 oC ... +80 oC
Operation maybe not possible
but attempt to operate will
not damage the phone
tempt possible without per-
manent dam– age
Short term storage, max. 96 h –25 oC ... +70 oC Cumulative for life–time of bat-
tery Short term storage, max. 12 h –25 oC ... +80 oC Cumulative for life–time of bat-
tery –25 oC ... +75 oC LCD operation Short term operation > +70 oC Maximum value for SIM card,
GSM spec. 11.11
Page 3 – 10
Original 05/98
PAMS
NSK–3
Technical Documentation

Functional Description

The DCS 1800 engine consist of a Baseband/RF module with connec­tions to a separate user interface module. Baseband and RF modules are interconnected with PCB wiring. The engine can be connected to ac­cessories via the bottom system connector, the Intelligent Battery Inter­face (IBI) connector and IR–link.
The RF submodule receives and demodulates radio frequency signals from the base station and transmits modulated RF signals to the base station. It consists of functional submodules Receiver, Frequency Syn­thesizer and Transmitter.
The Baseband module containes audio, control, signal processing and power supply functions. It consists of functional submodules CTRLU (Control Unit; MCU, DSP, logic and memories), PWRU (Power Supply; regulators and charging) and AUDIO_RF (audio coding, RF–BB inter­face).
Modes of Operation
UR4 operates in cellular mode and a local mode for service: – Cellular mode, phone controlled by OS and partly by basestation – Locals mode, used by Production and After Sales. – Acting Dead mode – Power Off mode – Flash mode
Cellular Mode
In cellular mode phone performes all the tasks to place and release calls. Also charging and communication between accessories and phone are done during this mode by OS. Signaling and handover functions are sup­ported by basestation.
Power off
In the power–off mode only CCONT is active. Power–off mode can be left by pushing the PWR–key, connecting charger to the phone, real time clock interrupt or intelligent battery interrupt.
Locals Mode
Locals mode is used for testing purposes by Product Development, Pro­duction and After Sales. The Cellular Software is stopped (no signalling to base station), and the phone is controlled by MBUS/FBUS messages by the controlling PC.
Original 05/98
Page 3 – 11
NSK–3
PAMS

Baseband Module

Block Diagram
TX/RX SIGNALS
COBBA
UI
COBBA SUPPLY
RF SUPPLIES
CCONT
BB SUPPLY
Technical Documentation
PA SUPPLY
32kHz CLK
SLEEP CLOCK
SIM
13MHz CLK
SYSTEM CLOCK
MAD +
MEMORIES
IR
AUDIOLINES
BASEBAND
CHAPS
SYSCON
VBAT
BATTERY
Page 3 – 12
Original 05/98
PAMS
NSK–3
Technical Documentation
Power Distribution Diagram
Charger
Charge
control
UR4 engine
CCONT
VBAT
TX PA
RF
1800
VR1 VR2 VR3 VR4 VR5 VR6 VR7
VREF
Battery
VSIM
VBB
V5V
UI Module
Baseband
COBBA analog
Original 05/98
Page 3 – 13
NSK–3
PAMS
Technical Documentation

External interfaces

Antenna
4
Battery
Pack
3
Charger
IBI
Connector Name Code Notes
Bottom & IBI connector 5469061 Includes DC plug and microphone connec-
User Interface Module connector 5460021 28 pins, spring contacts.
UR4
ENGINE
6
Bottom connectorconnector
SIM
6
Mic
tions.
28
User Interface
Module
Display Keyboard
Backlights
Speaker
Buzzer
Battery connector 5469069 2 pieces, 2 connections each. SIM connector 5400085 Supports 3V/5V SIM cards
Flash Programming connector
The system connector can be used as a flash prom programming interface for flash memories for updating (i.e. re–programming) the flash program memory.
The phone has to be switched off, when the flash prommer is connected to the phone system connector. The baseband is powered up as the supply voltage is connected to the charger contacts, or by pressing the PWR button, or by an IBI device..
The program execution starts from the BOOT ROM and the MCU investigates in the early start–up sequence if the flash prommer is connected. This is done by checking the status of the MBUS–line. Normally this line is high but when the flash prommer is connected the line is forced low by the prommer. The flash prommer serial data receive line is in receive mode waiting for an ac­knowledgement from the phone. The data transmit line from the baseband to the prommer is initially high. When the baseband has recognized the flash prommer, the TX–line is pulled low. This acknowledgement is used to start the data transfer of the first two bytes from the flash prommer to the baseband on the RX–line. The data transmission begins by starting the serial transmission clock (MBUS–line) at the prommer.
The 5V programming voltage is supplied inside the transceiver from the battery voltage with a switch mode regulator (5V/30mA) of the CCONT. The voltage is fed via UI connector to avoid damage of the CCONT during production line flasing ( 12V fed to FLASH Vpp from the production tester ).
Page 3 – 14
Original 05/98
PAMS
NSK–3
Technical Documentation
Pin Name Parameter Min Typ Max Unit Remark
1 VIN Supply
Voltage
11 MBUS Serial clock
from the
Prommer
12 FBUS_RX Serial data
from the
Prommer
13 FBUS_TX Data ac-
knowledge to the Prommer
13 GND GND 0 0 V Supply ground
6.8 7.8 8.8 V Supply Voltage,Current li-
2.0 0
2.0 0
2.0 0
2.8
0.8
2.8
0.8
2.8
0.8
V Prommer detection and
V Receive Data from
V Transmit Data from Base-
mitted to 850 mA
Serial Clock for synchro-
nous communication
Prommer to Baseband
band to Prommer
Battery connector
The BSI contact on the battery connector is used to detect when the bat­tery is to be removed to be able to shut down the operations of the SIM card before the power is lost if the battery is removed with power on. The BSI contact in the battery pack should be shorter than the supply power contacts to give enough time for the SIM shut down.
A vibra alerting device is used for giving silent signal to the user of an in­coming call. The device is not placed in the phone but it will be added to a special battery pack. The vibra is controlled with a PWM signal by the MAD via the BTEMP battery terminal.
SIM card connector
Pin Name Parameter Min Typ Max Unit Notes
1 GND GND 0 0 V Ground 2 VSIM 5V SIM Card
3V SIM Card
3 DATA 5V Vin/Vout
3V Vin/Vout
4 SIMRST 5V SIM Card
3V SIM Card
5 SIMCLK Frequency
Trise/Tfall
4.8
2.8
4.0 0
2.8 0
4.0
2.8
1.625 3.25 5.0
5.0
3.0 ”1”
”0” ”1” ”0”
”1” ”1”
5.2
3.2
VSIM
0.5
VSIM
0.5
VSIM VSIM
25
V Supply voltage
V SIM data
Trise/Tfall max 1us
V SIM reset
MHz
ns
SIM clock
Original 05/98
Page 3 – 15
NSK–3
PAMS
Infrared transceiver module
An infrared transceiver module is designed to substitute an electrical cable between the phone and a PC. The infrared transceiver module is a stand alone component capable to perform infrared transmitting and re­ceiving functions by transforming signals transmitted in infrared light from and to electrical data pulses running in two wire asyncronous databus. In NSK–3 the module is placed inside the phone at the top of the phone.
The module is activated with an IRDASD signal by the MAD, which pulls low the shut down pin of the module (standby current in shut down mode is specified to 10uA maximum). The RX and TX signals are connected to the MAD accessory interface AccIf via FBUS. The AccIf in MAD performs pulse encoding and shaping for transmitted data and detection and de­coding for received data pulses.
The data is transferred over the IR link using serial FBUS data at speeds
9.6, 19.2, 38.4, 57.6 or 115.2 kbits/s, which leads to maximum throughput of 92.160 kbits/s. The used IR module complies with the IrDA SIR specifi­cation (Infra Red Data Association), which is based on the HP SIR (Hew­lett–Packard‘s Serial Infra Red) consept.
Technical Documentation
the following figure gives an example of IR transmission pulses. In IR transmission a light pulse correspondes to 0–bit and a ”dark pulse” corre­spondes to 1–bit.
constant pulse
IR TX
UART TX
startbit stopbit1 0100110
The FBUS cannot be used for external accessory communication, when the infrared mode is selected. Infrared communication reserves the FBUS completely.
Page 3 – 16
Original 05/98
PAMS
NSK–3
Technical Documentation
Real time clock
Requirements for a real time clock implementation are a basic clock (hours and minutes), a calender and a timer with alarm and power on/off –function and miscellaneous calls. The RTC will contain only the time base and the alarm timer but all other functions (e.g. calendar) will be im­plemented with the MCU software. The RTC needs a power backup to keep the clock running when the phone battery is disconnected. The backup power is supplied from a rechargable polyacene battery that can keep the clock running some ten minutes. If the backup has expired, the RTC clock restarts after the main battery is connected. The CCONT keeps MCU in reset until the 32kHz source is settled (1s max).
The CCONT is an ideal place for an integrated real time clock as the asic already contains the power up/down functions and a sleep control with the 32kHz sleep clock, which is running always when the phone battery is connected. This sleep clock is used for a time source to a RTC block.
Signals between baseband and User Interface section
The User interface section is implemented on separate UI board, which connects to the engine board with a board to board spring connector.
User Interface module connection
The User interface section comprises the keyboard with keyboard lights, display module with display lights, an earphone and a buzzer.
Earphone
The internal earphone is connected to the UI board by means of mount­ing springs for automatic assembly. The low impedance, dynamic type earphone is connected to a differential output in the COBBA audio codec. The electrical specifications for the earphone output are shown in NO TAG. The voltage level at each output is given as reference to ground. Earphone levels are given to 32 ohm load.
Buzzer
Alerting tones and/or melodies as a signal of an incoming call are gener­ated with a buzzer that is controlled with a PWM signal by the MAD. Also keypress and user function response beeps are generated with the buzz­er. The buzzer is a SMT device and is placed on the UI board.
Original 05/98
Page 3 – 17
NSK–3
PAMS

Power Distribution

In normal operation the baseband is powered from the phone‘s battery. The battery consists of one Lithium–cell. There is also a possibility to use batteries consisting of three Nickel– cells. An external charger can be used for recharging the battery and supplying power to the phone. The charger can be either so called fast charger, which can deliver supply cur­rent up to 850 mA or a standard charger that can deliver around 300 mA.
The baseband contains components that control power distribution to whole phone excluding the power amplifier, which have a continuous power rail direct from the battery. The battery feeds power directly to three parts of the system: CCONT, power amplifier, and UI (buzzer and display and keyboard lights).
The power management circuitry provides protection agains overvol­tages, charger failures and pirate chargers etc. that would otherwise cause damage to the phone. The circuitry is implemented in the begin­ning with discrete components, but it will be partly or fully integrated on later phase.
Technical Documentation
PA SUPPLY
VCOBBA
COBBA
UI
VBAT
VBB
MAD
+
MEMORIES
BASEBAND
RF SUPPLIES
CCONT
PWRONX
CNTVR
VBB
PURX
V2V
CONNECTOR
POWER MGMT
VIN
VSIM
VBAT
PWM
SIM
RTC
BACKUP
BATTERY
The heart of the power distrubution is the CCONT. It includes all the volt­age regulators and feeds the power to the whole system. The whole baseband is powered from the same regulator which provides 2.8V base­band supply VBB. The baseband regulator is active always when the phone is powered on. The baseband regulator feeds MAD and memories, COBBA digital parts and the LCD driver in the UI section. There is a sep­arate regulator for a SIM card.
Page 3 – 18
Original 05/98
PAMS
NSK–3
Technical Documentation
The regulator is selectable between 3V and 5V and controlled by the SIMPwr line from MAD to CCONT. SIM card regulator is also used for af­ter sales flash programming. COBBA analog parts are powered from a dedicated 2.8V supply VCOBBA by the CCONT. The CCONT supplies also 5V for RF. The CCONT contains a real time clock function, which is powered from a RTC backup when the main battery is disconnected. The RTC backup is rechargable polyacene battery.
CCONT includes also six additional 2.8V regulators providing power to the RF section. These regulators can be controlled either by the direct control signals from MAD or by the RF regulator control register in CCONT which MAD can update. Below are the listed the MAD control lines and the regulators they are controlling.
– TxPwr controls VTX regulator (VR7) – RxPwr controls and VRX regulators (VR2 and VR5) – SynthPwr controls VSYN_A and VSYN_D regulators (VR4 and VR3) – VCXOPwr controls VXO and VCOBBA regulators (VR1 and VR6)
CCONT generates also a 1.5 V reference voltage VREF to COBBA, PLUSSA and CRFU. The VREF voltage is also used as a reference to some of the CCONT A/D converters.
In additon to the above mentioned signals MAD includes also TXP control signal which goes to PLUSSA power control block and to the power am­plifier. The transmitter power control TXC is led from COBBA to PLUSSA.
Regulator Max.current Unit Vout Unit Notes
VR1 25 mA 2.8 V VVCXO VR2 25 mA 2.8 V NOT USED VR3 50 mA 2.8 V VSYN_D VR4 90 mA 2.8 V VSYN_A VR5 80 mA 2.8 V VRX VR6 100 mA 2.8 V COBBA VR7 150 mA 2.8 V VTX .Depends on exter
nal BJT
V2V 50 mA 1.3 –
2.65
V MAD core voltage, in
225mV steps (1.975V default)
VBB ON VBB SLEEP
VSIM 30 mA 3.0/
V5V 30 mA 5.0 V for RF
Original 05/98
125 1
mA mA
2.8
2.8
5.0
V current limit 250mA
current limit 5mA
V VSIM output voltage
selectable,Used also for flashing. (VPP)
Page 3 – 19
NSK–3
PAMS
Power up
The baseband is powered up by:
Technical Documentation
1. Pressing the power key, that generates a PWRONX interrupt signal from the power key to the CCONT, which starts the pow­er up procedure.
2. Connecting a charger to the phone. The CCONT recognizes the charger from the VCHAR voltage and starts the power up procedure.
Before battery voltage voltage rises over 3.0 V Charging Logic gives an initial charge (with limited current) to the battery. After battery voltage reaches that voltage limit the power up proce­dure is as described in the previous chapters.
3. A RTC interrupt. If the real time clock is set to alarm and the phone is switched off, the RTC generates an interrupt signal, when the alarm is gone off. The RTC interrupt signal is con­nected to the PWRONX line to give a power on signal to the CCONT just like the power key.
When the CCONT is activated, it swithes on the baseband supply voltage and generates a power up reset signal PURX to the MAD. When the PURX reset is released, the MAD releases the system reset ExtSysReset and the internal MCUResetX signals and starts the boot program execu­tion. If booting is succeeded program execution continues from flash pro­gram memory. When the phone is powered up with an empty battery pack using the standard charger, the charger may not supply enough current for standard powerup procedure and the powerup must be delayed.
Acting Dead
If the phone is off when the charger is connected, the phone is powered on but enters a state called ”acting dead”. To the user the phone acts as if it was switched off. A battery charging alert is given and/or a battery charging indication on the display is shown to acknowledge the user that the battery is being charged.
4. A battery interrupt. Intelligent battery packs have a possibility to power up the phone. When the battery gives a short (10ms) voltage pulse through the BTEMP pin, the CCONT wakes up and starts the power on procedure.
Active Mode
In the active mode the phone is in normal operation, scanning for chan­nels, listening to a base station, transmitting and processing information. All the CCONT regulators are operating. There are several substates in the active mode depending on if the phone is in burst reception, burst transmission, if DSP is working etc..
Page 3 – 20
Original 05/98
PAMS
NSK–3
Technical Documentation
Sleep Mode
In the sleep mode all the regulators except the baseband VBB and the SIM card VSIM regulators are off. Sleep mode is activated by the MAD after MCU and DSP clocks have been switched off. The voltage regula­tors for the RF section are switched off and the VCXO power control, VCXOPwr is set low. In this state only the 32 kHz sleep clock oscillator in CCONT is running. The flash memory power down input is connected to the VCXO power control, so that the flash is deep powered down during sleep mode.
The sleep mode is exited either by the expiration of a sleep clock counter in the CCONT or by some external interrupt, generated by a charger con­nection, key press, headset connection etc. The MAD starts the wake up sequence and sets the VCXOPwr control high. After VCXO settling time other regulators and clocks are enabled for active mode.
If the battery pack is disconnect during the sleep mode, the CCONT should power down the SIM in the sleep mode as there is no time to wake up the MCU.
Charging
The power management circuitry controls the charging current delivered from the charger to the battery. Charging is controlled with a PWM input signal, generated by the CCONT. The PWM pulse width is controlled by the MAD and sent to the CCONT through a serial data bus. The battery voltage rise is limited to a specified level by turning the switch off. Charg­ing current is passed through protection ASIC CHAPS and monitored by measuring the voltage drop across a 220mohm resistor.
2–wire charging
With 2–wire charging the charger provides constant output current, and the charging is controlled by PWMOUT signal from CCONT to Charging Logic. PWMOUT signal frequency is selected to be 1 Hz, and the charg­ing switch in Charging Logic is pulsed on and off at this frequency. The final charged energy to battery is controlled by adjusting the PWMOUT signal pulse width.
Both the PWMOUT frequency selection and pulse width control are made MCU which writes these values to CCONT.
3–wire charging
With 3–wire charging the charger provides adjustable output current, and the charging is controlled by PWMOUT signal from CCONT to Charger, with the bottom connector signal. PWMOUT signal frequency is selected to be 32 Hz, and the charger output current is controlled by adjusting the PWMOUT signal pulse width. The charger switch in Charging Logic is constantly on in this case.
Original 05/98
Page 3 – 21
NSK–3
PAMS
Power Off
The baseband is powered down by:
The power down is controlled by the MAD. When the power key has been pressed long enough or the battery voltage is dropped below the limit the MCU initiates a power down procedure and disconnects the SIM power. Then the MCU outputs a system reset signal and resets the DSP. If there is no charger connected the MCU writes a short delay to CCONT watch­dog and resets itself. After the set delay the CCONT watchdog expires, which activates the PURX and all regulators are switched off and the phone is powered down by the CCONT.
Technical Documentation
1. Pressing the power key, that is monitored by the MAD, which starts the power down procedure.
2. If the battery voltage is dropped below the operation limit, ei­ther by not charging it or by removing the battery.
3. Letting the CCONT watchdog expire, which switches off all CCONT regulators and the phone is powered down.
4. Setting the real time clock to power off the phone by a timer. The RTC generates an interrupt signal, when the alarm is gone off. The RTC interrupt signal is connected to the PWRONX line to give a power off signal to the CCONT just like the power key.
If a charger is connected when the power key is pressed the phone en­ters into the acting dead mode.

Audio control

The audio control and processing is taken care by the COBBA, which contains the audio and rf codecs, and the MAD, which contains the MCU, ASIC and DSP blocks handling and processing the audio signals.
Microphone and Earphone
The baseband supports three microphone inputs and two earphone out­puts. The inputs can be taken from an internal microphone, a headset mi­crophone or from an external microphone signal source. The microphone signals from different sources are connected to separate inputs at the COBBA asic. Inputs for the microphone signals are differential type.
The output for the internal earphone is a dual ended type output capable of driving a dynamic type speaker. The output for the external accessory and the headset is single ended with a dedicated signal ground SGND. Input and output signal source selection and gain control is performed in­side the COBBA asic according to control messages from the MAD. Key­pad tones, DTMF, and other audio tones are generated and encoded by the MAD and transmitted to the COBBA for decoding.
Page 3 – 22
Original 05/98
PAMS
NSK–3
Technical Documentation
Speech processing
The speech coding functions are performed by the DSP in the MAD and the coded speech blocks are transferred to the COBBA for digital to ana­log conversion, down link direction. In the up link direction the PCM coded speech blocks are read from the COBBA by the DSP.
There are two separate interfaces between MAD and COBBA: a parallel bus and a serial bus. The parallel bus has 12 data bits, 4 address bits, read and write strobes and a data available strobe. The parallel interface is used to transfer all the COBBA control information (both the RFI part and the audio part) and the transmit and receive samples. The serial in­terface between MAD and COBBa includes transmit and receive data, clock and frame synchronisation signals. It is used to transfer the PCM samples. The frame synchronisation frequency is 8 kHz which indicates the rate of the PCM samples and the clock frequency is 1 MHz. COBBA is generating both clocks.
Alert Signal Generation
A buzzer is used for giving alerting tones and/or melodies as a signal of an incoming call. Also keypress and user function response beeps are generated with the buzzer. The buzzer is controlled with a BuzzerPWM output signal from the MAD. A dynamic type of buzzer must be used since the supply voltage available can not produce the required sound pressure for a piezo type buzzer. The low impedance buzzer is connected to an output transistor that gets drive current from the PWM output. The alert volume can be adjusted either by changing the pulse width causing the level to change or by changing the frequency to utilize the resonance frequency range of the buzzer.
A vibra alerting device is used for giving silent signal to the user of an in­coming call. The device is controlled with a VibraPWM output signal from the MAD. The vibra alert can be adjusted either by changing the pulse width or by changing the pulse frequency. The vibra device is not inside the phone, but in a special vibra battery.
Original 05/98
Page 3 – 23
NSK–3
PAMS

Digital control

MAD
The baseband functions are controlled by the MAD asic, which consists of a MCU, a system ASIC and a DSP. The DCS/PCN specific asic is named as MAD2. There are separate controller asics in TDMA and JDC named as MAD1 and MAD3. All the MAD asics contain the same core proces­sors and similar building blocks, but differ from each other in system spe­cific functions, pinout and package types.
MAD2 contains following building blocks: – ARM RISC processor with both 16–bit instruction set (THUMB mode)
and 32–bit instruction set (ARM mode)
– TMS320C542 DSP core with peripherials:
Technical Documentation
– API (Arm Port Interface memory) for MCU–DSP commu-
nication, DSP code download, MCU interrupt handling vec-
tors (in DSP RAM) and DSP booting – Serial port (connection to PCM) – Timer – DSP memory (80 kW RAM in PD version of MAD2)
– BUSC (BusController for controlling accesses from ARM to API, Sys-
tem Logic and MCU external memories, both 8– and 16–bit memories)
– System Logic
– CTSI (Clock, Timing, Sleep and Interrupt control) – MCUIF (Interface to ARM via B
tROM – DSPIF (Interface to DSP) – MFI (Interface to COBBA AD/DA Converters) – CODER (Block encoding/decoding and A51&A52 ciphering) – AccIF(Accessory Interface) – SCU (Synthesizer Control Unit for controlling 2 separate
synthesizer)
USC). Contains MCU Boo-
Page 3 – 24
– UIF (Keyboard interface, serial control interface for COBBA
PCM Codec, LCD Driver and CCONT) – SIMI (SimCard interface with enhanched features) – PUP (Parallel IO, USART and PWM control unit for vibra
and buzzer)
Original 05/98
PAMS
NSK–3
Technical Documentation
The MAD operates from a 13 MHz system clock, which is generated from the 13Mhz VCXO frequency. The MAD supplies a 6,5MHz or a 13MHz internal clock for the MCU and system logic blocks and a 13MHz clock for the DSP, where it is multiplied to 52 MHz DSP clock. The system clock can be stopped for a system sleep mode by disabling the VCXO supply power from the CCONT regulator output. The CCONT provides a 32kHz sleep clock for internal use and to the MAD, which is used for the sleep mode timing. The sleep clock is active when there is a battery voltage available i.e. always when the battery is connected.
Memories
The MCU program code resides in an external program memory. MCU work (data) memory size is either 512kbits or 1Mbits. A serial EEPROM is used for storing the system and tuning parameters, user settings and selections, a scratch pad and a short code memory. The EEPROM size is 64kbits. The memory variation is managed using memory components with the same packages and pinouts for all memory sizes of the given types. The system parameters contain information of the used memories in that end product. The selected memory packages are TSOP48 for ROM, STSOP32 for RAM and SO8S for EEPROM .
The used flash memories are capable to perform erase and write opera­tions with the supplied 5V ( 3V ) programming voltage.
The BusController (BUSC) section in the MAD decodes the chip select signals for the external memory devices and the system logic. BUSC con­trols internal and external bus drivers and multiplexers connected to the MCU data bus. The MCU address space is divided into access areas with separate chip select signals. BUSC supports a programmable number of wait states for each memory range.
Program Memory
The MCU program code resides in the program memory. The program memory size is 8Mbits (512kx16) The default package is TSOP48.
The power down pin of FLASH is utilized in the system sleep mode by connecting the VCXOPwr to the flash power down pin to minimize the flash power consumption during the sleep.
Original 05/98
Page 3 – 25
NSK–3
PAMS
SRAM Memory
The work memory size can vary depending on the product variation simi­larily to the program memory. The work memory is a static ram of size 512kbits (64kx8) or 1Mbits (128kx8). The work memory is supplied from the common baseband VBB voltage and the memory contents are lost when the baseband voltage is switched off. All retainable data should be stored into the EEPROM when the phone is powered down.
EEPROM Memory
An EEPROM is used for a nonvolatile data memory to store the tuning parameters and phone setup information. The short code memory for storing user defined information is also implemented in the EEPROM. The EEPROM size is 8kbytes .The memory is accessed through a serial bus and the default package is SO8S.
MCU Memory Map
Technical Documentation
MAD supports maximum of 4GB internal and 4MB external address space. External memories use address lines MCUAd0 to MCUAd21 and 8–bit/16–bit databus. The BUSC bus controller supports 8– and 16–bit access for byte, double byte, word and double word data. Access wait states (0, 1 or 2) and used databus width can be selected separately for each memory block.
Page 3 – 26
Original 05/98
PAMS
NSK–3
Technical Documentation

Baseband EMC Strategy

The baseband EMC strategy is divided into electrical and mechanical items. As electrical guide lines, clocks and high speed signals should be routed in inner layers and away from the PCB edges. Clock signals dis­tributed to other circuits should have series resistors incorporated to re­duce rise times and reflections. Slew rate controlled buffers should be used on custom components wherever possible to reduce the EMC pro­duced by the circuit. Separate power supplies for digital, analog and rf– blocks should be used as much as possible. Baseband and RF supply power rails should be isolated from each other by means of inductors in the power supply rail to prevent high frequency components produced on the baseband power supply rail to spread out over the RF power supply plane. This might be required to avoid interference from digital circuits to affect the performance of RF section.
All external connectors and connection must be filtered using RC or LC networks to prevent the high frequency components from entering con­nection cables that then will act as antennas. The amount of this type of EMC component is in straight relation to the amount of external connec­tions. The type of network and amount of components to be used is de­termined by the AC and DC impedance characteristic of that particular signal. Low impedance signals requires LC network while medium imped­ance level signals, input signals at moderate band width can use RC net­works.
The EMC protection should also prevent external or internal signals to cause interference to baseband and in particular to audio signals. Internal interference is generated by the transmitter TDMA frequency and the switchmode charging. The transmitter TDMA frequency interference is likely to cause noise to both microphone and earphone signals. The transmitter RF interference is likely to cause more problems in the micro­phone circuitry than in the earphone circuitry since the earpiece is a low impedance dynamic type.
As mechanical guide lines, the baseband and RF sections should be iso­lated from each other using EMC shielding, which suppresses radiated interferences. The transmitter TDMA frequency can also generate me­chanical vibrations that can be picked up by the microphone if it is not properly isolated from the chassis using rubber or some other soft materi­al. A spring connected microphone is used to prevent microphone inter­ference problems. Connection wires to internal microphone and earphone should be as short as possible to reduce the interference caused by inter­nal signals.
ESD protection has to be implemented on each external connection that is accessable during normal operation of the phone.
Original 05/98
Page 3 – 27
NSK–3
PAMS

RF Module

RF Frequency Plan
RX
1805.2–1879.8
LO– buffers
1st IF 487
2nd LO 400
UHF VCO
RX=1318.2–1392.8 TX=1310.2–1384.8
2nd IF 87
3rd LO 100
Technical Documentation
f
f
f/2f/4
UHF PLL
VHF PLL
3rd IF 13
VHF VCO
800
13 MHz VCXO
TX
1710.2–1784.8
IF 400
CRFU2A
Note: 1 All frequencies are in MHz 2 Underlined frequencies are DCS1800 3 Bold frequencies are DCS1900 4 Other frequencies are common to both systems
DC Characteristics
Power Distribution Diagram
Current consumption of each regulator is shown in the following power distribution diagram (Figure 2 shows maximum currents, Figure 3 shows typical currents). On the left side of the figure, are the regulator control signals. Above each regulator is the rated current for that regulator. The name on the right side of the regulator block (smaller font) indicates the signal name used on the schematics. On the far right side of the figure are the pin names (power) for the different ICs.
MOD.
PLUSSA
I and Q
Page 3 – 28
Original 05/98
PAMS
NSK–3
Technical Documentation
Power Distribution – Maximum Currents
VCXOEN
RXPWR
SYNPWR
1mA
VR1 VCTCXO
VVCXO
2mA
36.6mA
VR5
VRX
4mA
13mA 29mA
10.2mA
VSYN_D
11mA
VR3
2mA
VCTCXO buffer
Receiver
LNA
RX mixer UHF
VHF buffer + mix2
VHF predivider
UHF predivider
Dividers
PLUSSA (VRX)
CRFU2a (V_RX)
CRFU2a (V_VHF)
PLUSSA (VP1) PLUSSA (VP2)
PLUSSA (VDD)
TXPWR
VR4
VR2
V5V
150 mA
VR7
External
transistor
VSYN_A
VDET
V5V
VTX
25mA
7mA
14mA
1.6mA
0.6mA
0.6mA 70mA
37.5mA
2.65mA 15mA
70mA
UHF VCO + buffer
VHF VCO
UHF buffer RX+TX
detector/temp
charge pump
charge pump
PLUSSA (VCE1) PLUSSA (VCE2)
TX upconverter
Transmitter
Pwrcntrl opamp
TX buffer
PA gain control
CRFU2a (V_UHF)
CRFU2a (V_TX)
PLUSSA (VTX)
PLUSSA (VOP)
VBAT
1.32A
battery TX PA
TXP
NOTE: Currents are only estimates at this time
Original 05/98
PA 45%
max. output
(32.5dBm) Vbat=3.0V
Page 3 – 29
NSK–3
PAMS
Power Distribution – Typical Currents
VCXOEN
RXPWR
SYNPWR
0.7mA
VR1 VCTCXO
VVCXO
1.0mA
31mA
VR5
VRX
3.3mA
13mA 18mA
7mA
VSYN_D
7mA
VR3
1.5mA
VCTCXO buffer
RX mixer UHF
VHF buffer + mix2
VHF predivider UHF predivider
Receiver
LNA
Dividers
Technical Documentation
PLUSSA (VRX)
CRFU2a (V_RX)
CRFU2a (V_VHF)
PLUSSA (VP1) PLUSSA (VP2)
PLUSSA (VDD)
TXPWR
VR4
VR4
V5V
150 mA
VR7
External
transistor
VSYN_A
VDET
V5V
VTX
20mA
7.6mA
9.1mA
0.8mA
0.5mA
0.5mA
49mA
32mA
2.4mA 14mA
UHF VCO + buffer
VHF VCO
UHF buffer RX+TX
detector/temp
charge pump charge pump
TX upconverter
Transmitter
Pwrcntrl opamp
TX buffer
CRFU2a (V_UHF)
PLUSSA (VCE1) PLUSSA (VCE2)
CRFU2a (V_TX)
PLUSSA (VTX)
PLUSSA (VOP)
TXP
Page 3 – 30
70mA
PA gain control
VBAT
1.1 A
battery TX PA
PA 45%
max. output
(32.5dBm) Vbat=3.6V
Original 05/98
PAMS
NSK–3
Technical Documentation

Functional Description

The following description of the RF is valid for both GSM 1800 and GSM 1900, the only differences between the two systems are:
1. antenna
2. duplexer (Z401)
3. RX and TX interstage filters (Z604 and Z503/Z505)
4. UHF VCO modules (G701)
5. matching networks (discrete components)
6. PA (N500) Even though different components are used in the two engines, the foot­prints of the different components are the same. As can been seen from the RF block diagram, most of the functions have been integrated into three ASICs.
CRFU2a (N402) is a wideband UHF ASIC with both receiver and trans­mitter functions. The receiver functions include LNA bias and two down­conversion mixers (Gilbert cell) with LO buffers. The LNA transistor is ex­ternal to CRFU2a. The transmitter functions include an upconversion mixer (image rejection) with LO buffer. All inputs/outputs are wideband and require external matching networks for optimal performance.
PLUSSA (N401) provides two main functions:
1. RX/TX blocks
2. PLL
The receiver includes a Receive Controlled Gain Amplifier, a mixer with LO buffers and IF amplifiers. The transmitter section includes a Transmit Controlled Gain Amplifier, an I/Q Modulator, circuitry required to generate the Quadrature Local Oscillator and Transmit Power Control which con­trols the MMIC PA (N500) output power. The PLL section is control via a serial bus and contains both UHF and VHF PLL and predividers.
The MMIC PA (N500) uses gallium–arsenide heterojunction bipolar transis­tor (GaAs HBT) technology. The PA has an overall dynamic range of 45dB, and is capable of producing 32.5dBm output power with +3dBm input.
Interfacing with the above ASICs is four more ASICs. These include:
1. CCONT (N100)– is a multifunction power management IC. This ASIC contains six 2.8V linear regulators used in the RF section as well as two 2.8V regulators used in the BB section. CCONT also contains a switch mode supply power which generates +5V which is used to power the charge pumps in PLUSSA. Some of the features of this IC are a nine channel A/D converter, power up/down procedures, reset logic, charging control, watchdog, sleep control and SIM interface.
world of the BB processing and the analog world of RF and audio circuit­ry.
Original 05/98
2. COBBA_GJ (N300)– is an interface between the digital
3. MAD2 (D200) – contains system logic and DSP
4. CHAPS (N110) – charging control ASIC
Page 3 – 31
NSK–3
PAMS
Receiver
The receiver is a triple conversion receiver consisting of two ASICs; CRFU2a (N402) and PLUSSA (N401). CRFU2a contains LNA bias circuit­ry with an external transistor which provides step gain depending on the incoming RF level and the first and second mixers. PLUSSA contains the third mixer. All filtering is external.
The received RF signal from the antenna is fed via the duplex filter (3 pole bandpass filter; Z401) to the LNA. Biasing and the AGC step circuit­ry are integrated into CRFU2a but the RF transistor, input and output matching networks are external. The LNA gain step is controlled by MAD2 (FRAC, D200). Gain step in LNA is activated when the receive RF level is below –48 dBm. Following the LNA, the signal is fed to a 3 pole ceramic bandpass filter (Z604). The combination of the duplex filter and the bandpass filter define, the blocking characteristics of the receiver.
The bandpass filtered signal is fed back to CRFU2a, where the signal is down converted with a double balanced active mixer (Gilbert cell) to 487 MHz. The local oscillator signal for this down conversion is generated by the UHF VCO (G701) and buffered in CRFU2a. The first IF signal is bandpass filtered with an discrete LC filter (L601, L602, L603, C605, C606, C607 and C608), which also acts as a matching network. This fil­ter attenuates the intermodulating and image frequencies. The second down conversion (occurs in CRFU2a) results in a balanced IF of 87 MHz which is filtered using an 87 MHz SAW filter (Z605). This filter provides selectivity for channels greater than +/– 200 kHz, and attenuates the image frequency of the third mixer and intermodulating signals. The local oscillator signal for this down conversion is 400 MHz which is generated by the 800 MHz VHF VCO module (G702). The VHF VCO signal is buff­ered and divided in PLUSSA and the 400 MHz resulting signal is again buffered in CFRU2a before the mixer.
Technical Documentation
After the 87 MHz filter, the signal is fed into the AGC amplifier which has been integrated into PLUSSA. The AGC amplifier contains analog gain control which provides accurate gain control (minimum 60 dB) for the re­ceiver. Control voltage for the AGC is generated by the D/A–converter in COBBA_GJ (N300). The final mixing stage occurs in PLUSSA with a lo­cal oscillator signal of 100 MHz generated by dividing the VHF–synthesiz­er output (800 MHz) by eight.
The third (final) IF filter (Z606) is a ceramic bandpass filter with a centre frequency of 13 MHz. This filter attenuates adjacent channels with very little attenuation for +/– 200 kHz. The +/– 200 kHz interferers are filtered digitally by DSP. The 13 MHz bandpass signal is converted to a balanced signal with a buffer circuit in PLUSSA. This buffer circuit has a voltage gain of 36 dB. This balanced signal is then fed to COBBA_GJ. The PGA stage in COBBA_GJ has a gain setting of either 0 dB or 9.5 dB which is controlled via the COBBA_GJ control bus. For HD950 the PGA gain will be set to 0dB.
Page 3 – 32
Original 05/98
PAMS
NSK–3
Technical Documentation
Transmitter
Transmitter chain consists of IQ–modulator, upconversion mixer, TX filter, TX buffer and a poweramplifier.
The differential I and Q signals are generated by COBBA_GJ and are fil­tered by an external RC network (R501, R504, R505, R506, R514, R517, C525 and C526, fc=200kHz) before being fed into the IQ modulator in PLUSSA (N401). The modulator generates a TX IF of 400 MHz which is derived from the VHF synthesizer output (divide by two). Inside PLUSSA the 400 MHz is amplified and then fed to an external filter before being upconverted in CRFU2a. The upconverter in CRFU2a is a double bal­anced image rejection mixer. The local oscillator signal for the upconver­sion is generated by the UHF synthesizer. Following CRFU2a is a 3 pole ceramic bandpass filter (Z503) which attenuates the image frequency, LO leakage and wideband noise. After the bandpass filter is a buffer with 12dB gain, then a TX SAW filter to further suppress spurious from the up­converter.
After filtering, the signal goes to the final amplifier, which is a MMIC PA (N500) with an input impedance of 50 ohms. The MMIC contains three amplifier stages with interstage matching. The first amplifier stage is vari­able and is control by the TX power control circuity. An external driver is required to supply the necessary current to the TX power control circuitry. The PA has over 45 dB power gain and is capable of producing an output of 32.5 dBm with an input of +3 dBm. Harmonics generated by the non­linear PA (class AB) are attenuated with the output external matching net­work and the lowpass/bandstop filtering in the duplexer (Z401).
Power control circuitry consists of a power detector, an error amplifier in PLUSSA and the A/D converter in CCONT (N100). The directional cou­pler is situated between the duplex filter and the external RF connector. With this configuration, variations in the IL of the duplexer are compen­sated by the control loop. The power detector is a combination of a direc­tional coupler and a diode rectifier. The directional coupler converts the forward going power with a certain ratio into a signal which is rectified by a schottky diode and a filter to create a DC voltage. This DC voltage is fed to
1. A/D converter in CCONT which holds a sample of the detec­tor output (no RF signal); then MCU/DSP sets the TXC voltage according­ly for the following burst.
2. The error amplifier in PLUSSA The error amplifier in PLUSSA compares the detected voltage and the
TXC voltage, which is generated by a D/A converter in COBBA_GJ. This creates a closed control loop and since the gain control characteristics of the PA are linear in the absolute scale, the output burst of the PA tracks the TXC voltage linearity.
Original 05/98
Page 3 – 33
NSK–3
PAMS
Power Detection Circuit
The power detector gives an indication of output RF power by rectifying the RF voltage to a DC voltage. Ideally the output voltage of this peak envelope detector is the peak value of the RF voltage but in real world the output voltage is somewhat smaller depending on the quality of the detec­tor diode.
A bias current is driven through the detector diode, which causes an addi­tional voltage component to the output of the detector. The output volt­age is then a sum of the rectified voltage and the bias voltage. This bias voltage is a function of biasing resistors, supply voltage and the voltage knee of the diode. At small RF power levels the rectified voltage can be only a few millivolts/dB which means that all other voltage components should remain very stable to achieve a reliable indication of the output power. However the variation of the knee voltage of the diode alone causes more than 100 mV variation in the output voltage over the speci­fied temperature range. Furthermore the temperature variation varies the rectifying sensitivity of the detector diode but this effect is less significant. With a simple passive bias network, the bias current of the diode will also change with temperature and this effect can be used to partially cancel the variation of the sensitivity.
Technical Documentation
In order to avoid the bias voltage variation ruining the accuracy of the power control loop, the bias voltage of the detector has to be monitored and included in the power control voltage (TXC) which determines the output power. The detector bias voltage monitoring is accomplished by periodically measuring the output voltage of the detector at a moment when no RF power is being transmitted. This measured voltage is con­verted into a digital signal by an A/D converter where it is used by DSP as part of the control voltage. Ideally the control voltage is formed as a sum of exactly the same components as the output voltage of the detector, the rectified voltage and the bias voltage. The rectified voltage component sets the output power and should obey the peak envelope sensitivity curve of the detector diode offset with the coupling factor of the directional coupler. The bias voltage is measured and updated in the control voltage often enough so that no remarkable temperature drift has time to occur. The bias voltage must be measured before the first burst of the transmis­sion period. The detector diode is located close to the receiver so that the bias voltage measurement can also be used to indicate the receiver temperature as well if needed (RSSI correction).
The third voltage component affecting the operation of the power control loop in addition to the rectified RF and bias voltages is the offset voltage of the error amplifier. An operational amplifier is integrated in PLUSSA and is used as the error amplifier. The input offset voltage should remain relatively stable with temperature but the variation from device to device can be several tens of millivolts. Therefore the offset voltage must to be taken into account when tuning the power control loop in operation. This means adding or subtracting an offset correction to the power control volt-
Page 3 – 34
Original 05/98
PAMS
NSK–3
Technical Documentation
age. A fixed correction will probably suffice although the input offset volt­age is actually dependent on the common mode input voltage of the loop amplifier. The value of the offset correction should then be defined at a low power control voltage where the error due to the offset voltage is the most significant.
The power control voltage has the following formula:
U
txc
where U
txc
Urf = RF output level setting voltage k = constant U
bias
U
offset
The RF output level setting Urf has values approximately from 20mV to 2V according to the applied power level. The voltages at each power level can be predetermined if the variation between the individual detector diodes is not too large. If the peak envelope sensitivity of the detector va­ries considerably with temperature a temperature dependant correction must to be added to the value of U obtained from the detector output bias voltage measurement.
= Urf + k * U
bias
+ U
offset
,
= power control voltage
= bias voltage at the output of the detector
= correction voltage due to loop amplifier input offset.
. An indication of temperature can be
rf
The constant coefficient k is needed to compensate the voltage division from the output of the COBBA D/A converter to the input of the loop am­plifier. This is due to output/input resistances of the devices. A proper selection of k also reduces the error due to detector peak envelope sensi­tivity variation with temperature. The value of k is likely to be slightly above 1.
The bias voltage U
at the output of the detector is measured with an
bias
A/D converter which is sampled so that no transmitter output RF signal is present during the measurement. A settling time of about 1ms should be allowed before the sampling is done after a transmitted burst. The values of the U
range approximately from 50mV to 200mV.
bias
The loop amplifier input offset correction voltage ranges from –70mV to 70mV. The actual value will be measured for each RF module in produc­tion tuning. As this is likely to be a fixed correction it can be included in the stored values of U
which saves the arithmetics needed to calculate
rf
the power control voltage. If needed, temperature indication can be derived from the value of U
A reference voltage U
tempref
ture scale. The reference voltage is the value of U
however is needed to calibrate the tempera-
measured at a
bias
bias
.
known temperature during production tuning. The accuracy requirement for the temperature measurement won’t be particularly high so that the calibration shouldn’t call for any special arrangements deviating from the RF tuning procedure. U
tempref
shall be stored in the phone.
Original 05/98
Page 3 – 35
NSK–3
PAMS
RF_OUT
Technical Documentation
A frequency correction is possibly needed in U
. This is due to duplex fil-
rf
ter attenuation at higher end of the transmitter band and possible fre­quency slope of the directional coupler coupling factor.
To correct for the first TX slot (after phone is powered up), the bias volt­age will be measured by MCU during the IDLE MODE and the TXC value corrected by DSP. Otherwise, the bias voltage will be measured during the IDLE FRAME, with the TXC valued updated in the next multi–frame. This means a worst case delay of approximatley 120msec.
PADIR.COUPLER
RF_IN
K
cp
R1
K
PA
K
= –R1/R2
DETECTOR ERROR
DOMINATING POLE
K
det
R2
AMPLIFIER
CCONT ADC
MCU DSP
TXC
COBBA DAC
Page 3 – 36
Original 05/98
PAMS
NSK–3
Technical Documentation
Frequency Synthesizers
A 13 MHz VCTCXO module is used as a stable reference for both the RF and BB circuitry. Temperature variations in the VCTCXO module are controlled by an AFC voltage which is generated by a 11 bit D/A converter in COB­BA_GJ. The output of the VCTCXO module feeds both the UHF PLL and the VHF PLL (both of which are located in PLUSSA) and the BB circuitry for A/D conversion. The BB uses this information for frequency compensation algorithms.
The UHF synthesizers contains a 64/65 dual modulus prescaler, a ”N” and ”A” divider, a reference divide, a phase detector, a charge pump, a modular VCO, a buffer circuit and a lowpass filter. The UHF and VHF PLL are con­trolled with three serial busses; a data bus (SDATA), a serial clock bus (SCLK) and a latch enable (SLE). The UHF LO signal is generated by the UHF VCO module which has a tunable frequency range from 1310 MHz to 1393 MHz for the DCS1800 engine and 1443 MHz to 1510 MHz for the DCS1900 engine. A sample of the LO signal is fed to the 64/65 prescaler. The signal is then fed to the programmable dividers (N and A) which are pro­grammed via the serial bus. This output then becomes one of the inputs to the phase detector. The other input to the phase detector is a multiple of the 13MHz VCTCXO (reference frequency is 200 kHz). Output of the phase de­tector is connected to the charge pump, which charges or discharges the in­tegrator capacitor in the loop filter depending on the phase of the measured frequency compared to reference frequency. The loop filter attenuates the pulses and generates a DC voltage which controls the frequency of UHF VCO. This loop filter defines the step response of the PLL (settling time), af­fects the stability of the loop and is used for sideband rejection. A buffer cir­cuit is required to ensure that the impedance changes in CRFU2a and PLUS­SA do not kick the VCO off frequency
The VHF synthesizers contains a 16/17 dual modulus prescaler, a ”N” and ”A” divider, a reference divide, a phase detector, a charge pump, a modular VCO and a lowpass filter. The frequency of the VHF VCO is 800 MHz which is frequency divided to 400 MHz and 100 MHz. Operation of the VHF PLL is similar to that of the UHF PLL. The VHF PLL using the 400 MHz signal as its input frequency. The reference frequency in the VHF synthesizer is 1 MHz.
Original 05/98
Page 3 – 37
NSK–3
PAMS
R
f
ref
f_out /
M
PHASE
DET.
CHARGE
PUMP
Kd
Technical Documentation
freq. reference
LP
f_out
VCO
Kvco
M
AGC
M = A(P+1) + (N–A)P= = NP+A
The purpose of the AGC–amplifier is to maintain a constant output level from the receiver. To accomplish this, pre–monitoring is used. This pre– monitoring is done in three phases and this determines the settling times for the RX AGC. The receiver is switched on approximately 150 s before the burst begins, DSP measures the receive signal level and adjusts the TXC–DAC (which controls Receive Controlled Gain Amplifier) or it switches on/off the LNA with the FRAC control line. The Receive Controlled Gain Amplifier has 60 dB of continuos gain control (40 dB to –20 dB) while the gain in the LNA is a digital step and is either 15 dB or –16 dB.
The requirement for receive signal level (RSSI) under static conditions is that the MS shall measure and report to the BS over the range –48 dBm to –110 dBm. For RF levels above –48 dBm, the MS must report to BS the same reading, so above this level the AGC is not required. Because of the RSSI requirements, the gain step in LNA is ”ON” ( FRAC = ”0”) for receive levels below –45 dBm. This leaves the AGC in PLUSSA to adjust the gain to desired value (50mVp–p). This is accomplished in DSP by measuring the receive IQ level after the selectivity filtering (IF–filters, Σ∆±converter and FIR–filter in DSP). This results in an AGC dynamic range of 50 dB with the remaining 7 dB for gain variations in RX–chain (for calibration). For RF levels below –95 dBm, the output level of the re­ceiver drops dB by dB with a level of 9 mVp–p @–110 dBm for DCS1800 and 7.1 mVp–p @ –110 dBm for DCS1900.
This strategy is chosen because it is necessary to roll off the AGC in PLUSSA early so that the signal is not saturated in selectivity tests but cannot roll off too early as this will sacrifice the signal to noise ratio thus
Page 3 – 38
Original 05/98
PAMS
NSK–3
Technical Documentation
requiring a larger AGC dynamic range. The 50 mVp–p target level is set, because the RX–DAC in COBBA_GJ will saturate at 1.4 Vp–p. This re­sults in over 28 dB of headroom which is required for the +/– 200 kHz faded adjacent channel (approximately 19 dB) and extra 9 dB for pre– monitoring.
AFC
The AFC is used to lock the MS clock to the frequency of the BS. An AFC voltage is generated in COBBA_GJ with an 11 bit ADC. This voltage then controls the center frequency of the 13 MHz VCTCXO module.
Software Compensations
Power Levels (TXC) vs. Channel
Power levels are calibrated on one channel in production. Values for channels between these tuned channels are calculated using linear inter­polation.
Modulator Output Level
For optimum linearity and efficiency the output level of the modulator is adjusted in the production.
Power Levels vs temperature
In order to avoid the bias voltage variation of the detector diode ruining the accuracy of the power control loop, the bias voltage of the detector is measured when no RF power is transmitted. This voltage (DETLVL) is fed to the A/D converter in CCONT where DSP uses this value to correct the TXC voltage.
RSSI
Signal strength RSSI vs. input signal is calibrated in production, but RSSI vs. channel is compensated by software. If DETLVL (A/D) is used as a temperature sensor to correct for RX variations over temperature, the diode characteristics are 1.2mV/C.
TX power range
If COBBA_gj does not meet specifications, it will be necessary to divide the power levels into two ranges. One range will be between power level 0 to 10 (lets call this the HI range) with the other range between 11 and 15 (lets call this the LO range) . NOTE: at this time the exact range is un­known. One of MAD2 DSPGenOut pins will be used.
Original 05/98
Page 3 – 39
NSK–3
PAMS
Technical Documentation

RF Block Specifications

DCS1800 Receive Interstage Filter
Parameter Min. Typ. Max. Unit / notes
Passband 1805 – 1880 MHz Insertion loss in passband 2.8 dB Maximum Input Power 1.0 W
First Mixer (UHF) in CRFU2a
Parameter Minimum Typical /
Nominal
Input RF frequency 1805–1990 MHz
Output IF frequency 487 MHz
Maximum Unit / Notes
Power gain
see Note 1
Power gain
see Note 1
NF, SSB 11 dB
IIP3 –2 dBm
Input compression (1dB) –10 dBm
1/2 IF spurious tbd dBm
LO–power in RF–input –25 dBm
RF–IF isolation 20 dB
5.0 7.5 dB / PCN LO = 1318–1393
MHz
5.5 7.5 dB / DCS LO = 1443–1503
MHz
Page 3 – 40
Original 05/98
PAMS
NSK–3
Technical Documentation
First IF Filter
Parameter Minimum Typical /
Nominal
Center frequency 487 MHz
Input/Output impedance filter part of matching network W
Ripple 0.5 dB
Insertion loss 1 1.5 2.0 dB Attenuation @ 313 MHz 22 38 dB Attenuation @ 400 MHz 10 20 dB
Maximum Unit / Notes
DCS1800 TX SAW filter
Parameter Min. Typ. Max. Unit / notes
Passband 1710 – 1785 MHz Insertion loss in passband 3.0 4.2 dB
DCS1800 TX Ceramic Filter
Parameter Min. Typ. Max. Unit / notes
Passband 1710 – 1785 MHz Insertion loss in passband 3.7 dB
Power Amplifier MMIC
Parameter Symbol Test condition Min Typ Max Unit
Operating freq. range DCS1800 Application circuit 1710 1785 MHz Operating freq. range DCS1900 Application circuit 1850 1910 MHz Supply voltage Vcc 3.0 3.5 5.0 V Gain control range
( overall dynamic range)
Vpc= 0.5 ... 2.2 V 45 dB
VHF VCO and Lowpass Filter
Parameter Minimum Typical /
Nominal
Control voltage 0.5 4.0 V
Operation frequency 800 MHz
Output level 150 mVpp
Output impedance 50 W
Maximum Unit / Notes
Original 05/98
Page 3 – 41
NSK–3
PAMS
Technical Documentation
UHF PLL
Parameter Minimum Typical /
Nominal
Input frequency range
ADDBIAS off
Input frequency range
ADDBIAS on
Input signal level
(f<1300MHz)
Input signal level
(f>1300MHz)
ADDBIAS must be on
Reference input frequency 13 MHz
650 1300 MHz
650 1700 MHz
200 mVpp
300 mVpp
Maximum Unit / Notes
DCS1800 UHF VCO module
Parameter Conditions Rating Unit/
Supply voltage, Vcc 2.8 +/– 0.1 V Control voltage, Vc Vcc = 2.8 V 0.8... 3.7 V Oscillation frequency Vcc = 2.8 V
Vc = 0.8 V
Vc = 3.7 V Tuning voltage in center frequency f = 1351.5 MHz 2.25 +/– 0.25 V Tuning voltage sensitivity in operating
frequency range on each spot freq.
Output power level Vcc=2.7 V
Vcc = 2.8 V
f=1310...1395
MHz
f=1310...1393
MHz
< 1310 > 1393
40 +/– 5 MHz/V
–4.0 min. dBm
UHF LO signal into CRFU_2a
Parameter Minimum Typical /
Nominal
Input frequency range PCN 1310 1395 MHz
Maximum Unit / Notes
Notes
MHz MHz
Input frequency range DCS 1443 1510 MHz
Input level
UHFLO_IN_P
Input level
UHFLO_IN_M
Page 3 – 42
–13
(140W)
–3
(261W)
N/A This input is shorted
(measured input re-
sistance)
to ground with a cap
Original 05/98
dBm
PAMS
,
NSK–3
Technical Documentation

Connections

RF connector and antenna switch
Parameter Min. Typ. Max. Unit/Notes
Operating frequency range 1710 1990 MHz Nominal impedance 50 W Insertion loss COM to INT 0.3 dB Insertion loss COM to EXT 0.4 dB Return loss, at COM port 15 dB Power rating 2 W, 100% duty cycle Contact resistance 25 mW Insulation resistance
(250VDC)
1000 MW
RF–Baseband signals
Signal
name
VBAT Battery RF Voltage 3.0 3.6 5.0 V Supply
VCXOEN MAD2 CCONT
SYNPWR MAD2 CCONT
From To Parameter Mini-
mum
Logic high ”1” 2.0 VBAT V VR1,
Logic low ”0” 0.5 V VR1,
Input resistance 50 100 200 kW Input capacitance 10 pF Logic high ”1” 2.0 VBAT V
Logic low ”0” 0.5 V
Typi-
cal
Maxi-
mum
Unit Func-
tion
voltage for RF
VRBB in CCON T ’ON’
VRBB in CCON T ’OFF’
VR3, VR4, V5, VR2 in CCON
T ’ON’ Input resistance 50 100 200 kW Input capacitance 10 pF
Original 05/98
Page 3 – 43
NSK–3
PAMS
name
RXPWR MAD2 CCONT
TXPWR MAD2 CCONT
Technical Documentation
ParameterToFromSignal
Logic high ”1” 2.0 VBAT V VR5 in
Logic low ”0” 0.5 V VR5 in
Input resistance 50 100 200 kW Input capacitance 10 pF
Logic high ”1” 2.0 VBAT V VR7 in
Logic low ”0” 0.5 V VR7 in
Mini­mum
Typi-
cal
mum
UnitMaxi-
Func-
tion
CCON
T ’ON’
CCON
T
’OFF’
CCON
T ’ON’
CCON
T
’OFF’ Input resistance 50 100 200 kW Input capacitance 10 pF
VREF CCONT PLUSSA Voltage 1.478 1.500 1.523 V Refer-
ence
voltage
for
PLUS-
SA
VVCXO CCONT VCTCXO Voltage 2.7 2.8 2.85 V VR1 VDET CCONT Detector
circuit VSYN_D CCONT PLUSSA Voltage 2.7 2.8 2.85 V VR3 VSYN A CCONT VCOs
CRFU VRX CCONT PLUSSA
CRFU VTX CCONT PLUSSA
CRFU V5V CCONT PLUSSA Voltage 4.8 5.0 5.2 V V5V,
Voltage 2.7 2.8 2.85 V VR2
Voltage 2.7 2.8 2.85 V VR4
Voltage 2.7 2.8 2.85 V VR5
Voltage 2.7 2.7 2.85 V VR7
charge pump
FRAC MAD2 CRFU2a
Page 3 – 44
Logic high ”1” 2 V Nomi-
nal gain in LNA
Logic low ”0” 1 V Re-
duced gain in LNA
Original 05/98
PAMS
enable
thesiz
quency
f
base
NSK–3
Technical Documentation
name
SENA MAD2 PLUSSA
SDATA MAD2 PLUSSA
SCLK MAD2 PLUSSA
AFC COBBA VCXO
RFCLK VCTCXO MAD2
ParameterToFromSignal
Logic high ”1” 2.0 V Logic low ”0” 0 0.8 V Logic high ”1” 2.0 V
Logic low ”0” 0 0.8 V Logic high ”1” 2.0 V
Logic low ”0” 0 0.8 V
Output voltage swing
Sampling rate 1 2 kHz Minimum output
voltage Maximum output
voltage Frequency 13 MHz
Signal amplitude 0.5 1.0 2.0 Vpp
Mini­mum
0 1.15 2.346 V
2.254 2.3 2.346 V
Typi-
cal
0 0.046 V
mum
UnitMaxi-
Func-
tion
PLL
Syn-
-
er data Syn-
thesiz­er clock
Auto­matic fre-
control signal
or
VCXO Stable
clock signal for the logic
circuits
( clock slicer )
RXP/RXN PLUSSA COBBA Output level 0.05 1.4 Vpp Differ-
ential RX 13 MHz signal to base­band
TXIP/ TXIN
COBBA PLUSSA
Number of bits 8 bits
Differential voltage swing (static)
1.022 1.1 1.18 Vpp
Differ­ential in– phase TX
band signal for the RF modu­lator
-
Original 05/98
Page 3 – 45
NSK–3
power
ower
PAMS
name
TXQP/ TXQN
TXP MAD2 PLUSSA
TXC COBBA PLUSSA
COBBA PLUSSA Same as TXIP/TXIN Differ-
Technical Documentation
ParameterToFromSignal
Logic high ”1” 2.0 V
Logic low ”0” 0.8 V
Number of bits 10 bits DNL 0.9 LSB INL 4 LSB
Mini­mum
Typi-
cal
mum
UnitMaxi-
Func-
tion
ential quad­rature phase TX base­band signal for the RF modu­lator
Trans­mitter p control enable
Trans­mitter power control
Output voltage swing
Minimum code out­put level
Maximum code out­put level
2.09 2.15 2.21 V
0.12 0.15 0.18 V
2.27 2.3 2.33 V
Page 3 – 46
Original 05/98
PAMS
ga
gain
NSK–3
Technical Documentation
name
AGC COBBA PLUSSA
DETLVL Detector CCONT
pin 61
VCXO-
TEMP BASE_TUNEDetector CCONT
pin 1
RSSI
ParameterToFromSignal
Number of bits 10 bits DNL 0.9 LSB INL 4 LSB Output voltage
swing Minimum code out-
put level Maximum code out-
put level Input voltage 0.1 1.478 V RSSI
Input voltage 0.1 1.478 V Sam-
Mini­mum
2.09 2.15 2.21 V
0.12 0.15 0.18 V
2.27 2.3 2.33 V
Typi-
cal
mum
UnitMaxi-
Func-
tion
Re­ceiver
in
control
correc­tion
ple of detec­tor out­put; DSP cor­rects TXC.
TXC and AGC signals originate from the same DAC, controlled in COBBA
Original 05/98
Page 3 – 47
NSK–3
PAMS

Data Interface and Timing

PLUSSA is programmed via the serial bus SLE, SDAT and SCLK. The data of SDAT is clocked by rising edge of SCLK. The data is fed MSB first and address bits before data bits. The data for the Programmable dual modulus counter is fed first and the Swallow counter last. SLE is kept low while clocking the data. During programming, the charge pump attached to programmed divider is switched to high impedance state. Also all counters connected to the PLL that is programmed, are kept on reset while the SLE is low.
Synthesizer Timing Control
100 us min.
9.08us 9.08us
Technical Documentation
6.9 ms ( 1.5 x 4.6 ms ( frame )
9.08 us
9.08 us
7.08 us
RXPWR
SYNPWR
SENA
SDATA/ SCLK
2us min
MODE VHF R VHF N/A UHF R UHF N/A
#bits 23 23 23 23 23
Synthesizer Start–up Timing / Clocking
Page 3 – 48
Original 05/98
PAMS
NSK–3
Technical Documentation
20 ms
VCXOEN
SYNPWR
RXPWR
AGC
SENA
SDATA/ SCLK
6.9 ms
150 us 150 us
MON MON MON MONRX RX RX RX
4.615 ms
0.5–2 sec.
SYNPWR
TXPWR
TXP
TXC
RXPWR
AGC SENA
Synthesizer Timing / IDLE one monitoring/frame, frame can start from RX burst
MON MON MON MONRX RX RX RX
150 us
150 us 150 us
TX TX TX
SDATA/ SCLK
Original 05/98
Synthesizer Timing / traffic channel
Page 3 – 49
NSK–3
PAMS
time slots
SYNPWR RXPWR
TXPWR
TXP
SENA
SDATA/ SCLK
ONLY UHF– PLL N AND A REGISTERS CLOCKED
Technical Documentation
RX MON RXTX
012345670
RX TX MON RX
50 us max. 50 us max. 50 us max.
Transmit Power Timing
Pout
6.5...59 us
TXC
TXP
0...59 us
UHF–Synthesizer Timing / traffic channel
542.8 us
TXPWR
Page 3 – 50
0...58 us
150 us 50 us
Transmitter Timing Diagram
Original 05/98
PAMS
NSK–3
Technical Documentation

Parts list of UR9E Europe (EDMS Issue 6.11) Code: 0201136

ITEM CODE DESCRIPTION VALUE TYPE
R080 1620031 Res network 0w06 2x1k0 j 0404 0404 R081 1620031 Res network 0w06 2x1k0 j 0404 0404 R082 1620031 Res network 0w06 2x1k0 j 0404 0404 R083 1620031 Res network 0w06 2x1k0 j 0404 0404 R084 1620031 Res network 0w06 2x1k0 j 0404 0404 R087 1430690 Chip jumper 0402 R101 1620027 Res network 0w06 2x47r j 0404 0404 R103 1430778 Chip resistor 10 k 5 % 0.063 W 0402 R104 1620025 Res network 0w06 2x100k j 0404 0404 R107 1620019 Res network 0w06 2x10k j 0404 0404 R109 1422881 Chip resistor 0.22 5 % 1 W 1218 R113 1620027 Res network 0w06 2x47r j 0404 0404 R117 1620101 Res network 0w06 2x470r j 0404 0404 R119 1430744 Chip resistor 470 5 % 0.063 W 0402 R123 1430770 Chip resistor 4.7 k 5 % 0.063 W 0402 R125 1620027 Res network 0w06 2x47r j 0404 0404 R127 1430796 Chip resistor 47 k 5 % 0.063 W 0402 R130 1430796 Chip resistor 47 k 5 % 0.063 W 0402 R134 1430770 Chip resistor 4.7 k 5 % 0.063 W 0402 R136 1825001 Chip varistor vwm18v vc40v 0603 0603 R137 1825001 Chip varistor vwm18v vc40v 0603 0603 R138 1825001 Chip varistor vwm18v vc40v 0603 0603 R139 1825001 Chip varistor vwm18v vc40v 0603 0603 R143 1620019 Res network 0w06 2x10k j 0404 0404 R144 1430804 Chip resistor 100 k 5 % 0.063 W 0402 R146 1825005 Chip varistor vwm14v vc30v 0805 0805 R151 1825009 Varistor network 4xvwm18v 1206 1206 R153 1620031 Res network 0w06 2x1k0 j 0404 0404 R154 1430812 Chip resistor 220 k 5 % 0.063 W 0402 R155 1430812 Chip resistor 220 k 5 % 0.063 W 0402 R197 1430834 Chip resistor 3.3 M 5 % 0.063 W 0402 R198 1430826 Chip resistor 680 k 5 % 0.063 W 0402 R199 1430796 Chip resistor 47 k 5 % 0.063 W 0402 R200 1430796 Chip resistor 47 k 5 % 0.063 W 0402 R201 1430812 Chip resistor 220 k 5 % 0.063 W 0402 R202 1430804 Chip resistor 100 k 5 % 0.063 W 0402 R207 1430690 Chip jumper 0402 R210 1430778 Chip resistor 10 k 5 % 0.063 W 0402 R211 1430804 Chip resistor 100 k 5 % 0.063 W 0402 R300 1620027 Res network 0w06 2x47r j 0404 0404 R301 1430796 Chip resistor 47 k 5 % 0.063 W 0402 R302 1430762 Chip resistor 2.2 k 5 % 0.063 W 0402 R308 1620025 Res network 0w06 2x100k j 0404 0404
Original 05/98
Page 3 – 51
NSK–3
PAMS
R310 1430740 Chip resistor 330 5 % 0.063 W 0402 R332 1430762 Chip resistor 2.2 k 5 % 0.063 W 0402 R333 1430762 Chip resistor 2.2 k 5 % 0.063 W 0402 R334 1620031 Res network 0w06 2x1k0 j 0404 0404 R335 1430804 Chip resistor 100 k 5 % 0.063 W 0402 R338 1430718 Chip resistor 47 5 % 0.063 W 0402 R401 1430851 Chip resistor 15 k 2 % 0.063 W 0402 R501 1620019 Res network 0w06 2x10k j 0404 0404 R502 1430762 Chip resistor 2.2 k 5 % 0.063 W 0402 R503 1430740 Chip resistor 330 5 % 0.063 W 0402 R504 1620019 Res network 0w06 2x10k j 0404 0404 R505 1430804 Chip resistor 100 k 5 % 0.063 W 0402 R507 1430754 Chip resistor 1.0 k 5 % 0.063 W 0402 R508 1430804 Chip resistor 100 k 5 % 0.063 W 0402 R511 1430762 Chip resistor 2.2 k 5 % 0.063 W 0402 R512 1430778 Chip resistor 10 k 5 % 0.063 W 0402 R515 1430778 Chip resistor 10 k 5 % 0.063 W 0402 R516 1430762 Chip resistor 2.2 k 5 % 0.063 W 0402 R518 1430804 Chip resistor 100 k 5 % 0.063 W 0402 R519 1430762 Chip resistor 2.2 k 5 % 0.063 W 0402 R520 1430804 Chip resistor 100 k 5 % 0.063 W 0402 R521 1430754 Chip resistor 1.0 k 5 % 0.063 W 0402 R523 1430762 Chip resistor 2.2 k 5 % 0.063 W 0402 R524 1430762 Chip resistor 2.2 k 5 % 0.063 W 0402 R525 1430726 Chip resistor 100 5 % 0.063 W 0402 R527 1430762 Chip resistor 2.2 k 5 % 0.063 W 0402 R528 1430762 Chip resistor 2.2 k 5 % 0.063 W 0402 R531 1430762 Chip resistor 2.2 k 5 % 0.063 W 0402 R532 1430754 Chip resistor 1.0 k 5 % 0.063 W 0402 R546 1430718 Chip resistor 47 5 % 0.063 W 0402 R570 1430770 Chip resistor 4.7 k 5 % 0.063 W 0402 R571 1430700 Chip resistor 10 5 % 0.063 W 0402 R572 1430732 Chip resistor 180 5 % 0.063 W 0402 R579 1430706 Chip resistor 15 5 % 0.063 W 0402 R581 1430740 Chip resistor 330 5 % 0.063 W 0402 R600 1430726 Chip resistor 100 5 % 0.063 W 0402 R603 1430770 Chip resistor 4.7 k 5 % 0.063 W 0402 R604 1430740 Chip resistor 330 5 % 0.063 W 0402 R605 1430730 Chip resistor 150 5 % 0.063 W 0402 R606 1430730 Chip resistor 150 5 % 0.063 W 0402 R610 1430778 Chip resistor 10 k 5 % 0.063 W 0402 R611 1430740 Chip resistor 330 5 % 0.063 W 0402 R612 1430778 Chip resistor 10 k 5 % 0.063 W 0402 R701 1430700 Chip resistor 10 5 % 0.063 W 0402 R703 1430770 Chip resistor 4.7 k 5 % 0.063 W 0402 R704 1430784 Chip resistor 15 k 5 % 0.063 W 0402 R706 1430762 Chip resistor 2.2 k 5 % 0.063 W 0402
Technical Documentation
Page 3 – 52
Original 05/98
PAMS
NSK–3
Technical Documentation
R707 1430812 Chip resistor 220 k 5 % 0.063 W 0402 R708 1430700 Chip resistor 10 5 % 0.063 W 0402 R711 1430732 Chip resistor 180 5 % 0.063 W 0402 R712 1430778 Chip resistor 10 k 5 % 0.063 W 0402 R714 1430754 Chip resistor 1.0 k 5 % 0.063 W 0402 R715 1430726 Chip resistor 100 5 % 0.063 W 0402 R716 1430700 Chip resistor 10 5 % 0.063 W 0402 R717 1430762 Chip resistor 2.2 k 5 % 0.063 W 0402 R729 1430770 Chip resistor 4.7 k 5 % 0.063 W 0402 R755 1430716 Chip resistor 39 5 % 0.063 W 0402 R756 1430706 Chip resistor 15 5 % 0.063 W 0402 R757 1430716 Chip resistor 39 5 % 0.063 W 0402 R758 1430778 Chip resistor 10 k 5 % 0.063 W 0402 R759 1430700 Chip resistor 10 5 % 0.063 W 0402 R760 1430740 Chip resistor 330 5 % 0.063 W 0402 R803 1430754 Chip resistor 1.0 k 5 % 0.063 W 0402 R805 1430693 Chip resistor 5.6 5 % 0.063 W 0402 R806 1430693 Chip resistor 5.6 5 % 0.063 W 0402 R807 1430693 Chip resistor 5.6 5 % 0.063 W 0402 R808 1430778 Chip resistor 10 k 5 % 0.063 W 0402 R809 1430693 Chip resistor 5.6 5 % 0.063 W 0402 R812 1430762 Chip resistor 2.2 k 5 % 0.063 W 0402 R813 1430804 Chip resistor 100 k 5 % 0.063 W 0402 C080 2320560 Ceramic cap. 100 p 5 % 50 V 0402 C081 2320560 Ceramic cap. 100 p 5 % 50 V 0402 C082 2320560 Ceramic cap. 100 p 5 % 50 V 0402 C083 2320560 Ceramic cap. 100 p 5 % 50 V 0402 C084 2320560 Ceramic cap. 100 p 5 % 50 V 0402 C085 2320560 Ceramic cap. 100 p 5 % 50 V 0402 C086 2320560 Ceramic cap. 100 p 5 % 50 V 0402 C087 2320560 Ceramic cap. 100 p 5 % 50 V 0402 C088 2320560 Ceramic cap. 100 p 5 % 50 V 0402 C089 2320560 Ceramic cap. 100 p 5 % 50 V 0402 C100 2610005 Tantalum cap. 10 u 20 % 16 V 3.5x2.8x1.9 C106 2320544 Ceramic cap. 22 p 5 % 50 V 0402 C107 2320544 Ceramic cap. 22 p 5 % 50 V 0402 C108 2320560 Ceramic cap. 100 p 5 % 50 V 0402 C109 2320779 Ceramic cap. 100 n 10 % 16 V 0603 C112 2320779 Ceramic cap. 100 n 10 % 16 V 0603 C117 2320620 Ceramic cap. 10 n 5 % 16 V 0402 C119 2312401 Ceramic cap. 1.0 u 10 % 10 V 0805 C120 2320536 Ceramic cap. 10 p 5 % 50 V 0402 C121 2320620 Ceramic cap. 10 n 5 % 16 V 0402 C124 2610005 Tantalum cap. 10 u 20 % 16 V 3.5x2.8x1.9 C125 2320544 Ceramic cap. 22 p 5 % 50 V 0402 C128 2320544 Ceramic cap. 22 p 5 % 50 V 0402 C130 2320728 Ceramic cap. 220 p 10 % 50 V 0402
Original 05/98
Page 3 – 53
NSK–3
PAMS
C136 2320544 Ceramic cap. 22 p 5 % 50 V 0402 C138 2320131 Ceramic cap. 33 n 10 % 16 V 0603 C139 2320131 Ceramic cap. 33 n 10 % 16 V 0603 C140 2604127 Tantalum cap. 1.0 u 20 % 35 V 3.5x2.8x1.9 C145 2320584 Ceramic cap. 1.0 n 5 % 50 V 0402 C147 2312401 Ceramic cap. 1.0 u 10 % 10 V 0805 C148 2312403 Ceramic cap. 2.2 u 10 % 10 V 1206 C153 2320584 Ceramic cap. 1.0 n 5 % 50 V 0402 C154 2320584 Ceramic cap. 1.0 n 5 % 50 V 0402 C155 2320584 Ceramic cap. 1.0 n 5 % 50 V 0402 C156 2320584 Ceramic cap. 1.0 n 5 % 50 V 0402 C157 2320131 Ceramic cap. 33 n 10 % 16 V 0603 C158 2320544 Ceramic cap. 22 p 5 % 50 V 0402 C159 2320544 Ceramic cap. 22 p 5 % 50 V 0402 C160 2320544 Ceramic cap. 22 p 5 % 50 V 0402 C167 2312401 Ceramic cap. 1.0 u 10 % 10 V 0805 C168 2312401 Ceramic cap. 1.0 u 10 % 10 V 0805 C169 2312401 Ceramic cap. 1.0 u 10 % 10 V 0805 C170 2312401 Ceramic cap. 1.0 u 10 % 10 V 0805 C172 2312401 Ceramic cap. 1.0 u 10 % 10 V 0805 C173 2312401 Ceramic cap. 1.0 u 10 % 10 V 0805 C174 2312401 Ceramic cap. 1.0 u 10 % 10 V 0805 C175 2312401 Ceramic cap. 1.0 u 10 % 10 V 0805 C176 2312401 Ceramic cap. 1.0 u 10 % 10 V 0805 C177 2312401 Ceramic cap. 1.0 u 10 % 10 V 0805 C181 2312401 Ceramic cap. 1.0 u 10 % 10 V 0805 C197 2320508 Ceramic cap. 1.0 p 0.25 % 50 V 0402 C198 2320536 Ceramic cap. 10 p 5 % 50 V 0402 C199 2320548 Ceramic cap. 33 p 5 % 50 V 0402 C200 2320779 Ceramic cap. 100 n 10 % 16 V 0603 C201 2320779 Ceramic cap. 100 n 10 % 16 V 0603 C203 2320779 Ceramic cap. 100 n 10 % 16 V 0603 C204 2320779 Ceramic cap. 100 n 10 % 16 V 0603 C205 2320779 Ceramic cap. 100 n 10 % 16 V 0603 C206 2320779 Ceramic cap. 100 n 10 % 16 V 0603 C207 2320620 Ceramic cap. 10 n 5 % 16 V 0402 C209 2320620 Ceramic cap. 10 n 5 % 16 V 0402 C211 2320779 Ceramic cap. 100 n 10 % 16 V 0603 C212 2320620 Ceramic cap. 10 n 5 % 16 V 0402 C213 2312401 Ceramic cap. 1.0 u 10 % 10 V 0805 C214 2320584 Ceramic cap. 1.0 n 5 % 50 V 0402 C300 2312296 Ceramic cap. Y5 V 1210 C301 2312401 Ceramic cap. 1.0 u 10 % 10 V 0805 C302 2312296 Ceramic cap. Y5 V 1210 C304 2320544 Ceramic cap. 22 p 5 % 50 V 0402 C305 2320779 Ceramic cap. 100 n 10 % 16 V 0603 C306 2320779 Ceramic cap. 100 n 10 % 16 V 0603
Technical Documentation
Page 3 – 54
Original 05/98
PAMS
NSK–3
Technical Documentation
C307 2320779 Ceramic cap. 100 n 10 % 16 V 0603 C308 2320779 Ceramic cap. 100 n 10 % 16 V 0603 C315 2320131 Ceramic cap. 33 n 10 % 16 V 0603 C316 2320779 Ceramic cap. 100 n 10 % 16 V 0603 C317 2320131 Ceramic cap. 33 n 10 % 16 V 0603 C318 2320131 Ceramic cap. 33 n 10 % 16 V 0603 C319 2320779 Ceramic cap. 100 n 10 % 16 V 0603 C322 2320779 Ceramic cap. 100 n 10 % 16 V 0603 C323 2610003 Tantalum cap. 10 u 20 % 10 V 3.2x1.6x1.6 C325 2320560 Ceramic cap. 100 p 5 % 50 V 0402 C326 2320544 Ceramic cap. 22 p 5 % 50 V 0402 C327 2320560 Ceramic cap. 100 p 5 % 50 V 0402 C335 2320131 Ceramic cap. 33 n 10 % 16 V 0603 C336 2320131 Ceramic cap. 33 n 10 % 16 V 0603 C337 2312401 Ceramic cap. 1.0 u 10 % 10 V 0805 C338 2312401 Ceramic cap. 1.0 u 10 % 10 V 0805 C500 2320546 Ceramic cap. 27 p 5 % 50 V 0402 C501 2320546 Ceramic cap. 27 p 5 % 50 V 0402 C502 2320546 Ceramic cap. 27 p 5 % 50 V 0402 C503 2320546 Ceramic cap. 27 p 5 % 50 V 0402 C505 2320584 Ceramic cap. 1.0 n 5 % 50 V 0402 C506 2610013 Tantalum cap. 220 u 10 % 10 V 7.3x4.3x4.1 C507 2610013 Tantalum cap. 220 u 10 % 10 V 7.3x4.3x4.1 C508 2320560 Ceramic cap. 100 p 5 % 50 V 0402 C509 2320560 Ceramic cap. 100 p 5 % 50 V 0402 C511 2320584 Ceramic cap. 1.0 n 5 % 50 V 0402 C512 2320536 Ceramic cap. 10 p 5 % 50 V 0402 C513 2320584 Ceramic cap. 1.0 n 5 % 50 V 0402 C514 2320536 Ceramic cap. 10 p 5 % 50 V 0402 C515 2320536 Ceramic cap. 10 p 5 % 50 V 0402 C516 2320536 Ceramic cap. 10 p 5 % 50 V 0402 C517 2320560 Ceramic cap. 100 p 5 % 50 V 0402 C518 2320536 Ceramic cap. 10 p 5 % 50 V 0402 C519 2320536 Ceramic cap. 10 p 5 % 50 V 0402 C520 2611668 Tantalum cap. 4.7 u 20 % 10 V 3.2x1.6x1.6 C521 2320620 Ceramic cap. 10 n 5 % 16 V 0402 C522 2320564 Ceramic cap. 150 p 5 % 50 V 0402 C523 2320536 Ceramic cap. 10 p 5 % 50 V 0402 C524 2320584 Ceramic cap. 1.0 n 5 % 50 V 0402 C525 2320552 Ceramic cap. 47 p 5 % 50 V 0402 C526 2320552 Ceramic cap. 47 p 5 % 50 V 0402 C527 2320584 Ceramic cap. 1.0 n 5 % 50 V 0402 C528 2320925 Ceramic cap. 25 V 0402 C530 2320584 Ceramic cap. 1.0 n 5 % 50 V 0402 C531 2320576 Ceramic cap. 470 p 5 % 50 V 0402 C533 2320584 Ceramic cap. 1.0 n 5 % 50 V 0402 C535 2320546 Ceramic cap. 27 p 5 % 50 V 0402
Original 05/98
Page 3 – 55
NSK–3
PAMS
C536 2320546 Ceramic cap. 27 p 5 % 50 V 0402 C537 2320508 Ceramic cap. 1.0 p 0.25 % 50 V 0402 C538 2320546 Ceramic cap. 27 p 5 % 50 V 0402 C539 2320602 Ceramic cap. 4.7 p 0.25 % 50 V 0402 C540 2320602 Ceramic cap. 4.7 p 0.25 % 50 V 0402 C541 2320560 Ceramic cap. 100 p 5 % 50 V 0402 C542 2320536 Ceramic cap. 10 p 5 % 50 V 0402 C544 2320508 Ceramic cap. 1.0 p 0.25 % 50 V 0402 C545 2320584 Ceramic cap. 1.0 n 5 % 50 V 0402 C546 2320602 Ceramic cap. 4.7 p 0.25 % 50 V 0402 C547 2320907 Ceramic cap. 25 V 0402 C549 2320526 Ceramic cap. 3.9 p 0.25 % 50 V 0402 C561 2320518 Ceramic cap. 1.8 p 0.25 % 50 V 0402 C562 2320546 Ceramic cap. 27 p 5 % 50 V 0402 C563 2320516 Ceramic cap. 1.5 p 0.25 % 50 V 0402 C564 2320584 Ceramic cap. 1.0 n 5 % 50 V 0402 C600 2320536 Ceramic cap. 10 p 5 % 50 V 0402 C601 2320518 Ceramic cap. 1.8 p 0.25 % 50 V 0402 C602 2320584 Ceramic cap. 1.0 n 5 % 50 V 0402 C603 2320508 Ceramic cap. 1.0 p 0.25 % 50 V 0402 C604 2320526 Ceramic cap. 3.9 p 0.25 % 50 V 0402 C605 2320508 Ceramic cap. 1.0 p 0.25 % 50 V 0402 C606 2320508 Ceramic cap. 1.0 p 0.25 % 50 V 0402 C609 2320536 Ceramic cap. 10 p 5 % 50 V 0402 C611 2320584 Ceramic cap. 1.0 n 5 % 50 V 0402 C612 2320584 Ceramic cap. 1.0 n 5 % 50 V 0402 C613 2320584 Ceramic cap. 1.0 n 5 % 50 V 0402 C614 2320584 Ceramic cap. 1.0 n 5 % 50 V 0402 C616 2320584 Ceramic cap. 1.0 n 5 % 50 V 0402 C617 2320584 Ceramic cap. 1.0 n 5 % 50 V 0402 C618 2320620 Ceramic cap. 10 n 5 % 16 V 0402 C619 2320592 Ceramic cap. 2.2 n 5 % 50 V 0402 C620 2320560 Ceramic cap. 100 p 5 % 50 V 0402 C621 2320526 Ceramic cap. 3.9 p 0.25 % 50 V 0402 C622 2320526 Ceramic cap. 3.9 p 0.25 % 50 V 0402 C623 2320536 Ceramic cap. 10 p 5 % 50 V 0402 C624 2320564 Ceramic cap. 150 p 5 % 50 V 0402 C640 2320131 Ceramic cap. 33 n 10 % 16 V 0603 C641 2320131 Ceramic cap. 33 n 10 % 16 V 0603 C666 2320546 Ceramic cap. 27 p 5 % 50 V 0402 C671 2320546 Ceramic cap. 27 p 5 % 50 V 0402 C700 2320546 Ceramic cap. 27 p 5 % 50 V 0402 C703 2310248 Ceramic cap. 4.7 n 5 % 50 V 1206 C704 2320620 Ceramic cap. 10 n 5 % 16 V 0402 C705 2320568 Ceramic cap. 220 p 5 % 50 V 0402 C706 2312401 Ceramic cap. 1.0 u 10 % 10 V 0805 C707 2320576 Ceramic cap. 470 p 5 % 50 V 0402
Technical Documentation
Page 3 – 56
Original 05/98
PAMS
NSK–3
Technical Documentation
C708 2310248 Ceramic cap. 4.7 n 5 % 50 V 1206 C709 2320544 Ceramic cap. 22 p 5 % 50 V 0402 C710 2320546 Ceramic cap. 27 p 5 % 50 V 0402 C711 2320536 Ceramic cap. 10 p 5 % 50 V 0402 C714 2312401 Ceramic cap. 1.0 u 10 % 10 V 0805 C716 2320560 Ceramic cap. 100 p 5 % 50 V 0402 C718 2320536 Ceramic cap. 10 p 5 % 50 V 0402 C719 2320536 Ceramic cap. 10 p 5 % 50 V 0402 C720 2320620 Ceramic cap. 10 n 5 % 16 V 0402 C721 2312401 Ceramic cap. 1.0 u 10 % 10 V 0805 C722 2320584 Ceramic cap. 1.0 n 5 % 50 V 0402 C728 2312401 Ceramic cap. 1.0 u 10 % 10 V 0805 C730 2320544 Ceramic cap. 22 p 5 % 50 V 0402 C734 2312401 Ceramic cap. 1.0 u 10 % 10 V 0805 C735 2312401 Ceramic cap. 1.0 u 10 % 10 V 0805 C760 2320584 Ceramic cap. 1.0 n 5 % 50 V 0402 C761 2320546 Ceramic cap. 27 p 5 % 50 V 0402 C762 2320508 Ceramic cap. 1.0 p 0.25 % 50 V 0402 C771 2320546 Ceramic cap. 27 p 5 % 50 V 0402 C772 2320518 Ceramic cap. 1.8 p 0.25 % 50 V 0402 C773 2320546 Ceramic cap. 27 p 5 % 50 V 0402 C774 2320518 Ceramic cap. 1.8 p 0.25 % 50 V 0402 C775 2320546 Ceramic cap. 27 p 5 % 50 V 0402 C800 2312401 Ceramic cap. 1.0 u 10 % 10 V 0805 C801 2320779 Ceramic cap. 100 n 10 % 16 V 0603 C802 2320544 Ceramic cap. 22 p 5 % 50 V 0402 C803 2320544 Ceramic cap. 22 p 5 % 50 V 0402 C811 2312401 Ceramic cap. 1.0 u 10 % 10 V 0805 L105 3203701 Ferrite bead 33r/100mhz 0805 0805 L109 3203701 Ferrite bead 33r/100mhz 0805 0805 L500 3645105 Chip coil 27 n 5% Q=12/100MHz 0603 L501 3645105 Chip coil 27 n 5% Q=12/100MHz 0603 L502 3645105 Chip coil 27 n 5% Q=12/100MHz 0603 L503 3645105 Chip coil 27 n 5% Q=12/100MHz 0603 L601 3645105 Chip coil 27 n 5% Q=12/100MHz 0603 L602 3645105 Chip coil 27 n 5% Q=12/100MHz 0603 L603 3645183 Chip coil 56 n 5% Q=12/100MHz 0603 L607 3645037 Chip coil 150 n 10% Q=15/25MHz 0603 L608 3645037 Chip coil 150 n 10% Q=15/25MHz 0603 L609 3645037 Chip coil 150 n 10% Q=15/25MHz 0603 L610 3645179 Chip coil 2 n Q=8/100M 0603 L611 3645181 Chip coil 3 n 10% Q=10/100MHz
L701 3641206 Chip coil 10% Q=25/7.96MHz L703 3645129 Chip coil 18 n 5 % Q=8/100M 0603
B150 4510159 Crystal 32.768 k +–20PPM
0603 1008
Original 05/98
Page 3 – 57
NSK–3
PAMS
G701 4350131 Vco 1310–1393 mhz 2.8v 10ma pcn G702 4350103 Vco 800mhz 2.8v 7ma G703 4510167 VCTCXO 13.0 M +–5PPM 2.8V DCS F100 5119019 SM, fuse f 1.5a 32v 0603 Z100 3640035 Filt z>450r/100m 0r7max 0.2a 0603 0603 Z101 3640035 Filt z>450r/100m 0r7max 0.2a 0603 0603 Z102 3640035 Filt z>450r/100m 0r7max 0.2a 0603 0603 Z103 3640035 Filt z>450r/100m 0r7max 0.2a 0603 0603 Z104 3640035 Filt z>450r/100m 0r7max 0.2a 0603 0603 Z401 4510077 Dupl 1710–1785/1805–1880mhz 20x14 20x14 Z503 4511021 Saw filter 1747.5+–37.5 M 3X3 Z505 4550033 Cer.filt 1747.5+–37.5mhz 6.4x5.5 6.4x5.5 Z511 3640069 Filt 47pf 25v 0r01 6a 1206 Z604 4550039 Cer.filt 1842.5+–37.5mhz 7.7x4.5 7.7x4.5 Z605 4511001 Saw filter 87+–0.12 M Z606 4510009 Cer.filt 13+–0.09mhz 7.2x3.2 7.2x3.2 Z621 4511033 Saw filter 487+–0.2 M /4.5DB 4X4 V104 4200877 Transistor BCX51–16 pnp 45 V 1.5 A SOT89 V109 4110067 Schottky diode MBR0520L 20 V 0.5 A SOD123 V111 4110072 Diode x 2 BAV99W 70 V 0.2 A SOT323 V112 4110072 Diode x 2 BAV99W 70 V 0.2 A SOT323 V113 4110072 Diode x 2 BAV99W 70 V 0.2 A SOT323 V115 4110079 Sch. diode x 2 HSMS282C 15 V SOT323 V300 4210100 Transistor BC848W npn 30 V SOT323 V501 4110079 Sch. diode x 2 HSMS282C 15 V SOT323 V502 4110072 Diode x 2 BAV99W 70 V 0.2 A SOT323 V504 4210119 Transistor BC849CW npn 30 V 0.1 A SOT323 V505 4210052 Transistor DTC114EE npn RB V EM3 V506 4202671 MosFet BST82 n–ch 80V 175mA
V507 4210052 Transistor DTC114EE npn RB V EM3 V508 4112451 Pindi bar63–03w 50v 0.1a sod323 SOD323 V509 4210052 Transistor DTC114EE npn RB V EM3 V510 4210074 Transistor BFP420 npn 4. V SOT343 V511 4210052 Transistor DTC114EE npn RB V EM3 V600 4210015 Transistor BFP405 npn 4. V SOT343 V710 4210100 Transistor BC848W npn 30 V SOT323 V720 4210074 Transistor BFP420 npn 4. V SOT343 V801 4210052 Transistor DTC114EE npn RB V EM3 V802 4210102 Transistor BC858W pnp 30 V 100 mA
D100 4340387 IC, 2xbilateral switch sso TC7W66FU SSOP8 D200 4370279 Mad2 rom3 f711604 c12 tqfp176 TQFP176 D210 4340377 IC, flash mem. TSO48 D221 4340273 IC, SRAM STSOP32 D230 4342264 IC, EEPROM SO8S D800 4340369 IC, dual bus buffer ssoTC7W126FU SSOP8
Technical Documentation
SOT23
200MWSOT323
Page 3 – 58
Original 05/98
PAMS
NSK–3
Technical Documentation
N100 4370047 Ccont 2f dct3 bb asic tqfp64 TQFP64 N110 4370165 Chaps charger control so16 SO16 N200 4340423 IC, regulator TK11230M 3.0 V SOT23L N300 4370317 Cobba_gj b07 bb asic dct3 tqfp64 TQFP64 N401 4370273 Plussa txmod+rxif+2pll tqfp64 TQFP64 N402 4370245 Crfu2a_v3 comrfunit >2.7v tssop28 TSSOP28 N500 4370275 Rf9112 pw amp 1800mhz psop2–16 PSOP2–16 N501 4340389 Bcr400w bias controller sot343 SOT343 N800 4860031 Tfdu4100 irda tx/rx>2.7v 115kbits 115KBITS S080 5219005 IC, SWsp–no 30vdc 50ma smSW TACT SMD S081 5219005 IC, SWsp–no 30vdc 50ma smSW TACT SMD X099 5460021 SM, conn 2x14m spring p1.0 pcb/p PCB/PCB X101 5469069 SM, batt conn 2pol spr p3.5 100v 100V2A X102 5469069 SM, batt conn 2pol spr p3.5 100v 100V2A X131 5469061 SM, system conn 6af+3dc+mic+jack X150 5400085 Sim card reader 2x3pol p2.54 sm SM X451 5429007 SM, coax conn m sw 50r 0.4–2ghz A500 9517013 SM, d rf shield pa–can dmc00455
9380753 Bar code label dmd03311 27x6.5 27x6.5 9854170 PCB UR4_24 41.0X123.25X1.0 M6 4/P
Original 05/98
Page 3 – 59
NSK–3
PAMS
Technical Documentation

Parts list of UR9U APAC (EDMS Issue 12.10) Code: 0200961

ITEM CODE DESCRIPTION VALUE TYPE
R080 1620031 Res network 0w06 2x1k0 j 0404 0404 R081 1620031 Res network 0w06 2x1k0 j 0404 0404 R082 1620031 Res network 0w06 2x1k0 j 0404 0404 R083 1620031 Res network 0w06 2x1k0 j 0404 0404 R084 1620031 Res network 0w06 2x1k0 j 0404 0404 R087 1430690 Chip jumper 0402 R101 1620027 Res network 0w06 2x47r j 0404 0404 R103 1430778 Chip resistor 10 k 5 % 0.063 W 0402 R104 1620025 Res network 0w06 2x100k j 0404 0404 R107 1620019 Res network 0w06 2x10k j 0404 0404 R109 1422881 Chip resistor 0.22 5 % 1 W 1218 R113 1620027 Res network 0w06 2x47r j 0404 0404 R117 1620101 Res network 0w06 2x470r j 0404 0404 R119 1430744 Chip resistor 470 5 % 0.063 W 0402 R123 1430770 Chip resistor 4.7 k 5 % 0.063 W 0402 R125 1620027 Res network 0w06 2x47r j 0404 0404 R127 1430796 Chip resistor 47 k 5 % 0.063 W 0402 R130 1430796 Chip resistor 47 k 5 % 0.063 W 0402 R134 1430770 Chip resistor 4.7 k 5 % 0.063 W 0402 R136 1825001 Chip varistor vwm18v vc40v 0603 0603 R137 1825001 Chip varistor vwm18v vc40v 0603 0603 R138 1825001 Chip varistor vwm18v vc40v 0603 0603 R139 1825001 Chip varistor vwm18v vc40v 0603 0603 R143 1620019 Res network 0w06 2x10k j 0404 0404 R144 1430804 Chip resistor 100 k 5 % 0.063 W 0402 R146 1825005 Chip varistor vwm14v vc30v 0805 0805 R151 1825009 Varistor network 4xvwm18v 1206 1206 R153 1620031 Res network 0w06 2x1k0 j 0404 0404 R154 1430812 Chip resistor 220 k 5 % 0.063 W 0402 R155 1430812 Chip resistor 220 k 5 % 0.063 W 0402 R197 1430834 Chip resistor 3.3 M 5 % 0.063 W 0402 R198 1430826 Chip resistor 680 k 5 % 0.063 W 0402 R199 1430796 Chip resistor 47 k 5 % 0.063 W 0402 R200 1430796 Chip resistor 47 k 5 % 0.063 W 0402 R201 1430812 Chip resistor 220 k 5 % 0.063 W 0402 R202 1430804 Chip resistor 100 k 5 % 0.063 W 0402 R207 1430690 Chip jumper 0402 R210 1430778 Chip resistor 10 k 5 % 0.063 W 0402 R211 1430804 Chip resistor 100 k 5 % 0.063 W 0402 R300 1620027 Res network 0w06 2x47r j 0404 0404 R301 1430796 Chip resistor 47 k 5 % 0.063 W 0402 R302 1430762 Chip resistor 2.2 k 5 % 0.063 W 0402 R308 1620025 Res network 0w06 2x100k j 0404 0404
Page 3 – 60
Original 05/98
PAMS
NSK–3
Technical Documentation
R310 1430740 Chip resistor 330 5 % 0.063 W 0402 R332 1430762 Chip resistor 2.2 k 5 % 0.063 W 0402 R333 1430762 Chip resistor 2.2 k 5 % 0.063 W 0402 R334 1620031 Res network 0w06 2x1k0 j 0404 0404 R335 1430804 Chip resistor 100 k 5 % 0.063 W 0402 R338 1430718 Chip resistor 47 5 % 0.063 W 0402 R401 1430851 Chip resistor 15 k 2 % 0.063 W 0402 R501 1620019 Res network 0w06 2x10k j 0404 0404 R502 1430762 Chip resistor 2.2 k 5 % 0.063 W 0402 R503 1430740 Chip resistor 330 5 % 0.063 W 0402 R504 1620019 Res network 0w06 2x10k j 0404 0404 R505 1430804 Chip resistor 100 k 5 % 0.063 W 0402 R507 1430754 Chip resistor 1.0 k 5 % 0.063 W 0402 R508 1430804 Chip resistor 100 k 5 % 0.063 W 0402 R511 1430762 Chip resistor 2.2 k 5 % 0.063 W 0402 R512 1430778 Chip resistor 10 k 5 % 0.063 W 0402 R515 1430778 Chip resistor 10 k 5 % 0.063 W 0402 R516 1430762 Chip resistor 2.2 k 5 % 0.063 W 0402 R518 1430804 Chip resistor 100 k 5 % 0.063 W 0402 R519 1430762 Chip resistor 2.2 k 5 % 0.063 W 0402 R520 1430804 Chip resistor 100 k 5 % 0.063 W 0402 R521 1430754 Chip resistor 1.0 k 5 % 0.063 W 0402 R523 1430762 Chip resistor 2.2 k 5 % 0.063 W 0402 R524 1430762 Chip resistor 2.2 k 5 % 0.063 W 0402 R525 1430726 Chip resistor 100 5 % 0.063 W 0402 R527 1430762 Chip resistor 2.2 k 5 % 0.063 W 0402 R528 1430762 Chip resistor 2.2 k 5 % 0.063 W 0402 R531 1430762 Chip resistor 2.2 k 5 % 0.063 W 0402 R532 1430754 Chip resistor 1.0 k 5 % 0.063 W 0402 R546 1430718 Chip resistor 47 5 % 0.063 W 0402 R570 1430770 Chip resistor 4.7 k 5 % 0.063 W 0402 R571 1430700 Chip resistor 10 5 % 0.063 W 0402 R572 1430732 Chip resistor 180 5 % 0.063 W 0402 R579 1430706 Chip resistor 15 5 % 0.063 W 0402 R581 1430740 Chip resistor 330 5 % 0.063 W 0402 R600 1430726 Chip resistor 100 5 % 0.063 W 0402 R603 1430770 Chip resistor 4.7 k 5 % 0.063 W 0402 R604 1430740 Chip resistor 330 5 % 0.063 W 0402 R605 1430730 Chip resistor 150 5 % 0.063 W 0402 R606 1430730 Chip resistor 150 5 % 0.063 W 0402 R610 1430778 Chip resistor 10 k 5 % 0.063 W 0402 R611 1430740 Chip resistor 330 5 % 0.063 W 0402 R612 1430778 Chip resistor 10 k 5 % 0.063 W 0402 R701 1430700 Chip resistor 10 5 % 0.063 W 0402 R703 1430770 Chip resistor 4.7 k 5 % 0.063 W 0402 R704 1430784 Chip resistor 15 k 5 % 0.063 W 0402 R706 1430762 Chip resistor 2.2 k 5 % 0.063 W 0402
Original 05/98
Page 3 – 61
NSK–3
PAMS
R707 1430812 Chip resistor 220 k 5 % 0.063 W 0402 R708 1430700 Chip resistor 10 5 % 0.063 W 0402 R711 1430732 Chip resistor 180 5 % 0.063 W 0402 R712 1430778 Chip resistor 10 k 5 % 0.063 W 0402 R714 1430754 Chip resistor 1.0 k 5 % 0.063 W 0402 R715 1430726 Chip resistor 100 5 % 0.063 W 0402 R716 1430700 Chip resistor 10 5 % 0.063 W 0402 R717 1430762 Chip resistor 2.2 k 5 % 0.063 W 0402 R729 1430770 Chip resistor 4.7 k 5 % 0.063 W 0402 R755 1430716 Chip resistor 39 5 % 0.063 W 0402 R756 1430706 Chip resistor 15 5 % 0.063 W 0402 R757 1430716 Chip resistor 39 5 % 0.063 W 0402 R758 1430778 Chip resistor 10 k 5 % 0.063 W 0402 R759 1430700 Chip resistor 10 5 % 0.063 W 0402 R760 1430740 Chip resistor 330 5 % 0.063 W 0402 R803 1430754 Chip resistor 1.0 k 5 % 0.063 W 0402 R805 1430693 Chip resistor 5.6 5 % 0.063 W 0402 R806 1430693 Chip resistor 5.6 5 % 0.063 W 0402 R807 1430693 Chip resistor 5.6 5 % 0.063 W 0402 R808 1430778 Chip resistor 10 k 5 % 0.063 W 0402 R809 1430693 Chip resistor 5.6 5 % 0.063 W 0402 R812 1430762 Chip resistor 2.2 k 5 % 0.063 W 0402 R813 1430804 Chip resistor 100 k 5 % 0.063 W 0402 C080 2320560 Ceramic cap. 100 p 5 % 50 V 0402 C081 2320560 Ceramic cap. 100 p 5 % 50 V 0402 C082 2320560 Ceramic cap. 100 p 5 % 50 V 0402 C083 2320560 Ceramic cap. 100 p 5 % 50 V 0402 C084 2320560 Ceramic cap. 100 p 5 % 50 V 0402 C085 2320560 Ceramic cap. 100 p 5 % 50 V 0402 C086 2320560 Ceramic cap. 100 p 5 % 50 V 0402 C087 2320560 Ceramic cap. 100 p 5 % 50 V 0402 C088 2320560 Ceramic cap. 100 p 5 % 50 V 0402 C089 2320560 Ceramic cap. 100 p 5 % 50 V 0402 C100 2610005 Tantalum cap. 10 u 20 % 16 V 3.5x2.8x1.9 C106 2320544 Ceramic cap. 22 p 5 % 50 V 0402 C107 2320544 Ceramic cap. 22 p 5 % 50 V 0402 C108 2320560 Ceramic cap. 100 p 5 % 50 V 0402 C109 2320779 Ceramic cap. 100 n 10 % 16 V 0603 C112 2320779 Ceramic cap. 100 n 10 % 16 V 0603 C117 2320620 Ceramic cap. 10 n 5 % 16 V 0402 C119 2312401 Ceramic cap. 1.0 u 10 % 10 V 0805 C120 2320536 Ceramic cap. 10 p 5 % 50 V 0402 C121 2320620 Ceramic cap. 10 n 5 % 16 V 0402 C124 2610005 Tantalum cap. 10 u 20 % 16 V 3.5x2.8x1.9 C125 2320544 Ceramic cap. 22 p 5 % 50 V 0402 C128 2320544 Ceramic cap. 22 p 5 % 50 V 0402 C130 2320728 Ceramic cap. 220 p 10 % 50 V 0402
Technical Documentation
Page 3 – 62
Original 05/98
PAMS
NSK–3
Technical Documentation
C136 2320544 Ceramic cap. 22 p 5 % 50 V 0402 C138 2320131 Ceramic cap. 33 n 10 % 16 V 0603 C139 2320131 Ceramic cap. 33 n 10 % 16 V 0603 C140 2604127 Tantalum cap. 1.0 u 20 % 35 V 3.5x2.8x1.9 C145 2320584 Ceramic cap. 1.0 n 5 % 50 V 0402 C147 2312401 Ceramic cap. 1.0 u 10 % 10 V 0805 C148 2312403 Ceramic cap. 2.2 u 10 % 10 V 1206 C153 2320584 Ceramic cap. 1.0 n 5 % 50 V 0402 C154 2320584 Ceramic cap. 1.0 n 5 % 50 V 0402 C155 2320584 Ceramic cap. 1.0 n 5 % 50 V 0402 C156 2320584 Ceramic cap. 1.0 n 5 % 50 V 0402 C157 2320131 Ceramic cap. 33 n 10 % 16 V 0603 C158 2320544 Ceramic cap. 22 p 5 % 50 V 0402 C159 2320544 Ceramic cap. 22 p 5 % 50 V 0402 C160 2320544 Ceramic cap. 22 p 5 % 50 V 0402 C167 2312401 Ceramic cap. 1.0 u 10 % 10 V 0805 C168 2312401 Ceramic cap. 1.0 u 10 % 10 V 0805 C169 2312401 Ceramic cap. 1.0 u 10 % 10 V 0805 C170 2312401 Ceramic cap. 1.0 u 10 % 10 V 0805 C172 2312401 Ceramic cap. 1.0 u 10 % 10 V 0805 C173 2312401 Ceramic cap. 1.0 u 10 % 10 V 0805 C174 2312401 Ceramic cap. 1.0 u 10 % 10 V 0805 C175 2312401 Ceramic cap. 1.0 u 10 % 10 V 0805 C176 2312401 Ceramic cap. 1.0 u 10 % 10 V 0805 C177 2312401 Ceramic cap. 1.0 u 10 % 10 V 0805 C181 2312401 Ceramic cap. 1.0 u 10 % 10 V 0805 C197 2320508 Ceramic cap. 1.0 p 0.25 % 50 V 0402 C198 2320536 Ceramic cap. 10 p 5 % 50 V 0402 C199 2320548 Ceramic cap. 33 p 5 % 50 V 0402 C200 2320779 Ceramic cap. 100 n 10 % 16 V 0603 C201 2320779 Ceramic cap. 100 n 10 % 16 V 0603 C203 2320779 Ceramic cap. 100 n 10 % 16 V 0603 C204 2320779 Ceramic cap. 100 n 10 % 16 V 0603 C205 2320779 Ceramic cap. 100 n 10 % 16 V 0603 C206 2320779 Ceramic cap. 100 n 10 % 16 V 0603 C207 2320620 Ceramic cap. 10 n 5 % 16 V 0402 C209 2320620 Ceramic cap. 10 n 5 % 16 V 0402 C211 2320779 Ceramic cap. 100 n 10 % 16 V 0603 C212 2320620 Ceramic cap. 10 n 5 % 16 V 0402 C213 2312401 Ceramic cap. 1.0 u 10 % 10 V 0805 C214 2320584 Ceramic cap. 1.0 n 5 % 50 V 0402 C300 2312296 Ceramic cap. Y5 V 1210 C301 2312401 Ceramic cap. 1.0 u 10 % 10 V 0805 C302 2312296 Ceramic cap. Y5 V 1210 C304 2320544 Ceramic cap. 22 p 5 % 50 V 0402 C305 2320779 Ceramic cap. 100 n 10 % 16 V 0603 C306 2320779 Ceramic cap. 100 n 10 % 16 V 0603
Original 05/98
Page 3 – 63
NSK–3
PAMS
C307 2320779 Ceramic cap. 100 n 10 % 16 V 0603 C308 2320779 Ceramic cap. 100 n 10 % 16 V 0603 C315 2320131 Ceramic cap. 33 n 10 % 16 V 0603 C316 2320779 Ceramic cap. 100 n 10 % 16 V 0603 C317 2320131 Ceramic cap. 33 n 10 % 16 V 0603 C318 2320131 Ceramic cap. 33 n 10 % 16 V 0603 C319 2320779 Ceramic cap. 100 n 10 % 16 V 0603 C322 2320779 Ceramic cap. 100 n 10 % 16 V 0603 C323 2610003 Tantalum cap. 10 u 20 % 10 V 3.2x1.6x1.6 C325 2320560 Ceramic cap. 100 p 5 % 50 V 0402 C326 2320544 Ceramic cap. 22 p 5 % 50 V 0402 C327 2320560 Ceramic cap. 100 p 5 % 50 V 0402 C335 2320131 Ceramic cap. 33 n 10 % 16 V 0603 C336 2320131 Ceramic cap. 33 n 10 % 16 V 0603 C337 2312401 Ceramic cap. 1.0 u 10 % 10 V 0805 C338 2312401 Ceramic cap. 1.0 u 10 % 10 V 0805 C500 2320546 Ceramic cap. 27 p 5 % 50 V 0402 C501 2320546 Ceramic cap. 27 p 5 % 50 V 0402 C502 2320546 Ceramic cap. 27 p 5 % 50 V 0402 C503 2320546 Ceramic cap. 27 p 5 % 50 V 0402 C505 2320584 Ceramic cap. 1.0 n 5 % 50 V 0402 C506 2610013 Tantalum cap. 220 u 10 % 10 V 7.3x4.3x4.1 C507 2610013 Tantalum cap. 220 u 10 % 10 V 7.3x4.3x4.1 C508 2320560 Ceramic cap. 100 p 5 % 50 V 0402 C509 2320560 Ceramic cap. 100 p 5 % 50 V 0402 C511 2320584 Ceramic cap. 1.0 n 5 % 50 V 0402 C512 2320536 Ceramic cap. 10 p 5 % 50 V 0402 C513 2320584 Ceramic cap. 1.0 n 5 % 50 V 0402 C514 2320536 Ceramic cap. 10 p 5 % 50 V 0402 C515 2320536 Ceramic cap. 10 p 5 % 50 V 0402 C516 2320536 Ceramic cap. 10 p 5 % 50 V 0402 C517 2320560 Ceramic cap. 100 p 5 % 50 V 0402 C518 2320536 Ceramic cap. 10 p 5 % 50 V 0402 C519 2320536 Ceramic cap. 10 p 5 % 50 V 0402 C520 2611668 Tantalum cap. 4.7 u 20 % 10 V 3.2x1.6x1.6 C521 2320620 Ceramic cap. 10 n 5 % 16 V 0402 C522 2320564 Ceramic cap. 150 p 5 % 50 V 0402 C523 2320536 Ceramic cap. 10 p 5 % 50 V 0402 C524 2320584 Ceramic cap. 1.0 n 5 % 50 V 0402 C525 2320552 Ceramic cap. 47 p 5 % 50 V 0402 C526 2320552 Ceramic cap. 47 p 5 % 50 V 0402 C527 2320584 Ceramic cap. 1.0 n 5 % 50 V 0402 C528 2320925 Ceramic cap. 25 V 0402 C530 2320584 Ceramic cap. 1.0 n 5 % 50 V 0402 C531 2320576 Ceramic cap. 470 p 5 % 50 V 0402 C533 2320584 Ceramic cap. 1.0 n 5 % 50 V 0402 C535 2320546 Ceramic cap. 27 p 5 % 50 V 0402
Technical Documentation
Page 3 – 64
Original 05/98
PAMS
NSK–3
Technical Documentation
C536 2320546 Ceramic cap. 27 p 5 % 50 V 0402 C537 2320508 Ceramic cap. 1.0 p 0.25 % 50 V 0402 C538 2320546 Ceramic cap. 27 p 5 % 50 V 0402 C539 2320602 Ceramic cap. 4.7 p 0.25 % 50 V 0402 C540 2320602 Ceramic cap. 4.7 p 0.25 % 50 V 0402 C541 2320560 Ceramic cap. 100 p 5 % 50 V 0402 C542 2320536 Ceramic cap. 10 p 5 % 50 V 0402 C544 2320508 Ceramic cap. 1.0 p 0.25 % 50 V 0402 C545 2320584 Ceramic cap. 1.0 n 5 % 50 V 0402 C546 2320602 Ceramic cap. 4.7 p 0.25 % 50 V 0402 C547 2320907 Ceramic cap. 25 V 0402 C549 2320526 Ceramic cap. 3.9 p 0.25 % 50 V 0402 C561 2320518 Ceramic cap. 1.8 p 0.25 % 50 V 0402 C562 2320546 Ceramic cap. 27 p 5 % 50 V 0402 C563 2320516 Ceramic cap. 1.5 p 0.25 % 50 V 0402 C564 2320584 Ceramic cap. 1.0 n 5 % 50 V 0402 C600 2320536 Ceramic cap. 10 p 5 % 50 V 0402 C601 2320518 Ceramic cap. 1.8 p 0.25 % 50 V 0402 C602 2320584 Ceramic cap. 1.0 n 5 % 50 V 0402 C603 2320508 Ceramic cap. 1.0 p 0.25 % 50 V 0402 C604 2320526 Ceramic cap. 3.9 p 0.25 % 50 V 0402 C605 2320508 Ceramic cap. 1.0 p 0.25 % 50 V 0402 C606 2320508 Ceramic cap. 1.0 p 0.25 % 50 V 0402 C609 2320536 Ceramic cap. 10 p 5 % 50 V 0402 C611 2320584 Ceramic cap. 1.0 n 5 % 50 V 0402 C612 2320584 Ceramic cap. 1.0 n 5 % 50 V 0402 C613 2320584 Ceramic cap. 1.0 n 5 % 50 V 0402 C614 2320584 Ceramic cap. 1.0 n 5 % 50 V 0402 C616 2320584 Ceramic cap. 1.0 n 5 % 50 V 0402 C617 2320584 Ceramic cap. 1.0 n 5 % 50 V 0402 C618 2320620 Ceramic cap. 10 n 5 % 16 V 0402 C619 2320592 Ceramic cap. 2.2 n 5 % 50 V 0402 C620 2320560 Ceramic cap. 100 p 5 % 50 V 0402 C621 2320526 Ceramic cap. 3.9 p 0.25 % 50 V 0402 C622 2320526 Ceramic cap. 3.9 p 0.25 % 50 V 0402 C623 2320536 Ceramic cap. 10 p 5 % 50 V 0402 C624 2320564 Ceramic cap. 150 p 5 % 50 V 0402 C640 2320131 Ceramic cap. 33 n 10 % 16 V 0603 C641 2320131 Ceramic cap. 33 n 10 % 16 V 0603 C666 2320546 Ceramic cap. 27 p 5 % 50 V 0402 C671 2320546 Ceramic cap. 27 p 5 % 50 V 0402 C700 2320546 Ceramic cap. 27 p 5 % 50 V 0402 C703 2310248 Ceramic cap. 4.7 n 5 % 50 V 1206 C704 2320620 Ceramic cap. 10 n 5 % 16 V 0402 C705 2320568 Ceramic cap. 220 p 5 % 50 V 0402 C706 2312401 Ceramic cap. 1.0 u 10 % 10 V 0805 C707 2320576 Ceramic cap. 470 p 5 % 50 V 0402
Original 05/98
Page 3 – 65
NSK–3
PAMS
C708 2310248 Ceramic cap. 4.7 n 5 % 50 V 1206 C709 2320544 Ceramic cap. 22 p 5 % 50 V 0402 C710 2320546 Ceramic cap. 27 p 5 % 50 V 0402 C711 2320536 Ceramic cap. 10 p 5 % 50 V 0402 C714 2312401 Ceramic cap. 1.0 u 10 % 10 V 0805 C716 2320560 Ceramic cap. 100 p 5 % 50 V 0402 C718 2320536 Ceramic cap. 10 p 5 % 50 V 0402 C719 2320536 Ceramic cap. 10 p 5 % 50 V 0402 C720 2320620 Ceramic cap. 10 n 5 % 16 V 0402 C721 2312401 Ceramic cap. 1.0 u 10 % 10 V 0805 C722 2320584 Ceramic cap. 1.0 n 5 % 50 V 0402 C728 2312401 Ceramic cap. 1.0 u 10 % 10 V 0805 C730 2320544 Ceramic cap. 22 p 5 % 50 V 0402 C734 2312401 Ceramic cap. 1.0 u 10 % 10 V 0805 C735 2312401 Ceramic cap. 1.0 u 10 % 10 V 0805 C760 2320584 Ceramic cap. 1.0 n 5 % 50 V 0402 C761 2320546 Ceramic cap. 27 p 5 % 50 V 0402 C762 2320508 Ceramic cap. 1.0 p 0.25 % 50 V 0402 C771 2320546 Ceramic cap. 27 p 5 % 50 V 0402 C772 2320518 Ceramic cap. 1.8 p 0.25 % 50 V 0402 C773 2320546 Ceramic cap. 27 p 5 % 50 V 0402 C774 2320518 Ceramic cap. 1.8 p 0.25 % 50 V 0402 C775 2320546 Ceramic cap. 27 p 5 % 50 V 0402 C800 2312401 Ceramic cap. 1.0 u 10 % 10 V 0805 C801 2320779 Ceramic cap. 100 n 10 % 16 V 0603 C802 2320544 Ceramic cap. 22 p 5 % 50 V 0402 C803 2320544 Ceramic cap. 22 p 5 % 50 V 0402 C811 2312401 Ceramic cap. 1.0 u 10 % 10 V 0805 L105 3203701 Ferrite bead 33r/100mhz 0805 0805 L109 3203701 Ferrite bead 33r/100mhz 0805 0805 L500 3645105 Chip coil 27 n 5% Q=12/100MHz 0603 L501 3645105 Chip coil 27 n 5% Q=12/100MHz 0603 L502 3645105 Chip coil 27 n 5% Q=12/100MHz 0603 L503 3645105 Chip coil 27 n 5% Q=12/100MHz 0603 L601 3645105 Chip coil 27 n 5% Q=12/100MHz 0603 L602 3645105 Chip coil 27 n 5% Q=12/100MHz 0603 L603 3645183 Chip coil 56 n 5% Q=12/100MHz 0603 L607 3645037 Chip coil 150 n 10% Q=15/25MHz 0603 L608 3645037 Chip coil 150 n 10% Q=15/25MHz 0603 L609 3645037 Chip coil 150 n 10 % Q=15/25MHz
L610 3645179 Chip coil 2 n Q=8/100M 0603 L611 3645181 Chip coil 3 n 10% Q=10/100MHz
L701 3641206 Chip coil 10% Q=25/7.96MHz L703 3645129 Chip coil 18 n 5 % Q=8/100M 0603
Technical Documentation
0603
0603 1008
Page 3 – 66
Original 05/98
PAMS
NSK–3
Technical Documentation
B150 4510159 Crystal 32.768 k +–20PPM G701 4350131 Vco 1310–1393 mhz 2.8v 10ma pcn G702 4350103 Vco 800mhz 2.8v 7ma G703 4510167 VCTCXO 13.0 M +–5PPM 2.8V DCS F100 5119019 SM, fuse f 1.5a 32v 0603 Z100 3640035 Filt z>450r/100m 0r7max 0.2a 0603 0603 Z101 3640035 Filt z>450r/100m 0r7max 0.2a 0603 0603 Z102 3640035 Filt z>450r/100m 0r7max 0.2a 0603 0603 Z103 3640035 Filt z>450r/100m 0r7max 0.2a 0603 0603 Z104 3640035 Filt z>450r/100m 0r7max 0.2a 0603 0603 Z401 4510077 Dupl 1710–1785/1805–1880mhz 20x14 20x14 Z503 4511021 Saw filter 1747.5+–37.5 M 3X3 Z505 4550033 Cer.filt 1747.5+–37.5mhz 6.4x5.5 6.4x5.5 Z511 3640069 Filt 47pf 25v 0r01 6a 1206 Z604 4550039 Cer.filt 1842.5+–37.5mhz 7.7x4.5 7.7x4.5 Z605 4511001 Saw filter 87+–0.12 M Z606 4510009 Cer.filt 13+–0.09mhz 7.2x3.2 7.2x3.2 Z621 4511033 Saw filter 487+–0.2 M /4.5DB 4X4 V104 4200877 Transistor BCX51–16 pnp 45 V 1.5 A SOT89 V109 4110067 Schottky diode MBR0520L 20 V 0.5 A SOD123 V111 4110072 Diode x 2 BAV99W 70 V 0.2 A SOT323 V112 4110072 Diode x 2 BAV99W 70 V 0.2 A SOT323 V113 4110072 Diode x 2 BAV99W 70 V 0.2 A SOT323 V115 4110079 Sch. diode x 2 HSMS282C 15 V SOT323 V300 4210100 Transistor BC848W npn 30 V SOT323 V501 4110079 Sch. diode x 2 HSMS282C 15 V SOT323 V502 4110072 Diode x 2 BAV99W 70 V 0.2 A SOT323 V504 4210119 Transistor BC849CW npn 30 V 0.1 A SOT323 V505 4210052 Transistor DTC114EE npn RB V EM3 V506 4202671 MosFet BST82 n–ch 80 V 175 mA
V507 4210052 Transistor DTC114EE npn RB V EM3 V508 4112451 Pindi bar63–03w 50v 0.1a sod323 SOD323 V509 4210052 Transistor DTC114EE npn RB V EM3 V510 4210074 Transistor BFP420 npn 4. V SOT343 V511 4210052 Transistor DTC114EE npn RB V EM3 V600 4210015 Transistor BFP405 npn 4. V SOT343 V710 4210100 Transistor BC848W npn 30 V SOT323 V720 4210074 Transistor BFP420 npn 4. V SOT343 V801 4210052 Transistor DTC114EE npn RB V EM3 V802 4210102 Transistor BC858W pnp 30 V 100 mA
D100 4340387 IC, 2xbilateral switch sso TC7W66FU SSOP8 D200 4370279 Mad2 rom3 f711604 c12 tqfp176 TQFP176 D210 4340261 IC, flash mem. TSO48 D221 4340273 IC, SRAM STSOP32 D230 4342264 IC, EEPROM SO8S
SOT23
200MWSOT323
Original 05/98
Page 3 – 67
NSK–3
PAMS
D800 4340369 IC, dual bus buffer ssoTC7W126FU SSOP8 N100 4370047 Ccont 2f dct3 bb asic tqfp64 TQFP64 N110 4370165 Chaps charger control so16 SO16 N200 4340413 IC, regulator TK11230BMC 3.0 V SOT23L N300 4370317 Cobba_gj b07 bb asic dct3 tqfp64 TQFP64 N401 4370273 Plussa txmod+rxif+2pll tqfp64 TQFP64 N402 4370245 Crfu2a_v3 comrfunit >2.7v tssop28 TSSOP28 N500 4370275 Rf9112 pw amp 1800mhz psop2–16 PSOP2–16 N501 4340389 Bcr400w bias controller sot343 SOT343 N800 4860031 Tfdu4100 irda tx/rx>2.7v 115kbits 115KBITS S080 5219005 IC, SWsp–no 30vdc 50ma smSW TACT SMD S081 5219005 IC, SWsp–no 30vdc 50ma smSW TACT SMD X099 5460021 SM, conn 2x14m spring p1.0 pcb/p PCB/PCB X101 5469069 SM, batt conn 2pol spr p3.5 100v 100V2A X102 5469069 SM, batt conn 2pol spr p3.5 100v 100V2A X131 5469061 SM, system conn 6af+3dc+mic+jack X150 5400085 Sim card reader 2x3pol p2.54 sm SM X451 5429007 SM, coax conn m sw 50r 0.4–2ghz A500 9517013 SM, d rf shield pa–can dmc00455
9380753 Bar code label dmd03311 27x6.5 27x6.5 9854170 PCB UR4_24 41.0X123.25X1.0 M6 4/P
Technical Documentation
Page 3 – 68
Original 05/98
Loading...