This document contains the proprietary information of
NEC Energy Solutions, Inc. and may not be reproduced,
retransmitted or redistributed, either in whole or in part, for
any reason without NEC Energy Solutions’ prior written
consent.
THE INFORMATION CONTAINED IN THIS MANUAL IS THE PROPERTY OF NEC ENERGY SOLUTIONS, INC.
(“NEC ENERGY SOLUTIONS”) AND IS SUBJECT TO CHANGE WITHOUT NOTICE. NEC ENERGY SOLUTIONS
RESERVES THE RIGHT TO MAKE CHANGES IN THE DESIGN OF ITS PRODUCTS OR COMPONENTS AS
PROGRESS IN ENGINEERING AND MANUFACTURING MAY WARRANT. IT IS THE CUSTOMER’S
RESPONSIBILITY TO SATISFY ITSELF AS TO WHETHER THE INFORMATION CONTAINED HEREIN IS
ADEQUATE AND SUFFICIENT FOR A USER'S PARTICULAR USE. IT IS THE FURTHER RESPONSIBILITY OF
EACH USER TO ENSURE THAT ALL APPLICATIONS OF NEC ENERGY SOLUTIONS' PRODUCTS ARE
APPROPRIATE AND SAFE BASED ON CONDITIONS ANTICIPATED OR ENCOUNTERED DURING USE.
CUSTOMER’S MISUSE OF THE PRODUCTS OR
MALFUNCTION OF THE PRODUCTS THAT MAY CAUSE
ASSOCIATED WITH SUCH USE. THIS DOCUMENT DOES NOT CREATE ANY ADDITIONAL OBLIGATION FOR
NEC ENERGY SOLUTIONS AND DOES NOT CONSTITUTE ADDITIONAL WARRANTIES AND
REPRESENTATIONS.
Trademarks
MODIFICATION OF THE PRODUCTS MAY LEAD TO
INJURY AND CUSTOMER ASSUMES ALL RISKS
NEC and the NEC logo are registered trademarks of NEC Corporation. ALM is a registered trademark and
EverSafe is a trademark of NEC Energy Solutions, Inc. A123 Systems and Nanophosphate are registered
trademarks of A123 Systems, LLC. All other trademarks used herein are the property of their respective owners.
Comments and Questions about this Documentation
Please call NEC Energy Solutions Technical Support at (508) 497-7100
This document contains the proprietary information of NEC Energy Solutions, Inc. (“NECES”) and may not be modified,
reproduced, retransmitted or redistributed, either in whole or in part, for any reason without NECES’ prior written consent.
ALM® 12V7 s-Series User’s Guide
NOTE
REMARQUE
CAUTION
ATT ENTIO N
About this Guide
Preface
This
ALM 12V7 s-Series batteries. It also provides guidance on safely and effectively configuring,
and operating ALM 12V7 s-Series batteries as building blocks in various applications.
®
ALM
12V7 s-Series User’s Guide provides detailed specifications for the
Intended Users
This
configuring and installing ALM 12V7 s-Series batteries.
®
ALM
12V7 s-Series User’s Guide is intended for all personnel involved in designing,
Conventions Used in this Guide
Notes, Caution, Warning, and Danger Notices
A Notice presents information that is important, but not hazard-related.
Un avis présente des informations importantes mais pas en rapport avec des situations
dangereuses.
A CAUTION notice identifies conditions or practices that could result in minor or
moderate injury, or damage to the equipment.
Une MISE EN GARDE contient des informations essentielles pour éviter des dommages
au système ou à l'équipement. La mise en garde pourrait s'appliquer au matériel ou au
logiciel.
This document contains the proprietary information of NEC Energy Solutions, Inc. (“NECES”) and may not be modified,
reproduced, retransmitted or redistributed, either in whole or in part, for any reason without NECES’ prior written consent.
ALM® 12V7 s-Series User’s Guide Preface
WARNING
AVERTISSEMENT
DANGER
DANGER
A WARNING notice contains information essential to avoid a hazard that can cause
severe personal injury, death, or substantial property damage if you ignore the
warning.
Un AVERTISSEMENT contient des informations essentielles pour éviter un danger qui
peut causer des blessures corporelles graves, la mort ou des dommages matériels
importants si vous ignorez l'avertissement.
A DANGER notice contains information essential to avoid a hazard that will cause
severe personal injury, death, or substantial property damage if you ignore the
message.
Un avis de DANGER contient des informations essentielles pour éviter un danger qui
causera des blessures corporelles graves, la mort ou des dommages matériels
importants si vous ignorez le message.
reproduced, retransmitted or redistributed, either in whole or in part, for any reason without NECES’ prior written consent.
This document contains the proprietary information of NEC Energy Solutions, Inc. (“NECES”) and may not be modified,
ALM® 12V7 s-Series User’s Guide
Chapter 1
Chapter 1: Introducing the ALM® 12V7 s-Series Batteries
Introducing the ALM® 12V7 s-Series Batteries
Overview
NEC Energy Solutions’ ALM 12V7 s-Series batteries are the next generation of the ALM 12V7
product line of lithium-ion batteries (Figure 1). ALM 12V7 s-Series batteries are designed as
drop‐in replacements for 12-volt, lead-acid batteries. They provide improved performance
with
higher power, increased safety and exceptional calendar and cycle life compared to
12-volt, lead-acid batteries. They typically serve as a standby power source in many
high‐availability and service‐critical applications
.
The ALM 12V7 s-Series batteries are identical in size to common 7Ah, 12-volt, lead-acid
teries and designed to be compatible with most lead-acid chargers. This combination
bat
reduces product integration costs, minimizes OEM customer’s time to market and
aftermarket customer replacement hurdles.
The ALM 12V7 s-Series consists of the following models:
•The ALM 12V7s is a
•Deliver 66 watts for one 1 hour
•Deliver 190 watts for 20 minutes
•Deliver up to 350 watts in one-second pulses
•Be fully charged (from 0 to 100%) in approximately 15 minutes
•The ALM 12V7s
•Deliver 590 watts for six minutes
•Deliver up to 700 watts in one-second pulses
•Be fully charged (from 0 to 100%) in approximately 7 minutes
Each ALM 12V7 s-Series battery has integrated EverSafe™ protection and balancing circuitry
(Figure 2) that safeguard the battery from over‐voltage, under‐voltage, short-circuit and
over‐temperature conditions. At the core of the ALM 12V7 s-Series are eight A123 Systems®
M1B cells in a four‐series, two‐parallel (4S2P) configuration.
ANR26
650
standard series, base power model. It can:
HP is a standard series, high power model. It can:
This document contains the proprietary information of NEC Energy Solutions, Inc. (“NECES”) and may not be modified,
reproduced, retransmitted or redistributed, either in whole or in part, for any reason without NECES’ prior written consent.
ALM® 12V7 s-Series User’s Guide
Chapter 2: Regulatory Compliance
Regulatory Compliance
Overview
ALM 12V7 s-Series batteries are compliant with, or tested to, the following regulatory
standards:
•UL 1973 Recognized – Batteries for use in Light Electric Rail (LER) Applications and
Stationary Applications.
Chapter 2
•cUL Recognized to CAN/CSA C22.2 # 60950-1 – Information Technology Equipment
Safety - Part 1: General Requirements.
•IEC61000-6-1 (Generic standards – Immunity for residential, commercial and lightindustrial environments).
•IEC61000-6-2 (Generic standards – Immunity for industrial environments).
•IEC61000-6-3 (Generic standards – Emission standard for residential, commercial and
light-industrial environments).
•IEC61000-6-4 (Generic standards – Emission standard for industrial environments).
•IEC 62133 – Secondary cells and batteries containing alkaline or other non-acid
electrolytes – Safety requirements for portable sealed secondary cells, and for batteries
made from them, for use in portable applications – tested and certified.
•CE – Recognized to EU consumer safety, health and environmental regulations. Signifies
conformity with EMC directive (2004/108/EC).
•FCC Part 15 Subpart B Class B – Standards regulating unintentional emissions of radio
frequencies from a digital device. This device complies with part 15 of the FCC Rules.
Operation is subject to the following two conditions:
•This device may not cause harmful interference.
•This device must accept any interference received, including interference that may
cause undesired operation.
•CISPR 22 Information technology equipment – Radio disturbance characteristics - Limits
and methods of measurement
•EN55011 Industrial, scientific and medical equipment – Radio- frequency disturbance
characteristics limits and methods of measurement
•EN 55022 Information Technology Equipment – Radio Disturbance characteristics Limits
and methods of measurement
•VCCI Class B ITE emissions
•ICES-003 Information Technology Equipment (ITE) – Limits and Methods of Measurement
•UN 38.3 – Meets section 38.3 of the UN Recommendations on the Transport of
Da
ngerous Goods – Manual of Test Criteria.
Table 1 describes the ALM 12V7 s-Series product line and U
conventions used for thir
d-party certification.
Table 1 ALM 12V s-Series Product Line Names UL Model Numbers
Regulatory Model NumbersALM 12V7 s-Series Battery Model Names
PSL00000412V7s
PSL00000512V7s HP
Environmental Regulations
ALM 12V7 s-Series batteries are compliant with the following applicable environmental
regulations.
•EU Directive 2011/65/EC on the Restriction of the use of certain Hazardous Substances
(Ro
HS) in electrical and electronic equipment (recast)
•EU Directive 2006/66/EC on batteries and accumulators and waste batteries and
ac
cumulators
•EU Directive 1907/2006 on the Registration Evaluation Authorization and Restriction of
Chemicals (REACH)
L regulatory model number
•Management Methods for Contr
Products Regulation (China RoHS)
olling Pollution Caused by Electronic Information
Transporting Lithium-Ion Batteries
The material presented in this guide is not all-inclusive of the regulations required to ship a
product, but is meant to inform you of the complexity involved in doing so. The information
contained herein is for informational purposes only and is not legal advice or a substitute for
legal counsel.
Anyone involved in the integrat
review and meet the regulations cited in this guide. Additionally, the regulations discussed in
this guide apply to lithium-ion cells and batteries. Once an ALM 12V7 s-Series battery is
integrated into a host product, the host product may be subject to additional transportation
regulations that require additional certification testing. Since NEC Energy Solutions can’t
anticipate every possible configuration and application of an ALM 12V7 s-Series battery, the
integrator must verify that the ALM 12V7 s-Series-powered host product is compliant with all
applicable regulations. Refer to
numbers required for shipping lithium-ion batteries.
Table 3 on page 14 for a list of proper names and UN
Regulations Overview
Rechargeable lithium-ion (including lithium-ion polymer) cells and batteries are considered
dangerous goods. The regulations that govern their transport are based on the UN
Recommendations on the Transport of Dangerous Goods Model Regulations. Transport of
dangerous goods is regulated internationally by:
In the United States, transportation of hazardous material is regulated by Title (part) 49 of the
Code of Federal Regulations or CFR’s. Title 49 CFR Sections 100-185 of the U.S. Hazardous
Materials Regulations (HMR) contains the requirements for transporting cells and batteries.
Refer to the following sections within 49 CFR for specific information.
•Section 173.185 – Shipping requirements for lithium cells and batteries
•Section 172.102 – Special Provisions
•Sections 172.101, 178 – Further information and specifications on packaging
The Office of Pipeline and Hazardous Materials Safety Administration (PHMSA), which is
within the U.S. Department of Transportation (DOT), is responsible for drafting and writing the
U.S. regulations that govern the transportation of hazardous materials (also known as
dangerous goods) by air, ground, and ocean.
Regulations by Cell/Battery Size
Lithium-ion batteries and cells are considered Class 9, which is one of nine classes of
hazardous materials or dangerous goods defined in the regulations. As a class 9 material,
cells and batteries must meet UN testing and packaging requirements as well as shipping
regulations.
Following International and U.S. DOT Regulations
Failure to comply with International and U.S. DOT regulations while transporting Class 9
Hazardous Materials (Dangerous Goods) may result in substantial civil and criminal penalties.
Table 2 outlines an example process to help ensure that batteries are shipped per the
required regulations.
Table 2 Example of Steps to Obtain or Ensure Regulatory Compliance
Step NumberProcess stepComments
1Design the battery pack.
Design the battery pack to ensure it will pass UN Manual of Tests and
Criteria.
Ship the battery pack to a UN
2A
test house if using an
38.3
Use the “Prototype” shipping special provisions provided in the regulations.
outside test laboratory.
2BTest the battery pack. Perform UN testing T1-T5, & T7 for batteries.
3Obtain UN compliant packaging.
All Class 9 Dangerous Goods (DG) must be shipped in UN compliant
ging.
a
packa
4Package the cell or battery.Pack per regulations and per packaging manufacturer's instructions.
5Mark and label the package.
6
Fill out the shipping
documenta
tion.
Insure that packaging container has all the required labeling. Table 3 lists
proper shipping names and descriptions for lithium-ion batteries.
Complete shipper's declaration for dangerous goods, airway bill, etc.
Ensure that shipping company can ship dangerous goods and that a Safety
Da
7Ship the package.
a.
U.S. and international regulations require that anyone involved in the packaging, documentation, and labeling of Dangerous Goods for
transportation must be trained to do so.
ta Sheet (or equivalent document) and any Competent Authority Approval
accompanies the package.
a
a
a
Table 3 shows the proper shipping names and UN numbers required for shipping lithium-ion
batteries.
Table 3 Proper Shipping Names and UN Numbers
Proper Shipping NameDescription
Lithium ion batteriesUN 3480
Lithium ion batteries packed with equipmentUN 3481
Lithium ion batteries contained in equipmentUN 3481
This document contains the proprietary information of NEC Energy Solutions, Inc. (“NECES”) and may not be modified,
reproduced, retransmitted or redistributed, either in whole or in part, for any reason without NECES’ prior written consent.
ALM® 12V7 s-Series User’s Guide
WARNING
CAUTION
AVERTISSEMENT
Chapter 3: Handling, Storage and Installation
Handling, Storage and Installation
Safety and Handling
ALM 12V7 s-Series batteries are more abuse tolerant than other lithium-ion batteries;
however, correct handling and system integration of ALM 12V7 s-Series batteries are still
important to ensure safe operation.
Chapter 3
Failure to follow these warnings may result in personal injury or damage to the
equipment.
•Do not expose the ALM 12V7 s-Series battery to heat in excess of 60°C during
operation or in storage; do not incinerate or expose to open flames.
•Do not connect ALM 12V7 s-Series batteries to batteries of other chemistries or
ALM batteries of different capacities. For example, do not connect an
ALM 12V7 s-Series battery to any lead‐acid battery or to an ALM 12V35.
Do not charge or discharge an ALM 12V7 s-Series battery outside of its stated
operating temperature range. Reduce charging limits for lower operating
temperatures for longer life of the batteries.
Ne pas suivre ces avertissements peut entraîner des blessures ou des dommages a
l’équipement.
•Ne pas exposer les batteries ALM 12V7 s-Séries à une chaleur dépassant les 60°C
pendant son fonctionnement ou son entreposage; ne pas l'incinérer ou l'exposer à des
flammes nues.
reproduced, retransmitted or redistributed, either in whole or in part, for any reason without NECES’ prior written consent.
•Ne pas connecter les batteries ALM 12V7 s-Séries avec des batteries d'autres
compositions chimiques ou avec des batteries ALM de différentes capacités. Par
exemple, ne pas connecter une batterie 12V7 s-Séries avec une batterie
d'accumulateurs au plomb ou avec une batterie ALM 12V35.
This document contains the proprietary information of NEC Energy Solutions, Inc. (“NECES”) and may not be modified,
ALM® 12V7 s-Series User’s GuideChapter 3: Handling, Storage and Installation
ATT ENTIO N
Ne pas charger ou décharger la batterie ALM 12V7 s-Séries en dehors de sa plage de
température fonctionnelle indiquée. Réduire les limites de chargement pour les
températures fonctionnelles plus basses pour la durée de vie des batteries.
The advanced design of the ALM 12V7 s-Series is intended to provide protection against
operation under many unsafe conditions such as over voltage, under voltage, over
temperature and short circuit. Proper use within the limits stated in
ALM® 12V7 s-Series Specifications, starting on page 23, is required to ensure operator and
equipment safety as well as battery life.
Chapter 4,
Mounting
The ALM 12V7 s-Series batteries may be installed in any orientation.
The ALM 12V7 s-Series battery case, including its top cover is capable of sustaining a
mounting force of up to 200
holding bracket across the center of the unit. Exertions beyond this level may result in
deforming of the plastic.
Newtons spread over a one-inch-wide (2.5 cm-wide) bar or
Montage
Les batteries de 12V7 s-Séries ALM peut être installé dans n'importe quelle direction.
Le boîtier de la batterie ALM 12V7 s-Séries, y compris le couvercle supérieur, peut soutenir
une charge allant jusqu'à 200 Newtons répartie sur une barre d'un pouce (2,5 cm) de largeur
ou sur une équerre de fixation traversant le centre de l'unité. Des efforts plus grands peuvent
provoquer une déformation de la matière plastique.
Battery Configuration Options
ALM 12V7 s-Series batteries may be arranged in series and/or in parallel configurations to
achieve higher operating voltages and capacities to meet the requirements of the intended
application, up to a maximum of 48 volts (four in series) and 50 Ah (ten in parallel).
Wiring Connections
To connect ALM 12V7 s-Series batteries, use appropriate sized AWG wire and connectors
that are rated for the maximum current and temperature expected.
provides guidance on the conditions under which the battery may encounter internal thermal
or external terminal touch temperature limits.
The battery can accommodate a maximum inductance of 5 μH. For reference, 5 μH is
equivalent to 3 meters (10 feet) of individual standalone cable. In a battery system, cable
This document contains the proprietary information of NEC Energy Solutions, Inc. (“NECES”) and may not be modified,
reproduced, retransmitted or redistributed, either in whole or in part, for any reason without NECES’ prior written consent.
ALM® 12V7 s-Series User’s GuideChapter 3: Handling, Storage and Installation
CAUTION
ATT ENTIO N
length inductance includes all terminal-to-terminal connections as well as cabling to charge
sources and load for both the positive and negative conductors added together. It is possible
to reduce a battery system’s total cable inductance by orienting positive and negative
conductors to cancel each other’s electromagnetic induction, thus allowing for longer total
cable length. Contact NEC Energy Solutions Technical Support for assistance in determining
appropriate wiring and bus bar configurations to address current sharing and stray
inductance requirements.
•Exceeding the maximum inductance limit of 5 μH during operation could cause
voltage spikes or current surges resulting in possible damage to the
ALM 12V7 s-Series battery’s circuitry.
•Do not connect the ALM 12V7 s-Series to an inductive load such as a DC motor
without the use of a motor controller. An “on-off” switch does not constitute a
motor controller. Using the batteries directly with DC motors can permanently
damage the battery. Contact NEC Energy Solutions Technical Support for further
assistance.
Connexions de Câblage
Pour connecter les batteries ALM 12V7 s-Séries, utilisez un câble AWG de la bonne taille et les
tenons classifiés pour le courant et la température maximum prévus. Tableau 12 à la page 32
fournit des directives sur les conditions dans lesquelles la batterie pourrait dépasser les limites
de température de contact de borne externe ou thermique interne.
La batterie peut accepter une inductance maximum de 5 µH. Comme référence, 5 µH est
équivalent à 3 mètres (10 pieds) de câble autonome individuel. Dans un système de batterie,
la longueur du câble inducteur comprend toutes les connexions de borne à borne, ainsi que le
câblage pour recharger les sources et les charges pour les conducteurs positif et négatif
combinés. Il est possible de réduire l'inductance totale de câble d'un système de batterie en
orientant les conducteurs positif et négatif pour annuler mutuellement l'induction
électromagnétique, permettant ainsi une plus grande longueur de câble totale. Contactez le
support technique de NEC Energy Solutions pour vous aider à déterminer les configurations de
câblage et de barres omnibus appropriées pour traiter le partage de courant et les exigences
d'inductance parasite.
•Le dépassement de la limite d’inductance maximale en fonctionnement de 5 µH
pourrait causer des pointes de tension ou de courant et causer des dommages aux
circuits de la batterie ALM 12V7 s-Séries.
•Ne branchez pas la batterie ALM 12V7 s-Séries à une charge inductive, telle qu’un
moteur à courant continu, sans l’utilisation d’un dispositif de commande de moteur. Un
interrupteur « marche-arrêt » ne constitue pas un dispositif de commande de moteur.
L’utilisation des batteries directement avec les moteurs à courant continu peut
endommager définitivement celles-ci. Contactez l’assistance technique de
NEC Energy Solutions pour obtenir de l’aide.
This document contains the proprietary information of NEC Energy Solutions, Inc. (“NECES”) and may not be modified,
reproduced, retransmitted or redistributed, either in whole or in part, for any reason without NECES’ prior written consent.
ALM® 12V7 s-Series User’s GuideChapter 3: Handling, Storage and Installation
NOTE
Terminal Specifications
ALM 12V7 s-Series batteries use copper terminals with tin plating. The terminals have a
maximum operating temperature rating of 90 °C. They are intended to mate with standard
female 0.25 inch (6,35 cm) “quick connect” terminals (TE Connectivity FASTON or
equivalent). Attach cable by inserting connector fully until the round locking detent has
engaged the center hole.
Configuring Batteries in Series Strings
To achieve higher operating voltages, arrange the ALM 12V7 s-Series batteries in series
strings by connecting the positive terminal of one battery to the negative terminal of the next
battery, as shown in Figure 3.
The following battery string wiring examples provide general configuration information. Actual wire
configurations must be evaluated for their particular application.
The array voltage can be calculated as follows:
•Two batteries in series: 2 x 13.2 V = 26.4 V (nominal) for 24 V applications
•Three batteries in series: 3 x 13.2 V = 39.6 V (nominal) for 36 V applications
•Four batteries in series: 4 x 13.2 V = 52.8 V (nom
The maximum number of ALM 12V7 s-Series batteries that may be connected in series is
fo
ur.
Figure 3 illustrates three ALM 12V7 s-Series batteries connected
parallel (3S1P) configuration.
inal) for 48 V applications
in a three-series, one-
Figure 3 Three ALM 12V7 s-Series Batteries Connected in Series Creating a 3S1P Configuration
This document contains the proprietary information of NEC Energy Solutions, Inc. (“NECES”) and may not be modified,
reproduced, retransmitted or redistributed, either in whole or in part, for any reason without NECES’ prior written consent.
ALM® 12V7 s-Series User’s GuideChapter 3: Handling, Storage and Installation
WARNING
Configuring Batteries in a Parallel Group (1S2P up to 4S10P)
To achieve higher capacity, arrange the batteries in a single series (1S) parallel group by
connecting all like‐polarity wires on adjacent batteries to an appropriately sized terminal
block for your application. To ensure even loading, make two star connections; one for the
positive battery terminals and one for the negative battery terminals. The cable lengths in
each star group should be of approximately equal measure as permitted by the physical
layout. From each star connection, use a twisted pair of cables to the load.
Reference local electrical codes and/or relevant standards for terminal block specifications.
Bus bar connections are recommended for current exceeding 400 amps.
The nominal capacity for the parallel group can be calculated by multiplying the number of
batteries in the group by 5 Ah. For example, three batteries in parallel provides:
3 x 5 Ah = 15 Ah.
The maximum number of ALM 12V7 s-Series batteries that may be connected in parallel is
ten.
Series and Parallel Battery Configuration Warnings and Notices
When configuring the ALM 12V7 s-Series batteries in series or in parallel, adhere to
the following Warning notices:
•Do not connect more than four batteries in series. Connecting more than four
batteries in series may damage the battery’s circuitry, leaving the battery without
critical safety features such as over‐voltage and over‐temperature protection.
•Do not connect more than ten batteries in parallel.
•Configuring more than one series string of batteries in parallel is allowed under
certain circumstances. The maximum supported array is 4S10P. When designing
and constructing any series-parallel battery combinations, contact NEC Energy
Solutions Technical Support for assistance in determining appropriate wiring and
bus bar configurations to address current sharing and stray inductance
requirements.
•Consider inductance during system design. An ALM 12V7 s-Series battery can
accommodate a maximum inductance of 5 μH. Exceeding this limit during
operation will cause voltage or current spikes, resulting in possible damage to the
battery’s circuitry.
•Consider capacitance during system design. When a battery or battery group is
connected to a heavy duty charger, external capacitance may need to be added to
the circuity to address the output inductance of the charger. The CV
attached capacitor should be larger than the LI
inductance is the sum of the internal and external inductances.
This document contains the proprietary information of NEC Energy Solutions, Inc. (“NECES”) and may not be modified,
reproduced, retransmitted or redistributed, either in whole or in part, for any reason without NECES’ prior written consent.
ALM® 12V7 s-Series User’s GuideChapter 3: Handling, Storage and Installation
NOTE
AVERTISSEMENT
REMARQUE
The ALM 12V7 s-Series is UL Recognized as a standalone battery only and has not been evaluated
by UL (or any other regulatory agency) for series and/or parallel configuration.
NEC Energy Solutions has successfully conducted noncertification testing witnessed by UL on multibattery arrays in series/parallel configurations. It remains the end users responsibility to certify their own
unique solution.
Lors de la configuration des batteries en série ou parallèle, adhérer aux règles suivantes:
•Ne pas connecter plus de quatre batteries en série. La connexion de plus de quatre
batteries en série dépasse la limite de tension électrique de la circuiterie de protection
intégrée, laissant la batterie sans fonctionnalités de sécurité cruciales comme la
protection contre la surtension et la surchauffe.
•Ne connectez pas plus de dix batteries ou chaînes de batteries en parallèle.
•La configuration de plusieurs chaînes de batteries en parallèle est autorisée dans
certaines circonstances. Le réseau maximum supporté est 4S10P. Lors de la conception
et la construction de toutes les combinaisons de batteries série-parallèle, contactez NEC
Energy Solutions Support Technique pour vous aider à déterminer les configurations de
câblage et de barres omnibus appropriés pour traiter le partage de courant et les
exigences d inductance parasite.
•Envisager l'inductance lors de la conception du système. La batterie ALM 12V7 s-Séries
peut supporter une inductance maximum de 5 uH. Le dépassement de cette limite en
fonctionnement provoque des pointes de tension ou de courant, pouvant entraîner des
dommages aux circuits de la batterie.
•Envisager la capacité (Farads) lors de la conception du système. Quand un groupe de
batteries ou une batterie sont connectés à un chargeur de puissance élevée, il peut être
nécessaire d' ajouter à la circuiterie une capacité externe pour compenser l'inductance
de sortie du chargeur. Le CV
2
du condensateur CV doit être plus grande que la LI2 du
chargeur. L'inductance de charge est la somme des inductances internes et externes.
La batterie ALM 12V7 s-Séries est homologuée UL comme batterie autonome seulement et n'a pas
été évaluée par l'UL (ou tout autre organisme réglementaire) pour des configurations en série et/ou
parallèles.
NEC Energy Solutions a mené avec succès des tests non-accrédités vérifiés par UL sur plusieurs
gammes de batteries en configuration en série et/ou parallèle. Il est de la responsabilité de
l'utilisateur final de certifier leur propre solution.
reproduced, retransmitted or redistributed, either in whole or in part, for any reason without NECES’ prior written consent.
This document contains the proprietary information of NEC Energy Solutions, Inc. (“NECES”) and may not be modified,
ALM® 12V7 s-Series User’s GuideChapter 3: Handling, Storage and Installation
Transportation and Storage
When storing or transporting the ALM 12V7 s-Series batteries, NEC Energy Solutions
recommends the following:
•The ALM 12V7 s-Series batteries can be stored in an environment with average
temperatures between ‐40 °C and +35 °C, between 5% and 95% relative humidity,
noncondensing at altitudes up to 25,000ft (7600m). Storing the ALM 12V7 s-Series in
temperatures above +35°C can significantly reduce the battery’s state of charge as
further described in
•The ALM 12V7 s-Series batteries can be transported for up to two weeks in an
environment with temperatures above 35
feet (15,240 meters).
•ALM 12V7 s-Series batteries have been tested to 11.6 kPa 20 °C ±5 °C at 20 °C ±5 °C.
Shelf Life on page 42.
°C up to 80 °C and at altitudes up to 50,000
Transport et Entreposage
Lors du stockage ou du transport des batteries ALM 12V7 s-Séries, NEC Energy Solutions
recommande la suite:
•Les batteries ALM 12V7 s-Séries peuvent être stockées dans un environnement avec des
températures moyennes comprises entre -40 °C et 35 °C, entre 5% et 95% d'humidité
relative, sans condensation, et à des altitudes jusqu'à 25,000 pieds (7600m). Stockage de
l' ALM 12V7 s-Séries à des températures supérieures à 35 °C peut réduire de façon
significative l'état de charge et le temps de stockage tel que décrit dans la durée de
conservation à la page 43 de ce document.
•L'ALM 12V7 s-Séries peuvent être transportées jusqu'à deux semaines dans un
environnement avec des températures supérieures à 35 °C à 80 °C et jusqu'à une altitude
de 50,000 pieds (15,240 m).
•Les batteries ALM 12V7 s-Séries ont été testées à 11,6 kPa (50,000 pieds) 20 °C ±5 °C.
Operating Environment
The ALM 12V7 s-Series batteries can be operated in an environment with temperatures
between ‐40 °C and +60 °C, between 5% and 95% relative humidity, noncondensing, at
altitudes up to 15,000
specifications.
feet (4572 meters). Refer to Table 5, on page 24 for environmental
Environnement d'exploitation
La batterie ALM 12V7 s-Séries peut être utilisée dans un environnement avec des
températures comprises entre -40 °C et +60 °C, entre 5% et 95%, d‘humidité relative, sans
condensation jusqu‘a une altitude de 15000 pieds (4572 m). Reportez vous a la Tableau 7 à la
page 26, des Spécifications Environnementales.
This document contains the proprietary information of NEC Energy Solutions, Inc. (“NECES”) and may not be modified,
reproduced, retransmitted or redistributed, either in whole or in part, for any reason without NECES’ prior written consent.
ALM® 12V7 s-Series User’s GuideChapter 3: Handling, Storage and Installation
Disposal
Do not incinerate or dispose of any ALM 12V7 s-Series batteries. Return end‐of‐life or
defective batteries to your nearest recycling center per the appropriate local regulations.
Élimination
Ne pas incinérer ou jeter la batteries ALM 12V7 s-Séries. Retourner les batteries en fin de vie
ou défectueuses à votre centre de recyclage le plus proche en respectant les réglementations
locales appropriées.
Maximum Continuous Charge and Discharge Current to 100% a
Maximum Pulse Charge and Discharge Current
Nominal Operational Voltage13.2 V
Minimum Operational Voltage8.0 V
Minimum Charge Voltage (for 10% State of Charge)12.0 V
Maximum Charge Voltage (CC or CV) 16 V
Recommended Float Charge Voltage13.6 V to 14.4 V
Nominal Capacity5 Ah
Minimum Capacity at BOL4.8 Ah
Maximum Ripple Current at lo
a.
Continuous current (charge or discharge) is defined as occurring over a single full-charge or full-discharge cycle.
b.
Current that exceeds this value will be interrupted by the battery’s protection circuitry.
c.
Although high ripple current at low frequencies (60Hz/120Hz) is not recommended, the ALM 12V7 s-Series battery will support
average ripple current with peaks up to 53 amps without any adverse effects. As a comparative example, the maximum ripple
current for a typical AGM (absorbent glass mat) 12 volt 7 Ah VRLA battery (@ 20hr rate) would be 7 Ah/20 hr or 0.35 amps.
Tableau 6 Spécifications Electriques de l' 12V7 s-Séries ALM
SpécificationDescription
Courant de charge et décharge continu maximum à une capacité
de décharge de 100% à 25 °C
a
23 Ampères (ALM 12V7s)
45 Ampères (ALM 12V7s HP)
b
b
Pour les limites actuelles basée sur le temps
Courant de charge et décharge de pointe de puissance
maximum
- impulsions, reportez-vous à Protection
contre les surintensités à la page 28 et la
Figure 5 à la page 29.
Tension fonctionnelle nominale13,2 volts
Tension fonctionnelle minimum8,0 volts
Tension de charge minimum (pour état de charge de 10%)12,0 volts
Tension de charge maximum (CC ou TC) 16,0 volts
Tension de charge de maintien recommandée 13,6 volts à 14,4 volts
Capacité nominale5,0 Ah
Capacité minimum en début de vie4,8 Ah
Courant ondulatoire maximum à faibles fréquences
(60Hz/120Hz)
a.
Courant continu est défini comme se produisant sur un cycle complet de charge ou de decharge.
b.
Le courant qui dépasse cette valeur sera interrompu par la circuiterie de protection de la batterie.
c.
Bien haute courant d'ondulation aux basses fréquences (60 Hz/120 Hz) ne est pas recommandé, l’ batterie ALM 12V7
s-Séries soutiendra courant d'ondulation moyenne avec des pointes jusqu'à 53 ampères sans aucun effet indésirable.
Comme exemple comparatif, le courant maximal d'ondulation pour une AGA typique (mat de verre absorbante) de 12
volts 7ampères de la batterie VRLA (@ 20hr de taux) serait cinq ampères / 20 h ou 0,35 ampères.
Humidité relative fonctionnelle (sans condensation)5% à 95%
Note de l'environnement pour boîtier de batterie
Recommandées environnement de stockage conditions
Conforme aux normes IEC60529 - IP54
environnementale pour les armoires de batteries
Température: -40 °C à+35 °C
b
Humidité relative (sans condensation): 5% à 95%
Altitude Max: 25,000 pieds (7620 m)
Conditions Environnementales de transport jusqu'à deux
semaines.
a.
La température fonctionnelle maximum diminue par un facteur de 1,1 °C par 1000 pieds d'élévation au-dessus de 7500
pieds.
b.
Stockage des batteries ALM 12V7 s-Séries à des températures supérieures à 35 °C peut réduire considérablement le temps
de stockage. Voir Durée de Conservation on page 43.
c.
Les batteries ALM 12V7 s-Séries ont été testées à 11,6 kPa (50,000 pieds) à 20 °C ±5 °C.
c
Température: -40 °C à +80 °C
Humidité relative (sans condensation): 5% à 95%
Altitude Max: 50 000 pieds (15240 m)
Physical Specifications
Table 8 and Figure 4 on page 27 provide details of the mechanical dimensions and weight of
the ALM 12V7 s-Series batteries.
Table 8 ALM 12V7 s-Series Physical and Mechanical Specifications
SpecificationDescription
Dimensions (excluding terminals)151 x 64.5 x 99.7 mm (5.9 x 2.5 x 3.9 in)
This document contains the proprietary information of NEC Energy Solutions, Inc. (“NECES”) and may not be modified,
reproduced, retransmitted or redistributed, either in whole or in part, for any reason without NECES’ prior written consent.
ALM® 12V7 s-Series User’s Guide
NOTE
Chapter 5
Chapter 5: Operation and System Design Considerations
Operation and System Design Considerations
Integrated EverSafe™ Battery Protection
The ALM 12V7 s-Series EverSafe™ battery technology includes integrated protection
circuitry to prevent the battery from certain damaging use conditions. The battery’s circuitry
interrupts either charging or discharging current if the battery is in danger of exceeding upper
or lower limits to voltage, current, and temperature.
Transient Energy Limit
The ALM 12V7 s-Series design protects the battery from transients containing excess energy
of up to 46 Joules. Inductance inherent in the cabling used to connect to the battery can
store this transient energy and release it to the battery’s protection devices as the battery’s
protection mechanism engages, which introduces an open circuit. When this occurs, active
sources like power supplies and battery chargers can create large transient spikes. While the
product has been designed to handle a maximum inductance of 5 μH and tolerate
connections to most power supplies, the user is responsible for ensuring that the battery
does not experience over voltage surge energy in excess of 46 Joules when conduction is
interrupted. External energy absorption devices like capacitors or clamps can reduce the
overshoot or stress on the battery and may be required based on the application.
Over Current Protection
The ALM 12V7 s-Series batteries apply a time-based current limit profile that allows higher
level current pulses for short durations.
limits enforced over increasing time intervals for the ALM 12V7s base power model and the
ALM 12V7s HP high power model. These curves have a -2% / +15% tolerance. The
maximum amplitude limit of 240 A decreases over time until it reaches a steady state limit of
23 A for the ALM 12V7s and 45 A for the ALM 12V7s HP. These current limit profiles apply to
both charge and discharge operations.
Figure 5 on page 29 shows the maximum amplitude
Charge sources exceeding the continuous current will charge the battery at a duty-cycle inversely
proportional to the charger’s current. Exceeding the 240 A peak current will result in NO charge.
This document contains the proprietary information of NEC Energy Solutions, Inc. (“NECES”) and may not be modified,
reproduced, retransmitted or redistributed, either in whole or in part, for any reason without NECES’ prior written consent.
ALM® 12V7 s-Series User’s GuideChapter 5: Operation and System Design Considerations
ALM 12V7s Current Limit Profile (Base Power)
ALM 12V7s HP Current Limit Profile (High Power)
Figure 5 provides curved graphs of the ALM 12V7s base power model and ALM 12V7s HP
high power model enforced current limits.
Figure 5 Current Limit Profiles for the ALM 12V7s and ALM 12V7s HP Models
Over Discharge Protection Under Voltage Protection (UVP)
As the ALM 12V7 s-Series battery nears 0% State of Charge (SOC), the terminal voltage
begins to drop rapidly. The battery is considered fully discharged when one of its internal cell
voltages falls to 2.0 volts or the battery’s terminal voltage is in the range of 8.0 volts to
11 volts.
The ALM 12V7 s-Series is designed to enter an Under Voltage Protection (UVP) state if any
cell dr
ops below 2 volts. In the UVP state, the ALM 12V7 s-Series battery will disconnect its
terminals causing the output voltage to drop to 0 volts. Slight differences in the cells’ state of
charges lead to differences between the cell voltages, especially at low states of charge. In
such a case, one cell may activate the UVP protection before the others do. When this
happens the voltage measured at the battery terminals will be higher than 8 volts. Table 10 on
page 30, shows the voltage at which a battery could enter UVP and open the terminals. UVP
is disabled and the terminals are closed once the battery is connected to an active charge
so
urce and/or the lowest cell voltage returns to 2.5 volts or higher.
This document contains the proprietary information of NEC Energy Solutions, Inc. (“NECES”) and may not be modified,
reproduced, retransmitted or redistributed, either in whole or in part, for any reason without NECES’ prior written consent.
ALM® 12V7 s-Series User’s GuideChapter 5: Operation and System Design Considerations
NOTE
Table 10 End of Discharge – Effective ALM 12V7 s-Series Terminal Cut-Off Voltages in
Different Series Configurations
Typical Observed ALM Terminal
ALM Configuration
1S ‐ (12 V)9.8 2.458.00
2S ‐ (24 V)20.32.5416.00
3S ‐ (36 V)30.72.5624.00
4S ‐ (48 V)41.12.5732.00
Cut-Off Voltage (V)
Under voltage protection creates an open circuit, removing voltage from the terminals. With a leadacid battery, finding no voltage at the terminals often indicates the battery is no longer usable. With
the ALM 12V7 s-Series battery, no voltage at the terminals typically means the cell protection
circuitry has interrupted current to protect the battery. Simply connect the battery to a charge source
to restore voltage to the terminals.
Average Voltage per Cell (V)
Absolute Minimum ALM
Terminal Cut-Off Voltage (V)
Smart Charger Support
Smart charger technologies require the presence of a terminal voltage before supplying a
charge current. To support smart chargers when in a protection state (i.e. Under Voltage
Protection (UVP) the ALM 12V7 s-Series will present a current limited terminal voltage. When
there is no charger or load connected, there is no current flowing so the circuit allows the
terminals to show the actual battery voltage. This terminal voltage can be measured with a
multi-meter or other high impedance voltage measurement device.
Over Charge Protection
Similar, but opposite to the case at low States of Charge, the ALM 12V7 s-Series battery’s
terminal voltage begins to rise rapidly at high States of Charge. The ALM 12V7 s-Series is
considered at 100% SOC when the cells are balanced and terminal voltage measures 13.8
volts or above. At this point, the average cell voltage is the terminal voltage divided by 4. The
ALM12V7 s-Series batteries are designed to enter an Over Voltage Protection (OVP) state if
any cell rises above 4.1 volts. In the OVP state, the ALM 12V7 s-Series will disconnect its
terminals and not accept further charge current. To exit the OVP state, apply a load to
discharge to the battery. The battery will then return to Normal State once the cell voltages
fall below 4.1 volts. For further details, refer to Balancing, on page 41.
Over Temperature Protection
The ALM 12V7 s-Series circuitry continuously monitors the battery’s temperature. The battery
will open its terminals when the temperature is too high for safe operation. Do not operate the
battery outside of the operational temperature range specified in Table 4 on page 23.
This document contains the proprietary information of NEC Energy Solutions, Inc. (“NECES”) and may not be modified,
reproduced, retransmitted or redistributed, either in whole or in part, for any reason without NECES’ prior written consent.
ALM® 12V7 s-Series User’s GuideChapter 5: Operation and System Design Considerations
NOTE
High Temperature Operation
Both charge and discharge functions increase battery temperatures. High rate battery usage
causes the largest temperature increase. The ALM 12V7 s-Series battery’s over temperature
protection (OTP) circuitry removes voltage from the terminals if the battery exceeds the
temperature limits. During high rate battery usage, the user must ensure that ambient
operating temperature combined with the charge or discharge rate does not exceed the
operational temperature limits.
ambient temperature relate to measured delta SOC before entering OTP state.
Table 11 shows how the ALM 12V7 s-Series usage rate and
Under certain conditions, the ALM
12V7 s-Series terminals will exceed the 70°C touch
temperature limit as described in UL 1973. For operation beyond those terminal touch
temperature limits, not to exceed 90 °C, the ALM 12V7 s-Series batteries will require the
plac
ement of guards to prevent accidental contact. NEC Energy Solutions recommends that
additional testing be conducted under specific use cases. The gauge of wire may be changed
depending on final temperature requirements and application.
a
60 °C Ambient
b c
Usage Rate:
Table 11 Thermal Capability and Delta SOC, BOL
b
25 °C Ambient
ALM 12V7sALM 12V7s HPALM 12V7sALM 12V7s HP
c
Charge or
Discharge
Current (A)
% delta SOC% delta SOC
% delta SOC
Internal Limit
% delta SOC
Internal Limit
5100100100100
1010010084.490.4
23100100
30
45
a.
The values in this table show the battery’s performance prior to engaging its protection circuitry.
b.
Testing was with 10 AWG cables at 25 °C and 60 °C
c.
100% = 5 Ah
d.
TT = Touch Temperature. The % delta SOC TT when Touch Temperature (TT) of the terminal exceeds 70 °C. A cover or other
protection is required to prevent incidental contact per UL1973.
e.
N/A = Not Applicable. The 12V7s battery is not capable of achieving this charge or discharge current.
N/A
N/A
e
e
100
100
17.9 (10.9 TT
N/A
N/A
d
)25.6 (7.0 TT d)
e
e
20 (5.0 TT d)
12 (2.5 TT d)
Cell life will be limited by exposure to high temperatures.
This document contains the proprietary information of NEC Energy Solutions, Inc. (“NECES”) and may not be modified,
reproduced, retransmitted or redistributed, either in whole or in part, for any reason without NECES’ prior written consent.
ALM® 12V7 s-Series User’s GuideChapter 5: Operation and System Design Considerations
REMARQUE
Fonctionnement à haute température
Les deux fonctions de charge et de décharge augmentent températures de batterie.
Utilisation élevée de la batterie de taux provoque la plus forte augmentation de température.
La batterie ALM 12V7 s-Séries «plus de la protection de température (OTP) circuit supprime la
tension des bornes si la batterie dépasse les limites de température. Lors de l'utilisation de la
batterie de taux élevé, l'utilisateur doit se assurer que la température ambiante de
fonctionnement combiné avec la charge ou de décharge taux ne dépasse pas les limites de
températures de fonctionnement.
HP et la température ambiante concernent mesurée SOC delta avant d'entrer dans l'état OTP.
Sous certaines conditions, les bornes de connection de l' ALM 12V7 s-Séries dépasseront la
limite de température de contact de 70 °C, ne pas dépasser 90 °C, comme décrit dans UL 1973.
Pour un fonctionnement au-delà des limites de température de contact, l' ALM 12V7 s-Séries
nécessitera la mise en place de protections pour empêcher tout contact accidentel. NEC
Energy Solutions recommande que des tests supplémentaires soient effectues pour chaque
cas d'utilisation spécifiques. La jauge de fil peut être modifiée en fonction des exigences du
température finale et application
Tableau 12 montre comment l' ALM 12V7s et ALM12V7s
.
a
% delta SOC
Limite interne
Taux
d'utilisation
Charge/
Décharge
Courants (A)
Tableau 12 Capacité Thermique et Delta État de Charge, Début de la Vie
Température ambiante de 25 °C b
c
Température ambiante de 60 °C
ALM 12V7sALM 12V7s HPALM 12V7sALM 12V7s HP
% delta SOC
% delta SOC% delta SOC
Limite interne
5100100100100
1010010084,490,4
2310010017,9 (10.9 TT)
30
45
a.
Les valeurs indiquées dans ce tableau montrent les performances de la batterie avant que les circuit de protection ne
soient actifs.
b.
Essai avec des câbles AWG 10 à 25 °C et 60 °C
c.
100% = 5 Ah
d.
TC = Température de contact dépasse. Le SOC TC % delta lorsque TC du terminal de la batterie dépasse 70 °C. Une
protection de couverture ou autre est nécessaire pour empêcher un contact accidentel à la borne, conformément à la
UL1973 réglementation.
e.
Pas Applicable = La batterie 12V7s ne est pas capable d'atteindre ce courant de charge ou de décharge
La durée de vie les elements de la pile seront limites par l'exposition à des températures élevées.
This document contains the proprietary information of NEC Energy Solutions, Inc. (“NECES”) and may not be modified,
reproduced, retransmitted or redistributed, either in whole or in part, for any reason without NECES’ prior written consent.
ALM® 12V7 s-Series User’s GuideChapter 5: Operation and System Design Considerations
NOTE
REMARQUE
NOTE
Low Temperature Operation
At low temperatures, the maximum available discharge current decreases due to increased
internal impedance at lower temperatures. Refer to
and Temperatures, on page 34 for more details.
Do not operate the battery outside of the operational temperature range specified in Table 4 on
page 23.
Ne pas faire fonctionner la batterie en dehors de la plage de température d'exploitation précisée
dans
Tableau 6 à la page 25.
Figure 9 on page 40 and Charge Limits
Charging Single Batteries
The ALM 12V7 s-Series batteries are compatible with most common 12V lead‐acid battery
chargers. A single ALM 12V7s HP battery can accept up to 45 A (23A with the ALM 12V7s)
charge current maximum. Higher current for short durations is allowed. However, in some
situations, internal component temperatures may be exceeded causing performance to be
curtailed by the battery’s protection circuitry. For more information on hardware protection
limits, refer to
charge limit information is also described in Charge Limits and Temperatures, on page 34.
Appendix A, Operational Protection Hardware Circuitry on page 46. Additional
Use of chargers with a temperature compensation feature, typically required for lead-acid batteries,
may result in an incomplete or possibly no charge at elevated temperatures, but will not damage the
battery. It is recommended that such temperature compensation features be disabled.
Constant Current (CC), Float Voltage Chargers
For ALM 12V7 s-Series batteries operating under normal conditions during a charge, a
charger applies a constant current (CC) until the terminal voltage reaches its end of charge
voltage (maximum), as shown in
voltage, where the charge current decays to near zero. As the battery approaches 100%
State of Charge (SOC), the balancing circuitry performs cell balancing. This process charges
the ALM 12V7 s-Series battery to 100% State of Charge (SOC).
This document contains the proprietary information of NEC Energy Solutions, Inc. (“NECES”) and may not be modified,
reproduced, retransmitted or redistributed, either in whole or in part, for any reason without NECES’ prior written consent.
Figure 6 on page 34. This process is followed by a float
ALM® 12V7 s-Series User’s GuideChapter 5: Operation and System Design Considerations
NOTE
REMARQUE
Figure 6 Battery Voltage and Current During Recharge
If the ALM 12V7 s-Series battery has entered an Under Voltage Protection (UVP) state, the
battery disconnects from the load. Connecting a charger to the battery resumes normal
operation based on replenished energy.
New batteries may be used as received. However, to ensure that all cells are balanced and fully
charged before their first use, individual batteries should be charged for 4 to 24 hours with a float
charge. Charging is particularly necessary prior to performing capacity tests. After initially balancing
the batteries, normal use should maintain the cells in a proper state.
Les nouvelles batteries peuvent être utilisees tels que reçuss. Cependant, our s'assurer que tous les
elements de la pile sont équilibrés et pleinement chargés avant leur première utilisation, les
batteries individuelles devraient être chargées pendant 4 à 24 heures avec une charge de maintien.
La charge est particulièrement nécessaire avant de procéder à des tests de capacité. Après
équilibrage d'abord des piles, l'utilisation normale devrait maintenir les elements de la pile en bon
état
.
Charge Limits and Temperatures
At room temperature and above, ALM 12V7 s-Series batteries can accept full rated charge.
As with all battery technologies, charge acceptance is limited at low temperatures. A
permanent loss of capacity over time may be observed if charge rates are not reduced at low
cell temperatures. As the cells’ temperature rises during the charging process, they can
gradually accept higher currents. Table 13 on page 35 shows charging guidelines to
maximize battery life.
This document contains the proprietary information of NEC Energy Solutions, Inc. (“NECES”) and may not be modified,
reproduced, retransmitted or redistributed, either in whole or in part, for any reason without NECES’ prior written consent.
ALM® 12V7 s-Series User’s GuideChapter 5: Operation and System Design Considerations
Table 13 Charge Rate by Temperature
Temperature (°C)Current (A)Temperature (°C)Current (A)
6045105.0
504502.5
4045-101.5
3045-201.0
2545-300.25
2023-400.125
a.
For charge acceptance, do not exceed the limits specified. For the higher temperatures (and charging rates),
exceeding these rates may result in engaging the ALM 12V7 s-Series protection circuitry. For lower temperatures,
exceeding these rates will result in a shorter battery life.
a
Chargez Limites et températures
A température ambiante et au-dessus, les batteries ALM 12V7 s-Séries peuvent accepter la
pleine charge nominale. Comme avec toutes les technologies batteries, de l'acceptation de
charge est limitée à basse température. Une perte permanente de capacité au fil du temps
peut être observée si les taux de charges ne sont pas réduits à des températures des elements
de la pile. Comme la température basses elements de la pile augmente pendant le processus
de charge, ils peuvent accepter progressivement des courants plus élevés. Tableau 14
spectacles de charge des lignes directrices afin de maximiser la vie de la batterie.
Pour acceptation de charge, ne pas dépasser les limites spécifiées. Pour les températures plus élevées (et les taux
de charge), le dépassement de ces taux peut entraîner engager le circuit de protection de l' ALM 12V7 s-Séries.
Pour des températures plus basses, le dépassement de ces taux entraînera dans une vie courte de la batterie
This document contains the proprietary information of NEC Energy Solutions, Inc. (“NECES”) and may not be modified,
reproduced, retransmitted or redistributed, either in whole or in part, for any reason without NECES’ prior written consent.
ALM® 12V7 s-Series User’s GuideChapter 5: Operation and System Design Considerations
WARNING
Charging Multiple Batteries
When charging multiple batteries, maximum charge current should not exceed 45 A for arrays
of ALM 12V7 s-Series batteries connected in parallel and/or series configurations. The endof-charge voltage will depend on the system’s series and parallel configuration.
Charging Batteries in Series
To determine the maximum end-of-charge voltage to apply for battery systems configured in
series, multiply the number of batteries connected in series by the maximum charge voltage
of a single battery (14.4 V), as shown in Equation 1.
Eq. 1 (Number of Series Connected ALM 12V7 s-Series Batteries) x (14.4V) = Max Charge Voltage, Battery
System.
Table 15 shows Recommended Float and Maximum Charge voltages. Charger voltages
exceeding the Maximum up to 60.0 volts will
the battery may not operate due to over voltage protection. When the battery is in the normal
state, the charger voltage should be less than or equal to the Maximum Charge Voltage.
not damage an ALM 12V7 s-Series battery, but
Applying charger voltages in excess of 60.0 V could damage the charge and
discharge control circuitry, creating a safety hazard, and will void the warranty.
Table 15 Supported Float and Maximum Charge Voltages
Series ConfigurationRecommended Float Charge Voltage (V)Maximum Charge Voltage (V)
1s13.6 to 14.416
2s27.25 to 28.832
3s40.8 to 43.248
4s54.5 to 57.660
Charging Batteries in Parallel
The maximum charge current for any parallel array of batteries is 45 A.
This document contains the proprietary information of NEC Energy Solutions, Inc. (“NECES”) and may not be modified,
reproduced, retransmitted or redistributed, either in whole or in part, for any reason without NECES’ prior written consent.
ALM® 12V7 s-Series User’s GuideChapter 5: Operation and System Design Considerations
AVERTISSEMENT
Chargement des Piles Dans la Série
Pour déterminer la tension maximale en fin de charge à appliquer pour les systèmes de
batterie configurés en série, multiplier le nombre de batteries connectées en série par la
tension de charge maximale d'une seule batterie (14,4 V), comme indiqué dans l'Equation 2.
Eq. 2 (Nombre de batteries ALM 12V7 s-Séries connectées en série) x (14,4V) = Tension de charge maximale,
système de batterie x (14,4V) = Tension Max Charge, Système de batterie.
Le Tableau 16 montre la tension de maintien recommandée et tensions charge maximale. La
batterie ne sera pas endommagée par des tensions de charge ne dépassant pas 60 V, mais l'
ALM 12V7 s-Séries peut ne pas fonctionner en raison de protection contre les surtensions. En
condition normale, la tension de charge doit être inférieure ou égale à la tension de charge
maximale.
Appliquer des tensions de charge excédant 60.0 V pourrait endommager la circuiterie de
commande de charge et de décharge, créant un risque d'accident, et annulera la
garantie.
Tableau 16 Tension de Maintien et les Tensions Charge Maximale
Configuration de Série
1s
2s
3s
4s
Tension de Maintien Recommandée Tension
de charge (V)
13,6
27,2
40,8
54,4
Recharger les Batteries en Parallèle
Le courant de charge maximum pour un réseau parallèle de batteries est de 45 Ampères.
reproduced, retransmitted or redistributed, either in whole or in part, for any reason without NECES’ prior written consent.
This document contains the proprietary information of NEC Energy Solutions, Inc. (“NECES”) and may not be modified,
ALM® 12V7 s-Series User’s GuideChapter 5: Operation and System Design Considerations
Discharge Performance
The typical 25 °C constant current discharge behavior of the ALM 12V7 s-Series at different
discharge rates is shown in Figure 7. Compared to lead-acid batteries, the output voltage of
the ALM 12V7 s-Series remains relatively constant across its capacity range at any given
ischarge rate.
d
Figure 7 ALM 12V7 s-Series Typical Constant Current Discharge Behavior at 25 °C
This document contains the proprietary information of NEC Energy Solutions, Inc. (“NECES”) and may not be modified,
reproduced, retransmitted or redistributed, either in whole or in part, for any reason without NECES’ prior written consent.
ALM® 12V7 s-Series User’s GuideChapter 5: Operation and System Design Considerations
As the ALM 12V7 s-Series discharges, this moderate voltage drop translates into superior
(I x V) power delivery capability as shown in Figure 8. Additionally, the ALM 12V7 s-Series
delivered capacity is nearly independent of discharge rate.
Figure 8 ALM 12V7 s-Series Typical Constant Power Discharge Behavior at 25 °C
This document contains the proprietary information of NEC Energy Solutions, Inc. (“NECES”) and may not be modified,
reproduced, retransmitted or redistributed, either in whole or in part, for any reason without NECES’ prior written consent.
ALM® 12V7 s-Series User’s GuideChapter 5: Operation and System Design Considerations
Voltage drop in the ALM 12V7 s-Series is an inverse function of the ALM 12V7 s-Series
battery’s internal temperature. As the internal temperature of the ALM 12V7 s-Series drops,
the impedance rises leading to an increased voltage drop. It is important to consider the
resulting performance impacts when designing a product for cold conditions. Figure 9 shows
impacts of temperature on 50W constant power discharge.
The ALM 12V7 s-Series battery’s End of Discharge (EOD) terminal voltage is a function of the
core cells, any cell-to-cell variations and series impedance of the internal power pathway.
These elements are impacted by discharge rate and temperature. The battery’s protection
circuitry will stop discharge when any cell voltage drops below 2.0 volts.
Cell‐to‐cell variation has the large
in performance in a variety of ways based on normal manufacturing.
Applications that use a low battery voltage threshold value (LVCO, LVLD, LVBD, etc.) to
init
iate actions such as disconnecting the load or initiating a charge cycle should adhere to
the battery terminal voltages shown in the discharge performance curves in Figure 7,
Figure 8, and Figure 9. Depending on the discharge rate, temperature, and other factors in
the application, a different voltage trigger value based on the appropriate discharge curve
may
be needed, compared to lead-acid or other battery chemistries. Otherwise, undesired
behavior of the battery application may occur such as the unexpected loss of voltage if the
ALM 12V7 s-Series battery enters UVP state, or taking action too soon such as disconnecting
the load while significant energy still remains in the battery.
This document contains the proprietary information of NEC Energy Solutions, Inc. (“NECES”) and may not be modified,
reproduced, retransmitted or redistributed, either in whole or in part, for any reason without NECES’ prior written consent.
st impact on the expected EOD terminal voltage. Cells vary
ALM® 12V7 s-Series User’s GuideChapter 5: Operation and System Design Considerations
If the intent of the application is to maximize the amount of energy available from the
ALM 12V7 s-Series battery before charging, it may be advantageous to disable external
c
utoff mechanisms based on the terminal voltage and instead use the battery’s internal
protection circuitry to determine when to interrupt the discharge cycle. The battery protects
itself from unsafe conditions and typically disconnects due to low voltage when only 5-10%
of full charge capacity remains.
Balancing
Over time, the ALM 12V7 s-Series cells diverge in both capacity and SOC. All ALM 12V7
s-Series batteries perform cell voltage balancing at
maximize the available capacity of the battery. The balancing circuit’s purpose is to drive all
cells to the same voltage. Cell balancing continues on a per-cell basis as long as the cell
voltage exceeds 3.385 volts.
ALM 12V7 s-Series batteries are shipped at 100% SOC. However, fully charging the ALM and
holding the ALM at float
and maximize the first discharge delivered capacity.
voltage for 4-24 hours prior to first use will ensure optimal balance
high SOC values based on cell voltage to
Cycle Life
Cycle life is dependent upon charge and discharge rates, operating temperature, calendar
time and state of charge swing or delta SOC. Figure 10 projects cycle life expectations as a
function of delta SOC where reducing delta SOC results in greatly enhanced cycle life.
Figure 10 Cycle Life versus Delta SOC Behavior of Nanophosphate® Lithium-Ion Cell
This document contains the proprietary information of NEC Energy Solutions, Inc. (“NECES”) and may not be modified,
reproduced, retransmitted or redistributed, either in whole or in part, for any reason without NECES’ prior written consent.
ALM® 12V7 s-Series User’s GuideChapter 5: Operation and System Design Considerations
NOTE
NOTE
After 6 years of continuous testing, original A123 Systems ANR26650M1A cells still retain
65% of their initial capacity after 20,000 full depth of discharge (100% DOD), +1C/-1C cycles
at 23 °C. The ALM 12V7 s-Series batteries use the next generation ANR26650M1B cells.
Through testing under the same conditions, cells of this model are demonstrating further
improved cycle life behavior over their predecessors, as shown in Figure 11
.
Shelf Life
Figure 11 Cycle Life Test Results +1C/-1C, 23 °C, 100% DOD
The number of cycles, as shown in Figure 10 and Figure 11, are dependent upon average SOC,
charge/discharge rates, temperature and calendar time. Actual results will depend on specific use
ca
se. Contact NEC Energy Solutions for more detail.
Overall system life is a function of Shelf Life (Time at temperature) and Cycle Life (charge discharge
rates and watt-hour throughput).
ALM 12V7 s-Series batteries ship from the factory at approximately 100% State of Charge
(SOC) and can remain functional for two years of shelf life where temperatures do not exceed
25 °C.
ALM 12V7 s-Series batteries being sh
requires that the batteries be at or below a 30% SOC. These batteries shipped by Air can
remain functional for eight months of shelf life where temperatures do not exceed 25 °C.
Storage temperatures above 25 °C accelerate the rate of self-discharge and reduce the shelf
life.
ipped by Air must comply with ICAO regulations, which
At 10% SOC, the ALM 12V7 s-Series battery has about 5% of usable energy, on average,
re entering into an Under Voltage Protection (UVP) state as described in Over Discharge
This document contains the proprietary information of NEC Energy Solutions, Inc. (“NECES”) and may not be modified,
reproduced, retransmitted or redistributed, either in whole or in part, for any reason without NECES’ prior written consent.
ALM® 12V7 s-Series User’s GuideChapter 5: Operation and System Design Considerations
Protection Under Voltage Protection (UVP), on page 29. NEC Energy Solutions recommends
applying a charge source whenever a battery is at 10% or lower SOC.
The ALM 12V7 s-Series battery will automatically discontinue a discharge when the battery
reaches roughly 5% State of Charge (SOC), and will then disconnect its terminals. Due to the
electrical drain within the battery management system; after the battery reaches the 5% SOC
level at the Under Voltage Protection UVP state there is a limited time that the battery can
remain without being charged. If the ALM 12V7 s-Series battery is discharged to the UVP 5%
SOC level, it has approximately 30 days in this state, at 25 °C, before reaching its lowest
power mode called the Under Voltage Lock-Out (UVLO) state. Once the battery reaches the
UVLO state, it has approximately 36 hours before becoming permanently disabled.
While in UVLO, an ALM 12V7 s-Series battery can accept a small charge current through a
precharge circuit to bring the battery to its proper operating range. Once the battery reaches
the UVP state, it can accept a full rated charge current. NEC Energy Solutions recommends
that the full rate charge remains until the battery is fully charged. Partial charges are
acceptable, but they will limit the shelf life the battery can sustain in storage.
Durée de Conservation
Toutes les batteries ALM 12V7 s-Séries sont expédiées de l’usine à environ 100 % d’état de
charge (SOC) et restent fonctionnelles pendant deux ans, à condition que les températures ne
dépassent pas 25 °C.
Les batteries ALM 12V7 s-Séries expédiées par voie aérienne doivent être conformes aux
règlements de l’OACI, qui exigent que ces batteries présentent un état de charge de 30 %
maximum. Elles peuvent rester fonctionnelles pendant huit mois, à condition que les
températures ne dépassent pas 25 °C.
Les températures de stockage supérieures à 25 °C accélèrent le taux d’autodécharge et
réduisent la durée de vie.
À un état de charge de 10 %, la batterie ALM 12V7 s-Séries dispose d’environ 5 % d’énergie
utilisable avant de passer en mode de protection contre les sous-tensions (UVP), tel que décrit
dans la section Protection contre la décharge accélérée (protection contre les sous-tensions
(UVP)), à la page 29. NEC Energy Solutions recommande d’utiliser une source de chargement
dès qu’une batterie présente un état de charge de 10 % ou moins.
La batterie ALM 12V7 s-Séries interrompra automatiquement une opération de décharge
lorsqu’elle atteint un état de charge d’environ 5 %, puis elle déconnectera ses bornes. En
raison du drainage électrique dans le système de gestion de la batterie, une fois que la
batterie atteint un état de charge de 5 % en mode de protection contre les sous-tensions
(UVP), elle peut rester déchargée durant une période limitée. Si la batterie ALM 12V7 s-Séries
est déchargée à 5 % en mode UVP, elle reste environ 30 jours dans cet état, à 25 °C, avant
d’atteindre son mode d’alimentation le plus bas, appelé le Verrouillage de sous-tension
(UVLO). Une fois que la batterie est en mode UVLO, elle dispose d’environ 36 heures avant de
subir un endommagement permanent.
En mode UVLO, une batterie 36 heures peut accepter un faible courant de charge à travers un
circuit de précharge pour atteindre sa bonne plage de fonctionnement. Une fois qu’elle passe
en mode UVP, elle peut accepter un courant de charge nominale maximum.
NEC Energy Solutions recommande de maintenir la charge maximale jusqu'à ce que la
batterie soit complètement chargée. Les charges partielles sont acceptables, mais elles
limiteront la durée de vie de la batterie lorsqu’elle est stockée.
This document contains the proprietary information of NEC Energy Solutions, Inc. (“NECES”) and may not be modified,
reproduced, retransmitted or redistributed, either in whole or in part, for any reason without NECES’ prior written consent.
ALM® 12V7 s-Series User’s Guide
Chapter 6: Troubleshooting
Troubleshooting
Overview
The ALM 12V7 s-Series are extremely reliable batteries that provide greater useful life than
comparable 12V7 lead‐acid batteries. Despite the high reliability of the ALM 12V7 s-Series
batteries, you may encounter situations where the battery does not operate as expected. This
chapter details potential issues with the ALM 12V7 s-Series batteries and the appropriate
troubleshooting procedures.
This document contains the proprietary information of NEC Energy Solutions, Inc. (“NECES”) and may not be modified,
reproduced, retransmitted or redistributed, either in whole or in part, for any reason without NECES’ prior written consent.
Never
a
Never
a
FETs
ALM® 12V7 s-Series User’s Guide
Appendix B: Acronyms and Terminology
Acronyms and Terminology
The following table lists and describes acronyms and terms used in this guide.
Term/AcronymDescription
AhAmp-Hour is a unit of measure of charge that can be stored or delivered to/from a battery.
One or more cells which are electrically connected together by permanent means, including case,
Battery
terminals and markings. Also, the ALM 12V7 s-Series battery.
Appendix B
Battery Management System – The Battery Management System refers to the collection of electronics
BMS
BOLBeginning of Life – at the time the product was first assembled at the factory.
CC
CE
CellThe individual A123 Systems ANR26650M1B cell is the basis for the ALM 12V7 s-Series battery.
CFETCharge control FET
C-RateAn electrical current value corresponding to that which will fully charge or discharge a battery in one hour.
CV
CV2/2
responsible for monitoring and controlling an ESS. The ALM
(See
Battery Configuration Options on page 16).
Constant Current – A method to charge or discharge a battery in which the current is held constant
independent of the battery’s terminal voltage.
Conformité Européenne, meaning “European Conformity”- Tests and Certifies safe and compliant product
operation in Europe.
Constant Voltage – A method to charge a battery in which the terminal voltage is held constant, and the
current is determined by the power path impedance or some active current limiting.
This document contains the proprietary information of NEC Energy Solutions, Inc. (“NECES”) and may not be modified,
reproduced, retransmitted or redistributed, either in whole or in part, for any reason without NECES’ prior written consent.
ALM® 12V7 s-Series User’s GuideAppendix B: Acronyms and Terminology
Term/AcronymDescription
EMCElectro Magnetic Compatibility
EODEnd of Discharge
ESSEnergy Storage System
FCCFederal Communications Commission. RF Emissions governing body in the United States.
FETField-Effect Transistor, used for switching high current levels.
HWHardware
kbit/skilobit per second
LI2/2
LVBDLow Voltage Battery Disconnect
LVCOLow Voltage Cut-off
LVLDLow Voltage Load Disconnect
Mbit/sMegabit per second
OCPOver-Current Protection
OTPOver-Temperature Protection
OVPOver-Voltage Protection
OEM
Nominal Energy
Formula for Energy stored in inductance
Original Equipment Manufacturer – in reference to this document, the maker of the equipment into which
an ESS is installed and used.
The energy value of a cell or battery determined under specified conditions and declared by the
manufacturer. The nominal energy is calculated by multiplying nominal voltage by rated capacity
expressed in ampere-hours. Also known as Watt-hour rating.
Nominal VoltageThe approximate value of the voltage used to designate or identify a cell or battery
General term for all forms of solid state (no moving parts) memory that has the capability to hold saved
Non-Volatile Memory
Room TemperatureThe range between 20 and 23 °C (68 and 73 °F), with an average of 21.5 °C (70.7 °F).
•UN Recommendations on the Transport of Dangerous Goods - Manual of Test Criteria
•UN Recommendations on the Transport of Dangerous Goods Model Regulations
•U.S. Department of Transportation (DOT), Office of Pipeline and Hazardous Materials
Safety Administration (PHMSA): Title 49 CFR Sections 100-185 of the U.S. Hazardous
Materials Regulations (HMR)