1
Motorola Bipolar Power Transistor Device Data
NPN Bipolar Power Deflection Transistor
For High and Very High Resolution Monitors
The MJE16204 is a state–of–the–art SWITCHMODE bipolar power transistor. It is
specifically designed for use in horizontal deflection circuits for 20 mm diameter neck,
high and very resolution, full page, monochrome monitors.
• 550 Volt Collector–Base Breakdown Capability
• Typical Dynamic Desaturation Specified (New Turn–Off Characteristic)
• Application Specific State–of–the–Art Die Design
• Isolated or Non–Isolated TO–220 Type Packages
• Fast Switching:
65 ns Inductive Fall Time (Typ)
680 ns Inductive Storage Time (Typ)
• Low Saturation Voltage:
0.4 Volts at 3.0 Amps Collector Current and 400 mA Base Drive
• Low Collector–Emitter Leakage Current — 100 µA Max at 550 Volts — V
CES
• High Emitter–Base Breakdown Capability For High Voltage Off Drive Circuits —
9.0 Volts (Min)
• Case 221D is UL Recognized at 3500 V
RMS
: File #E69369
Collector–Emitter Breakdown Voltage
Collector–Emitter Sustaining Voltage
RMS Isolation Voltage(2) Per Fig. 14
(for 1 sec, TA = 25_C, Per Fig. 15
Rel. Humidity < 30%) Per Fig. 16
ООООООО
ООООООО
ООООООО
ООООООО
Collector Current — Continuous
— Pulsed (1)
ООООООО
ООООООО
ООООООО
ООООООО
Base Current — Continuous
— Pulsed (1)
Repetitive Emitter–Base Avalanche Energy
Total Power Dissipation @ TC = 25_C
Total Power Dissipation @ TC = 100_C
Derated above TC = 25_C
ООООООО
ООООООО
ООООООО
ООООООО
Operating and Storage Temperature Range
Thermal Resistance — Junction to Case
Lead Temperature for Soldering Purposes
1/8″ from the case for 5 seconds
ООООООО
ООООООО
ООООООО
ООООООО
_
C
(1) Pulse Test: Pulse Width = 5.0 ms, Duty Cycle v 10%.
(2) Proper strike and creepage distance must be provided.
*Measurement made with thermocouple contacting the bottom insulated mounting surface of the
package (in a location beneath the die), the device mounted on a heatsink thermal grease applied,
and a mounting torque of 6 to 8 inSlbs.
Designer’s Data for “Worst Case” Conditions — The Designer’s Data Sheet permits the design of most circuits entirely from the information presented. SOA Limit
curves — representing boundaries on device characteristics — are given to facilitate “worst case” design.
Preferred devices are Motorola recommended choices for future use and best overall value.
SCANSWITCH, SWITCHMODE and Designer’s are trademarks of Motorola, Inc.
SEMICONDUCTOR TECHNICAL DATA
Order this document
by MJE16204/D
POWER TRANSISTORS
6.0 AMPERES
550 VOLTS — V
CES
45 AND 80 WATTS
CASE 221A–06
TO–220AB
MJE16204
(REPLACES MJF16204)
2
Motorola Bipolar Power Transistor Device Data
ELECTRICAL CHARACTERISTICS (T
C
= 25_C unless otherwise noted)
Collector Cutoff Current
(VCE = 550 Vdc, VBE = 0 V)
Emitter–Base Leakage
(VEB = 8.0 Vdc, IC = 0)
Emitter–Base Breakdown Voltage
(IE = 1.0 mA, IC = 0)
Collector–Emitter Sustaining Voltage (Table 1)
(IC = 10 mAdc, IB = 0)
Collector–Emitter Saturation Voltage
(IC = 1.0 Adc, IB = 133 mAdc)
(IC = 3.0 Adc, IB = 400 mAdc)
Base–Emitter Saturation Voltage
(IC = 3.0 Adc, IB = 400 mAdc)
DC Current Gain
(ICE = 6.0 Adc, VCE = 5.0 Vdc)
Dynamic Desaturation Interval (IC = 3.0 A, IB1 = 400 mA)
Output Capacitance
(VCE = 10 Vdc, IE = 0, f
test
= 100 kHz)
Gain Bandwidth Product
(VCE = 10 Vdc, IC = 1.0 A, f
test
= 1.0 MHz)
Emitter–Base Turn–Off Energy
(EB
(avalanche)
= 500 ns, RBE = 22 Ω)
Collector–Heatsink Capacitance
(Mounted on a 1″ x 2″ x 1/16″ Copper Heatsink, VCE = 0, f
test
= 100 kHz)
SWITCHING CHARACTERISTICS
Inductive Load (Table 2) (IC = 3.0 A, IB = 400 mA)
Storage
Fall Time
ns
(1) Pulse Test: Pulse Width = 300 µs, Duty Cycle v 2.0%.
V
CE
, COLLECTOR–EMITTER VOLTAGE (VOLTS)
Figure 1. Typical DC Current Gain
IC, COLLECTOR CURRENT (AMPS)
0.5 2 10
20
h
FE
, DC CURRENT GAIN
1 53
30
7
0.7
TJ = 100°C
25°C
–55°C
7
10
5
3
50
VCE = 5 V
IC, COLLECTOR CURRENT (AMPS)
Figure 2. Typical Collector–Emitter
Saturation Voltage
0.5
3
0.2
5
10
1
0.1
7
0.3
2
0.7
0.5 32 50.7 1
0.1 0.2
TJ = 25°C
TJ = 100
°
C
IC/IB1 = 10
0.3
7
60
5
7.5
3
Motorola Bipolar Power Transistor Device Data
0.2
C, CAPACITANCE (pF)
V
BE
, BASE–EMITTER VOLTAGE (VOLTS)
V
CE
, COLLECTOR–EMITTER VOLTAGE (VOLTS)
Figure 3. Typical Collector–Emitter
Saturation Region
IB, BASE CURRENT (AMPS)
0.7
0.1
0.03
0.3
0.3
6 A
0.05 1 2
2 A 3 AIC = 1 A
0.03
0.07 0.1 0.7
0.2 0.5
30
5
10
Figure 4. Typical Base–Emitter
Saturation Voltage
0.3 300.5
5
0.7
0.1
0.7 201 10
10
2
TJ = 25°C
2 3 5 7
IC, COLLECTOR CURRENT (AMPS)
TJ = 25°C
TJ = 100
°
C
0.3
Figure 5. Typical Capacitance
10K
VR, REVERSE VOLTAGE (VOLTS)
C
ib
0.1
1K
100
10
1 10 100 1K
2K
200
20
3K
300
5K
500
50
0.3 2 30 300
200.5 5 50 500
f
T
, TRANSITION FREQUENCY (MHz)
IC, COLLECTOR CURRENT (AMPS)
Figure 6. Typical Transition Frequency
VCE = 10 V
f
test
= 1 MHz
TC = 25°C
0 0.5 1 1.5 2 32.5
20
8
2
14
0
6
16
12
0.5
0.07
0.2
0.05
20
3
7
2
1
3
IC/IB1 = 5 to 10
7
1
3
0.5
30
0.2 3 200
TC = 25°C
10
4
18
C
ob
I
C
, COLLECTOR CURRENT (AMPS)
VCE, COLLECTOR–EMITTER VOLTAGE (VOLTS)
Figure 7. Maximum Forward Biased
Safe Operating Area
7
3
10
1
0.02
70
SECONDARY BREAKDOWN
WIREBOND LIMIT
THERMAL LIMIT
I
C
, COLLECTOR CURRENT (AMPS)
0.1
7 20 250
3
0.3
0.2
dc
TC = 25°C
1 ms
10 µs
2
5
0.5
50
7
0
150 550
IC/IB1 ≥ 5
TJ
≤
100°C
V
BE(off)
= 5 V
50
V
CE(pk)
, PEAK COLLECTOR–EMITTER VOLTAGE (VOLTS)
350
V
BE(off)
= 0 V
Figure 8. Maximum Reverse Biased
Safe Operating Area
3
5
2
1
250 450
0.03
0.07
0.05
0.01
0.7
1005 10 20030
MJE16204
6
4
SAFE OPERATING AREA