1
Motorola Bipolar Power Transistor Device Data
" !
These transistors are designed for high–voltage, high–speed switching of inductive
circuits where fall time and RBSOA are critical. They are particularly well–suited for
line–operated switchmode applications.
The M JE16004 is a h igh–gain version o f the MJE16002 and MJH16002 f or
applications where drive current is limited.
Typical Applications:
• Switching Regulators
• High Resolution Deflection Circuits
• Inverters
• Motor Drives
• Fast Switching Speeds
50 ns Inductive Fall Time @ 75_C (Typ)
70 ns Crossover Time @ 75_C (Typ)
• 100_C Performance Specified for:
Reverse–Biased SOA
Inductive Switching Times
Saturation Voltages
Leakage Currents
Collector–Emitter Voltage
Collector–Emitter Voltage
Collector Current — Continuous
— Peak (1)
Base Current — Continuous
— Peak (1)
Total Power Dissipation @ TC = 25_C
@ TC = 100_C
Derate above TC = 25_C
Operating and Storage Junction Temperature Range
Thermal Resistance, Junction to Case
Lead Temperature for Soldering Purposes: 1/8″ from Case for 5 Seconds
_
C
(1) Pulse Test: Pulse Width = 5 ms, Duty Cycle v 10%.
Designer’s Data for “Worst Case” Conditions — The Designer’s Data Sheet permits the design of most circuits entirely from the information presented. SOA Limit
curves — representing boundaries on device characteristics — are given to facilitate “worst case” design.
Preferred devices are Motorola recommended choices for future use and best overall value.
Designer’s and SWITCHMODE are trademarks of Motorola, Inc.
SEMICONDUCTOR TECHNICAL DATA
Order this document
by MJE16002/D
5.0 AMPERE
NPN SILICON
POWER TRANSISTORS
450 VOLTS
80 WATTS
*Motorola Preferred Device
CASE 221A–06
TO–220AB
2
Motorola Bipolar Power Transistor Device Data
ELECTRICAL CHARACTERISTICS (T
C
= 25_C unless otherwise noted)
Collector–Emitter Sustaining Voltage (Table 2)
(IC = 100 mA, IB = 0)
Collector Cutoff Current
(V
CEV
= 850 Vdc, V
BE(off)
= 1.5 Vdc)
(V
CEV
= 850 Vdc, V
BE(off)
= 1.5 Vdc, TC = 100_C)
Collector Cutoff Current
(VCE = 850 Vdc, RBE = 50 Ω, TC = 100_C)
Emitter Cutoff Current
(VEB = 6.0 Vdc, IC = 0)
Second Breakdown Collector Current with Base Forward Biased
Clamped Inductive SOA with Base Reverse Biased
Collector–Emitter Saturation Voltage
(IC = 1.5 Adc, IB = 0.2 Adc) MJE16002
(IC = 1.5 Adc, IB = 0.15 Adc) MJE16004
(IC = 3.0 Adc, IB = 0.4 Adc) MJE16002
(IC = 3.0 Adc, IB = 0.3 Adc) MJE16004
(IC = 3.0 Adc, IB = 0.4 Adc, TC = 100_C) MJE16002
(IC = 3.0 Adc, IB = 0.3 Adc, TC = 100_C) MJE16004
ÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎ
Base–Emitter Saturation Voltage
(IC = 3.0 Adc, IB = 0.4 Adc) MJE16002
(IC = 3.0 Adc, IB = 0.3 Adc) MJE16004
(IC = 3.0 Adc, IS = 0.4 Adc, TC = 100_C) MJE16002
(IC = 3.0 Adc, IB = 0.3 Adc, TC = 100_C) MJE16004
DC Current Gain
(IC = 5.0 Adc, VCE = 5.0 Vdc) MJE16002
MJE16004
Output Capacitance
(VCB = 10 Vdc, IE = 0, f
test
= 1.0 kHz)
SWITCHING CHARACTERISTICS
Resistive Load (Table 1) MJE16002/MJH10002
C
= 3.0 Adc,
VCC = 250 Vdc,
(IB2 = 0.8 Adc,
RB2 = 8.0 Ω)
IB1 = 0.4 Adc,
PW = 30 µs,
PW = 30 µs,
Duty Cycle v 2.0%)
Resistive Load (Table 1) MJE16004/MJH16004
C
= 3.0 Adc,
VCC = 250 Vdc,
(IB2 = 0.6 Adc,
RB2 = 8.0 Ω)
IB1 = 0.3 Adc,
PW = 30 µs,
PW = 30 µs,
Duty Cycle v 2.0%)
(1) Pulse Test: PW = 300 µs, Duty Cycle v 2%.
*
β
f
=
I
C
I
B1
(IC = 3.0 Adc,
(I
(IC = 3.0 Adc,
(I
ns
ns
3
Motorola Bipolar Power Transistor Device Data
SWITCHING CHARACTERISTICS (continued)
Inductive Load (Table 2) MJE16002
ОООООООО
ОООООООО
ОООООООО
ОООООООО
ОООООООО
ОООООООО
ОООООООО
ОООООООО
ОООООООО
(IC = 3.0 Adc,
IB1 = 0.4 Adc,
ОООООООО
ОООООООО
ОООООООО
IB1 = 0.4 Adc,
V
BE(off)
= 5.0 Vdc,
ОООООООО
ОООООООО
ОООООООО
ОООООООО
ОООООООО
ОООООООО
Inductive Load (Table 2) MJE16004
ОООООООО
ОООООООО
ОООООООО
ОООООООО
ОООООООО
ОООООООО
ОООООООО
ОООООООО
ОООООООО
(IC = 3.0 Adc,
IB1 = 0.3 Adc,
ОООООООО
ОООООООО
ОООООООО
IB1 = 0.3 Adc,
V
BE(off)
= 5.0 Vdc,
ОООООООО
ОООООООО
ОООООООО
ОООООООО
ОООООООО
ОООООООО
(1) Pulse Test: PW = 300 µs, Duty Cycle v 2%.
*
β
f
=
I
C
I
B1
V
CE
, COLLECTOR–EMITTER VOLTAGE (VOLTS)
V
BE
, BASE–EMITTER VOLTAGE (VOLTS) V
CE
, COLLECTOR–EMITTER VOLTAGE (VOLTS)
IC, COLLECTOR CURRENT (AMPS)
3.0
2.0
1.0
1.0
IC, COLLECTOR CURRENT (AMPS)
0.05
0.1
Figure 1. DC Current Gain
IC, COLLECTOR CURRENT (AMPS)
3.0
0.3 0.7 5.0 10
10
Figure 2. Collector Saturation Region
0.1
IB, BASE CURRENT (AMPS)
0.2 0.3
0.1
60
h
FE
, DC CURRENT GAIN
VCE = 5.0 V
0.5 0.7 1.0 2.0
Figure 3. Collector–Emitter Saturation Region Figure 4. Base–Emitter Voltage
2.0
0.3
TJ = 25°C
TJ = 100°C
20
0.5 2.0
1.0
0.070.03
0.3
0.5
25°C
– 55°C
2 A
IC = 1 A
5.0
0.2
1.0 3.0 7.0 3.0
0.1 2.0 100.50.2 1.0 5.0
0.7
1.5
50
30
7.0
0.5
0.7
0.2
0.05
β
f
= 10
TJ = 100
°
C
2.0
0.1
3.0
0.2
5.0
0.5
0.1 2.0 100.50.2 1.0 5.0
3 A 4 A 5 A
β
f
= 10
TJ = 25
°
C
β
f
= 5
TJ = 25
°
C
β
f
= 5
TJ = 25
°
C
β
f
= 10
TJ = 100
°
C
(TJ = 100
(TJ = 150
(TJ = 100
(TJ = 150
ns
ns