Motorola MJE16004, MJE16002 Datasheet

1
Motorola Bipolar Power Transistor Device Data
  
    "   !
These transistors are designed for high–voltage, high–speed switching of inductive circuits where fall time and RBSOA are critical. They are particularly well–suited for line–operated switchmode applications.
The M JE16004 is a h igh–gain version o f the MJE16002 and MJH16002 f or applications where drive current is limited. Typical Applications:
Switching Regulators
High Resolution Deflection Circuits
Inverters
Motor Drives
Fast Switching Speeds
50 ns Inductive Fall Time @ 75_C (Typ) 70 ns Crossover Time @ 75_C (Typ)
100_C Performance Specified for:
Reverse–Biased SOA Inductive Switching Times Saturation Voltages Leakage Currents
MAXIMUM RATINGS
Rating
Symbol
Value
Unit
Collector–Emitter Voltage
V
CEO(sus)
450
Vdc
Collector–Emitter Voltage
V
CEV
850
Vdc
Emitter–Base Voltage
V
EB
6.0
Vdc
Collector Current — Continuous
— Peak (1)
I
C
I
CM
5.0 10
Adc
Base Current — Continuous
— Peak (1)
I
B
I
BM
4.0
8.0
Adc
Total Power Dissipation @ TC = 25_C
@ TC = 100_C Derate above TC = 25_C
P
D
80 32
0.64
Watts
W/_C
Operating and Storage Junction Temperature Range
TJ, T
stg
–65 to +150
_
C
THERMAL CHARACTERISTICS
Characteristic
Symbol
Max
Unit
Thermal Resistance, Junction to Case
R
θJC
1.56
_
C/W
Lead Temperature for Soldering Purposes: 1/8″ from Case for 5 Seconds
T
L
275
_
C
(1) Pulse Test: Pulse Width = 5 ms, Duty Cycle v 10%.
Designer’s Data for “Worst Case” Conditions — The Designer’s Data Sheet permits the design of most circuits entirely from the information presented. SOA Limit curves — representing boundaries on device characteristics — are given to facilitate “worst case” design.
Preferred devices are Motorola recommended choices for future use and best overall value. Designer’s and SWITCHMODE are trademarks of Motorola, Inc.

SEMICONDUCTOR TECHNICAL DATA
Order this document
by MJE16002/D
Motorola, Inc. 1995
 
5.0 AMPERE
NPN SILICON
POWER TRANSISTORS
450 VOLTS
80 WATTS
*Motorola Preferred Device
CASE 221A–06
TO–220AB
REV 2
 
2
Motorola Bipolar Power Transistor Device Data
ELECTRICAL CHARACTERISTICS (T
C
= 25_C unless otherwise noted)
Characteristic
Symbol
Min
Typ
Max
ÎÎÎ
ÎÎÎ
ÎÎÎ
Unit
OFF CHARACTERISTICS (1)
Collector–Emitter Sustaining Voltage (Table 2)
(IC = 100 mA, IB = 0)
V
CEO(sus)
450
ÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎ
Vdc
Collector Cutoff Current
(V
CEV
= 850 Vdc, V
BE(off)
= 1.5 Vdc)
(V
CEV
= 850 Vdc, V
BE(off)
= 1.5 Vdc, TC = 100_C)
I
CEV
— —
— —
0.25
1.5
ÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎ
mAdc
Collector Cutoff Current
(VCE = 850 Vdc, RBE = 50 , TC = 100_C)
I
CER
2.5
ÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎ
mAdc
Emitter Cutoff Current
(VEB = 6.0 Vdc, IC = 0)
I
EBO
1.0
ÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎ
mAdc
SECOND BREAKDOWN
Second Breakdown Collector Current with Base Forward Biased
I
S/b
See Figure 17 or 18
Clamped Inductive SOA with Base Reverse Biased
RBSOA
See Figure 19
ON CHARACTERISTICS (1)
Collector–Emitter Saturation Voltage
(IC = 1.5 Adc, IB = 0.2 Adc) MJE16002 (IC = 1.5 Adc, IB = 0.15 Adc) MJE16004 (IC = 3.0 Adc, IB = 0.4 Adc) MJE16002 (IC = 3.0 Adc, IB = 0.3 Adc) MJE16004 (IC = 3.0 Adc, IB = 0.4 Adc, TC = 100_C) MJE16002 (IC = 3.0 Adc, IB = 0.3 Adc, TC = 100_C) MJE16004
V
CE(sat)
— — — — — —
— — — — — —
1.0
1.0
2.5
2.5
2.5
2.5
ÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎ
Vdc
Base–Emitter Saturation Voltage
(IC = 3.0 Adc, IB = 0.4 Adc) MJE16002 (IC = 3.0 Adc, IB = 0.3 Adc) MJE16004 (IC = 3.0 Adc, IS = 0.4 Adc, TC = 100_C) MJE16002 (IC = 3.0 Adc, IB = 0.3 Adc, TC = 100_C) MJE16004
V
BE(sat)
— — — —
— — — —
1.5
1.5
1.5
1.5
ÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎ
Vdc
DC Current Gain
(IC = 5.0 Adc, VCE = 5.0 Vdc) MJE16002
MJE16004
h
FE
5.0
7.0
— —
— —
ÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎ
DYNAMIC CHARACTERISTICS
Output Capacitance
(VCB = 10 Vdc, IE = 0, f
test
= 1.0 kHz)
C
ob
200
ÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎ
pF
SWITCHING CHARACTERISTICS
Resistive Load (Table 1) MJE16002/MJH10002
Delay Time
t
d
30
100
ÎÎÎ
ÎÎÎ
ÎÎÎ
Rise Time
B2
= 0.8 Adc,
t
r
100
300
ÎÎÎ
ÎÎÎ
ÎÎÎ
Storage Time
C
= 3.0 Adc,
VCC = 250 Vdc,
(IB2 = 0.8 Adc, RB2 = 8.0 )
t
s
1000
3000
ÎÎÎ
ÎÎÎ
ÎÎÎ
Fall Time
IB1 = 0.4 Adc, PW = 30 µs,
t
f
60
300
ÎÎÎ
ÎÎÎ
ÎÎÎ
Storage Time
PW = 30 µs, Duty Cycle v 2.0%)
t
s
400
ÎÎÎ
ÎÎÎ
Fall Time
v
2.0%)
(V
BE(off)
= 5.0 Vdc)
t
f
130
ÎÎÎ
ÎÎÎ
ÎÎÎ
Resistive Load (Table 1) MJE16004/MJH16004
Delay Time
t
d
30
100
ÎÎÎ
ÎÎÎ
ÎÎÎ
Rise Time
B2
= 0.6 Adc,
t
r
130
300
ÎÎÎ
ÎÎÎ
ÎÎÎ
Storage Time
C
= 3.0 Adc,
VCC = 250 Vdc,
(IB2 = 0.6 Adc, RB2 = 8.0 )
t
s
800
2700
ÎÎÎ
ÎÎÎ
ÎÎÎ
Fall Time
IB1 = 0.3 Adc, PW = 30 µs,
t
f
80
350
ÎÎÎ
ÎÎÎ
ÎÎÎ
Storage Time
PW = 30 µs, Duty Cycle v 2.0%)
t
s
250
ÎÎÎ
ÎÎÎ
ÎÎÎ
Fall Time
v
2.0%)
(V
BE(off)
= 5.0 Vdc)
t
f
60
ÎÎÎ
ÎÎÎ
ÎÎÎ
(1) Pulse Test: PW = 300 µs, Duty Cycle v 2%.
*
β
f
=
I
C
I
B1
(IC = 3.0 Adc,
(I
(IC = 3.0 Adc,
(I
ns
ns
 
3
Motorola Bipolar Power Transistor Device Data
SWITCHING CHARACTERISTICS (continued)
Characteristics
Symbol
Min
Typ
Max
ÎÎÎ
ÎÎÎ
ÎÎÎ
Unit
Inductive Load (Table 2) MJE16002
Storage Time
ОООООООО
ОООООООО
ОООООООО
t
sv
500
1600
ÎÎÎ
ÎÎÎ
ÎÎÎ
Fall Time
ОООООООО
ОООООООО
ОООООООО
_
C)
t
fi
100
200
ÎÎÎ
ÎÎÎ
ÎÎÎ
Crossover Time
ОООООООО
ОООООООО
ОООООООО
(IC = 3.0 Adc, IB1 = 0.4 Adc,
_
C)
t
c
120
250
ÎÎÎ
ÎÎÎ
ÎÎÎ
Storage Time
ОООООООО
ОООООООО
ОООООООО
IB1 = 0.4 Adc, V
BE(off)
= 5.0 Vdc,
t
sv
600
ÎÎÎ
ÎÎÎ
ÎÎÎ
Fall Time
ОООООООО
ОООООООО
ОООООООО
V
CE(pk)
= 400 Vdc)
_
C)
t
fi
120
ÎÎÎ
ÎÎÎ
ÎÎÎ
Crossover Time
ОООООООО
ОООООООО
ОООООООО
_
C)
t
c
160
ÎÎÎ
ÎÎÎ
ÎÎÎ
Inductive Load (Table 2) MJE16004
Storage Time
ОООООООО
ОООООООО
ОООООООО
t
sv
400
1300
ÎÎÎ
ÎÎÎ
ÎÎÎ
Fall Time
ОООООООО
ОООООООО
ОООООООО
_
C)
t
fi
80
150
ÎÎÎ
ÎÎÎ
ÎÎÎ
Crossover Time
ОООООООО
ОООООООО
ОООООООО
(IC = 3.0 Adc, IB1 = 0.3 Adc,
_
C)
t
c
90
200
ÎÎÎ
ÎÎÎ
ÎÎÎ
Storage Time
ОООООООО
ОООООООО
ОООООООО
IB1 = 0.3 Adc, V
BE(off)
= 5.0 Vdc,
t
sv
450
ÎÎÎ
ÎÎÎ
ÎÎÎ
Fall Time
ОООООООО
ОООООООО
ОООООООО
V
CE(pk)
= 400 Vdc)
_
C)
t
fi
100
ÎÎÎ
ÎÎÎ
ÎÎÎ
Crossover Time
ОООООООО
ОООООООО
ОООООООО
_
C)
t
c
110
ÎÎÎ
ÎÎÎ
ÎÎÎ
(1) Pulse Test: PW = 300 µs, Duty Cycle v 2%.
*
β
f
=
I
C
I
B1
V
CE
, COLLECTOR–EMITTER VOLTAGE (VOLTS)
V
BE
, BASE–EMITTER VOLTAGE (VOLTS) V
CE
, COLLECTOR–EMITTER VOLTAGE (VOLTS)
IC, COLLECTOR CURRENT (AMPS)
3.0
2.0
1.0
1.0
IC, COLLECTOR CURRENT (AMPS)
0.05
0.1
Figure 1. DC Current Gain
IC, COLLECTOR CURRENT (AMPS)
3.0
0.3 0.7 5.0 10
10
Figure 2. Collector Saturation Region
0.1 IB, BASE CURRENT (AMPS)
0.2 0.3
0.1
60
h
FE
, DC CURRENT GAIN
VCE = 5.0 V
0.5 0.7 1.0 2.0
Figure 3. Collector–Emitter Saturation Region Figure 4. Base–Emitter Voltage
2.0
0.3
TJ = 25°C
TJ = 100°C
20
0.5 2.0
1.0
0.070.03
0.3
0.5
25°C
– 55°C
2 A
IC = 1 A
5.0
0.2
1.0 3.0 7.0 3.0
0.1 2.0 100.50.2 1.0 5.0
0.7
1.5
50
30
7.0
0.5
0.7
0.2
0.05
β
f
= 10
TJ = 100
°
C
2.0
0.1
3.0
0.2
5.0
0.5
0.1 2.0 100.50.2 1.0 5.0
3 A 4 A 5 A
β
f
= 10
TJ = 25
°
C
β
f
= 5
TJ = 25
°
C
β
f
= 5
TJ = 25
°
C
β
f
= 10
TJ = 100
°
C
(TJ = 100
(TJ = 150
(TJ = 100
(TJ = 150
ns
ns
Loading...
+ 7 hidden pages