MOTOROLA MC34074P, MC34074VD, MC34074VDR2, MC34074VP, MC34074AD Datasheet

...
Semiconductor Components Industries, LLC, 1999
October, 1999 – Rev. 2
1 Publication Order Number:
MC34071/D
MC34071,2,4,A MC33071,2,4,A
High Slew Rate, Wide Bandwidth, Single Supply Operational Amplifiers
The MC33071/72/74, MC34071/72/74 series of devices are available in standard or prime performance (A Suffix) grades and are specified over the commercial, industrial/vehicular or military temperature ranges. The complete series of single, dual and quad operational amplifiers are available in plastic DIP, SOIC and TSSOP surface mount packages.
Wide Bandwidth: 4.5 MHz
High Slew Rate: 13 V/µs
Fast Settling Time: 1.1 µs to 0.1%
Wide Single Supply Operation: 3.0 V to 44 V
Wide Input Common Mode Voltage Range: Includes Ground (V
EE)
Low Input Offset Voltage: 3.0 mV Maximum (A Suffix)
Large Output Voltage Swing: –14.7 V to +14 V (with ±15 V
Supplies)
Large Capacitance Drive Capability: 0 pF to 10,000 pF
Low Total Harmonic Distortion: 0.02%
Excellent Phase Margin: 60°
Excellent Gain Margin: 12 dB
Output Short Circuit Protection
ESD Diodes/Clamps Provide Input Protection for Dual and Quad
P SUFFIX
CASE 626
http://onsemi.com
See detailed ordering and shipping information in the package dimensions section on page 17 of this data sheet.
ORDERING INFORMATION
PIN CONNECTIONS
(Single, Top View)
(Dual, T op View)
Offset Null
V
EE
NC V
CC
Output Offset Null
Inputs
V
EE
Inputs 1
Inputs 2
Output 2
Output 1 V
CC
1 2 3 4
8 7 6 5
+
+
1
2 3 4
8 7 6 5
+
1
8
1
8
SO–8 D SUFFIX CASE 751
Inputs 1
Output 1
V
CC
Inputs 2
Output 2
Output 4
Inputs 4
V
EE
Inputs 3
Output 3
(Quad, T op View)
4
2
3
1
PIN CONNECTIONS
1
2 3 4
5 6
78
9
10
11
12
13
14
– +
– +
+ –
+ –
14
1
14
1
14
1
P SUFFIX
CASE 646
SO–14
D SUFFIX
CASE 751A
TSSOP–14
DTB SUFFIX
CASE 948G
MC34071,2,4,A MC33071,2,4,A
http://onsemi.com
2
Offset Null
(MC33071, MC34071 only)
Q1
Q2
Q3 Q4
Q5
Q6
Q7
Q17
Q18
D2
C2
D3
R6 R7
R8
R5
Q15 Q16
Q14
Q13
Q11
Q10
R2
C1
R1
Q9
Q8
Q12
D1
R3 R4
Inputs
V
CC
Output
Current
Limit
VEE/Gnd
Base
Current
Cancellation
+
Q19
Bias
Representative Schematic Diagram
(Each Amplifier)
MAXIMUM RATINGS
Rating Symbol Value Unit
Supply Voltage (from VEE to VCC) V
S
+44 V
Input Differential Voltage Range V
IDR
Note 1 V
Input Voltage Range V
IR
Note 1 V
Output Short Circuit Duration (Note 2) t
SC
Indefinite sec
Operating Junction Temperature T
J
+150 °C
Storage Temperature Range T
stg
–60 to +150 °C
NOTES: 1.Either or both input voltages should not exceed the magnitude of VCC or VEE.
2.Power dissipation must be considered to ensure maximum junction temperature (TJ) is not exceeded (see Figure 1).
MC34071,2,4,A MC33071,2,4,A
http://onsemi.com
3
ELECTRICAL CHARACTERISTICS (V
CC
= +15 V , VEE = –15 V , RL = connected to ground, unless otherwise noted. See Note 3 for
TA = T
low
to T
high
)
A Suffix Non–Suffix
Characteristics Symbol Min Typ Max Min Typ Max Unit
Input Offset Voltage (RS = 100 , VCM = 0 V, VO = 0 V)
VCC = +15 V, VEE = –15 V, TA = +25°C VCC = +5.0 V , VEE = 0 V, TA = +25°C VCC = +15 V, VEE = –15 V, TA = T
low
to T
high
V
IO
— —
0.5
0.5 —
3.0
3.0
5.0
— —
1.0
1.5 —
5.0
5.0
7.0
mV
Average Temperature Coefficient of Input Offset Voltage
RS = 10 , VCM = 0 V, VO = 0 V,
TA = T
low
to T
high
VIO/T 10 10 µV/°C
Input Bias Current (VCM = 0 V, VO = 0 V)
TA = +25°C TA = T
low
to T
high
I
IB
— —
100
500 700
— —
100—500
700
nA
Input Offset Current (VCM = 0 V, VO = 0V)
TA = +25°C TA = T
low
to T
high
I
IO
— —
6.0 —
50
300
— —
6.0 —
75
300
nA
Input Common Mode Voltage Range
TA = +25°C TA = T
low
to T
high
V
ICR
VEE to (VCC –1.8) VEE to (VCC –2.2)
VEE to (VCC –1.8) VEE to (VCC –2.2)
V
Large Signal Voltage Gain (VO = ±10 V, RL = 2.0 kΩ)
TA = +25°C TA = T
low
to T
high
A
VOL
50 25
100
— —
25 20
100
— —
V/mV
Output Voltage Swing (VID = ±1.0 V)
VCC = +5.0 V , VEE = 0 V, RL = 2.0 kΩ, TA = +25°C VCC = +15 V, VEE = –15 V, RL = 10 kΩ, TA = +25°C VCC = +15 V, VEE = –15 V, RL = 2.0 kΩ,
TA = T
low
to T
high
V
OH
3.7
13.6
13.4
4.0 14 —
— — —
3.7
13.6
13.4
4.0 14 —
— — —
V
VCC = +5.0 V , VEE = 0 V, RL = 2.0 kΩ, TA = +25°C VCC = +15 V, VEE = –15 V, RL = 10 kΩ, TA = +25°C VCC = +15 V, VEE = –15 V, RL = 2.0 kΩ,
TA = T
low
to T
high
V
OL
— — —
0.1
–14.7
0.3 –14.3 –13.5
— — —
0.1
–14.7
0.3 –14.3 –13.5
V
Output Short Circuit Current (VID = 1.0 V, VO = 0 V,
TA = 25°C)
Source Sink
I
SC
10 20
30 30
— —
10 20
30 30
— —
mA
Common Mode Rejection
RS 10 k, VCM = V
ICR
, TA = 25°C
CMR 80 97 70 97 dB
Power Supply Rejection (RS = 100 Ω)
VCC/VEE = +16.5 V/–16.5 V to +13.5 V/–13.5 V ,
TA = 25°C
PSR 80 97 70 97 dB
Power Supply Current (Per Amplifier, No Load)
VCC = +5.0 V , VEE = 0 V, VO = +2.5 V , TA = +25°C VCC = +15 V, VEE = –15 V, VO = 0 V, TA = +25°C VCC = +15 V, VEE = –15 V, VO = 0 V,
TA = T
low
to T
high
I
D
— — —
1.6
1.9 —
2.0
2.5
2.8
— — —
1.6
1.9 —
2.0
2.5
2.8
mA
NOTES: 3.T
low
= –40°C for MC33071, 2, 4, /A T
high
= +85°C for MC33071, 2, 4, /A
=0°C for MC34071, 2, 4, /A = +70°C for MC34071, 2, 4, /A
MC34071,2,4,A MC33071,2,4,A
http://onsemi.com
4
AC ELECTRICAL CHARACTERISTICS (V
CC
= +15 V, VEE = –15 V, RL = connected to ground. TA = +25°C, unless otherwise noted.)
A Suffix Non–Suffix
Characteristics Symbol Min Typ Max Min Typ Max Unit
Slew Rate (Vin = –10 V to +10 V, RL = 2.0 kΩ, CL = 500 pF)
AV = +1.0 AV = –1.0
SR
8.0 —
10 13
— —
8.0 —
10 13
— —
V/µs
Setting Time (10 V Step, AV = –1.0)
To 0.1% (+1/2 LSB of 9–Bits) To 0.01% (+1/2 LSB of 12–Bits)
t
s
— —
1.1
2.2
— —
— —
1.1
2.2
— —
µs
Gain Bandwidth Product (f = 100 kHz) GBW 3.5 4.5 3.5 4.5 MHz Power Bandwidth
AV = +1.0, RL = 2.0 kΩ, VO = 20 Vpp, THD = 5.0%
BW 160 160 kHz
Phase margin
RL = 2.0 k RL = 2.0 kΩ, CL = 300 pF
f
m
— —
60 40
— —
— —
60 40
— —
Deg
Gain Margin
RL = 2.0 k RL = 2.0 kΩ, CL = 300 pF
A
m
— —
12
4.0
— —
— —
12
4.0
— —
dB
Equivalent Input Noise Voltage
RS = 100 , f = 1.0 kHz
e
n
32 32
nV/ Hz√
Equivalent Input Noise Current
f = 1.0 kHz
i
n
0.22 0.22
pA/ Hz√
Differential Input Resistance
VCM = 0 V
R
in
150 150 M
Differential Input Capacitance
VCM = 0 V
C
in
2.5 2.5 pF
Total Harmonic Distortion
AV = +10, RL = 2.0 kΩ, 2.0 Vpp VO 20 Vpp, f = 10 kHz
THD 0.02 0.02 %
Channel Separation (f = 10 kHz) 120 120 dB Open Loop Output Impedance (f = 1.0 MHz) |ZO| 30 30 W
Figure 1. Power Supply Configurations Figure 2. Offset Null Circuit
Single Supply Split Supplies
1
2
3
4
V
CC
V
EE
V
CC
V
CC
V
EE
V
EE
1
2
3
4
3.0 V to 44 V VCC+|VEE|44 V
Offset nulling range is approximately ±80 mV with a 10 k potentiometer (MC33071, MC34071 only).
V
CC
V
EE
1
2
3
4
5
6
7
10 k
+
MC34071,2,4,A MC33071,2,4,A
http://onsemi.com
5
RL Connected to Ground TA = 25°C
RL = 10 k
RL = 2.0 k
V
O
, OUTPUT VOLTAGE SWING (V
pp
)
Figure 3. Maximum Power Dissipation versus
Temperature for Package Types
Figure 4. Input Offset Voltage versus
Temperature for Representative Units
Figure 5. Input Common Mode Voltage
Range versus Temperature
Figure 6. Normalized Input Bias Current
versus Temperature
Figure 7. Normalized Input Bias Current versus
Input Common Mode Voltage
Figure 8. Split Supply Output Voltage
Swing versus Supply Voltage
TA, AMBIENT TEMPERATURE (°C)
D
P , MAXIMUM POWER DISSIPATION (mW)
–55 –40 –20 0 20 40 60 80 100 120 140 160
8 & 14 Pin Plastic Pkg
SO–14 Pkg
SO–8 Pkg
TA, AMBIENT TEMPERATURE (°C)
IO
V , INPUT OFFSET VOLTAGE (mV)
–55 –25 0 25 50 75 100 12
5
VCC = +15 V VEE = –15 V VCM = 0
TA, AMBIENT TEMPERATURE (°C)
ICR
V , INPUT COMMON MODE VOLTAGE RANGE (V)
–55 –25 0 25 50 75 100 125
V
CC
VCC/VEE = +1.5 V/ –1.5 V to +22 V/ –22 V
V
EE
TA, AMBIENT TEMPERATURE (°C)
IB
I , INPUT BIAS CURRENT (NORMALIZED)
–55 –25 0 25 50 75 100 125
VCC = +15 V VEE = –15 V VCM = 0
VIC, INPUT COMMON MODE VOLTAGE (V)
–12 –8.0 –4.0 0 4.0 8.0 12
VCC = +15 V VEE = –15 V TA = 25°C
VCC, |VEE|, SUPPLY VOLTAGE (V)
0 5.0 10 15 20 25
V
IB
I , INPUT BIAS CURRENT (NORMALIZED)
2400
2000
1600
1200
800
400
0
4.0
2.0
0
–2.0
–4.0
V
CC
VCC –0.8
VCC –1.6
VCC –2.4
VEE +0.01
V
EE
1.3
1.2
1.1
1.0
0.9
0.8
0.7
1.4
1.2
1.0
0.8
0.6
50
40
30
20
10
0
MC34071,2,4,A MC33071,2,4,A
http://onsemi.com
6
V
CC
VCC = +15 V RL to V
CC
TA = 25°C
Gnd
V
CC
VCC = +15 V RL = Gnd TA = 25°C
Gnd
V
O
, OUTPUT VOLTAGE SWING (V
pp
)
Figure 9. Single Supply Output Saturation
versus Load Resistance to V
CC
60
Figure 10. Split Supply Output Saturation
versus Load Current
Figure 11. Single Supply Output Saturation
versus Load Resistance to Ground
Figure 12. Output Short Circuit Current
versus Temperature
Figure 13. Output Impedance
versus Frequency
Figure 14. Output Voltage Swing
versus Frequency
0 5.0 10 15 20
IL, LOAD CURRENT (±mA)
V
CC
V
EE
Sink
VCC/VEE = +5.0 V/ –5.0 V to +22 V/ –22 V TA = 25°C
Source
RL, LOAD RESISTANCE TO GROUND (Ω)
100 1.0 k 10 k 100 k
sat
V , OUTPUT SATURATION VOLTAGE (V)
RL, LOAD RESISTANCE TO VCC (Ω)
100 1.0 k 10 k 100 k
TA, AMBIENT TEMPERATURE (°C)
SC
I , OUTPUT CURRENT (mA)
–55 –25 0 25 50 75 100 125
VCC = +15 V VEE = –15 V RL 0.1 Vin = 1.0 V
Sink
Source
f, FREQUENCY (Hz)
O
Z , OUTPUT IMPEDANCE ( )
1.0 k 10 k 100 1.0 M 10 M
AV = 1000
AV = 100 AV = 10 AV = 1.0
VCC = +15 V VEE = –15 V VCM = 0 VO = 0 IO = ±0.5 mA TA = 25°C
f, FREQUENCY (Hz)
3.0 k 10 k 30 k 100 k 300 k 1.0 M 3.0 M
VCC = +15 V VEE = –15 V AV = +1.0 RL = 2.0 k THD 1.0% TA = 25°C
sat
V , OUTPUT SATURATION VOLTAGE (V)
sat
V , OUTPUT SATURATION VOLTAGE (V)
V
CC
VCC –1.0
VCC –2.0
VEE +2.0
VEE +1.0
V
EE
VCC–2.0
VCC–4.0
V
CC
0.2
0.1
0
0
–0.4
–0.8
2.0
1.0
50
40
30
20
10
0
50
40
30
20
10
0
28 24
20 16 12
8.0
4.0 0
Loading...
+ 14 hidden pages