LINEAR TECHNOLOGY LT1013, LT1014 Technical data

LT1013/LT1014
Quad Precision Op Amp (LT1014)
FEATURES
Single Supply Operation
Input Voltage Range Extends to Ground Output Swings to Ground while Sinking Current
Pin Compatible to 1458 and 324 with Precision Specs
Guaranteed
Guaranteed
Guaranteed
Guaranteed
Offset Voltage: 150μV Max Low Drift: 2μV/°C Max Offset Current: 0.8nA Max
High Gain 5mA Load Current: 1.5 Million Min 17mA Load Current: 0.8 Million Min
Guaranteed
Low Voltage Noise, 0.1Hz to 10Hz: 0.55μVp-p
Low Current Noise—Better than 0P-07, 0.07pA/√Hz
Low Supply Current: 500μA Max
U
APPLICATIO S
Battery-Powered Precision Instrumentation
Strain Gauge Signal Conditioners Thermocouple Amplifiers Instrumentation Amplifiers
4mA–20mA Current Loop Transmitters
Multiple Limit Threshold Detection
Active Filters
Multiple Gain Blocks
, LT, LTC and LTM are registered trademarks of Linear Technology Corporation.
All other trademarks are the property of their respective owners.
Dual Precision Op Amp (LT1013)
U
DESCRIPTIO
The LT®1014 is the first precision quad operational amplifier which directly upgrades designs in the industry standard 14-pin DIP LM324/LM348/OP-11/4156 pin configuration. It is no longer necessary to compromise specifications, while saving board space and cost, as compared to single operational amplifiers.
The LT1014’s low offset voltage of 50μV, drift of 0.3μV/°C, offset current of 0.15nA, gain of 8 million, common mode rejection of 117dB and power supply rejection of 120dB qualify it as four truly precision operational amplifiers. Particularly important is the low offset voltage, since no offset null terminals are provided in the quad configura­tion. Although supply current is only 350μA per amplifier, a new output stage design sources and sinks in excess of 20mA of load current, while retaining high voltage gain.
Similarly, the LT1013 is the first precision dual op amp in the 8-pin industry standard configuration, upgrading the performance of such popular devices as the MC1458/ 1558, LM158 and OP-221. The LT1013’s specifications are similar to (even somewhat better than) the LT1014’s.
Both the LT1013 and LT1014 can be operated off a single 5V power supply: input common mode range includes ground; the output can also swing to within a few millivolts of ground. Crossover distortion, so apparent on previous single-supply designs, is eliminated. A full set of specifi­cations is provided with ±15V and single 5V supplies.
TYPICAL APPLICATIO
3 Channel Thermocouple Thermometer
+
1.2V
299k3k
YSI 44007
1.8k
5kΩ AT 25°C
4k
1684Ω
12
13
260Ω
+5V
LT1004
14
LT1014
USE TYPE K THERMOCOUPLES. ALL RESISTORS = 1% FILM. COLD JUNCTION COMPENSATION ACCURATE TO ±1°C FROM 0°C 60°C. USE 4TH AMPLIFIER FOR OUTPUT C.
4k
U
LT1014 Distribution of Offset Voltage
1M
+5V
4
2
1
LT1014
3
+
11
1M
6
LT1014
5
+
OUTPUT A 10mV/°C
7
OUTPUT B 10mV/°C
700
VS = ±15V
= 25°C
T
A
600
425 LT1014s (1700 OP AMPS)
500
TESTED FROM THREE RUNS J PACKAGE
400
300
NUMBER OF UNITS
200
100
0 –300 0 200
–200 –100
INPUT OFFSET VOLTAGE (μV)
100 300
1013/14 TA02
10134fc
1
LT1013/LT1014
1
2
3
4
8
7
6
5
TOP VIEW
OUTPUT A
–IN A
+IN A
V
V
+
OUTPUT B
–IN B
+IN B
N8 PACKAGE 8-LEAD PDIP
J8 PACKAGE
8-LEAD CERDIP
+
A
+
B
WW
W
ABSOLUTE AXI U RATI GS
U
(Note 1)
Supply Voltage ...................................................... ± 22V
Differential Input Voltage ....................................... ±30V
Input Voltage ............... Equal to Positive Supply Voltage
............5V Below Negative Supply Voltage
Output Short-Circuit Duration .......................... Indefinite
Storage Temperature Range
All Grades ......................................... – 65°C to 150°C
UUW
PACKAGE/ORDER I FOR ATIO
ORDER PART
TOP VIEW
+INA
V
+INB
–INB
NOTE: THIS PIN CONFIGURATION DIFFERS FROM THE STANDARD 8-PIN DUAL-IN-LINE CONFIGURATION
1
+
2
3
+
4
S8 PACKAGE
8-LEAD PLASTIC SO
= 150°C, θJA = 190°C/W
T
JMAX
8
–INA
OUTA
7
+
V
6
OUTB
5
NUMBER
LT1013DS8 LT1013IS8
PART MARKING
1013 1013I
Lead Temperature (Soldering, 10 sec.)................. 300°C
Operating Temperature Range
LT1013AM/LT1013M/
LT1014AM/LT1014M ...................... – 55 °C to 125°C
LT1013AC/LT1013C/LT1013D
LT1014AC/LT1014C/LT1014D................. 0°C to 70°C
LT1013I/ LT1014I............................... – 40°C to 85°C
OUTPUT A
–IN A
+IN A
+IN B
–IN B
OUTPUT B
TOP VIEW
1
2
3
+
4
V
5
6
7
8
NC
SW PACKAGE
16-LEAD PLASTIC SO
T
= 150°C, θJA = 130°C/W
JMAX
16
15
14
13
12
11
10
9
OUTPUT D
–IN D
+IN D
V
+IN C
–IN C
OUTPUT C
NC
ORDER PART
NUMBER
LT1014DSW LT1014ISW
PART MARKING
LT1014DSW LT1014ISW
ORDER PART
NUMBER
LT1013ACN8 LT1013CN8 LT1013DN8 LT1013IN8
LT1013AMJ8
T
= 150°C, θJA = 130°C/W
JMAX
LT1013MJ8 LT1013ACJ8
T
= 150°C, θJA = 100°C/W
JMAX
LT1013CJ8
OBSOLETE PACKAGE
Consider the N or S8 Packages for Alternate Source
OBSOLETE PACKAGE
Consider the N or S8 (not N8) Packages for Alternate Source
Consult LTC Marketing for parts specified with wider operating temperature ranges.
T
JMAX
2
OUTPUT A
–IN A
+IN A
+IN B
–IN B
OUTPUT B
TOP VIEW
+
V
8
OUTPUT B
OUTPUT A
1
2
–IN A
3
+IN A
H PACKAGE
8-LEAD TO-5 METAL CAN
= 150°C, θJA = 150°C/W, θJC = 45°C/W
A
V
+
4
(CASE)
7
B
6
–IN B
+
5
+IN B
TOP VIEW
1
2
A
+
3
+
4
V
5
+
B
6
7
N PACKAGE
14-LEAD PDIP
T
= 150°C, θJA = 100°C/W
JMAX
J PACKAGE
14-LEAD CERDIP
T
= 150°C, θJA = 100°C/W
JMAX
OUTPUT D
14
–IN D
13
D
+
+IN D
12
V
11
+IN C
10
+
C
–IN C
9
OUTPUT C
8
OBSOLETE PACKAGE
Consider the N or SW Packages for Alternate Source
ORDER PART
NUMBER
LT1013AMH LT1013MH LT1013ACH LT1013CH
ORDER PART
NUMBER
LT1014ACN LT1014CN LT1014DN LT1014IN
LT1014AMJ LT1014MJ LT1014ACJ LT1014CJ
10134fc
LT1013/LT1014
ELECTRICAL CHARACTERISTICS
SYMBOL PARAMETER CONDITIONS MIN TYP MAX MIN TYP MAX UNITS
V
OS
I
SO
I
B
e
n
e
n
i
n
A
VOL
CMRR Common Mode Rejection Ratio VCM = +13.5V, – 15.0V 100 117 97 114 dB PSRR Power Supply Rejection Ratio VS = ±2V to ±18V 103 120 100 117 dB
V
OUT
I
S
Input Offset Voltage LT1013 40 150 60 300 μV
LT1014 50 180 60 300 μV LT1013D/I, LT1014D/I 200 800 μV
Long Term Input Offset Voltage 0.4 0.5 μV/Mo. Stability
Input Offset Current 0.15 0.8 0.2 1.5 nA Input Bias Current 12 20 15 30 nA Input Noise Voltage 0.1Hz to 10Hz 0.55 0.55 μVp-p Input Noise Voltage Density fO = 10Hz 24 24 nV/√Hz
fO = 1000Hz 22 22 nV/√Hz
Input Noise Current Density fO = 10Hz 0.07 0.07 pA/√Hz Input Resistance – Differential (Note 2) 100 400 70 300 MΩ
Common Mode 5 4 GΩ Large Signal Voltage Gain VO = ±10V, RL = 2k 1.5 8.0 1.2 7.0 V/μV
VO = ± 10V, RL = 600Ω 0.8 2.5 0.5 2.0 V/μV
Input Voltage Range +13.5 +13.8 +13.5 +13.8 V
Channel Separation VO = ±10V, RL = 2k 123 140 120 137 dB Output Voltage Swing RL = 2k ± 13 ±14 ±12.5 ± 14 V Slew Rate 0.2 0.4 0.2 0.4 V/μs Supply Current Per Amplifier 0.35 0.50 0.35 0.55 mA
TA = 25°C. VS = ±15V, VCM = 0V unless otherwise noted.
LT1013AM/AC LT1013C/D/I/M LT1014AM/AC LT1014C/D/I/M
– 15.0 – 15.3 –15.0 –15.3 V
TA = 25°C. V
SYMBOL PARAMETER CONDITIONS MIN TYP MAX MIN TYP MAX UNITS
V
OS
I
OS
I
B
A
VOL
V
OUT
I
S
+
= +5V, V
S
Input Offset Voltage LT1013 60 250 90 450 μV
Input Offset Current 0.2 1.3 0.3 2.0 nA Input Bias Current 15 35 18 50 nA Large Signal Voltage Gain VO = 5mV to 4V, RL = 500Ω 1.0 1.0 V/μV Input Voltage Range +3.5 + 3.8 +3.5 + 3.8 V
Output Voltage Swing Output Low, No Load 15 25 15 25 mV
Supply Current Per Amplifier 0.31 0.45 0.32 0.50 mA
= 0V, V
S
= 1.4V, VCM = 0V unless otherwise noted
OUT
LT1014 70 280 90 450 μV LT1013D/I, LT1014D/I 250 950 μV
Output Low, 600Ω to Ground 5 10 5 10 mV Output Low, I
Output High, No Load 4.0 4.4 4.0 4.4 V Output High, 600Ω to Ground 3.4 4.0 3.4 4.0 V
= 1mA 220 350 220 350 mV
SINK
LT1013AM/AC LT1013C/D/I/M LT1014AM/AC LT1014C/D/I/M
0 – 0.3 0 – 0.3 V
10134fc
3
LT1013/LT1014
ELECTRICAL CHARACTERISTICS
–55°C T
SYMBOL PARAMETER CONDITIONS MIN TYP MAX MIN TYP MAX MIN TYP MAX UNITS
V
OS
I
OS
I
B
A
VOL
CMRR Common Mode Rejection VCM = +13.0V, –14.9V 97 114 96 114 94 113 dB PSRR Power Supply Rejection V
V
OUT
I
S
125°C. VS = ± 15V, VCM = 0V unless otherwise noted.
A
Input Offset Voltage 80 300 90 350 110 550 μV
V
= +5V, 0V; VO = + 1.4V
S
–55°C ≤ T V
CM
VCM = 0V, TA = 125°C 250 900 300 960 400 1500 μV
Input Offset Voltage Drift (Note 3) 0.4 2.0 0.4 2.0 0.5 2.5 μV/°C Input Offset Current 0.3 2.5 0.3 2.8 0.4 5.0 nA
VS = +5V, 0V; VO = +1.4V 0.6 6.0 0.7 7.0 0.9 10.0 nA
Input Bias Current 15 30 15 30 18 45 nA
VS = +5V, 0V; VO = +1.4V 20 80 25 90 28 120 nA
Large Signal Voltage Gain VO = ±10V, RL = 2k 0.5 2.0 0.4 2.0 0.25 2.0 V/μV
= ±2V to ±18V 100 117 100 117 97 116 dB
Ratio Output Voltage Swing RL = 2k ±12 ±13.8 ± 12 ± 13.8 ± 11.5 ± 13.8 V
Supply Current 0.38 0.60 0.38 0.60 0.38 0.7 mA Per Amplifier VS = +5V, 0V; VO = +1.4V 0.34 0.55 0.34 0.55 0.34 0.65 mA
S
V
= +5V, 0V
S
= 600Ω to Ground
R
L
Output Low Output High 3.2 3.8 3.2 3.8 3.1 3.8 V
100°C 80 450 90 480 100 750 μV
A
= 0.1V, TA = 125°C 120 450 150 480 200 750 μV
The denotes the specifications which apply over the temperature range
LT1013AM LT1014AM LT1013M/LT1014M
— 6 15— 615— 618 mV
4
10134fc
LT1013/LT1014
ELECTRICAL CHARACTERISTICS
The denotes the specifications which apply over the temperature range
–40°C TA 85°C for LT1013I, LT1014I, 0°C TA 70°C for LT1013C, LT1013D, LT1014C, LT1014D. VS = ±15V, VCM = 0V unless otherwise noted.
LT1013AC LT1014AC LT1014C/D/I
SYMBOL PARAMETER CONDITIONS MIN TYP MAX MIN TYP MAX MIN TYP MAX UNITS
V
OS
I
OS
I
B
A
VOL
CMRR Common Mode Rejection VCM = +13.0V, –15.0V 98 116 98 116 94 113 dB
PSRR Power Supply Rejection VS = ± 2V to ±18V 101 119 101 119 97 116 dB
V
OUT
I
S
Note 1: Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. Exposure to any Absolute Rating condition for extended periods may affect device reliability and lifetime.
Note 2: This parameter is guaranteed by design and is not tested. Typical parameters are defined as the 60% yield of parameter distributions of individual amplifiers; i.e., out of 100 LT1014s (or 100 LT1013s) typically 240 op amps (or 120 ) will be better than the indicated specification.
Note 3: This parameter is not 100% tested.
Input Offset Voltage 55 240 65 270 80 400 μV
LT1013D/I, LT1014D/I
= +5V, 0V; VO = 1.4V 75 350 85 380 110 570 μV
V
S
LT1013D/I, LT1014D/I VS = +5V, 0V; VO = 1.4V 280 1200 μV
Average Input Offset (Note 3) Voltage Drift LT1013D/I, LT1014D/I ———————0.75.0μV/°C
Input Offset Current 0.2 1.5 0.2 1.7 0.3 2.8 nA
VS = +5V, 0V; VO = 1.4V 0.4 3.5 0.4 4.0 0.5 6.0 nA
Input Bias Current 13 25 13 25 16 38 nA
VS = +5V, 0V; VO = 1.4V 18 55 20 60 24 90 nA
Large Signal Voltage Gain VO = ±10V, RL = 2k 1.0 5.0 1.0 5.0 0.7 4.0 V/μV
Ratio
Ratio Output Voltage Swing RL = 2k ±12.5 ± 13.9 ± 12.5 ± 13.9 ±12.0 ± 13.9 V
= +5V, 0V; RL = 600Ω
V
S
Output Low Output High 3.3 3.9 3.3 3.9 3.2 3.9 V
Supply Current per Amplifier 0.36 0.55 0.36 0.55 0.37 0.60 mA
VS = +5V, 0V; VO = 1.4V 0.32 0.50 0.32 0.50 0.34 0.55 mA
230 1000 μV
0.3 2.0 0.3 2.0 0.4 2.5 μV/°C
— 613— 613— 613 mV
LT1013C/D/I
10134fc
5
LT1013/LT1014
TIME AFTER POWER ON (MINUTES)
0
CHANGE IN OFFSET VOLTAGE (μV)
5
4
3
2
1
0
4
1
2
3
5
VS = ±15V T
A
= 25°C
LT1013 CERDIP (J) PACKAGE
LT1013 METAL CAN (H) PACKAGE
LT1014
1013/14 TPC03
TEMPERATURE (°C)
–50
SUPPLY CURRENT PER AMPLIFIER (μA)
460
420
380
340
300
260
0
50
75
–25
25
100
125
VS = ±15V
VS = 5V, 0V
1013/14 TPC09
UW
TYPICAL PERFOR A CE CHARACTERISTICS
Offset Voltage Drift with Temperature of Representative Units
VS = ±15V
200
100
Offset Voltage vs Balanced Source Resistance
10
VS = 5V, 0V, –55°C TO 125°C
VS = ±15V, 0V, –55°C TO 125°C
1
Warm-Up Drift
0
–100
INPUT OFFSET VOLTAGE (μV)
–200
–50
–25
0
50
25
TEMPERATURE (°C)
75
100
1013/14 TPC01
125
Common Mode Rejection Ratio vs Frequency 0.1Hz to 10Hz Noise
120
100
80
60
40
20
COMMON MODE REJECTION RATIO (dB)
0
10
VS = 5V, 0V VS = ±15V
100 1k 10k 100k
FREQUENCY (Hz)
TA = 25°C
1M
1013/14 TPC04
VS = 5V, 0V, 25°C
0.1
R
INPUT OFFSET VOLTAGE (mV)
VS = ±15V, 0V, 25°C
0.01 1k 3k 10k 30k 100k 300k 1M 3M 10M
BALANCED SOURCE RESISTANCE (Ω)
S
R
S
Power Supply Rejection Ratio vs Frequency
120
100
VS = ±15V + 1V T
0.1
NEGATIVE
SUPPLY
= 25°C
A
110
FREQUENCY (Hz)
SINE WAVE
P-P
1k 100k 1M
100 10k
80
60
40
20
POWER SUPPLY REJECTION RATIO (dB)
0
+
1013/14 TPC02
POSITIVE SUPPLY
1013/14 TPC05
TA = 25°C
= ±2V TO ± 18V
V
S
NOISE VOLTAGE (200nV/DIV)
2
0
6
4
TIME (SECONDS)
8
1013/14 TPC06
10
10Hz Voltage Noise
Noise Spectrum Supply Current vs Temperature
1000
TA = 25°C
= ±2V TO ± 18V
V
S
300
100
30
CURRENT NOISE DENSITY (fA/Hz)
VOLTAGE NOISE DENSITY (nV/Hz)
6
1/f CORNER 2Hz
10
1
CURRENT NOISE
VOLTAGE NOISE
10 100 1k
FREQUENCY (Hz)
1013/14 TPC07
Distribution
200
180
160
140
120
100
80
NUMBER OF UNITS
60
40
20
0
20
10
VOLTAGE NOISE DENSITY (nV/Hz)
VS = ±15V
= 25°C
T
A
328 UNITS TESTED FROM THREE RUNS
40
30
50
1013/14 TPC08
60
10134fc
TEMPERATURE (°C)
–50
INPUT BIAS CURRENT (nA)
–30
–25
–20
–15
–10
–5
0
25 75
–25 0
50 100 125
VCM = 0V
VS = 5V, 0V
VS = ±15V
V
S
= ±2.5V
1013/14 TPC12
UW
TYPICAL PERFOR A CE CHARACTERISTICS
LT1013/LT1014
Input Bias Current vs Common Mode Voltage
5
TA = 25°C
4
= +5V, 0V (V)
S
3
2
VS = ±15V
1
0
–1
COMMON MODE INPUT VOLTAGE, V
0
–5
INPUT BIAS CURRENT (nA)
VS = 5V, 0V
–10 –15 –20
Output Saturation vs Sink Current vs Temperature
10
V+ = 5V TO 30V
= 0V
V
I
= 10mA
SINK
1
I
= 5mA
SINK
–25 –30
1013/14 TPC10
Input Offset Current vs
COMMON MODE INPUT VOLTAGE, V
15
10
5
0
–5
S
= ±15V (V)
–10
–15
Temperature
1.0 VCM = 0V
0.8
0.6
0.4
0.2
INPUT OFFSET CURRENT (nA)
0
–50
–25
Small Signal Transient Response, VS = ±15V
20mV/DIV
VS = 5V, 0V
VS = ±15V
50
25
0
TEMPERATURE (°C)
V
75
= ±2.5V
S
100
1013/14 TPC11
125
Input Bias Current vs Temperature
Large Signal Transient Response, V
5V/DIV
= ±15V
S
0.1
SATURATION VOLTAGE (V)
0.01 –50 – 25 0 25 50 75 100 125
Small Signal Transient Response, VS = 5V, 0V
100mV
50mV
0
AV = +1 20μs/DIV 1013/14 TPC16 RL = 600Ω TO GROUND INPUT = 0V TO 100mV PULSE
TEMPERATURE (°C)
I
I I
SINK
SINK
SINK
= 1mA
= 100μA = 10μA
I
SINK
= 0
1013/14 TPC13
AV = +1 2μs/DIV 1013/14 TPC14
Large Signal Transient Response, VS = 5V, 0V
4V
2V
0V
AV = +1 10μs/DIV 1013/14 TPC17 RL = 4.7k TO 5V INPUT = 0V TO 4V PULSE
AV = +1 50μs/DIV 1013/14 TPC15
Large Signal Transient Response, VS = 5V, 0V
4V
2V
0V
AV = +1 10μs/DIV 1013/14 TPC18 NO LOAD INPUT = 0V TO 4V PULSE
10134fc
7
LT1013/LT1014
UW
TYPICAL PERFOR A CE CHARACTERISTICS
Output Short-Circuit Current vs Time
40
30
20
10
0
–10
–20
SHORT-CIRCUIT CURRENT (mA)
–30
SINKING SOURCING
–40
0
TIME FROM OUTPUT SHORT TO GROUND (MINUTES)
–55°C
25°C
125°C
125°C
25°C
–55°C
12
VS = ±15V
Gain, Phase vs Frequency
20
10
GAIN
0
VOLTAGE GAIN (dB)
–10
PHASE
±15V
5V, 0V
1013/14 TPC19
±15V
5V, 0V
10M
1M
VOLTAGE GAIN (V/V)
100k
3
TA = 25°C
= 0V
V
CM
= 100pF
C
L
Voltage Gain vs Load Resistance
100
LOAD RESISTANCE TO GROUND (Ω)
80
100
PHASE SHIFT (DEGREES)
120
140
160
180
200
1k 10k
TA = 25°C, VS = ±15V
TA = –55°C, VS = ±15V
TA = 125°C, VS = ±15V
TA = –55°C, VS = 5V, 0V
TA = 25°C, VS = 5V, 0V
TA = 125°C, VS = 5V, 0V
VO = ±10V WITH VS = ±15V
VO = 20mV TO 3.5V
WITH V
= 5V, 0V
S
1013/14 TPC20
Channel Separation vs Frequency
160
140
120
100
CHANNEL SEPARATION (dB)
80
VOLTAGE GAIN (dB)
LIMITED BY
THERMAL
INTERACTION
Voltage Gain vs Frequency
140
120
100
80
60
40
20
0
–20
0.01 0.1
RS = 1kΩ
LIMITED BY
PIN TO PIN
CAPACITANCE
VS = ±15V T
A
V
IN
R
L
100 1k
110
FREQUENCY (Hz)
= 25°C
= 20Vp-p to 5kHz
= 2k
RS = 100Ω
VS = ±15VVS = 5V, 0V
TA = 25°C C
L
10k 100k
= 100pF
1M 10M
1013/14 TPC21
0.1 0.3
13 10
FREQUENCY (MHz)
U
WUU
1013/14 TPC22
APPLICATIO S I FOR ATIO
Single Supply Operation
The LT1013/LT1014 are fully specified for single supply operation, i.e., when the negative supply is 0V. Input common mode range includes ground; the output swings within a few millivolts of ground. Single supply operation, however, can create special difficulties, both at the input and at the output. The LT1013/LT1014 have specific circuitry which addresses these problems.
At the input, the driving signal can fall below 0V— inad­vertently or on a transient basis. If the input is more than a few hundred millivolts below ground, two distinct prob-
8
60
100
10
FREQUENCY (Hz)
10k
100k
1k
1M
1013/14 TPC23
lems can occur on previous single supply designs, such as the LM124, LM158, OP-20, OP-21, OP-220, OP-221, OP-420:
a) When the input is more than a diode drop below ground, unlimited current will flow from the substrate (V– termi­nal) to the input. This can destroy the unit. On the LT1013/ LT1014, the 400Ω resistors, in series with the input (see Schematic Diagram), protect the devices even when the input is 5V below ground.
10134fc
LT1013/LT1014
U
WUU
APPLICATIO S I FOR ATIO
b) When the input is more than 400mV below ground (at 25°C), the input stage saturates (transistors Q3 and Q4) and phase reversal occurs at the output. This can cause lock-up in servo systems. Due to a unique phase reversal protection circuitry (Q21, Q22, Q27, Q28), the LT1013/ LT1014’s outputs do not reverse, as illustrated below, even when the inputs are at –1.5V.
There is one circumstance, however, under which the phase reversal protection circuitry does not function: when the other op amp on the LT1013, or one specific amplifier of the other three on the LT1014, is driven hard into negative saturation at the output.
Phase reversal protection does not work on amplifier:
A when D’s output is in negative saturation. B’s and C’s outputs have no effect.
B when C’s output is in negative saturation. A’s and D’s outputs have no effect.
C when B’s output is in negative saturation. A’s and D’s outputs have no effect.
D when A’s output is negative saturation. B’s and C’s outputs have no effect.
At the output, the aforementioned single supply designs either cannot swing to within 600mV of ground (OP-20) or cannot sink more than a few microamperes while swing­ing to ground (LM124, LM158). The LT1013/LT1014’s all-NPN output stage maintains its low output resistance and high gain characteristics until the output is saturated.
In dual supply operations, the output stage is crossover distortion-free.
Comparator Applications
The single supply operation of the LT1013/LT1014 lends itself to its use as a precision comparator with TTL compatible output:
In systems using both op amps and comparators, the LT1013/LT1014 can perform multiple duties; for example, on the LT1014, two of the devices can be used as op amps and the other two as comparators.
Voltage Follower with Input Exceeding the Negative Common Mode Range
4V
2V
0V
6Vp-p INPUT, –1.5V TO 4.5V
Comparator Rise Response Time 10mV, 5mV, 2mV Overdrives
4
2
0
0
INPUT (mV) OUTPUT (V)
4V
LM324, LM358, OP-20
EXHIBIT OUTPUT PHASE
REVERSAL
Comparator Fall Response Time to 10mV, 5mV, 2mV Overdrives
4
2
0
100
INPUT (mV) OUTPUT (V)
4V
2V2V
0V0V
LT1013/LT1014
NO PHASE REVERSAL
–100
VS = 5V, 0V 50μs/DIV
0
V
= 5V, 0V 50μs/DIV
S
10134fc
9
LT1013/LT1014
U
WUU
APPLICATIO S I FOR ATIO
Low Supply Operation
The minimum supply voltage for proper operation of the LT1013/LT1014 is 3.4V (three Ni-Cad batteries). Typical supply current at this voltage is 290μA, therefore power dissipation is only one milliwatt per amplifier.
Noise Testing
For applications information on noise testing and calcula­tions, please see the LT1007 or LT1008 data sheet.
U
TYPICAL APPLICATIO S
50MHz Thermal rms to DC Converter
Test Circuit for Offset Voltage and Offset Drift with Temperature
50k*
+15V
100Ω*
50k*
+
–15V
RESISTOR MUST HAVE LOW
*
THERMOELECTRIC POTENTIAL. THIS CIRCUIT IS ALSO USED AS THE BURN-IN
**
CONFIGURATION, WITH SUPPLY VOLTAGES INCREASED TO ±20V.
= 1000V
V
O
OS
LT1013 OR LT1014
V
O
LT1013/14 F06
5V Single Supply Dual Instrumentation Amplifier
+5V
30k*
10k
0.01
INPUT 300mV– 10V
RMS
BRN RED RED
T1A T1B T2B T2A GRN GRN
100k*
0.01
2
30k*
1μF
10k
BRN
2% ACCURACY, DC–50MHz. 100:1 CREST FACTOR CAPABILITY.
*
0.1% RESISTOR. T1–T2 = YELLOW SPRINGS INST. CO. THERMISTOR COMPOSITE #44018. ENCLOSE T1 AND T2 IN STYROFOAM.
7.5mW DISSIPATION.
1μF
3
300Ω*
13
12
LT1014
+
LT1014
+
0.01
1
6
10k*
10k
10
5
9
10k*
LT1014
+
+
LT1014
10k*100k*
14
20k
FULL-
SCALE
TRIM
10k*10k*
+5V
10k*
1/2 LTC1043
+INPUT
4
7
11
8
0V–4V OUTPUT
1013/14 TA03
–INPUT
+INPUT
–INPUT
6
18
1/2 LTC1043
7
13
5
2
1μF
3
11
1μF
12
16
0.01
1μF
15
8
1μF
14
+5V
8
5
+
1/2 LT1013
6
3
+
1/2 LT1013
2
OFFSET = 150μV
R2
GAIN = + 1.
R1
CMRR = 120dB. COMMON-MODE RANGE IS 0V TO 5V.
7
OUTPUT A
4
1
R2
R1
OUTPUT B
R2
R1
1013/14 TA04
10
10134fc
U
TYPICAL APPLICATIO S
500pF
220
LT1014
+
+15V
A1
–15V
0.01μF
4
1
11
REMOVE LAMP'S GLASS ENVELOPE FROM 328 LAMP. A1 SERVOS #328 LAMP TO CONSTANT TEMPERATURE. A2-A3 FURNISH LINEAR OUTPUT vs FLOW RATE.
*
1% RESISTOR.
27Ω
1W
#328
10k*
2
3
2k*
Q1 2N6533
+15V
Hot Wire Anemometer
2k
150k*
ZERO FLOW
6
LT1014
33k
+
5
1k
LT1013/LT1014
Q2–Q5
CA3046
Q2
1000pF
A2
7
3.3k
–15V
PIN 3 TO –15V
Q3
Q4
150k*2k
500k
10
9
Q5
LT1014
+
12k
1μF
A3
2M
FULL­SCALE FLOW
1μF
8
13
12
10M RESPONSE TIME ADJUST
100k
A4
LT1014
+
0–1000 FEET/MINUTE
14
0V–10V =
1013/14 TA05
15Ω
DALE
HL-25
LT1004
+15V
–1.2
–15V
6.25k**
2.7k
383k*
3.2k*
100k
2N4391
9
10
3.2k**
LT1014
+
Liquid Flowmeter
1M*
1M*
1M*
6.25k**
T2T1
0.1
A3
8
T1
PIPE
2
A1
LT1014
+
3
1M*
1N4148
300pF
100k
100k
15Ω HEATER RESISTOR
+15V
12
+
A4
LT1014
13
–15V
1
4
11
T2
RESPONSE
100k
+15V
14
FLOWFLOW
10M
TIME
4.7k
OUTPUT 0Hz 300Hz = 0 300ML/MIN
6
6.98k*
FLOW CALIB
1k*
7
5k
1013/14 TA06
A2
LT1014
+
5
1μF
1% FILM RESISTOR.
*
SUPPLIED WITH YSI THERMISTOR NETWORK.
**
T1, T2 YSI THERMISTOR NETWORK = #44201. FLOW IN PIPE IS INVERSELY PROPORTIONAL TO RESISTANCE OF T1–T2 TEMPERATURE DIFFERENCE. A1–A2 PROVIDE GAIN. A3–A4 PROVIDE LINEARIZED FREQUENCY OUTPUT.
10134fc
11
LT1013/LT1014
TYPICAL APPLICATIO S
CABLE SHIELDS
–INPUT
+INPUT
20k
1μF
20k
U
5V Powered Precision Instrumentation Amplifier
TO
INPUT
+5V
+5V
8
LT1014
200k*
2
LT1014
+
3
RG (TYP 2k)
200k*
6
LT1014
+
5
9
+
10
1
7
1% FILM RESISTOR. MATCH 10k's 0.05%
*
GAIN EQUATION: A = + 1.
FOR HIGH SOURCE IMPEDANCES, USE 2N2222 AS DIODES.
10k*
10k
10k
10k*
13
+
12
10k*
400,000
RG
+5V
LT1014
10k*
4
11
14
OUTPUT
1013/14 TA07
0.068
+9V
+9V
9V Battery Powered Strain Gauge Signal Conditioner
15k
+9V
2
3
4
LT1014
+
11
15k
3k
1N4148
1
100k
100k100k
0.068
0.068
CONVERT COMMAND
15
14
7
6
22M
4.7k
STRAIN GAUGE
1
13
74C221
9
5
TO A/D
330Ω
0.01
BRIDGE
350Ω
+9V
47μF
2N2219
TO A/D RATIO REFERENCE
100k
6
499
LT1014
+
5
9
LT1014
+
10
SAMPLED OPERATION GIVES LOW AVERAGE OPERATING CURRENT 650μA.
4.7k–0.01μF RC PROTECTS STRAIN BRIDGE FROM LONG TERM DRIFTS DUE TO HIGH ΔV/ΔT STEPS.
7
499
8
13
12
100k
LT1014
+
14
TO A/D
1013/14 TA08
10134fc
12
U
TYPICAL APPLICATIO S
LT1013/LT1014
5V Powered Motor Speed Controller No Tachometer Required
330k
0.47
100k
2
1/2 LT1013
+
3
2k
0.068
7
A1
1M
6.8M
5V
8
A2
1/2 LT1013
4
+5V
82Ω
1
6
+
5
0V–3V
2k
E
IN
3.3M
0.47
Q1 2N3904
1/4 CD4016
0.068
2k
Q2
5V Powered EEPROM Pulse Generator
1k
1N4148
1N4148
47
+
Q3 2N5023
1N4001
1N4001
MOTOR = CANON–FN30–R13N1B. A1 DUTY CYCLE MODULATES MOTOR. A2 SAMPLES MOTORS BACK EMF.
1013/14 TA09
DALE
#TC-10-04
2N2222
2N2222
4.7k
820
MEETS ALL V RUNS OFF 5V SUPPLY—NO EXTERNAL HIGH VOLTAGE SUPPLY REQUIRED. SUITABLE FOR BATTERY POWERED USE (600μA QUIESCENT CURRENT).
*
1% METAL FILM.
270Ω
820
1N4148
TTL INPUT
PROGRAMMING SPECS WITH NO TRIMS AND
PP
10Ω
+5V
0.05
0.1
2N2222
1N4148
20k
1N4148
+5V
LT1013
+
LT1004
1.2V
1N4148
8
4
4.7M
1k
7
2N2222
100K*
6.19K
1N4148
0.33
100k 100Ω
2
LT1013
+
3
1
1N4148
0.005
120k
6
5
OUTPUT
21V
600μs RC
1013/14 TA10
10134fc
13
LT1013/LT1014
TYPICAL APPLICATIO S
Methane Concentration Detector with Linearized Output
+5V
1
14
LT1004
1.2V
2.7k
390k*
1000ppm
5k
TRIM
0.033
9
A3
LT1014
10
+
11
58
–5V
10μF
+
–5V
CD4016
8
LTC1044
423
10μF
+
SENSOR
+5V
4
2
A1
LT1014
3
+
U
1% METAL FILM RESISTOR
*
SENSOR = CALECTRO-GC ELECTRONICS #J4-807 OR FIGARO #813
100k*
+5V
7
CA3046
Q3Q2
150k*2k
Q1
1000pF
100k*
1
6
A2
LT1014
5
+
470pF
Q4
1N4148 (4)
13
12
+
10k
A4
LT1014
470pF
74C04
14
74C04
+5V
1
74C04
14
–5V
1N4148
OUTPUT 500ppm-10,000ppm 50Hz 1kHz
2k
Low Power 9V to 5V Converter
+9V INPUT
L = DALE TE-3/Q3/TA. SHORT CIRCUIT CURRENT = 30mA. 75% EFFICIENCY. SWITCHING PREREGULATOR CONTROLS DROP ACROSS FET TO 200mV.
2N2905
10k
10k
L
+
471N4148
HP5082-2811
VD = 200mV
+9V
8
7
LT1013
4
100μA
+
5
6
47k
12k*
2N5434
1
+9V
LT1013
330k
LT1004
1.2V
1013/14 TA11
5V 20mA
390k 1%
2
3
+
120k 1%
1013/14 TA12
10134fc
14
U
TYPICAL APPLICATIO S
LT1013/LT1014
2N2222
Q4
*
+5V
Q3 2N2905
68Ω
100pF
12-BIT ACCURACY. 1% FILM. T1 = PICO-31080.
5V Powered 4mA–20mA Current Loop Transmitter
820Ω
Q2 2N2905
A2
1/2 LT1013
T1
6
5
+
INPUT
0 TO 4V
74C04
(6)
0.002
+5V
+5V
10k
8
2
A1
4k*
3
+
4
10k*
4.3k
LT1004
1.2V
10k
0.33
2k
1
1/2 LT1013
10μF
+
820Ω
1k 4mA TRIM
100k
Q1
2N2905
7
10μF
1N4002 (4)
+
10k*
10k*
80k*
20mA TRIM
100Ω*
4mA-20mA OUT TO LOAD
2.2kΩ MAXIMUM
1013/14 TA13
TO INVERTER
DRIVE
7
1/2 LT1013
+5V
Fully Floating Modification to 4mA-20mA Current Loop
T1
+5V
8
A1
4
4.3k
LT1004
10k*
1.2V
100k
6
5
+
INPUT 0V–4V
4k*
1
68k*
301Ω*
2k 4mA TRIM
A2
1/2 LT1013
1k 20mA TRIM
0.1Ω
3
2
+
+
10μF
8-BIT ACCURACY.
1N4002 (4)
4mA-20mA OUT FULLY FLOATING
1013/14 TA14
10134fc
15
LT1013/LT1014
TYPICAL APPLICATIO S
5V Powered, Linearized Platinum RTD Signal Conditioner
167Ω499Ω
Q2Q1
2N4250
(2)
SENSOR
1.5k
ROSEMOUNT
118MF
U
200k
200k
7
14
2
1/4 LT1014
3
2M
1/4 LT1014
1/4 LT1014
+
11
2M
A2
A3
+5V
4
A1
LINEARITY
6
+
5
13
10k
+
12
9
A4
+5V
1/4 LT1014
+
10
GAIN TRIM 1k
3.01k
2.4k 5%
LT1009
2.5V
150Ω
1
5k
8.25k
50k ZERO TRIM
274k
250k
8
OUTPUT 0V–4V = 0°C–400°C ±0.05°C
100μF
ALL RESISTORS ARE TRW-MAR-6 METAL FILM. RATIO MATCH 2M–200K ± 0.01%. TRIM SEQUENCE:
SET SENSOR TO 0° VALUE. ADJUST ZERO FOR 0V OUT. SET SENSOR TO 100°C VALUE. ADJUST GAIN FOR 1.000V OUT. SET SENSOR TO 400°C. ADJUST LINEARITY FOR 4.000V OUT, REPEAT AS REQUIRED.
1013/14 TA15
Strain Gauge Bridge Signal Conditioner
+5V
220
+5V
0.1
8
2
+
LTC1044
4
5
+
1
100μF
8
1/2 LT1013
4
V –V
*
1% FILM RESISTOR. PRESSURE TRANSDUCER–BLH/DHF–350.
CIRCLED LETTER IS PIN NUMBER.
LT1004
+
1.2V
2
39k
3
REF
V
REF
E
PRESSURE
TRANSDUCER
350Ω
C
301k
D
10k ZERO TRIM
100k
A
0.33
1.2V
REFERENCE
OUT
TO A/D CONVERTER FOR RATIOMETRIC OPERATION 1mA MAXIMUM LOAD
5
+
6
1/2 LT1013
0.047
7
OUTPUT 0V–3.5V
0psi–350psi
2k GAIN TRIM
46k*
16
100Ω*
1013/14 TA16
10134fc
U
TYPICAL APPLICATIO S
0.0050.005
30k
30k
+5V
5
+
LT1013
6
–5V
7
FREQUENCY =
1.5kHz
YEL-BLK
LVDT Signal Conditioner
7
8
11
LVDT
RD­BLUE
BLUE
GRN
LT1013/LT1014
10k
4.7k
2N4338
1.2k
LVDT = SCHAEVITZ E-100.
10μF
Triple Op Amp Instrumentation Amplifier with Bias Current Cancellation
–INPUT
+INPUT
R 5M
1N914
LT1004
1.2V
+
2R 10M
7.5k
2R
10M
10pF
100k
PHASE
TRIM
YEL-RD
0.01
100k
3
2
6
5
12
13
2
3
+
1/4 LT1014
1/4 LT1014
+
+
V
4
+
1/4 LT1014
11
1313
+
LT1011
100k
BLK
12
14
1/2 LTC1043
8
7
4
1
R2
1
R1
R
G
R1
R2
7
14
INPUT BIAS CURRENT TYPICALLY <1nA INPUT RESISTANCE = 3R = 15M FOR VALUES SHOWN NEGATIVE COMMON-MODE LIMIT = V
100k
+5V
1k
TO PIN 16, LT1043
9
1/4 LT1014
+
10
R3
GAIN = 1 +
()
2R1
R
G
3
1μF
2
8
R3 R2
+
LT1013
R3
OUTPUT
+ IB × 2R + 30mV
= 150mV for V
I
B
1
= 0V
= 12nA
OUT 0V–3V
200k
10k
1013/14 TA17
V
1013/14 TA18
10134fc
17
LT1013/LT1014
TYPICAL APPLICATIO S
U
Low Dropout Regulator for 6V Battery
V
BATT
6V
0.01Ω
6
5
100Ω
1.2k
LT1013
+
1N914
38
LTC1044
245
+
10
100k
1M
LT1004
1.2V
A2
7
1N914
0.009V DROPOUT AT 5mA OUTPUT.
0.108V DROPOUT AT 100mA OUTPUT. I
QUIESCENT
3
2
= 850μA.
+
LT1013
+12 OUTPUT
10
+
8
4
2N2219
1
100Ω
0.003μF
5V OUTPUT
120k
30k
50k OUTPUT ADJUST
1013/14 TA19
Voltage Controlled Current Source with Ground Referred Input and Output
+5V
8
3
0V–2V
1k
1μF
+
1/2 LT1013
2
0.68μF
1/2 LTC1043
7
11
12
13
V
IN
=
I
OUT
100Ω
FOR BIPOLAR OPERATION, RUN BOTH ICs FROM A BIPOLAR SUPPLY.
1
4
8
1μF
14
100Ω
I
OUT
= 0mA TO 15mA
1013/14 TA20
18
10134fc
U
TYPICAL APPLICATIO S
1μF
15pF
22k
15pF
100kHz INPUT
+
+6V
+V Q1 CLK 2
74C74
CLK 1 Q2
D1 Q1 Q2D2
22k
74C00
6V to ±15V Regulating Converter
+6V
10k
10k
10k
10k
2N3906
L1 1MHY
2N3904
–16V
10
+
+16V
+
10
2N4391
LT1013/LT1014
+15V
+16V
8
1
LT1013
+
4
–16V
7
LT1013
+
0.005
2
3
82k
6
5
+6V
100k
LT1004
1.2V
1.4M
200k V
OUT
ADJ
OUT
+5V
4.3k
LT1009
2.5V
YSI 44201
L1 = 24-104 AIE VERNITRON
= 1N4148
±5mA OUTPUT 75% EFFICIENCY
0.005
2N5114
Low Power, 5V Driven, Temperature Compensated Crystal Oscillator (TXCO)
+5V
8
3
3.4k*
T1
3.2k
TEMPERATURE
COMPENSATION
GENERATOR
R
T2
6.25k
R
T
2.16k*
1M*
+
1/2 LT1013
2
1M*R
6
1/2 LT1013
5
+
4.22M*
1
OSCILLATOR SUPPLY
+5V
STABILIZATION
1M*
5M*
20k
100k
3.5MHz XTAL
MV-209
100k
OSCILLATOR
560k
4
4.22M*
7
1% FILM
*
3.5MHz XTAL = AT CUT – 35°20' NEAR XTAL
MOUNT R
T
3mA POWER DRAIN
THERMISTOR-AMPLIFIER-VARACTOR NETWORK GENERATES A TEMPERATURE COEFFICIENT OPPOSITE THE CRYSTAL TO MINIMIZE OVERALL OSCILLATOR DRIFT
2N2222
510pF
510pF
100Ω
3.5MHz OUTPUT
0.03ppm/°C, 0°C–70°C
680Ω
1M
1013/14 TA22
–15V
OUT
1013/14 TA21
10134fc
19
LT1013/LT1014
WW
SCHE ATIC DIAGRA
+
V
9k 9k 1.6k
1.6k
1/2 LT1013, 1/4 LT1014
1.6k
100Ω
1k
800Ω
Q16
Q3
Q29
5k 2k5k
Q2
Q22
Q6
Q27
Q28
Q12
Q11
Q9 Q7
75pF
Q5
IN
+
IN
V
Q1
400Ω
Q21
400Ω
Q14Q13
Q15
Q4
10pF
Q10
21pF
2.5pF
Q18
Q19
Q17
3.9k
Q8
Q32
Q20
1.3k
Q30
Q25
2k
2.4k
4pF
100pF
Q31
Q23
Q35
Q37
Q33
Q26
18Ω
OUTPUT
Q34
42k
Q24
2k
30Ω
J1
Q38
14k
Q40
Q36
Q41
Q39
600Ω
1013/14 SD
20
10134fc
PACKAGE DESCRIPTIO
LT1013/LT1014
U
H Package
8-Lead TO-5 Metal Can (.200 Inch PCD)
(Reference LTC DWG # 05-08-1320)
0.045 – 0.068
(1.143 – 1.727)
FULL LEAD
OPTION
0.040
(1.016)
MAX
SEATING
PLANE
0.010 – 0.045* (0.254 – 1.143)
CORNER LEADS OPTION
(4 PLCS)
0.023 – 0.045
(0.584 – 1.143)
HALF LEAD
OPTION
NOTE: LEAD DIMENSIONS APPLY TO SOLDER DIP/PLATE OR TIN PLATE LEADS
0.008 – 0.018
(0.203 – 0.457)
0.335 – 0.370
(8.509 – 9.398)
DIA
0.305 – 0.335
(7.747 – 8.509)
0.016 – 0.021** (0.406 – 0.533)
0.300 BSC
(0.762 BSC)
45°TYP
0.028 – 0.034
(0.711 – 0.864)
0.050
(1.270)
MAX
GAUGE PLANE
0.165 – 0.185
(4.191 – 4.699)
0.500 – 0.750
(12.700 – 19.050)
REFERENCE PLANE
0.110 – 0.160
(2.794 – 4.064)
INSULATING
*
LEAD DIAMETER IS UNCONTROLLED BETWEEN THE REFERENCE PLANE AND 0.045" BELOW THE REFERENCE PLANE
**
FOR SOLDER DIP LEAD FINISH, LEAD DIAMETER IS
J8 Package
8-Lead CERDIP (Narrow .300 Inch, Hermetic)
(Reference LTC DWG # 05-08-1110)
0.015 – 0.060
(0.381 – 1.524)
0° – 15°
0.045 – 0.065
(1.143 – 1.651)
0.014 – 0.026
(0.360 – 0.660)
0.100
(2.54)
BSC
STANDOFF
0.200
(5.080)
MAX
0.125
3.175 MIN
0.005
(0.127)
MIN
0.025
(0.635)
RAD TYP
0.027 – 0.045
(0.686 – 1.143)
PIN 1
0.016 – 0.024
(0.406 – 0.610)
H8(TO-5) 0.200 PCD 1197
0.405
(10.287)
MAX
87
12
0.200
(5.080)
TYP
65
3
4
0.220 – 0.310
(5.588 – 7.874)
J8 1298
0.300 BSC
(0.762 BSC)
0.008 – 0.018
(0.203 – 0.457)
NOTE: LEAD DIMENSIONS APPLY TO SOLDER DIP/PLATE OR TIN PLATE LEADS
0° – 15°
0.045 – 0.065
(1.143 – 1.651)
J Package
14-Lead CERDIP (Narrow .300 Inch, Hermetic)
(Reference LTC DWG # 05-08-1110)
MAX
MIN
0.005
(0.127)
MIN
0.025
(0.635)
RAD TYP
0.014 – 0.026
(0.360 – 0.660)
0.100
(2.54)
BSC
0.015 – 0.060
(0.381 – 1.524)
0.200
(5.080)
0.125
(3.175)
OBSOLETE PACKAGES
14
234
1
0.785
(19.939)
MAX
12
11 891013
0.220 – 0.310
(5.588 – 7.874)
56
7
J14 1298
10134fc
21
LT1013/LT1014
PACKAGE DESCRIPTIO
U
N8 Package
8-Lead PDIP (Narrow .300 Inch)
(Reference LTC DWG # 05-08-1510)
.255 ± .015*
(6.477 ± 0.381)
.400*
(10.160)
MAX
87 6
1234
5
.300 – .325
(7.620 – 8.255)
.065
(1.651)
.008 – .015
(0.203 – 0.381)
+.035
.325
–.015 +0.889
8.255
()
–0.381
NOTE:
1. DIMENSIONS ARE
*THESE DIMENSIONS DO NOT INCLUDE MOLD FLASH OR PROTRUSIONS. MOLD FLASH OR PROTRUSIONS SHALL NOT EXCEED .010 INCH (0.254mm)
INCHES
MILLIMETERS
TYP
.045 – .065
(1.143 – 1.651)
.100
(2.54)
BSC
N Package
14-Lead PDIP (Narrow .300 Inch)
(Reference LTC DWG # 05-08-1510)
14
.255 ± .015*
(6.477 ± 0.381)
1213
.770*
(19.558)
MAX
11
.130 ± .005
(3.302 ± 0.127)
.120
(3.048)
MIN
.018 ± .003
(0.457 ± 0.076)
8910
.020
(0.508)
MIN
N8 1002
22
.300 – .325
(7.620 – 8.255)
.008 – .015
(0.203 – 0.381)
+.035
.325
–.015
+0.889
8.255
()
–0.381
NOTE:
1. DIMENSIONS ARE
*THESE DIMENSIONS DO NOT INCLUDE MOLD FLASH OR PROTRUSIONS. MOLD FLASH OR PROTRUSIONS SHALL NOT EXCEED .010 INCH (0.254mm)
INCHES
MILLIMETERS
.020
(0.508)
MIN
.130 ± .005
(3.302 ± 0.127)
.120
(3.048)
MIN
.005
(0.127)
MIN
2
31
.045 – .065
(1.143 – 1.651)
.100
(2.54)
BSC
6
7
.065
(1.651)
TYP
.018 ± .003
(0.457 ± 0.076)
N14 1103
10134fc
5
4
PACKAGE DESCRIPTIO
LT1013/LT1014
U
S8 Package
8-Lead Plastic Small Outline (Narrow .150 Inch)
(Reference LTC DWG # 05-08-1610)
.010 – .020
(0.254 – 0.508)
.008 – .010
(0.203 – 0.254)
NOTE:
1. DIMENSIONS IN
2. DRAWING NOT TO SCALE
3. THESE DIMENSIONS DO NOT INCLUDE MOLD FLASH OR PROTRUSIONS. MOLD FLASH OR PROTRUSIONS SHALL NOT EXCEED .006" (0.15mm)
× 45°
.016 – .050
(0.406 – 1.270)
INCHES
(MILLIMETERS)
0°– 8° TYP
.030 ±.005
.053 – .069
(1.346 – 1.752)
.014 – .019
(0.355 – 0.483)
TYP
16-Lead Plastic Small Outline (Wide .300 Inch)
(Reference LTC DWG # 05-08-1620)
.030 ±.005
TYP
.050 BSC
.245 MIN
TYP
RECOMMENDED SOLDER PAD LAYOUT
.050
(1.270)
BSC
SW Package
.050 BSC
N
.045 ±.005
.005
.160
±
.004 – .010
(0.101 – 0.254)
.045 ±.005
.228 – .244
(5.791 – 6.197)
(4.801 – 5.004)
8
1
.189 – .197
NOTE 3
7
2
5
6
.150 – .157
(3.810 – 3.988)
NOTE 3
3
4
SO8 0303
.420
.291 – .299
(7.391 – 7.595)
NOTE 4
.010 – .029
.005
(0.127)
RAD MIN
.009 – .013
(0.229 – 0.330)
NOTE:
1. DIMENSIONS IN
2. DRAWING NOT TO SCALE
3. PIN 1 IDENT, NOTCH ON TOP AND CAVITIES ON THE BOTTOM OF PACKAGES ARE THE MANUFACTURING OPTIONS. THE PART MAY BE SUPPLIED WITH OR WITHOUT ANY OF THE OPTIONS
4. THESE DIMENSIONS DO NOT INCLUDE MOLD FLASH OR PROTRUSIONS. MOLD FLASH OR PROTRUSIONS SHALL NOT EXCEED .006" (0.15mm)
(0.254 – 0.737)
NOTE 3
(MILLIMETERS)
(0.406 – 1.270)
INCHES
× 45°
0° – 8° TYP
.016 – .050
MIN
.093 – .104
(2.362 – 2.642)
.050
(1.270)
BSC
1 2 3 N/2
RECOMMENDED SOLDER PAD LAYOUT
.014 – .019
(0.356 – 0.482)
TYP
Information furnished by Linear Technology Corporation is believed to be accurate and reliable. However, no responsibility is assumed for its use. Linear Technology Corporation makes no represen­tation that the interconnection of its circuits as described herein will not infringe on existing patent rights.
.325
±.005
NOTE 3
.037 – .045
(0.940 – 1.143)
.004 – .012
(0.102 – 0.305)
.398 – .413
(10.109 – 10.490)
NOTE 4
15 1413121110 9
16
N
2345
1
6
N/2
78
.394 – .419
(10.007 – 10.643)
S16 (WIDE) 0502
10134fc
23
LT1013/LT1014
TYPICAL APPLICATIO
U
Step-Up Switching Regulator for 6V Battery
L1 1MHY
1N5821
2N5262
OUTPUT
+15V
50mA
+
130k
100
LT1004
1.2V
5.6k
5.6k
2N2222
220k1M
3
+
0.001 2
LT = AIE–VERNITRON 24–104 78% EFFICIENCY
220pF
LT1013
22k
INPUT
+6V
+
2.2
300Ω
1
RELATED PARTS
PART NUMBER DESCRIPTION COMMENTS
LT2078/LT2079 Dual/Quad 50μA Single Supply Precision Amplifier 50μA Max IS, 70μV Max V LT2178/LT2179 Dual/Quad 17μA Single Supply Precision Amplifier 17μA Max IS, 70μV Max V
200k
5
6
OS
OS
+
LT1013
8
7
4
0.1
1013/14 TA23
24
Linear Technology Corporation
1630 McCarthy Blvd., Milpitas, CA 95035-7417
(408) 432-1900 ● FAX: (408) 434-0507
www.linear.com
10134fc
LT 0807 REV C • PRINTED IN USA
© LINEAR TECHNOLOGY CORPORATION 1990
Loading...