Input Voltage Range Extends to Ground
Output Swings to Ground while Sinking Current
■
Pin Compatible to 1458 and 324 with Precision Specs
■
Guaranteed
■
Guaranteed
■
Guaranteed
■
Guaranteed
Offset Voltage: 150μV Max
Low Drift: 2μV/°C Max
Offset Current: 0.8nA Max
High Gain
5mA Load Current: 1.5 Million Min
17mA Load Current: 0.8 Million Min
■
Guaranteed
■
Low Voltage Noise, 0.1Hz to 10Hz: 0.55μVp-p
■
Low Current Noise—Better than 0P-07, 0.07pA/√Hz
Low Supply Current: 500μA Max
U
APPLICATIOS
■
Battery-Powered Precision Instrumentation
Strain Gauge Signal Conditioners
Thermocouple Amplifiers
Instrumentation Amplifiers
■
4mA–20mA Current Loop Transmitters
■
Multiple Limit Threshold Detection
■
Active Filters
■
Multiple Gain Blocks
, LT, LTC and LTM are registered trademarks of Linear Technology Corporation.
All other trademarks are the property of their respective owners.
Dual Precision Op Amp (LT1013)
U
DESCRIPTIO
The LT®1014 is the first precision quad operational amplifier
which directly upgrades designs in the industry standard
14-pin DIP LM324/LM348/OP-11/4156 pin configuration.
It is no longer necessary to compromise specifications,
while saving board space and cost, as compared to single
operational amplifiers.
The LT1014’s low offset voltage of 50μV, drift of 0.3μV/°C,
offset current of 0.15nA, gain of 8 million, common mode
rejection of 117dB and power supply rejection of 120dB
qualify it as four truly precision operational amplifiers.
Particularly important is the low offset voltage, since no
offset null terminals are provided in the quad configuration. Although supply current is only 350μA per amplifier,
a new output stage design sources and sinks in excess of
20mA of load current, while retaining high voltage gain.
Similarly, the LT1013 is the first precision dual op amp in
the 8-pin industry standard configuration, upgrading the
performance of such popular devices as the MC1458/
1558, LM158 and OP-221. The LT1013’s specifications
are similar to (even somewhat better than) the LT1014’s.
Both the LT1013 and LT1014 can be operated off a single
5V power supply: input common mode range includes
ground; the output can also swing to within a few millivolts
of ground. Crossover distortion, so apparent on previous
single-supply designs, is eliminated. A full set of specifications is provided with ±15V and single 5V supplies.
TYPICAL APPLICATIO
3 Channel Thermocouple Thermometer
+
–
1.2V
299k3k
YSI 44007
1.8k
5kΩ
AT 25°C
4k
1684Ω
12
13
260Ω
+5V
LT1004
14
LT1014
USE TYPE K THERMOCOUPLES. ALL RESISTORS = 1% FILM.
COLD JUNCTION COMPENSATION ACCURATE
TO ±1°C FROM 0°C 60°C.
USE 4TH AMPLIFIER FOR OUTPUT C.
4k
U
LT1014 Distribution of Offset Voltage
1M
+5V
4
–
2
1
LT1014
3
+
11
1M
–
6
LT1014
5
+
OUTPUT A
10mV/°C
7
OUTPUT B
10mV/°C
700
VS = ±15V
= 25°C
T
A
600
425 LT1014s
(1700 OP AMPS)
500
TESTED FROM
THREE RUNS
J PACKAGE
400
300
NUMBER OF UNITS
200
100
0
–3000200
–200 –100
INPUT OFFSET VOLTAGE (μV)
100300
1013/14 TA02
10134fc
1
LT1013/LT1014
1
2
3
4
8
7
6
5
TOP VIEW
OUTPUT A
–IN A
+IN A
V
–
V
+
OUTPUT B
–IN B
+IN B
N8 PACKAGE
8-LEAD PDIP
J8 PACKAGE
8-LEAD CERDIP
–
+
A
–
+
B
WW
W
ABSOLUTE AXIU RATIGS
U
(Note 1)
Supply Voltage ...................................................... ± 22V
Differential Input Voltage ....................................... ±30V
Input Voltage ............... Equal to Positive Supply Voltage
TA = 25°C. VS = ±15V, VCM = 0V unless otherwise noted.
LT1013AM/ACLT1013C/D/I/M
LT1014AM/ACLT1014C/D/I/M
– 15.0– 15.3—–15.0–15.3—V
TA = 25°C. V
SYMBOLPARAMETERCONDITIONSMINTYPMAXMINTYPMAXUNITS
V
OS
I
OS
I
B
A
VOL
V
OUT
I
S
+
= +5V, V
S
Input Offset VoltageLT1013—60250—90450μV
Input Offset Current—0.21.3—0.32.0nA
Input Bias Current—1535—1850nA
Large Signal Voltage GainVO = 5mV to 4V, RL = 500Ω—1.0——1.0—V/μV
Input Voltage Range+3.5 + 3.8—+3.5+ 3.8—V
Output Voltage SwingOutput Low, No Load—1525—1525mV
PSRRPower Supply RejectionVS = ± 2V to ±18V● 101119—101119—97116—dB
V
OUT
I
S
Note 1: Stresses beyond those listed under Absolute Maximum Ratings
may cause permanent damage to the device. Exposure to any Absolute
Rating condition for extended periods may affect device reliability
and lifetime.
Note 2: This parameter is guaranteed by design and is not tested. Typical
parameters are defined as the 60% yield of parameter distributions of
individual amplifiers; i.e., out of 100 LT1014s (or 100 LT1013s) typically
240 op amps (or 120 ) will be better than the indicated specification.
Note 3: This parameter is not 100% tested.
Input Offset Voltage●—55240—65270—80400μV
LT1013D/I, LT1014D/I
= +5V, 0V; VO = 1.4V●—75350—85380—110570μV
V
S
LT1013D/I, LT1014D/I
VS = +5V, 0V; VO = 1.4V●———————2801200μV
Average Input Offset(Note 3)
Voltage DriftLT1013D/I, LT1014D/I●———————0.75.0μV/°C
Input Offset Current●—0.21.5—0.21.7—0.32.8nA
VS = +5V, 0V; VO = 1.4V●—0.43.5—0.44.0—0.56.0nA
Input Bias Current●—1325—1325—1638nA
VS = +5V, 0V; VO = 1.4V●—1855—2060—2490nA
Large Signal Voltage GainVO = ±10V, RL = 2k● 1.05.0—1.05.0—0.74.0—V/μV
Ratio
Ratio
Output Voltage SwingRL = 2k● ±12.5 ± 13.9—± 12.5 ± 13.9—±12.0 ± 13.9—V
= +5V, 0V; RL = 600Ω
V
S
Output Low
Output High● 3.33.9—3.33.9—3.23.9—V
Supply Current per Amplifier●—0.360.55—0.360.55—0.370.60mA
VS = +5V, 0V; VO = 1.4V●—0.320.50—0.320.50—0.340.55mA
●———————2301000μV
●—0.32.0—0.32.0—0.42.5μV/°C
●— 613— 613— 613 mV
LT1013C/D/I
10134fc
5
LT1013/LT1014
TIME AFTER POWER ON (MINUTES)
0
CHANGE IN OFFSET VOLTAGE (μV)
5
4
3
2
1
0
4
1
2
3
5
VS = ±15V
T
A
= 25°C
LT1013 CERDIP (J) PACKAGE
LT1013 METAL CAN (H) PACKAGE
LT1014
1013/14 TPC03
TEMPERATURE (°C)
–50
SUPPLY CURRENT PER AMPLIFIER (μA)
460
420
380
340
300
260
0
50
75
–25
25
100
125
VS = ±15V
VS = 5V, 0V
1013/14 TPC09
UW
TYPICAL PERFOR A CE CHARACTERISTICS
Offset Voltage Drift with
Temperature of Representative
Units
VS = ±15V
200
100
Offset Voltage vs Balanced
Source Resistance
10
VS = 5V, 0V, –55°C TO 125°C
VS = ±15V, 0V, –55°C TO 125°C
1
Warm-Up Drift
0
–100
INPUT OFFSET VOLTAGE (μV)
–200
–50
–25
0
50
25
TEMPERATURE (°C)
75
100
1013/14 TPC01
125
Common Mode Rejection Ratio
vs Frequency0.1Hz to 10Hz Noise
120
100
80
60
40
20
COMMON MODE REJECTION RATIO (dB)
0
10
VS = 5V, 0VVS = ±15V
1001k10k100k
FREQUENCY (Hz)
TA = 25°C
1M
1013/14 TPC04
VS = 5V, 0V, 25°C
0.1
R
INPUT OFFSET VOLTAGE (mV)
VS = ±15V, 0V, 25°C
0.01
1k3k 10k 30k 100k 300k 1M 3M 10M
BALANCED SOURCE RESISTANCE (Ω)
S
R
S
Power Supply Rejection Ratio
vs Frequency
120
100
VS = ±15V + 1V
T
0.1
NEGATIVE
SUPPLY
= 25°C
A
110
FREQUENCY (Hz)
SINE WAVE
P-P
1k100k 1M
10010k
80
60
40
20
POWER SUPPLY REJECTION RATIO (dB)
0
+
–
1013/14 TPC02
POSITIVE
SUPPLY
1013/14 TPC05
TA = 25°C
= ±2V TO ± 18V
V
S
NOISE VOLTAGE (200nV/DIV)
2
0
6
4
TIME (SECONDS)
8
1013/14 TPC06
10
10Hz Voltage Noise
Noise SpectrumSupply Current vs Temperature
1000
TA = 25°C
= ±2V TO ± 18V
V
S
300
100
30
CURRENT NOISE DENSITY (fA/√Hz)
VOLTAGE NOISE DENSITY (nV/√Hz)
6
1/f CORNER 2Hz
10
1
CURRENT NOISE
VOLTAGE NOISE
101001k
FREQUENCY (Hz)
1013/14 TPC07
Distribution
200
180
160
140
120
100
80
NUMBER OF UNITS
60
40
20
0
20
10
VOLTAGE NOISE DENSITY (nV/√Hz)
VS = ±15V
= 25°C
T
A
328 UNITS TESTED
FROM THREE RUNS
40
30
50
1013/14 TPC08
60
10134fc
TEMPERATURE (°C)
–50
INPUT BIAS CURRENT (nA)
–30
–25
–20
–15
–10
–5
0
2575
–250
50100 125
VCM = 0V
VS = 5V, 0V
VS = ±15V
V
S
= ±2.5V
1013/14 TPC12
UW
TYPICAL PERFOR A CE CHARACTERISTICS
LT1013/LT1014
Input Bias Current vs
Common Mode Voltage
5
TA = 25°C
4
= +5V, 0V (V)
S
3
2
VS = ±15V
1
0
–1
COMMON MODE INPUT VOLTAGE, V
0
–5
INPUT BIAS CURRENT (nA)
VS = 5V, 0V
–10–15 –20
Output Saturation vs Sink
Current vs Temperature
10
V+ = 5V TO 30V
–
= 0V
V
I
= 10mA
SINK
1
I
= 5mA
SINK
–25 –30
1013/14 TPC10
Input Offset Current vs
COMMON MODE INPUT VOLTAGE, V
15
10
5
0
–5
S
= ±15V (V)
–10
–15
Temperature
1.0
VCM = 0V
0.8
0.6
0.4
0.2
INPUT OFFSET CURRENT (nA)
0
–50
–25
Small Signal Transient
Response, VS = ±15V
20mV/DIV
VS = 5V, 0V
VS = ±15V
50
25
0
TEMPERATURE (°C)
V
75
= ±2.5V
S
100
1013/14 TPC11
125
Input Bias Current vs
Temperature
Large Signal Transient
Response, V
5V/DIV
= ±15V
S
0.1
SATURATION VOLTAGE (V)
0.01
–50 – 250255075 100 125
Small Signal Transient
Response, VS = 5V, 0V
100mV
50mV
0
AV = +120μs/DIV1013/14 TPC16
RL = 600Ω TO GROUND
INPUT = 0V TO 100mV PULSE
TEMPERATURE (°C)
I
I
I
SINK
SINK
SINK
= 1mA
= 100μA
= 10μA
I
SINK
= 0
1013/14 TPC13
AV = +12μs/DIV1013/14 TPC14
Large Signal Transient
Response, VS = 5V, 0V
4V
2V
0V
AV = +110μs/DIV1013/14 TPC17
RL = 4.7k TO 5V
INPUT = 0V TO 4V PULSE
AV = +150μs/DIV1013/14 TPC15
Large Signal Transient
Response, VS = 5V, 0V
4V
2V
0V
AV = +110μs/DIV1013/14 TPC18
NO LOAD
INPUT = 0V TO 4V PULSE
10134fc
7
LT1013/LT1014
UW
TYPICAL PERFOR A CE CHARACTERISTICS
Output Short-Circuit Current
vs Time
40
30
20
10
0
–10
–20
SHORT-CIRCUIT CURRENT (mA)
–30
SINKING SOURCING
–40
0
TIME FROM OUTPUT SHORT TO GROUND (MINUTES)
–55°C
25°C
125°C
125°C
25°C
–55°C
12
VS = ±15V
Gain, Phase vs Frequency
20
10
GAIN
0
VOLTAGE GAIN (dB)
–10
PHASE
±15V
5V, 0V
1013/14 TPC19
±15V
5V, 0V
10M
1M
VOLTAGE GAIN (V/V)
100k
3
TA = 25°C
= 0V
V
CM
= 100pF
C
L
Voltage Gain vs Load
Resistance
100
LOAD RESISTANCE TO GROUND (Ω)
80
100
PHASE SHIFT (DEGREES)
120
140
160
180
200
1k10k
TA = 25°C, VS = ±15V
TA = –55°C, VS = ±15V
TA = 125°C, VS = ±15V
TA = –55°C, VS = 5V, 0V
TA = 25°C, VS = 5V, 0V
TA = 125°C, VS = 5V, 0V
VO = ±10V WITH VS = ±15V
VO = 20mV TO 3.5V
WITH V
= 5V, 0V
S
1013/14 TPC20
Channel Separation vs
Frequency
160
140
120
100
CHANNEL SEPARATION (dB)
80
VOLTAGE GAIN (dB)
LIMITED BY
THERMAL
INTERACTION
Voltage Gain vs Frequency
140
120
100
80
60
40
20
0
–20
0.01 0.1
RS = 1kΩ
LIMITED BY
PIN TO PIN
CAPACITANCE
VS = ±15V
T
A
V
IN
R
L
100 1k
110
FREQUENCY (Hz)
= 25°C
= 20Vp-p to 5kHz
= 2k
RS = 100Ω
VS = ±15VVS = 5V, 0V
TA = 25°C
C
L
10k 100k
= 100pF
1M 10M
1013/14 TPC21
0.10.3
13 10
FREQUENCY (MHz)
U
WUU
1013/14 TPC22
APPLICATIOS IFORATIO
Single Supply Operation
The LT1013/LT1014 are fully specified for single supply
operation, i.e., when the negative supply is 0V. Input
common mode range includes ground; the output swings
within a few millivolts of ground. Single supply operation,
however, can create special difficulties, both at the input
and at the output. The LT1013/LT1014 have specific
circuitry which addresses these problems.
At the input, the driving signal can fall below 0V— inadvertently or on a transient basis. If the input is more than
a few hundred millivolts below ground, two distinct prob-
8
60
100
10
FREQUENCY (Hz)
10k
100k
1k
1M
1013/14 TPC23
lems can occur on previous single supply designs, such as
the LM124, LM158, OP-20, OP-21, OP-220, OP-221,
OP-420:
a) When the input is more than a diode drop below ground,
unlimited current will flow from the substrate (V– terminal) to the input. This can destroy the unit. On the LT1013/
LT1014, the 400Ω resistors, in series with the input (see
Schematic Diagram), protect the devices even when the
input is 5V below ground.
10134fc
LT1013/LT1014
U
WUU
APPLICATIOS IFORATIO
b) When the input is more than 400mV below ground (at
25°C), the input stage saturates (transistors Q3 and Q4)
and phase reversal occurs at the output. This can cause
lock-up in servo systems. Due to a unique phase reversal
protection circuitry (Q21, Q22, Q27, Q28), the LT1013/
LT1014’s outputs do not reverse, as illustrated below, even
when the inputs are at –1.5V.
There is one circumstance, however, under which the phase
reversal protection circuitry does not function: when the
other op amp on the LT1013, or one specific amplifier of the
other three on the LT1014, is driven hard into negative
saturation at the output.
Phase reversal protection does not work on amplifier:
A when D’s output is in negative saturation. B’s and C’s
outputs have no effect.
B when C’s output is in negative saturation. A’s and D’s
outputs have no effect.
C when B’s output is in negative saturation. A’s and D’s
outputs have no effect.
D when A’s output is negative saturation. B’s and C’s
outputs have no effect.
At the output, the aforementioned single supply designs
either cannot swing to within 600mV of ground (OP-20) or
cannot sink more than a few microamperes while swinging to ground (LM124, LM158). The LT1013/LT1014’s
all-NPN output stage maintains its low output resistance
and high gain characteristics until the output is saturated.
In dual supply operations, the output stage is crossover
distortion-free.
Comparator Applications
The single supply operation of the LT1013/LT1014 lends
itself to its use as a precision comparator with TTL
compatible output:
In systems using both op amps and comparators, the
LT1013/LT1014 can perform multiple duties; for example,
on the LT1014, two of the devices can be used as op amps
and the other two as comparators.
Voltage Follower with Input Exceeding the Negative Common Mode Range
4V
2V
0V
6Vp-p INPUT, –1.5V TO 4.5V
Comparator Rise Response Time
10mV, 5mV, 2mV Overdrives
4
2
0
0
INPUT (mV)OUTPUT (V)
4V
LM324, LM358, OP-20
EXHIBIT OUTPUT PHASE
REVERSAL
Comparator Fall Response Time
to 10mV, 5mV, 2mV Overdrives
4
2
0
100
INPUT (mV)OUTPUT (V)
4V
2V2V
0V0V
LT1013/LT1014
NO PHASE REVERSAL
–100
VS = 5V, 0V50μs/DIV
0
V
= 5V, 0V50μs/DIV
S
10134fc
9
LT1013/LT1014
U
WUU
APPLICATIOS IFORATIO
Low Supply Operation
The minimum supply voltage for proper operation of the
LT1013/LT1014 is 3.4V (three Ni-Cad batteries). Typical
supply current at this voltage is 290μA, therefore power
dissipation is only one milliwatt per amplifier.
Noise Testing
For applications information on noise testing and calculations, please see the LT1007 or LT1008 data sheet.
U
TYPICAL APPLICATIOS
50MHz Thermal rms to DC Converter
Test Circuit for Offset Voltage and
Offset Drift with Temperature
50k*
+15V
–
100Ω*
50k*
+
–15V
RESISTOR MUST HAVE LOW
*
THERMOELECTRIC POTENTIAL.
THIS CIRCUIT IS ALSO USED AS THE BURN-IN
**
CONFIGURATION, WITH SUPPLY VOLTAGES
INCREASED TO ±20V.
0.1% RESISTOR.
T1–T2 = YELLOW SPRINGS INST. CO. THERMISTOR COMPOSITE #44018.
ENCLOSE T1 AND T2 IN STYROFOAM.
7.5mW DISSIPATION.
1μF
3
300Ω*
13
12
LT1014
+
–
LT1014
+
0.01
1
–
6
10k*
10k
10
5
9
10k*
LT1014
+
+
LT1014
–
10k*100k*
14
20k
FULL-
SCALE
TRIM
10k*10k*
+5V
10k*
1/2 LTC1043
+INPUT
4
7
11
8
0V–4V
OUTPUT
1013/14 TA03
–INPUT
+INPUT
–INPUT
6
18
1/2 LTC1043
7
13
5
2
1μF
3
11
1μF
12
16
0.01
1μF
15
8
1μF
14
+5V
8
5
+
1/2 LT1013
6
–
3
+
1/2 LT1013
2
–
OFFSET = 150μV
R2
GAIN = + 1.
R1
CMRR = 120dB.
COMMON-MODE RANGE IS 0V TO 5V.
7
OUTPUT A
4
1
R2
R1
OUTPUT B
R2
R1
1013/14 TA04
10
10134fc
U
TYPICAL APPLICATIOS
500pF
220
–
LT1014
+
+15V
A1
–15V
0.01μF
4
1
11
REMOVE LAMP'S GLASS ENVELOPE FROM 328 LAMP.
A1 SERVOS #328 LAMP TO CONSTANT TEMPERATURE.
A2-A3 FURNISH LINEAR OUTPUT vs FLOW RATE.
*
1% RESISTOR.
27Ω
1W
#328
10k*
2
3
2k*
Q1
2N6533
+15V
Hot Wire Anemometer
2k
150k*
ZERO
FLOW
–
6
LT1014
33k
+
5
1k
LT1013/LT1014
Q2–Q5
CA3046
Q2
1000pF
A2
7
3.3k
–15V
PIN 3 TO –15V
Q3
Q4
150k*2k
500k
10
9
Q5
–
LT1014
+
12k
1μF
A3
2M
FULLSCALE
FLOW
1μF
8
13
12
10M
RESPONSE
TIME
ADJUST
100k
–
A4
LT1014
+
0–1000 FEET/MINUTE
14
0V–10V =
1013/14 TA05
15Ω
DALE
HL-25
LT1004
+15V
–1.2
–15V
6.25k**
2.7k
383k*
3.2k*
100k
2N4391
9
10
3.2k**
–
LT1014
+
Liquid Flowmeter
1M*
1M*
1M*
6.25k**
T2T1
0.1
A3
8
T1
PIPE
–
2
A1
LT1014
+
3
1M*
1N4148
300pF
100k
100k
15Ω HEATER RESISTOR
+15V
12
+
A4
LT1014
13
–
–15V
1
4
11
T2
RESPONSE
100k
+15V
14
FLOWFLOW
10M
TIME
4.7k
OUTPUT
0Hz 300Hz =
0 300ML/MIN
–
6
6.98k*
FLOW
CALIB
1k*
7
5k
1013/14 TA06
A2
LT1014
+
5
1μF
1% FILM RESISTOR.
*
SUPPLIED WITH YSI THERMISTOR NETWORK.
**
T1, T2 YSI THERMISTOR NETWORK = #44201.
FLOW IN PIPE IS INVERSELY PROPORTIONAL TO
RESISTANCE OF T1–T2 TEMPERATURE DIFFERENCE.
A1–A2 PROVIDE GAIN. A3–A4 PROVIDE LINEARIZED
FREQUENCY OUTPUT.
10134fc
11
LT1013/LT1014
TYPICAL APPLICATIOS
CABLE SHIELDS
–INPUT
+INPUT
20k
1μF
20k
U
5V Powered Precision Instrumentation Amplifier
–
TO
INPUT
+5V
+5V
†
†
†
†
8
LT1014
200k*
–
2
LT1014
+
3
RG (TYP 2k)
200k*
–
6
LT1014
+
5
9
+
10
1
7
1% FILM RESISTOR. MATCH 10k's 0.05%
*
GAIN EQUATION: A = + 1.
†
FOR HIGH SOURCE IMPEDANCES,
USE 2N2222 AS DIODES.
10k*
10k
10k
10k*
–
13
+
12
10k*
400,000
RG
+5V
LT1014
10k*
4
11
14
OUTPUT
1013/14 TA07
0.068
+9V
+9V
9V Battery Powered Strain Gauge Signal Conditioner
15k
+9V
–
2
3
4
LT1014
+
11
15k
3k
1N4148
1
100k
100k100k
0.068
0.068
CONVERT COMMAND
15
14
7
6
22M
4.7k
STRAIN GAUGE
1
13
74C221
9
5
TO A/D
330Ω
0.01
BRIDGE
350Ω
+9V
47μF
2N2219
TO A/D RATIO
REFERENCE
100k
–
6
499
LT1014
+
5
–
9
LT1014
+
10
SAMPLED OPERATION GIVES LOW AVERAGE OPERATING CURRENT ≈ 650μA.
4.7k–0.01μF RC PROTECTS STRAIN BRIDGE FROM LONG TERM DRIFTS DUE TO
HIGH ΔV/ΔT STEPS.
7
499
8
13
12
100k
–
LT1014
+
14
TO A/D
1013/14 TA08
10134fc
12
U
TYPICAL APPLICATIOS
LT1013/LT1014
5V Powered Motor Speed Controller
No Tachometer Required
330k
0.47
100k
–
2
1/2 LT1013
+
3
2k
0.068
7
A1
1M
6.8M
5V
8
A2
1/2 LT1013
4
+5V
82Ω
1
–
6
+
5
0V–3V
2k
E
IN
3.3M
0.47
Q1
2N3904
1/4 CD4016
0.068
2k
Q2
5V Powered EEPROM Pulse Generator
1k
1N4148
1N4148
47
+
Q3
2N5023
1N4001
1N4001
MOTOR = CANON–FN30–R13N1B.
A1 DUTY CYCLE MODULATES MOTOR.
A2 SAMPLES MOTORS BACK EMF.
1013/14 TA09
DALE
#TC-10-04
2N2222
2N2222
4.7k
820
MEETS ALL V
RUNS OFF 5V SUPPLY—NO EXTERNAL HIGH VOLTAGE SUPPLY REQUIRED.
SUITABLE FOR BATTERY POWERED USE (600μA QUIESCENT CURRENT).
*
1% METAL FILM.
270Ω
820
1N4148
TTL INPUT
PROGRAMMING SPECS WITH NO TRIMS AND
PP
10Ω
+5V
0.05
0.1
2N2222
1N4148
20k
1N4148
+5V
–
LT1013
+
LT1004
1.2V
1N4148
8
4
4.7M
1k
7
2N2222
100K*
6.19K
1N4148
0.33
100k100Ω
–
2
LT1013
+
3
1
1N4148
0.005
120k
6
5
OUTPUT
21V
600μs RC
1013/14 TA10
10134fc
13
LT1013/LT1014
TYPICAL APPLICATIOS
Methane Concentration Detector with Linearized Output
+5V
1
14
LT1004
1.2V
2.7k
390k*
1000ppm
5k
TRIM
0.033
9
–
A3
LT1014
10
+
11
58
–5V
10μF
+
–5V
CD4016
8
LTC1044
423
10μF
+
SENSOR
+5V
4
2
–
A1
LT1014
3
+
U
1% METAL FILM RESISTOR
*
SENSOR = CALECTRO-GC ELECTRONICS #J4-807 OR FIGARO #813
100k*
+5V
7
CA3046
Q3Q2
150k*2k
Q1
1000pF
100k*
1
6
–
A2
LT1014
5
+
470pF
Q4
1N4148 (4)
13
–
12
+
10k
A4
LT1014
470pF
74C04
14
74C04
+5V
1
74C04
14
–5V
1N4148
OUTPUT
500ppm-10,000ppm
50Hz 1kHz
2k
Low Power 9V to 5V Converter
+9V INPUT
L = DALE TE-3/Q3/TA.
SHORT CIRCUIT CURRENT = 30mA.
≈ 75% EFFICIENCY.
SWITCHING PREREGULATOR CONTROLS DROP ACROSS FET TO 200mV.
2N2905
10k
10k
L
+
471N4148
HP5082-2811
VD = 200mV
+9V
8
7
LT1013
4
100μA
+
5
6
–
47k
12k*
2N5434
1
+9V
LT1013
330k
LT1004
1.2V
1013/14 TA11
5V
20mA
390k
1%
–
2
3
+
120k
1%
1013/14 TA12
10134fc
14
U
TYPICAL APPLICATIOS
LT1013/LT1014
2N2222
Q4
†
*
+5V
Q3
2N2905
68Ω
100pF
12-BIT ACCURACY.
1% FILM.
T1 = PICO-31080.
5V Powered 4mA–20mA Current Loop Transmitter
820Ω
Q2
2N2905
A2
1/2 LT1013
T1
–
6
5
+
INPUT
0 TO 4V
74C04
(6)
0.002
+5V
+5V
10k
8
–
2
A1
4k*
3
+
4
10k*
4.3k
LT1004
1.2V
10k
0.33
2k
1
1/2 LT1013
10μF
+
820Ω
1k
4mA
TRIM
100k
Q1
2N2905
7
†
10μF
1N4002 (4)
+
10k*
10k*
80k*
20mA
TRIM
100Ω*
4mA-20mA OUT
TO LOAD
2.2kΩ MAXIMUM
1013/14 TA13
TO INVERTER
DRIVE
7
1/2 LT1013
+5V
Fully Floating Modification to 4mA-20mA Current Loop
T1
+5V
8
A1
4
4.3k
LT1004
10k*
1.2V
100k
–
6
5
+
INPUT
0V–4V
4k*
1
68k*
301Ω*
2k
4mA
TRIM
A2
1/2 LT1013
1k
20mA
TRIM
0.1Ω
–
3
2
+
†
+
10μF
†
8-BIT ACCURACY.
1N4002 (4)
4mA-20mA OUT
FULLY FLOATING
1013/14 TA14
10134fc
15
LT1013/LT1014
TYPICAL APPLICATIOS
5V Powered, Linearized Platinum RTD Signal Conditioner
167Ω499Ω
Q2Q1
2N4250
(2)
SENSOR
1.5k
ROSEMOUNT
118MF
U
200k
200k
7
14
2
–
1/4 LT1014
3
2M
1/4 LT1014
1/4 LT1014
+
11
2M
A2
A3
+5V
4
A1
LINEARITY
6
–
+
5
13
–
10k
+
12
9
–
A4
+5V
1/4 LT1014
+
10
GAIN TRIM
1k
3.01k
2.4k
5%
LT1009
2.5V
150Ω
1
5k
8.25k
50k
ZERO
TRIM
274k
250k
8
OUTPUT
0V–4V =
0°C–400°C
±0.05°C
100μF
ALL RESISTORS ARE TRW-MAR-6 METAL FILM.
RATIO MATCH 2M–200K ± 0.01%.
TRIM SEQUENCE:
SET SENSOR TO 0° VALUE.
ADJUST ZERO FOR 0V OUT.
SET SENSOR TO 100°C VALUE.
ADJUST GAIN FOR 1.000V OUT.
SET SENSOR TO 400°C.
ADJUST LINEARITY FOR 4.000V OUT, REPEAT AS REQUIRED.
1013/14 TA15
Strain Gauge Bridge Signal Conditioner
+5V
220
+5V
0.1
8
2
+
LTC1044
4
5
+
1
100μF
8
1/2 LT1013
4
V ≈ –V
*
1% FILM RESISTOR.
PRESSURE TRANSDUCER–BLH/DHF–350.
CIRCLED LETTER IS PIN NUMBER.
LT1004
–
+
1.2V
2
39k
3
REF
V
REF
E
PRESSURE
TRANSDUCER
350Ω
C
301k
D
10k
ZERO
TRIM
100k
A
0.33
1.2V
REFERENCE
OUT
TO A/D CONVERTER
FOR RATIOMETRIC OPERATION
1mA MAXIMUM LOAD
5
+
6
–
1/2 LT1013
0.047
7
OUTPUT 0V–3.5V
0psi–350psi
2k GAIN TRIM
46k*
16
100Ω*
1013/14 TA16
10134fc
U
TYPICAL APPLICATIOS
0.0050.005
30k
30k
+5V
5
+
LT1013
6
–
–5V
7
FREQUENCY =
1.5kHz
YEL-BLK
LVDT Signal Conditioner
7
8
11
LVDT
RDBLUE
BLUE
GRN
LT1013/LT1014
10k
4.7k
2N4338
1.2k
LVDT = SCHAEVITZ E-100.
10μF
Triple Op Amp Instrumentation Amplifier with Bias Current Cancellation
–INPUT
+INPUT
R
5M
1N914
LT1004
1.2V
+
2R
10M
7.5k
2R
10M
10pF
100k
PHASE
TRIM
YEL-RD
0.01
100k
3
2
6
5
12
13
2
3
+
1/4 LT1014
–
–
1/4 LT1014
+
+
V
4
+
1/4 LT1014
–
11
1313
+
LT1011
–
100k
BLK
12
14
1/2 LTC1043
8
7
4
1
R2
1
R1
R
G
R1
R2
7
14
INPUT BIAS CURRENT TYPICALLY <1nA
INPUT RESISTANCE = 3R = 15M FOR VALUES SHOWN
NEGATIVE COMMON-MODE LIMIT = V
100k
+5V
1k
TO PIN 16, LT1043
–
9
1/4 LT1014
+
10
R3
GAIN = 1 +
()
2R1
R
G
3
1μF
2
8
R3
R2
+
LT1013
–
R3
OUTPUT
–
+ IB × 2R + 30mV
= 150mV for V
I
B
1
–
= 0V
= 12nA
OUT
0V–3V
200k
10k
1013/14 TA17
–
V
1013/14 TA18
10134fc
17
LT1013/LT1014
TYPICAL APPLICATIOS
U
Low Dropout Regulator for 6V Battery
V
BATT
6V
0.01Ω
6
5
100Ω
1.2k
–
LT1013
+
1N914
38
LTC1044
245
+
10
100k
1M
LT1004
1.2V
A2
7
1N914
0.009V DROPOUT AT 5mA OUTPUT.
0.108V DROPOUT AT 100mA OUTPUT.
I
QUIESCENT
3
2
= 850μA.
+
LT1013
–
+12 OUTPUT
10
+
8
4
2N2219
1
100Ω
0.003μF
5V OUTPUT
120k
30k
50k
OUTPUT ADJUST
1013/14 TA19
Voltage Controlled Current Source with Ground Referred Input and Output
+5V
8
3
0V–2V
1k
1μF
+
1/2 LT1013
2
–
0.68μF
1/2 LTC1043
7
11
12
13
V
IN
=
I
OUT
100Ω
FOR BIPOLAR OPERATION,
RUN BOTH ICs FROM
A BIPOLAR SUPPLY.
1
4
8
1μF
14
100Ω
I
OUT
= 0mA TO 15mA
1013/14 TA20
18
10134fc
U
TYPICAL APPLICATIOS
1μF
15pF
22k
15pF
100kHz INPUT
+
+6V
+VQ1CLK 2
74C74
CLK 1Q2
D1 Q1Q2D2
22k
74C00
6V to ±15V Regulating Converter
+6V
10k
10k
10k
10k
2N3906
L1
1MHY
2N3904
–16V
10
+
+16V
+
10
2N4391
LT1013/LT1014
+15V
+16V
8
–
1
LT1013
+
4
–16V
–
7
LT1013
+
0.005
2
3
82k
6
5
+6V
100k
LT1004
1.2V
1.4M
200k
V
OUT
ADJ
OUT
+5V
4.3k
LT1009
2.5V
YSI 44201
L1 = 24-104 AIE VERNITRON
= 1N4148
±5mA OUTPUT
75% EFFICIENCY
0.005
2N5114
Low Power, 5V Driven, Temperature Compensated Crystal Oscillator (TXCO)
+5V
8
3
3.4k*
T1
3.2k
TEMPERATURE
COMPENSATION
GENERATOR
R
T2
6.25k
R
T
2.16k*
1M*
+
1/2 LT1013
2
–
1M*R
6
–
1/2 LT1013
5
+
4.22M*
1
OSCILLATOR SUPPLY
+5V
STABILIZATION
1M*
5M*
20k
100k
3.5MHz
XTAL
MV-209
100k
OSCILLATOR
560k
4
4.22M*
7
1% FILM
*
3.5MHz XTAL = AT CUT – 35°20'
NEAR XTAL
MOUNT R
T
3mA POWER DRAIN
†
THERMISTOR-AMPLIFIER-VARACTOR NETWORK GENERATES
A TEMPERATURE COEFFICIENT OPPOSITE THE CRYSTAL TO
MINIMIZE OVERALL OSCILLATOR DRIFT
2N2222
510pF
510pF
†
100Ω
3.5MHz OUTPUT
0.03ppm/°C, 0°C–70°C
680Ω
1M
1013/14 TA22
–15V
OUT
1013/14 TA21
10134fc
19
LT1013/LT1014
WW
SCHE ATIC DIAGRA
+
V
9k9k1.6k
1.6k
1/2 LT1013, 1/4 LT1014
1.6k
100Ω
1k
800Ω
Q16
Q3
Q29
5k2k5k
Q2
Q22
Q6
Q27
Q28
Q12
Q11
Q9Q7
75pF
Q5
–
IN
+
IN
–
V
Q1
400Ω
Q21
400Ω
Q14Q13
Q15
Q4
10pF
Q10
21pF
2.5pF
Q18
Q19
Q17
3.9k
Q8
Q32
Q20
1.3k
Q30
Q25
2k
2.4k
4pF
100pF
Q31
Q23
Q35
Q37
Q33
Q26
18Ω
OUTPUT
Q34
42k
Q24
2k
30Ω
J1
Q38
14k
Q40
Q36
Q41
Q39
600Ω
1013/14 SD
20
10134fc
PACKAGE DESCRIPTIO
LT1013/LT1014
U
H Package
8-Lead TO-5 Metal Can (.200 Inch PCD)
(Reference LTC DWG # 05-08-1320)
0.045 – 0.068
(1.143 – 1.727)
FULL LEAD
OPTION
0.040
(1.016)
MAX
SEATING
PLANE
0.010 – 0.045*
(0.254 – 1.143)
CORNER LEADS OPTION
(4 PLCS)
0.023 – 0.045
(0.584 – 1.143)
HALF LEAD
OPTION
NOTE: LEAD DIMENSIONS APPLY TO SOLDER DIP/PLATE
OR TIN PLATE LEADS
0.008 – 0.018
(0.203 – 0.457)
0.335 – 0.370
(8.509 – 9.398)
DIA
0.305 – 0.335
(7.747 – 8.509)
0.016 – 0.021**
(0.406 – 0.533)
0.300 BSC
(0.762 BSC)
45°TYP
0.028 – 0.034
(0.711 – 0.864)
0.050
(1.270)
MAX
GAUGE
PLANE
0.165 – 0.185
(4.191 – 4.699)
0.500 – 0.750
(12.700 – 19.050)
REFERENCE
PLANE
0.110 – 0.160
(2.794 – 4.064)
INSULATING
*
LEAD DIAMETER IS UNCONTROLLED BETWEEN THE REFERENCE PLANE
AND 0.045" BELOW THE REFERENCE PLANE
**
FOR SOLDER DIP LEAD FINISH, LEAD DIAMETER IS
J8 Package
8-Lead CERDIP (Narrow .300 Inch, Hermetic)
(Reference LTC DWG # 05-08-1110)
0.015 – 0.060
(0.381 – 1.524)
0° – 15°
0.045 – 0.065
(1.143 – 1.651)
0.014 – 0.026
(0.360 – 0.660)
0.100
(2.54)
BSC
STANDOFF
0.200
(5.080)
MAX
0.125
3.175
MIN
0.005
(0.127)
MIN
0.025
(0.635)
RAD TYP
0.027 – 0.045
(0.686 – 1.143)
PIN 1
0.016 – 0.024
(0.406 – 0.610)
H8(TO-5) 0.200 PCD 1197
0.405
(10.287)
MAX
87
12
0.200
(5.080)
TYP
65
3
4
0.220 – 0.310
(5.588 – 7.874)
J8 1298
0.300 BSC
(0.762 BSC)
0.008 – 0.018
(0.203 – 0.457)
NOTE: LEAD DIMENSIONS APPLY TO SOLDER DIP/PLATE
OR TIN PLATE LEADS
0° – 15°
0.045 – 0.065
(1.143 – 1.651)
J Package
14-Lead CERDIP (Narrow .300 Inch, Hermetic)
(Reference LTC DWG # 05-08-1110)
MAX
MIN
0.005
(0.127)
MIN
0.025
(0.635)
RAD TYP
0.014 – 0.026
(0.360 – 0.660)
0.100
(2.54)
BSC
0.015 – 0.060
(0.381 – 1.524)
0.200
(5.080)
0.125
(3.175)
OBSOLETE PACKAGES
14
234
1
0.785
(19.939)
MAX
12
11891013
0.220 – 0.310
(5.588 – 7.874)
56
7
J14 1298
10134fc
21
LT1013/LT1014
PACKAGE DESCRIPTIO
U
N8 Package
8-Lead PDIP (Narrow .300 Inch)
(Reference LTC DWG # 05-08-1510)
.255 ± .015*
(6.477 ± 0.381)
.400*
(10.160)
MAX
87 6
1234
5
.300 – .325
(7.620 – 8.255)
.065
(1.651)
.008 – .015
(0.203 – 0.381)
+.035
.325
–.015
+0.889
8.255
()
–0.381
NOTE:
1. DIMENSIONS ARE
*THESE DIMENSIONS DO NOT INCLUDE MOLD FLASH OR PROTRUSIONS.
MOLD FLASH OR PROTRUSIONS SHALL NOT EXCEED .010 INCH (0.254mm)
INCHES
MILLIMETERS
TYP
.045 – .065
(1.143 – 1.651)
.100
(2.54)
BSC
N Package
14-Lead PDIP (Narrow .300 Inch)
(Reference LTC DWG # 05-08-1510)
14
.255 ± .015*
(6.477 ± 0.381)
1213
.770*
(19.558)
MAX
11
.130 ± .005
(3.302 ± 0.127)
.120
(3.048)
MIN
.018 ± .003
(0.457 ± 0.076)
8910
.020
(0.508)
MIN
N8 1002
22
.300 – .325
(7.620 – 8.255)
.008 – .015
(0.203 – 0.381)
+.035
.325
–.015
+0.889
8.255
()
–0.381
NOTE:
1. DIMENSIONS ARE
*THESE DIMENSIONS DO NOT INCLUDE MOLD FLASH OR PROTRUSIONS.
MOLD FLASH OR PROTRUSIONS SHALL NOT EXCEED .010 INCH (0.254mm)
INCHES
MILLIMETERS
.020
(0.508)
MIN
.130 ± .005
(3.302 ± 0.127)
.120
(3.048)
MIN
.005
(0.127)
MIN
2
31
.045 – .065
(1.143 – 1.651)
.100
(2.54)
BSC
6
7
.065
(1.651)
TYP
.018 ± .003
(0.457 ± 0.076)
N14 1103
10134fc
5
4
PACKAGE DESCRIPTIO
LT1013/LT1014
U
S8 Package
8-Lead Plastic Small Outline (Narrow .150 Inch)
(Reference LTC DWG # 05-08-1610)
.010 – .020
(0.254 – 0.508)
.008 – .010
(0.203 – 0.254)
NOTE:
1. DIMENSIONS IN
2. DRAWING NOT TO SCALE
3. THESE DIMENSIONS DO NOT INCLUDE MOLD FLASH OR PROTRUSIONS.
MOLD FLASH OR PROTRUSIONS SHALL NOT EXCEED .006" (0.15mm)
× 45°
.016 – .050
(0.406 – 1.270)
INCHES
(MILLIMETERS)
0°– 8° TYP
.030 ±.005
.053 – .069
(1.346 – 1.752)
.014 – .019
(0.355 – 0.483)
TYP
16-Lead Plastic Small Outline (Wide .300 Inch)
(Reference LTC DWG # 05-08-1620)
.030 ±.005
TYP
.050 BSC
.245
MIN
TYP
RECOMMENDED SOLDER PAD LAYOUT
.050
(1.270)
BSC
SW Package
.050 BSC
N
.045 ±.005
.005
.160
±
.004 – .010
(0.101 – 0.254)
.045 ±.005
.228 – .244
(5.791 – 6.197)
(4.801 – 5.004)
8
1
.189 – .197
NOTE 3
7
2
5
6
.150 – .157
(3.810 – 3.988)
NOTE 3
3
4
SO8 0303
.420
.291 – .299
(7.391 – 7.595)
NOTE 4
.010 – .029
.005
(0.127)
RAD MIN
.009 – .013
(0.229 – 0.330)
NOTE:
1. DIMENSIONS IN
2. DRAWING NOT TO SCALE
3. PIN 1 IDENT, NOTCH ON TOP AND CAVITIES ON THE BOTTOM OF PACKAGES ARE THE MANUFACTURING OPTIONS.
THE PART MAY BE SUPPLIED WITH OR WITHOUT ANY OF THE OPTIONS
4. THESE DIMENSIONS DO NOT INCLUDE MOLD FLASH OR PROTRUSIONS.
MOLD FLASH OR PROTRUSIONS SHALL NOT EXCEED .006" (0.15mm)
(0.254 – 0.737)
NOTE 3
(MILLIMETERS)
(0.406 – 1.270)
INCHES
× 45°
0° – 8° TYP
.016 – .050
MIN
.093 – .104
(2.362 – 2.642)
.050
(1.270)
BSC
123N/2
RECOMMENDED SOLDER PAD LAYOUT
.014 – .019
(0.356 – 0.482)
TYP
Information furnished by Linear Technology Corporation is believed to be accurate and reliable.
However, no responsibility is assumed for its use. Linear Technology Corporation makes no representation that the interconnection of its circuits as described herein will not infringe on existing patent rights.
.325
±.005
NOTE 3
.037 – .045
(0.940 – 1.143)
.004 – .012
(0.102 – 0.305)
.398 – .413
(10.109 – 10.490)
NOTE 4
15 1413121110 9
16
N
2345
1
6
N/2
78
.394 – .419
(10.007 – 10.643)
S16 (WIDE) 0502
10134fc
23
LT1013/LT1014
TYPICAL APPLICATIO
U
Step-Up Switching Regulator for 6V Battery
L1
1MHY
1N5821
2N5262
OUTPUT
+15V
50mA
+
130k
100
LT1004
1.2V
5.6k
5.6k
2N2222
220k1M
3
+
0.001
2
–
LT = AIE–VERNITRON 24–104
78% EFFICIENCY
220pF
LT1013
22k
INPUT
+6V
+
2.2
300Ω
1
RELATED PARTS
PART NUMBERDESCRIPTIONCOMMENTS
LT2078/LT2079Dual/Quad 50μA Single Supply Precision Amplifier50μA Max IS, 70μV Max V
LT2178/LT2179Dual/Quad 17μA Single Supply Precision Amplifier17μA Max IS, 70μV Max V