LINEAR TECHNOLOGY LT1013, LT1014 Technical data

LT1013/LT1014
Quad Precision Op Amp (LT1014)
FEATURES
Single Supply Operation
Input Voltage Range Extends to Ground Output Swings to Ground while Sinking Current
Pin Compatible to 1458 and 324 with Precision Specs
Guaranteed
Guaranteed
Guaranteed
Guaranteed
Offset Voltage: 150μV Max Low Drift: 2μV/°C Max Offset Current: 0.8nA Max
High Gain 5mA Load Current: 1.5 Million Min 17mA Load Current: 0.8 Million Min
Guaranteed
Low Voltage Noise, 0.1Hz to 10Hz: 0.55μVp-p
Low Current Noise—Better than 0P-07, 0.07pA/√Hz
Low Supply Current: 500μA Max
U
APPLICATIO S
Battery-Powered Precision Instrumentation
Strain Gauge Signal Conditioners Thermocouple Amplifiers Instrumentation Amplifiers
4mA–20mA Current Loop Transmitters
Multiple Limit Threshold Detection
Active Filters
Multiple Gain Blocks
, LT, LTC and LTM are registered trademarks of Linear Technology Corporation.
All other trademarks are the property of their respective owners.
Dual Precision Op Amp (LT1013)
U
DESCRIPTIO
The LT®1014 is the first precision quad operational amplifier which directly upgrades designs in the industry standard 14-pin DIP LM324/LM348/OP-11/4156 pin configuration. It is no longer necessary to compromise specifications, while saving board space and cost, as compared to single operational amplifiers.
The LT1014’s low offset voltage of 50μV, drift of 0.3μV/°C, offset current of 0.15nA, gain of 8 million, common mode rejection of 117dB and power supply rejection of 120dB qualify it as four truly precision operational amplifiers. Particularly important is the low offset voltage, since no offset null terminals are provided in the quad configura­tion. Although supply current is only 350μA per amplifier, a new output stage design sources and sinks in excess of 20mA of load current, while retaining high voltage gain.
Similarly, the LT1013 is the first precision dual op amp in the 8-pin industry standard configuration, upgrading the performance of such popular devices as the MC1458/ 1558, LM158 and OP-221. The LT1013’s specifications are similar to (even somewhat better than) the LT1014’s.
Both the LT1013 and LT1014 can be operated off a single 5V power supply: input common mode range includes ground; the output can also swing to within a few millivolts of ground. Crossover distortion, so apparent on previous single-supply designs, is eliminated. A full set of specifi­cations is provided with ±15V and single 5V supplies.
TYPICAL APPLICATIO
3 Channel Thermocouple Thermometer
+
1.2V
299k3k
YSI 44007
1.8k
5kΩ AT 25°C
4k
1684Ω
12
13
260Ω
+5V
LT1004
14
LT1014
USE TYPE K THERMOCOUPLES. ALL RESISTORS = 1% FILM. COLD JUNCTION COMPENSATION ACCURATE TO ±1°C FROM 0°C 60°C. USE 4TH AMPLIFIER FOR OUTPUT C.
4k
U
LT1014 Distribution of Offset Voltage
1M
+5V
4
2
1
LT1014
3
+
11
1M
6
LT1014
5
+
OUTPUT A 10mV/°C
7
OUTPUT B 10mV/°C
700
VS = ±15V
= 25°C
T
A
600
425 LT1014s (1700 OP AMPS)
500
TESTED FROM THREE RUNS J PACKAGE
400
300
NUMBER OF UNITS
200
100
0 –300 0 200
–200 –100
INPUT OFFSET VOLTAGE (μV)
100 300
1013/14 TA02
10134fc
1
LT1013/LT1014
1
2
3
4
8
7
6
5
TOP VIEW
OUTPUT A
–IN A
+IN A
V
V
+
OUTPUT B
–IN B
+IN B
N8 PACKAGE 8-LEAD PDIP
J8 PACKAGE
8-LEAD CERDIP
+
A
+
B
WW
W
ABSOLUTE AXI U RATI GS
U
(Note 1)
Supply Voltage ...................................................... ± 22V
Differential Input Voltage ....................................... ±30V
Input Voltage ............... Equal to Positive Supply Voltage
............5V Below Negative Supply Voltage
Output Short-Circuit Duration .......................... Indefinite
Storage Temperature Range
All Grades ......................................... – 65°C to 150°C
UUW
PACKAGE/ORDER I FOR ATIO
ORDER PART
TOP VIEW
+INA
V
+INB
–INB
NOTE: THIS PIN CONFIGURATION DIFFERS FROM THE STANDARD 8-PIN DUAL-IN-LINE CONFIGURATION
1
+
2
3
+
4
S8 PACKAGE
8-LEAD PLASTIC SO
= 150°C, θJA = 190°C/W
T
JMAX
8
–INA
OUTA
7
+
V
6
OUTB
5
NUMBER
LT1013DS8 LT1013IS8
PART MARKING
1013 1013I
Lead Temperature (Soldering, 10 sec.)................. 300°C
Operating Temperature Range
LT1013AM/LT1013M/
LT1014AM/LT1014M ...................... – 55 °C to 125°C
LT1013AC/LT1013C/LT1013D
LT1014AC/LT1014C/LT1014D................. 0°C to 70°C
LT1013I/ LT1014I............................... – 40°C to 85°C
OUTPUT A
–IN A
+IN A
+IN B
–IN B
OUTPUT B
TOP VIEW
1
2
3
+
4
V
5
6
7
8
NC
SW PACKAGE
16-LEAD PLASTIC SO
T
= 150°C, θJA = 130°C/W
JMAX
16
15
14
13
12
11
10
9
OUTPUT D
–IN D
+IN D
V
+IN C
–IN C
OUTPUT C
NC
ORDER PART
NUMBER
LT1014DSW LT1014ISW
PART MARKING
LT1014DSW LT1014ISW
ORDER PART
NUMBER
LT1013ACN8 LT1013CN8 LT1013DN8 LT1013IN8
LT1013AMJ8
T
= 150°C, θJA = 130°C/W
JMAX
LT1013MJ8 LT1013ACJ8
T
= 150°C, θJA = 100°C/W
JMAX
LT1013CJ8
OBSOLETE PACKAGE
Consider the N or S8 Packages for Alternate Source
OBSOLETE PACKAGE
Consider the N or S8 (not N8) Packages for Alternate Source
Consult LTC Marketing for parts specified with wider operating temperature ranges.
T
JMAX
2
OUTPUT A
–IN A
+IN A
+IN B
–IN B
OUTPUT B
TOP VIEW
+
V
8
OUTPUT B
OUTPUT A
1
2
–IN A
3
+IN A
H PACKAGE
8-LEAD TO-5 METAL CAN
= 150°C, θJA = 150°C/W, θJC = 45°C/W
A
V
+
4
(CASE)
7
B
6
–IN B
+
5
+IN B
TOP VIEW
1
2
A
+
3
+
4
V
5
+
B
6
7
N PACKAGE
14-LEAD PDIP
T
= 150°C, θJA = 100°C/W
JMAX
J PACKAGE
14-LEAD CERDIP
T
= 150°C, θJA = 100°C/W
JMAX
OUTPUT D
14
–IN D
13
D
+
+IN D
12
V
11
+IN C
10
+
C
–IN C
9
OUTPUT C
8
OBSOLETE PACKAGE
Consider the N or SW Packages for Alternate Source
ORDER PART
NUMBER
LT1013AMH LT1013MH LT1013ACH LT1013CH
ORDER PART
NUMBER
LT1014ACN LT1014CN LT1014DN LT1014IN
LT1014AMJ LT1014MJ LT1014ACJ LT1014CJ
10134fc
LT1013/LT1014
ELECTRICAL CHARACTERISTICS
SYMBOL PARAMETER CONDITIONS MIN TYP MAX MIN TYP MAX UNITS
V
OS
I
SO
I
B
e
n
e
n
i
n
A
VOL
CMRR Common Mode Rejection Ratio VCM = +13.5V, – 15.0V 100 117 97 114 dB PSRR Power Supply Rejection Ratio VS = ±2V to ±18V 103 120 100 117 dB
V
OUT
I
S
Input Offset Voltage LT1013 40 150 60 300 μV
LT1014 50 180 60 300 μV LT1013D/I, LT1014D/I 200 800 μV
Long Term Input Offset Voltage 0.4 0.5 μV/Mo. Stability
Input Offset Current 0.15 0.8 0.2 1.5 nA Input Bias Current 12 20 15 30 nA Input Noise Voltage 0.1Hz to 10Hz 0.55 0.55 μVp-p Input Noise Voltage Density fO = 10Hz 24 24 nV/√Hz
fO = 1000Hz 22 22 nV/√Hz
Input Noise Current Density fO = 10Hz 0.07 0.07 pA/√Hz Input Resistance – Differential (Note 2) 100 400 70 300 MΩ
Common Mode 5 4 GΩ Large Signal Voltage Gain VO = ±10V, RL = 2k 1.5 8.0 1.2 7.0 V/μV
VO = ± 10V, RL = 600Ω 0.8 2.5 0.5 2.0 V/μV
Input Voltage Range +13.5 +13.8 +13.5 +13.8 V
Channel Separation VO = ±10V, RL = 2k 123 140 120 137 dB Output Voltage Swing RL = 2k ± 13 ±14 ±12.5 ± 14 V Slew Rate 0.2 0.4 0.2 0.4 V/μs Supply Current Per Amplifier 0.35 0.50 0.35 0.55 mA
TA = 25°C. VS = ±15V, VCM = 0V unless otherwise noted.
LT1013AM/AC LT1013C/D/I/M LT1014AM/AC LT1014C/D/I/M
– 15.0 – 15.3 –15.0 –15.3 V
TA = 25°C. V
SYMBOL PARAMETER CONDITIONS MIN TYP MAX MIN TYP MAX UNITS
V
OS
I
OS
I
B
A
VOL
V
OUT
I
S
+
= +5V, V
S
Input Offset Voltage LT1013 60 250 90 450 μV
Input Offset Current 0.2 1.3 0.3 2.0 nA Input Bias Current 15 35 18 50 nA Large Signal Voltage Gain VO = 5mV to 4V, RL = 500Ω 1.0 1.0 V/μV Input Voltage Range +3.5 + 3.8 +3.5 + 3.8 V
Output Voltage Swing Output Low, No Load 15 25 15 25 mV
Supply Current Per Amplifier 0.31 0.45 0.32 0.50 mA
= 0V, V
S
= 1.4V, VCM = 0V unless otherwise noted
OUT
LT1014 70 280 90 450 μV LT1013D/I, LT1014D/I 250 950 μV
Output Low, 600Ω to Ground 5 10 5 10 mV Output Low, I
Output High, No Load 4.0 4.4 4.0 4.4 V Output High, 600Ω to Ground 3.4 4.0 3.4 4.0 V
= 1mA 220 350 220 350 mV
SINK
LT1013AM/AC LT1013C/D/I/M LT1014AM/AC LT1014C/D/I/M
0 – 0.3 0 – 0.3 V
10134fc
3
LT1013/LT1014
ELECTRICAL CHARACTERISTICS
–55°C T
SYMBOL PARAMETER CONDITIONS MIN TYP MAX MIN TYP MAX MIN TYP MAX UNITS
V
OS
I
OS
I
B
A
VOL
CMRR Common Mode Rejection VCM = +13.0V, –14.9V 97 114 96 114 94 113 dB PSRR Power Supply Rejection V
V
OUT
I
S
125°C. VS = ± 15V, VCM = 0V unless otherwise noted.
A
Input Offset Voltage 80 300 90 350 110 550 μV
V
= +5V, 0V; VO = + 1.4V
S
–55°C ≤ T V
CM
VCM = 0V, TA = 125°C 250 900 300 960 400 1500 μV
Input Offset Voltage Drift (Note 3) 0.4 2.0 0.4 2.0 0.5 2.5 μV/°C Input Offset Current 0.3 2.5 0.3 2.8 0.4 5.0 nA
VS = +5V, 0V; VO = +1.4V 0.6 6.0 0.7 7.0 0.9 10.0 nA
Input Bias Current 15 30 15 30 18 45 nA
VS = +5V, 0V; VO = +1.4V 20 80 25 90 28 120 nA
Large Signal Voltage Gain VO = ±10V, RL = 2k 0.5 2.0 0.4 2.0 0.25 2.0 V/μV
= ±2V to ±18V 100 117 100 117 97 116 dB
Ratio Output Voltage Swing RL = 2k ±12 ±13.8 ± 12 ± 13.8 ± 11.5 ± 13.8 V
Supply Current 0.38 0.60 0.38 0.60 0.38 0.7 mA Per Amplifier VS = +5V, 0V; VO = +1.4V 0.34 0.55 0.34 0.55 0.34 0.65 mA
S
V
= +5V, 0V
S
= 600Ω to Ground
R
L
Output Low Output High 3.2 3.8 3.2 3.8 3.1 3.8 V
100°C 80 450 90 480 100 750 μV
A
= 0.1V, TA = 125°C 120 450 150 480 200 750 μV
The denotes the specifications which apply over the temperature range
LT1013AM LT1014AM LT1013M/LT1014M
— 6 15— 615— 618 mV
4
10134fc
LT1013/LT1014
ELECTRICAL CHARACTERISTICS
The denotes the specifications which apply over the temperature range
–40°C TA 85°C for LT1013I, LT1014I, 0°C TA 70°C for LT1013C, LT1013D, LT1014C, LT1014D. VS = ±15V, VCM = 0V unless otherwise noted.
LT1013AC LT1014AC LT1014C/D/I
SYMBOL PARAMETER CONDITIONS MIN TYP MAX MIN TYP MAX MIN TYP MAX UNITS
V
OS
I
OS
I
B
A
VOL
CMRR Common Mode Rejection VCM = +13.0V, –15.0V 98 116 98 116 94 113 dB
PSRR Power Supply Rejection VS = ± 2V to ±18V 101 119 101 119 97 116 dB
V
OUT
I
S
Note 1: Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. Exposure to any Absolute Rating condition for extended periods may affect device reliability and lifetime.
Note 2: This parameter is guaranteed by design and is not tested. Typical parameters are defined as the 60% yield of parameter distributions of individual amplifiers; i.e., out of 100 LT1014s (or 100 LT1013s) typically 240 op amps (or 120 ) will be better than the indicated specification.
Note 3: This parameter is not 100% tested.
Input Offset Voltage 55 240 65 270 80 400 μV
LT1013D/I, LT1014D/I
= +5V, 0V; VO = 1.4V 75 350 85 380 110 570 μV
V
S
LT1013D/I, LT1014D/I VS = +5V, 0V; VO = 1.4V 280 1200 μV
Average Input Offset (Note 3) Voltage Drift LT1013D/I, LT1014D/I ———————0.75.0μV/°C
Input Offset Current 0.2 1.5 0.2 1.7 0.3 2.8 nA
VS = +5V, 0V; VO = 1.4V 0.4 3.5 0.4 4.0 0.5 6.0 nA
Input Bias Current 13 25 13 25 16 38 nA
VS = +5V, 0V; VO = 1.4V 18 55 20 60 24 90 nA
Large Signal Voltage Gain VO = ±10V, RL = 2k 1.0 5.0 1.0 5.0 0.7 4.0 V/μV
Ratio
Ratio Output Voltage Swing RL = 2k ±12.5 ± 13.9 ± 12.5 ± 13.9 ±12.0 ± 13.9 V
= +5V, 0V; RL = 600Ω
V
S
Output Low Output High 3.3 3.9 3.3 3.9 3.2 3.9 V
Supply Current per Amplifier 0.36 0.55 0.36 0.55 0.37 0.60 mA
VS = +5V, 0V; VO = 1.4V 0.32 0.50 0.32 0.50 0.34 0.55 mA
230 1000 μV
0.3 2.0 0.3 2.0 0.4 2.5 μV/°C
— 613— 613— 613 mV
LT1013C/D/I
10134fc
5
LT1013/LT1014
TIME AFTER POWER ON (MINUTES)
0
CHANGE IN OFFSET VOLTAGE (μV)
5
4
3
2
1
0
4
1
2
3
5
VS = ±15V T
A
= 25°C
LT1013 CERDIP (J) PACKAGE
LT1013 METAL CAN (H) PACKAGE
LT1014
1013/14 TPC03
TEMPERATURE (°C)
–50
SUPPLY CURRENT PER AMPLIFIER (μA)
460
420
380
340
300
260
0
50
75
–25
25
100
125
VS = ±15V
VS = 5V, 0V
1013/14 TPC09
UW
TYPICAL PERFOR A CE CHARACTERISTICS
Offset Voltage Drift with Temperature of Representative Units
VS = ±15V
200
100
Offset Voltage vs Balanced Source Resistance
10
VS = 5V, 0V, –55°C TO 125°C
VS = ±15V, 0V, –55°C TO 125°C
1
Warm-Up Drift
0
–100
INPUT OFFSET VOLTAGE (μV)
–200
–50
–25
0
50
25
TEMPERATURE (°C)
75
100
1013/14 TPC01
125
Common Mode Rejection Ratio vs Frequency 0.1Hz to 10Hz Noise
120
100
80
60
40
20
COMMON MODE REJECTION RATIO (dB)
0
10
VS = 5V, 0V VS = ±15V
100 1k 10k 100k
FREQUENCY (Hz)
TA = 25°C
1M
1013/14 TPC04
VS = 5V, 0V, 25°C
0.1
R
INPUT OFFSET VOLTAGE (mV)
VS = ±15V, 0V, 25°C
0.01 1k 3k 10k 30k 100k 300k 1M 3M 10M
BALANCED SOURCE RESISTANCE (Ω)
S
R
S
Power Supply Rejection Ratio vs Frequency
120
100
VS = ±15V + 1V T
0.1
NEGATIVE
SUPPLY
= 25°C
A
110
FREQUENCY (Hz)
SINE WAVE
P-P
1k 100k 1M
100 10k
80
60
40
20
POWER SUPPLY REJECTION RATIO (dB)
0
+
1013/14 TPC02
POSITIVE SUPPLY
1013/14 TPC05
TA = 25°C
= ±2V TO ± 18V
V
S
NOISE VOLTAGE (200nV/DIV)
2
0
6
4
TIME (SECONDS)
8
1013/14 TPC06
10
10Hz Voltage Noise
Noise Spectrum Supply Current vs Temperature
1000
TA = 25°C
= ±2V TO ± 18V
V
S
300
100
30
CURRENT NOISE DENSITY (fA/Hz)
VOLTAGE NOISE DENSITY (nV/Hz)
6
1/f CORNER 2Hz
10
1
CURRENT NOISE
VOLTAGE NOISE
10 100 1k
FREQUENCY (Hz)
1013/14 TPC07
Distribution
200
180
160
140
120
100
80
NUMBER OF UNITS
60
40
20
0
20
10
VOLTAGE NOISE DENSITY (nV/Hz)
VS = ±15V
= 25°C
T
A
328 UNITS TESTED FROM THREE RUNS
40
30
50
1013/14 TPC08
60
10134fc
TEMPERATURE (°C)
–50
INPUT BIAS CURRENT (nA)
–30
–25
–20
–15
–10
–5
0
25 75
–25 0
50 100 125
VCM = 0V
VS = 5V, 0V
VS = ±15V
V
S
= ±2.5V
1013/14 TPC12
UW
TYPICAL PERFOR A CE CHARACTERISTICS
LT1013/LT1014
Input Bias Current vs Common Mode Voltage
5
TA = 25°C
4
= +5V, 0V (V)
S
3
2
VS = ±15V
1
0
–1
COMMON MODE INPUT VOLTAGE, V
0
–5
INPUT BIAS CURRENT (nA)
VS = 5V, 0V
–10 –15 –20
Output Saturation vs Sink Current vs Temperature
10
V+ = 5V TO 30V
= 0V
V
I
= 10mA
SINK
1
I
= 5mA
SINK
–25 –30
1013/14 TPC10
Input Offset Current vs
COMMON MODE INPUT VOLTAGE, V
15
10
5
0
–5
S
= ±15V (V)
–10
–15
Temperature
1.0 VCM = 0V
0.8
0.6
0.4
0.2
INPUT OFFSET CURRENT (nA)
0
–50
–25
Small Signal Transient Response, VS = ±15V
20mV/DIV
VS = 5V, 0V
VS = ±15V
50
25
0
TEMPERATURE (°C)
V
75
= ±2.5V
S
100
1013/14 TPC11
125
Input Bias Current vs Temperature
Large Signal Transient Response, V
5V/DIV
= ±15V
S
0.1
SATURATION VOLTAGE (V)
0.01 –50 – 25 0 25 50 75 100 125
Small Signal Transient Response, VS = 5V, 0V
100mV
50mV
0
AV = +1 20μs/DIV 1013/14 TPC16 RL = 600Ω TO GROUND INPUT = 0V TO 100mV PULSE
TEMPERATURE (°C)
I
I I
SINK
SINK
SINK
= 1mA
= 100μA = 10μA
I
SINK
= 0
1013/14 TPC13
AV = +1 2μs/DIV 1013/14 TPC14
Large Signal Transient Response, VS = 5V, 0V
4V
2V
0V
AV = +1 10μs/DIV 1013/14 TPC17 RL = 4.7k TO 5V INPUT = 0V TO 4V PULSE
AV = +1 50μs/DIV 1013/14 TPC15
Large Signal Transient Response, VS = 5V, 0V
4V
2V
0V
AV = +1 10μs/DIV 1013/14 TPC18 NO LOAD INPUT = 0V TO 4V PULSE
10134fc
7
LT1013/LT1014
UW
TYPICAL PERFOR A CE CHARACTERISTICS
Output Short-Circuit Current vs Time
40
30
20
10
0
–10
–20
SHORT-CIRCUIT CURRENT (mA)
–30
SINKING SOURCING
–40
0
TIME FROM OUTPUT SHORT TO GROUND (MINUTES)
–55°C
25°C
125°C
125°C
25°C
–55°C
12
VS = ±15V
Gain, Phase vs Frequency
20
10
GAIN
0
VOLTAGE GAIN (dB)
–10
PHASE
±15V
5V, 0V
1013/14 TPC19
±15V
5V, 0V
10M
1M
VOLTAGE GAIN (V/V)
100k
3
TA = 25°C
= 0V
V
CM
= 100pF
C
L
Voltage Gain vs Load Resistance
100
LOAD RESISTANCE TO GROUND (Ω)
80
100
PHASE SHIFT (DEGREES)
120
140
160
180
200
1k 10k
TA = 25°C, VS = ±15V
TA = –55°C, VS = ±15V
TA = 125°C, VS = ±15V
TA = –55°C, VS = 5V, 0V
TA = 25°C, VS = 5V, 0V
TA = 125°C, VS = 5V, 0V
VO = ±10V WITH VS = ±15V
VO = 20mV TO 3.5V
WITH V
= 5V, 0V
S
1013/14 TPC20
Channel Separation vs Frequency
160
140
120
100
CHANNEL SEPARATION (dB)
80
VOLTAGE GAIN (dB)
LIMITED BY
THERMAL
INTERACTION
Voltage Gain vs Frequency
140
120
100
80
60
40
20
0
–20
0.01 0.1
RS = 1kΩ
LIMITED BY
PIN TO PIN
CAPACITANCE
VS = ±15V T
A
V
IN
R
L
100 1k
110
FREQUENCY (Hz)
= 25°C
= 20Vp-p to 5kHz
= 2k
RS = 100Ω
VS = ±15VVS = 5V, 0V
TA = 25°C C
L
10k 100k
= 100pF
1M 10M
1013/14 TPC21
0.1 0.3
13 10
FREQUENCY (MHz)
U
WUU
1013/14 TPC22
APPLICATIO S I FOR ATIO
Single Supply Operation
The LT1013/LT1014 are fully specified for single supply operation, i.e., when the negative supply is 0V. Input common mode range includes ground; the output swings within a few millivolts of ground. Single supply operation, however, can create special difficulties, both at the input and at the output. The LT1013/LT1014 have specific circuitry which addresses these problems.
At the input, the driving signal can fall below 0V— inad­vertently or on a transient basis. If the input is more than a few hundred millivolts below ground, two distinct prob-
8
60
100
10
FREQUENCY (Hz)
10k
100k
1k
1M
1013/14 TPC23
lems can occur on previous single supply designs, such as the LM124, LM158, OP-20, OP-21, OP-220, OP-221, OP-420:
a) When the input is more than a diode drop below ground, unlimited current will flow from the substrate (V– termi­nal) to the input. This can destroy the unit. On the LT1013/ LT1014, the 400Ω resistors, in series with the input (see Schematic Diagram), protect the devices even when the input is 5V below ground.
10134fc
Loading...
+ 16 hidden pages