The LC420EUN is a Color Active Matrix Liquid Crystal Display with an integral Light Emitting Diode (LED)
backlight system. The matrix employs a-Si Thin Film Transistor as the active element.
It is a transmissive display type which is operating in the normally black mode. It has a 41.92 inch diagonally
measured active display area with WUXGA resolution (1080 vertical by 1920 horizontal pixel array).
Each pixel is divided into Red, Green and Blue sub-pixels or dots which are arrayed in vertical stripes.
Gray scale or the luminance of the sub-pixel color is determined with a 8-bit gray scale signal for each dot.
Therefore, it can present a palette of more than 16.7Milion colors.
It has been designed to apply the 8-bit 2-port LVDS interface.
It is intended to support LCD TV, PCTV where high brightness, super wide viewing angle, high color gamut,
high color depth and fast response time are important.
LVDS
EEPROM
EPI(RGB)
2Port
LVDS
Select
OPC
Enable
ExtVBR-B
+12.0V
PWM_OUT
1~3
+24.0V, GND, On/Off
CN1
(51pin)
CN2
(4 pin)
LVDS 1,2
Option
signal
I2C
PWM_OUT
1~3
SCL
SDA
Timing Controller
LVDS Rx + OPC + DGA
Integrated
Power Circuit
Block
LED Driver
G1
Control
Signals
G1080
Power Signals
S1S1920
General Features
Active Screen Size41.92 inches(1064.77m) diagonal
Outline Dimension958.0(H) × 559.1(V) X 9.9(B)/17.4 mm(D) (Typ.)
Source Driver Circuit
TFT - LCD Panel
(1920 × RGB × 1080 pixels)
[Gate In Panel]
Scanning Block 1
Scanning Block 2
Scanning Block 3
Pixel Pitch0.4833 mm x 0.4833 mm
Pixel Format1920 horiz. by 1080 vert. Pixels, RGB stripe arrangement
Power ConsumptionTotal 56.1W[Logic= 5.4W, LED Driver=50.7W (ExtVbr_B=100% )]
Weight9.0 Kg
Display ModeTransmissive mode, Normally black
Surface TreatmentHard coating(3H), Anti-glare treatment of the front polarizer (Haze < 1%)
Ver. 0.1
4 /38
LC420EUN
Product Specification
2. Absolute Maximum Ratings
The following items are maximum values which, if exceeded, may cause faulty operation or permanent damage
to the LCD module.
Table 1. ABSOLUTE MAXIMUM RATINGS
ParameterSymbol
Power Input Voltage
Driver Control Voltage
T-Con Option Selection VoltageVLOGIC-0.3+4.0VDC
Operating TemperatureTOP0+50°C
Storage TemperatureTST-20+60°C
Panel Front Temperature TSUR-+68°C4
Operating Ambient HumidityHOP1090%RH
Storage HumidityHST1090%RH
LCD CircuitVLCD-0.3+14.0VDC
DriverVBL-0.3+ 27.0VDC
ON/OFFVOFF / VON-0.3+5.5VDC
BrightnessEXTVBR-B-0.3+4.0VDC
STATUS [TBD]STATUS-0.3+5.0VDC
Value
UnitNote
MinMax
Note
1. Ambient temperature condition (Ta = 25 ± 2 °C )
2. Temperature and relative humidity range are shown in the figure below.
Wet bulb temperature should be Max 39°C, and no condensation of water.
3. Gravity mura can be guaranteed below 40°C condition.
4. The maximum operating temperatures is based on the test condition that the surface temperature
of display area is less than or equal to 68°C with LCD module alone in a temperature controlled chamber.
Thermal management should be considered in final product design to prevent the surface temperature of
display area from being over 68℃. The range of operating temperature may be degraded in case of
improper thermal management in final product design.
90%
60
60%
1
2,3
2,3
Ver. 0.1
Wet Bulb
Temperature [°C]
20
10
0
10203040506070800-20
Dry Bulb Temperature [°C]
30
40
50
40%
10%
Storage
Operation
Humidity
[(%)RH]
5 /38
LC420EUN
Product Specification
3. Electrical Specifications
3-1. Electrical Characteristics
It requires two power inputs. One is employed to power for the LCD circuit. The other Is used for the LED
backlight and LED Driver circuit.
Table 2. ELECTRICAL CHARACTERISTICS
ParameterSymbol
Circuit :
Power Input VoltageVLCD10.812.013.2VDC
Power Input CurrentILCD
Power ConsumptionPLCD5.407.02Watt1
Rush currentIRUSH--5.0A3
ExtV
BR-B
Brightness Adjust for Back Light
ExtV
BR-B
Frequency
Pulse Duty Level
(PWM)
Note
1. The specified current and power consumption are under the V
High Level
Low Level
MinTypMax
-450585mA1
-685890mA2
5-100%
1-100%
4050/6080Hz
2.5-3.6Vdc
0-0.8Vdc
Value
UnitNote
=12.0V, Ta=25 ± 2°C, fV=60Hz
LCD
HIGH : on duty
LOW : off duty
condition, and mosaic pattern(8 x 6) is displayed and fVis the frame frequency.
2. The current is specified at the maximum current pattern.
3. The duration of rush current is about 2ms and rising time of power input is 0.5ms (min.).
4. ExtV
After Driver ON signal is applied, ExtV
After that, ExtV
signal have to input available duty range and sequence.
BR-B
1% and 100% is possible
BR-B
should be sustained from 5% to 100% more than 500ms.
BR-B
For more information, please see 3-6-2. Sequence for LED Driver.
5. Ripple voltage level is recommended under ±5% of typical voltage
On Duty
4
Ver. 0.1
White : 255 Gray
Black : 0 Gray
Mosaic Pattern(8 x 6)
6 /38
Product Specification
Table 3. ELECTRICAL CHARACTERISTICS (Continue)
Values
ParameterSymbol
MinTypMax
LED Driver :
Power Supply Input VoltageVBL22.824.025.2Vdc1
UnitNotes
LC420EUN
Power Supply Input Current IBL
Power Supply Input Current (In-Rush)In-rush--3.6A
Power ConsumptionPBL-
Input Voltage for
Control System
Signals
LED :
Life Time30,00050,000Hrs2
On/Off
OnV on2.5-5.0Vdc
OffV off-0.30.00.7Vdc
-
2.11
50.754.6
2.23
A1
VBL = 22.8V
Ext VBR-B = 100%
3
W1
Notes :
1. Electrical characteristics are determined after the unit has been ‘ON’ and stable for approximately 60
minutes at 25±2°C. The specified current and power consumption are under the typical supply Input voltage
24V and VBR (ExtVBR-B : 100%), it is total power consumption.
2. The life time (MTTF) is determined as the time which luminance of the LED is 50% compared to that of initial
value at the typical LED current (ExtVBR-B :100%) on condition of continuous operating in LCM state at
25±2°C.
3. The duration of rush current is about 200ms. This duration is applied to LED on time.
4. Even though inrush current is over the specified value, there is no problem if I2T spec of fuse is satisfied.
Ver. 0.1
7 /38
LC420EUN
Product Specification
3-2. Interface Connections
This LCD module employs two kinds of interface connection, 51-pin connector is used for the module
electronics and 14-pin connector is used for the integral backlight system.
3-2-1. LCD Module
-LCD Connector(CN1): FI-R51S-HF(manufactured by JAE) or GT05P-51S-H38(manufactured by LSM) or
-IS050-C51B-C39(manufactured by UJU)
- Mating Connector : FI-R51HL(JAE) or compatible
Table 4. MODULE CONNECTOR(CN1) PIN CONFIGURATION
NoSymbolDescriptionNoSymbolDescription
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
NC
NC
NC
NC
NC
NC
LVDS Select
ExtVBR-B
NC
OPC Enable‘H’ = Enable , ‘L’ or NC = Disable
GND
R1AN
R1AP
R1BN
R1BP
R1CN
R1CP
GND
R1CLKN
R1CLKP
GND
R1DN
R1DP
NC
NC
NC or GND
No Connection (Note 4)
No Connection (Note 4)
No Connection (Note 4)
No Connection (Note 4)
No Connection (Note 4)
No Connection (Note 4)
‘H’ =JEIDA , ‘L’ or NC = VESA
External PWM (from System)
No Connection (Note 4)
Ground
FIRST LVDS Receiver Signal (A-)
FIRST LVDS Receiver Signal (A+)
FIRST LVDS Receiver Signal (B-)
FIRST LVDS Receiver Signal (B+)
FIRST LVDS Receiver Signal (C-)
FIRST LVDS Receiver Signal (C+)
Ground
FIRST LVDS Receiver Clock Signal(-)
FIRST LVDS Receiver Clock Signal(+)
Ground
FIRST LVDS Receiver Signal (D-)
FIRST LVDS Receiver Signal (D+)
No Connection
No Connection
No Connection or Ground
1. All GND(ground) pins should be connected together to the LCD module’s metal frame.
2. All VLCD (power input) pins should be connected together.
3. All Input levels of LVDS signals are based on the EIA 644 Standard.
4. #1~#6 & #9 NC (No Connection): These pins are used only for LGD (Do not connect)
5. Specific pins(pin No. #10) are used for Scanning function of the LCD module.
If not used, these pins are no connection. (Please see the Appendix VI for more information.)
6. Specific pin No. #44 is used for “No signal detection” of system signal interface.
It should be GND for NSB(No Signal Black) during the system interface signal is not.
If this pin is “H”, LCD Module displays AGP(Auto Generation Pattern).
8 /38
Product Specification
3-2-2. Backlight Module
Master
-LED Driver Connector
: 20022WR - H14B2(Yeonho) or compatible
- Mating Connector
: 20022HS - 14B2(Yeonho) or compatible
Table 5. LED DRIVER CONNECTOR PIN CONFIGURATION
Pin NoSymbolDescriptionNote
LC420EUN
1
2
3
4
5
6
7
8
9
10
11
12
13
14
VBLPower Supply +24.0V
VBLPower Supply +24.0V
VBLPower Supply +24.0V
VBLPower Supply +24.0V
VBLPower Supply +24.0V
GNDBacklight Ground
GNDBacklight Ground
GNDBacklight Ground
GNDBacklight Ground
GNDBacklight Ground
StatusBack Light Status2
ON/OFF
V
NCDon’t care
NCDon’t care
Backlight ON/OFF control
Notes :1. GND should be connected to the LCD module’s metal frame.
2. Normal : Low (under 0.7V) / Abnormal : OPEN
3. Each impedance of pin #12 is over 50 [KΩ] .
1
◆ Rear view of LCM
1
Ver. 0.1
…
14
<Master>
PCB
◆ Status
1
14
…
9 /38
LC420EUN
Product Specification
3-3. Signal Timing Specifications
Table 6 shows the signal timing required at the input of the LVDS transmitter. All of the interface signal
timings should be satisfied with the following specification for normal operation.
Table 6. TIMING TABLE (DE Only Mode)
ITEMSymbolMinTypMaxUnitnotes
Horizontal
Vertical
Frequency
Display
Period
BlanktHB100140240tCLK1
TotaltHP106011001200tCLK
Display
Period
BlanktVB
TotaltVP
ITEMSymbolMinTypMaxUnitnotes
DCLKfCLK63.0074.2578.00MHz
HorizontalfH57.367.570KHz2
VerticalfV
tHV960960960tCLK1920 / 2
tVV108010801080Lines
20
(228)
1100
(1308)
57
(47)
45
(270)
1125
(1350)
60
(50)
69
(300)
1149
(1380)
63
(53)
Lines1
Lines
Hz
NTSC
(PAL)
2
notes: 1. The input of HSYNC & VSYNC signal does not have an effect on normal operation (DE Only Mode).
If you use spread spectrum of EMI, add some additional clock to minimum value for clock margin.
2. The performance of the electro-optical characteristics may be influenced by variance of the vertical
refresh rate and the horizontal frequency
3. Spread Spectrum Rate (SSR) for 50KHz ~ 100kHz Modulation Frequency(FMOD) is calculated by
(7 – 0.06*Fmod), where Modulation Frequency (FMOD) unit is KHz.
LVDS Receiver Spread spectrum Clock is defined as below figure
※ Timing should be set based on clock frequency.
Ver. 0.1
10 /38
LC420EUN
) to avoid
Product Specification
※ Please pay attention to the followings when you set Spread Spectrum Rate(SSR) and Modulation
Frequency(FMOD)
1. Please set proper Spread Spectrum Rate(SSR) and Modulation Frequency (FMOD) of TV system LVDS output.
2. Please check FOS after you set Spread Spectrum Rate(SSR) and Modulation Frequency(FMOD
abnormal display. Especially, harmonic noise can appear when you use Spread Spectrum under FMOD 30 KHz.
Ver. 0.1
11 /38
Loading...
+ 25 hidden pages
You need points to download manuals.
1 point = 1 manual.
You can buy points or you can get point for every manual you upload.