LG Display LC420EUN-FFM1 Specification

( ) Preliminary Specification
(●) Final Specification
Title 42.0” WUXGA TFT LCD
LC420EUN
Product Specification
SPECIFICATION
FOR
APPROVAL
BUYER Vestel
MODEL
APPROVED BY
/
/
/
SIGNATURE
DATE
SUPPLIER LG Display Co., Ltd.
SUFFIX FFM1
*When you obtain standard approval,
please use the above model name without suffix
APPROVED BY
J.T. Kim / Team Leader
REVIEWED BY
B.P CHOI / Project Leader
PREPARED BY
J.Y LEE/ Engineer
SIGNATURE
DATE
Please return 1 copy for your confirmation with
your signature and comments.
Ver. 0.1
TV Product Development Dept.
LG Display Co., Ltd.
1 /38
Product Specification
CONTENTS
LC420EUN
Number ITEM
COVER
CONTENTS
RECORD OF REVISIONS 3
1 GENERAL DESCRIPTION
2 ABSOLUTE MAXIMUM RATINGS
3 ELECTRICAL SPECIFICATIONS
3-1 ELECTRICAL CHARACTERISTICS
3-2 INTERFACE CONNECTIONS
3-3 SIGNAL TIMING SPECIFICATIONS
3-4 SIGNAL TIMING WAVEFORMS
3-5 COLOR DATA REFERENCE
3-6 POWER SEQUENCE
4 OPTICAL SPECIFICATIONS
5 MECHANICAL CHARACTERISTICS
6 RELIABILITY
Page
1
2
4
5
6
6
8
11
12
15
16
18
24
27
7 INTERNATIONAL STANDARDS
7-1 SAFETY
7-2 EMC 28
7-3 ENVIRONMENT
8 PACKING
8-1 DESIGNATION OF LOT MARK
8-2 PACKING FORM
9 PRECAUTIONS 30
9-1 MOUNTING PRECAUTIONS 30
9-2 OPERATING PRECAUTIONS
9-3 ELECTROSTATIC DISCHARGE CONTROL 31
9-4 PRECAUTIONS FOR STRONG LIGHT EXPOSURE
9-5 STORAGE 31
9-6 HANDLING PRECAUTIONS FOR PROTECTION FILM
Ver. 0.1
28
28
28
29
29
29
30
31
31
2 /38
Product Specification

RECORD OF REVISIONS

Revision No. Revision Date Page Description
0.1 April, 21ST, 2013 - Preliminary Specification(First Draft)
Final Specification
LC420EUN
Ver. 0.1
3 /38
LC420EUN
Product Specification

1. General Description

The LC420EUN is a Color Active Matrix Liquid Crystal Display with an integral Light Emitting Diode (LED) backlight system. The matrix employs a-Si Thin Film Transistor as the active element. It is a transmissive display type which is operating in the normally black mode. It has a 41.92 inch diagonally measured active display area with WUXGA resolution (1080 vertical by 1920 horizontal pixel array). Each pixel is divided into Red, Green and Blue sub-pixels or dots which are arrayed in vertical stripes. Gray scale or the luminance of the sub-pixel color is determined with a 8-bit gray scale signal for each dot. Therefore, it can present a palette of more than 16.7Milion colors. It has been designed to apply the 8-bit 2-port LVDS interface. It is intended to support LCD TV, PCTV where high brightness, super wide viewing angle, high color gamut, high color depth and fast response time are important.
LVDS
EEPROM
EPI(RGB)
2Port
LVDS Select
OPC Enable
ExtVBR-B
+12.0V
PWM_OUT
1~3
+24.0V, GND, On/Off
CN1
(51pin)
CN2
(4 pin)
LVDS 1,2
Option signal
I2C
PWM_OUT
1~3
SCL
SDA
Timing Controller
LVDS Rx + OPC + DGA
Integrated
Power Circuit
Block
LED Driver
G1
Control Signals
G1080
Power Signals
S1 S1920
General Features
Active Screen Size 41.92 inches(1064.77m) diagonal
Outline Dimension 958.0(H) × 559.1(V) X 9.9(B)/17.4 mm(D) (Typ.)
Source Driver Circuit
TFT - LCD Panel
(1920 × RGB × 1080 pixels)
[Gate In Panel]
Scanning Block 1
Scanning Block 2
Scanning Block 3
Pixel Pitch 0.4833 mm x 0.4833 mm
Pixel Format 1920 horiz. by 1080 vert. Pixels, RGB stripe arrangement
Color Depth 8bit, 16.7Million colors
Luminance, White 300 cd/m2 (Center 1point ,Typ.)
Viewing Angle (CR>10) Viewing angle free ( R/L 178 (Min.), U/D 178 (Min.))
Power Consumption Total 56.1W[Logic= 5.4W, LED Driver=50.7W (ExtVbr_B=100% )]
Weight 8.5 Kg
Display Mode Transmissive mode, Normally black
Surface Treatment Hard coating(3H), Anti-glare treatment of the front polarizer (Haze < 1%)
Ver. 0.1
4 /38
LC420EUN
Product Specification

2. Absolute Maximum Ratings

The following items are maximum values which, if exceeded, may cause faulty operation or permanent damage to the LCD module.
Table 1. ABSOLUTE MAXIMUM RATINGS
Parameter Symbol
Power Input Voltage
Driver Control Voltage
T-Con Option Selection Voltage VLOGIC -0.3 +4.0 VDC
Operating Temperature TOP 0 +50 °C
Storage Temperature TST -20 +60 °C
Panel Front Temperature TSUR - +68 °C 4
Operating Ambient Humidity HOP 10 90 %RH
Storage Humidity HST 10 90 %RH
LCD Circuit VLCD -0.3 +14.0 VDC
Driver VBL -0.3 + 27.0 VDC
ON/OFF VOFF / VON -0.3 +5.5 VDC
Brightness EXTVBR-B -0.3 +4.0 VDC
STATUS [TBD] STATUS -0.3 +5.0 VDC
Value
Unit Note
Min Max
Note
1. Ambient temperature condition (Ta = 25 ± 2 °C )
2. Temperature and relative humidity range are shown in the figure below.
Wet bulb temperature should be Max 39°C, and no condensation of water.
3. Gravity mura can be guaranteed below 40°C condition.
4. The maximum operating temperatures is based on the test condition that the surface temperature
of display area is less than or equal to 68°C with LCD module alone in a temperature controlled chamber. Thermal management should be considered in final product design to prevent the surface temperature of display area from being over 68. The range of operating temperature may be degraded in case of improper thermal management in final product design.
90%
60
60%
1
2,3
2,3
Ver. 0.1
Wet Bulb Temperature [°C]
20
10
0
10 20 30 40 50 60 70 800-20 Dry Bulb Temperature [°C]
30
40
50
40%
10%
Storage
Operation
Humidity
[(%)RH]
5 /38
LC420EUN
Product Specification
3. Electrical Specifications
3-1. Electrical Characteristics
It requires two power inputs. One is employed to power for the LCD circuit. The other Is used for the LED backlight and LED Driver circuit.
Table 2. ELECTRICAL CHARACTERISTICS
Parameter Symbol
Circuit :
Power Input Voltage VLCD 10.8 12.0 13.2 VDC
Power Input Current ILCD
Power Consumption PLCD 5.40 7.02 Watt 1
Rush current IRUSH - - 5.0 A 3
ExtV
BR-B
Brightness Adjust for Back Light
ExtV
BR-B
Frequency
Pulse Duty Level (PWM)
Note
1. The specified current and power consumption are under the V
High Level
Low Level
Min Typ Max
- 450 585 mA 1
- 685 890 mA 2
5 - 100 %
1 - 100 %
40 50/60 80 Hz
2.5 - 3.6 Vdc
0 - 0.8 Vdc
Value
Unit Note
=12.0V, Ta=25 ± 2°C, fV=60Hz
LCD
HIGH : on duty
LOW : off duty
condition, and mosaic pattern(8 x 6) is displayed and fVis the frame frequency.
2. The current is specified at the maximum current pattern.
3. The duration of rush current is about 2ms and rising time of power input is 0.5ms (min.).
4. ExtV After Driver ON signal is applied, ExtV After that, ExtV
signal have to input available duty range and sequence.
BR-B
1% and 100% is possible
BR-B
should be sustained from 5% to 100% more than 500ms.
BR-B
For more information, please see 3-6-2. Sequence for LED Driver.
5. Ripple voltage level is recommended under ±5% of typical voltage
On Duty
4
Ver. 0.1
White : 255 Gray Black : 0 Gray
Mosaic Pattern(8 x 6)
6 /38
Product Specification
Table 3. ELECTRICAL CHARACTERISTICS (Continue)
Values
Parameter Symbol
Min Typ Max
LED Driver :
Power Supply Input Voltage VBL 22.8 24.0 25.2 Vdc 1
Unit Notes
LC420EUN
Power Supply Input Current IBL
Power Supply Input Current (In-Rush) In-rush - - 3.6 A
Power Consumption PBL -
Input Voltage for
Control System
Signals
LED :
Life Time 30,000 50,000 Hrs 2
On/Off
On V on 2.5 - 5.0 Vdc
Off V off -0.3 0.0 0.7 Vdc
-
2.11
50.7 54.6
2.23
A 1
VBL = 22.8V Ext VBR-B = 100%
3
W 1
Notes :
1. Electrical characteristics are determined after the unit has been ‘ON’ and stable for approximately 60
minutes at 25±2°C. The specified current and power consumption are under the typical supply Input voltage 24V and VBR (ExtVBR-B : 100%), it is total power consumption.
2. The life time (MTTF) is determined as the time which luminance of the LED is 50% compared to that of initial value at the typical LED current (ExtVBR-B :100%) on condition of continuous operating in LCM state at 25±2°C.
3. The duration of rush current is about 200ms. This duration is applied to LED on time.
4. Even though inrush current is over the specified value, there is no problem if I2T spec of fuse is satisfied.
Ver. 0.1
7 /38
LC420EUN
Product Specification
3-2. Interface Connections
This LCD module employs two kinds of interface connection, 51-pin connector is used for the module electronics and 14-pin connector is used for the integral backlight system.
3-2-1. LCD Module
-LCD Connector(CN1): FI-R51S-HF(manufactured by JAE) or GT05P-51S-H38(manufactured by LSM) or
- IS050-C51B-C39(manufactured by UJU)
- Mating Connector : FI-R51HL(JAE) or compatible
Table 4. MODULE CONNECTOR(CN1) PIN CONFIGURATION
No Symbol Description No Symbol Description
1
2
3
4
5
6
7
8
9
10 11
12
13
14
15
16
17
18
19
20 21 22
23
24 25 26
NC
NC
NC
NC
NC
NC
LVDS Select
ExtVBR-B
NC
OPC Enable ‘H’ = Enable , ‘L’ or NC = Disable
GND
R1AN
R1AP
R1BN
R1BP
R1CN
R1CP
GND
R1CLKN R1CLKP
GND R1DN
R1DP
NC NC
NC or GND
No Connection (Note 4)
No Connection (Note 4)
No Connection (Note 4)
No Connection (Note 4)
No Connection (Note 4)
No Connection (Note 4)
‘H’ =JEIDA , ‘L’ or NC = VESA
External PWM (from System)
No Connection (Note 4)
Ground
FIRST LVDS Receiver Signal (A-)
FIRST LVDS Receiver Signal (A+)
FIRST LVDS Receiver Signal (B-)
FIRST LVDS Receiver Signal (B+)
FIRST LVDS Receiver Signal (C-)
FIRST LVDS Receiver Signal (C+) Ground
FIRST LVDS Receiver Clock Signal(-)
FIRST LVDS Receiver Clock Signal(+) Ground
FIRST LVDS Receiver Signal (D-)
FIRST LVDS Receiver Signal (D+) No Connection No Connection No Connection or Ground
27
28
29
30
31
32
33
34
35
36
37
38
39 40
41
42
43
44
45
46 47 48
49
50 51
- - -
NC
R2AN
R2AP
R2BN
R2BP
R2CN
R2CP
GND
R2CLKN
R2CLKP
GND
R2DN
R2DP
NC
NC
NC or GND
NC or GND
GND Ground
GND Ground
GND Ground
NC No connection
VLCD Power Supply +12.0V
VLCD Power Supply +12.0V VLCD Power Supply +12.0V VLCD Power Supply +12.0V
No Connection
SECOND LVDS Receiver Signal (A-)
SECOND LVDS Receiver Signal (A+)
SECOND LVDS Receiver Signal (B-)
SECOND LVDS Receiver Signal (B+)
SECOND LVDS Receiver Signal (C-)
SECOND LVDS Receiver Signal (C+) Ground
SECOND LVDS Receiver Clock Signal(-)
SECOND LVDS Receiver Clock Signal(+) Ground
SECOND LVDS Receiver Signal (D-)
SECOND LVDS Receiver Signal (D+) No Connection
No Connection
No Connection or Ground
No Connection or Ground
Note
Ver. 0.1
1. All GND(ground) pins should be connected together to the LCD module’s metal frame.
2. All VLCD (power input) pins should be connected together.
3. All Input levels of LVDS signals are based on the EIA 644 Standard.
4. #1~#6 & #9 NC (No Connection): These pins are used only for LGD (Do not connect)
5. Specific pins(pin No. #10) are used for Scanning function of the LCD module. If not used, these pins are no connection. (Please see the Appendix VI for more information.)
6. Specific pin No. #44 is used for “No signal detection” of system signal interface. It should be GND for NSB(No Signal Black) during the system interface signal is not. If this pin is “H”, LCD Module displays AGP(Auto Generation Pattern).
8 /38
Product Specification
3-2-2. Backlight Module
Master
-LED Driver Connector : 20022WR - H14B2(Yeonho) or compatible
- Mating Connector : 20022HS - 14B2(Yeonho) or compatible
Table 5. LED DRIVER CONNECTOR PIN CONFIGURATION
Pin No Symbol Description Note
LC420EUN
1
2
3
4
5
6
7
8
9
10
11
12
13
14
VBL Power Supply +24.0V
VBL Power Supply +24.0V
VBL Power Supply +24.0V
VBL Power Supply +24.0V
VBL Power Supply +24.0V
GND Backlight Ground
GND Backlight Ground
GND Backlight Ground
GND Backlight Ground
GND Backlight Ground
Status Back Light Status 2
ON/OFF
V
NC Don’t care
NC Don’t care
Backlight ON/OFF control
Notes :1. GND should be connected to the LCD module’s metal frame.
2. Normal : Low (under 0.7V) / Abnormal : OPEN
3. Each impedance of pin #12 is over 50 [K] .
1
Rear view of LCM
1
Ver. 0.1
14
<Master>
PCB
Status
1
14
9 /38
LC420EUN
Product Specification
3-3. Signal Timing Specifications
Table 6 shows the signal timing required at the input of the LVDS transmitter. All of the interface signal timings should be satisfied with the following specification for normal operation.
Table 6. TIMING TABLE (DE Only Mode)
ITEM Symbol Min Typ Max Unit notes
Horizontal
Vertical
Frequency
Display
Period
Blank tHB 100 140 240 tCLK 1
Total tHP 1060 1100 1200 tCLK
Display
Period
Blank tVB
Total tVP
ITEM Symbol Min Typ Max Unit notes
DCLK fCLK 63.00 74.25 78.00 MHz
Horizontal fH 57.3 67.5 70 KHz 2
Vertical fV
tHV 960 960 960 tCLK 1920 / 2
tVV 1080 1080 1080 Lines
20
(228)
1100
(1308)
57
(47)
45
(270)
1125
(1350)
60
(50)
69
(300)
1149
(1380)
63
(53)
Lines 1
Lines
Hz
NTSC (PAL)
2
notes: 1. The input of HSYNC & VSYNC signal does not have an effect on normal operation (DE Only Mode).
If you use spread spectrum of EMI, add some additional clock to minimum value for clock margin.
2. The performance of the electro-optical characteristics may be influenced by variance of the vertical refresh rate and the horizontal frequency
3. Spread Spectrum Rate (SSR) for 50KHz ~ 100kHz Modulation Frequency(FMOD) is calculated by
(7 – 0.06*Fmod), where Modulation Frequency (FMOD) unit is KHz. LVDS Receiver Spread spectrum Clock is defined as below figure
Timing should be set based on clock frequency.
Ver. 0.1
10 /38
LC420EUN
) to avoid
Product Specification
Please pay attention to the followings when you set Spread Spectrum Rate(SSR) and Modulation
Frequency(FMOD)
1. Please set proper Spread Spectrum Rate(SSR) and Modulation Frequency (FMOD) of TV system LVDS output.
2. Please check FOS after you set Spread Spectrum Rate(SSR) and Modulation Frequency(FMOD
abnormal display. Especially, harmonic noise can appear when you use Spread Spectrum under FMOD 30 KHz.
Ver. 0.1
11 /38
Loading...
+ 25 hidden pages