Hyundai GMS90X52C, GMS90X54C, GMS90X51C User Manual

HYUNDAI MICRO ELECTRONICS
8-BIT SINGLE-CHIP MICROCONTROLLERS
GMS90X51C GMS90X52C GMS90X54C
User’s Manual (Ver. 1.0)
+<81'$,
Semiconductor Group of Hyundai Electronics Industrial Co., Ltd.
MicroElectronics
Version 1.0 Published by
MCU Application Team
HYUNDAI MicroElectronics All right reserved.
2001
2001
20012001
Additional information of this manual may be served by HYUNDAI MicroElectronics offices in Korea or Dis­tributors and Representatives listed at address directory.
HYUNDAI MicroElectronics reserves the right to make changes to any information here in at any time without notice.
The information, diagrams and other data in this manual are correct and reliable; however, HYUNDAI Micro­Electronics is in no way responsible for any violat ion s of patent s or other ri gh ts of the t hird par ty generated by the use of this manual.
GMS90X5XC Series HYUNDAI MicroElectronics

Device Naming Structure

GMS90X5XC
Mask ROM version
HYUNDAI MicroElectronics MCU
- GCXXX XX XX
ROM size
1: 2: 4:
Operating Voltage
C:L:4.25~5.5V

GMS90X5XC Series Selection Guide

Frequency
Blank:
16: 16MHz
24: 40:
Package Type
Blank: PL: Q:
ROM Code serial No.
12MHz 24MHz
40MHz
40PDIP 44PLCC 44MQFP
4k bytes 8k bytes 16k bytes
2.7~3.6V
Operating
Voltage
(V)
4.25~5.5 4K
2.7~3.6 4K
Jan. 2001 Ver 1.0
ROM size
MASK
8K
16K
8K
16K
(bytes)
RAM size
(bytes)
128 256 256
128 256 256
Device Name
GMS90C51C GMS90C52C GMS90C54C
GMS90L51C GMS90L52C GMS90L54C
Operating
Frequency
12/24/40 12/24/40 12/24/40
12/16 12/16 12/16
(MHz)
GMS90X5XC Series HYUNDAI MicroElectronics

GMS90C51C GMS90L51C(Low voltage versions)

• Fully compatible to standard MCS-51 microcontroller
• Wide operating frequency up to 40MHz (for more detail, see “GMS90X5XC Series Selection Guide”)
• X2 Speed Improvement capability ( 20MHz @5V (Equivalent to 40MHz @5V) 8MHz @3V (Equivalent to 16MHz @3V)
•4K × 8 ROM
• 128 × 8 RAM
• 64K external program memory space
• 64K external data memory space
• Four 8-bit ports
• Two 16-bit Timers / Counters
•USART
• Programmable ALE pin enable / disable (Low
• Five interrupt sources, two priority levels
• Power saving Idle and power down mode
• 2.7Volt low voltage version available
• P-DIP-40, P-LCC-44, P-MQFP-44 package
6 clocks/machine cycle
EMI
)
)
Block Diagram
Jan. 2001 Ver 1.0
T 0
T 1
ROM / EPROM
RAM
128 × 8
CPU
4K × 8
8-BIT
USART
PORT 0
PORT 1
PORT 2
PORT 3
I/O
I/O
I/O
I/O
GMS90X5XC Series HYUNDAI MicroElectronics

GMS90C52C/54C GMS90L52C/54C(Low voltage versions)

• Fully compatible to standard MCS-51 microcontroller
• Wide operating frequency up to 40MHz (for more detail, see “GMS90X5XC Series Selection Guide”)
• X2 Speed Improvement capability ( 20MHz @5V (Equivalent to 40MHz @5V) 8MHz @3V (Equivalent to 16MHz @3V)
•8K/16K bytes ROM
• 256 × 8 RAM
• 64K external program memory space
• 64K external data memory space
• Four 8-bit ports
• Three 16-bit Timers / Counters (Timer2 with up/down counter feature)
•USART
• One clock output port
• Programmable ALE pin enable / disable (Low
• Six interrupt sources, two priority levels
• Power saving Idle and power down mode
• 2.7Volt low voltage version available
• P-DIP-40, P-LCC-44, P-MQFP-44 package
6 clocks/machine cycle
EMI
)
)
Block Diagram
T 2
RAM
256 × 8
T 0
CPU
T 1
ROM / EPROM
GMS90X52C: 8K × 8 GMS90X54C: 16K × 8
8-BIT
USART
PORT 0
PORT 1
PORT 2
PORT 3
I/O
I/O
I/O
I/O
Jan. 2001 Ver 1.0 1
HYUNDAI MicroElectronics GMS90X5XC Series

PIN CONFIGURATION

44-PLCC Pin Configuration (top view)
N.C.: Do not connect.
INDEX CORNER
RESET
RxD / P3.0
N.C.*
TxD / P3.1
/ P3.2
INT0
/ P3.3
INT1
T0 / P3.4 T1 / P3.5
P1.5 P1.6 P1.7
P1.4
P1.3
P1.2
P1.1 / T2EX
65432 7 8 9
10 11
12 13 14 15 16 17
1819202122232425262728
/ P3.7
XTAL2
XTAL1
RD
WR / P3.6
P1.0 / T2
N.C.* 1
SS
V
N.C.*
CC
V
4443424140
P2.0 / A8
P0.0 / AD0
P2.1 / A9
P0.1 / AD1
P0.2 / AD2
P0.3 / AD3
P0.4 / AD4
39
P0.5 / AD5
38
P0.6 / AD6
37
P0.7 / AD7
36
/ V
EA
35 34 33 32 31 30 29
P2.2 / A10
P2.4 / A12
P2.3 / A11
PP
N.C.* ALE / PROG PSEN P2.7 / A15 P2.6 / A14 P2.5 / A13
2 Jan. 2001 Ver 1.0
GMS90X5XC Series HYUNDAI MicroElectronics
40-PDIP Pin Configuration (top view)
T2 / P1.0
T2EX / P1.1
P1.2 P1.3 P1.4 P1.5 P1.6 P1.7
RESET
RxD / P3.0
TxD / P3.1
INT0
/ P3.2 / P3.3
INT1
T0 / P3.4 T1 / P3.5
WR
/ P3.6
RD
/ P3.7 XTAL2 XTAL1
V
V
1 2 3 4 5 6 7 8
9 10 11 12 13 14 15 16 17 18 19
SS
20
40 39 38 37 36 35 34 33 32 31 30 29 28 27 26 25 24 23 22 21
CC
P0.0 / AD0 P0.1 / AD1 P0.2 / AD2 P0.3 / AD3 P0.4 / AD4 P0.5 / AD5 P0.6 / AD6 P0.7 / AD7 EA
/ V
PP
ALE / PROG PSEN P2.7 / A15 P2.6 / A14 P2.5 / A13 P2.4 / A12 P2.3 / A11 P2.2 / A10 P2.1 / A9 P2.0 / A8
Jan. 2001 Ver 1.0 3
HYUNDAI MicroElectronics GMS90X5XC Series
44-MQFP Pin Configuration (top view)
CC
P0.0 / AD0
P0.1 / AD1
P0.2 / AD2
P0.3 / AD3
33 32 31 30
29 28 27 26 25 24 23
P0.4 / AD4 P0.5 / AD5 P0.6 / AD6 P0.7 / AD7
/ V
EA
PP
N.C.* ALE / PROG PSEN P2.7 / A15 P2.6 / A14 P2.5 / A13
P1.5 P1.6 P1.7
RESET
RxD / P3.0
N.C.*
TxD / P3.1
/ P3.2
INT0
/ P3.3
INT1
T0 / P3.4 T1 / P3.5
P1.4
P1.3
P1.2
P1.1 / T2EX
P1.0 / T2
N.C.*
V
4443424140393837363534
1 2 3 4
5 6 7 8
9 10 11
1213141516171819202122
N.C.: Do not connect.
SS
V
/ P3.7
XTAL2
RD
WR / P3.6
N.C.*
XTAL1
P2.0 / A8
P2.1 / A9
P2.2 / A10
P2.4 / A12
P2.3 / A11
4 Jan. 2001 Ver 1.0
GMS90X5XC Series HYUNDAI MicroElectronics
Logic Symbol
V
CCVSS
XTAL1 XTAL2
RESET
EA/V
PP
ALE/PROG
PSEN
Port 0 8-bit Digital I/O
Port 1 8-bit Digital I/O
Port 2 8-bit Digital I/O
Port 3 8-bit Digital I/O
Jan. 2001 Ver 1.0 5
HYUNDAI MicroElectronics GMS90X5XC Series

PIN DEFINITIONS AND FUNCTIONS

Pin Number
Symbol
P1.0-P1.7 2-9
PLCC-44PDIP-40MQFP-
1-8
44
40-44,
1-3
2 3
2
P3.0-P3.7 11,
1 2
1
40 41
40
10-17 5, 7-13 I/O
13-19
11
13
14 15 16 17 18
19
10
11
12 13 14 15 16
17
5
7
8
9 10 11 12
13
XTAL2 20 18 14 O
Input/
Output
I/O
Function
Port1
Port 1 is an 8-bit bidirectional I/O port with internal pull-ups. Port 1 pins that have 1s written to them are pulled high by the intern al pu ll-u p res is tors and c an be used as inputs. As inputs, port 1 pins that are externally pulled low will source current because of the pulls-ups (I
, in the DC characteristics). Pins P1.0
IL
and P1.1 also. Port1 also receives the low-order address byte during program memory verification. Port1 also serves alternate functions of Timer 2. P1.0 / T2 :Timer/counter 2 external count input P1.1 / T2EX :Timer/counter 2 trigger input
In GMS90X52C/54C:
P1.0 / T2, Clock Out : Timer/counter 2 external count input, Clock Out
Port 3
Port 3 is an 8-bit bidirectional I/O port with internal pull-ups. Port 3 pins that have 1s written to them are pulled high by the intern al pu ll-u p res is tors and c an be used as inputs. As inputs, port 3 pins that are externally pulled low will source current because of the pulls-ups (I
, in the DC characteristic s). Port 3 also
IL
serves the special features of the 80C51 family, as listed below.
P3.0 / RxD
receiver data input (asynchronous) or data input output(s yn chronous) of serial interface 0
P3.1 / TxD
transmitter data output (asynchronous) or clock output (synchronous) of the
serial interface 0 P3.2 /INT0 P3 .3 / IN T 1 P3.4 /T0 P3.5 /T1 P3.6 / WR
interrupt 0 input/timer 0 gate control
interrupt 1 input/timer 1 gate control
counter 0 input
counter 1 input
the write control signal latche s t he data
byte from port 0 into the external data
memory P3.7 /RD
the read control signal enables the
external data memory to port 0
XTAL2
Output of the inverting oscillator amplifier.
6 Jan. 2001 Ver 1.0
GMS90X5XC Series HYUNDAI MicroElectronics
Symbol
Pin Number
PLCC-44PDIP-40MQFP-
44
Input/
Output
XTAL1 21 19 15 I
P2.0-P2.7 24-31 21-28 18-25 I/O
PSEN
32 29 26 O
RESET 10 9 4 I
Function
XTAL1
Input to the inverting oscillator amplifier and input to the internal clock generator circuits.To drive the device from an external clock source, XTAL1 should be driven, while XTAL2 is left unconnected. There are no requirements on the duty cycle of the external clock signal, since the input to the internal clocking circuitry is divided down by a divide-by-two flip-flop. Minimum and maximum high and low times as well as rise fall times specified in the AC characteristics must be observed.
Port 2
Port 2 is an 8-bit bidirectional I/O port with internal pull-ups. Port 2 pins that have 1s written to them are pulled high by the intern al pu ll-u p res is tors and c an be used as inputs. As inputs, port 2 pins that are externally pulled low will source current because of the pulls-ups (I
, in the DC characteristics).Port 2
IL
emits the high-order address byte during fetches from external program memory and during accesses to external data memory that use 16-bit addresses (MOVX @DPTR). In this application it uses strong internal pull-ups when emitting 1s. During accesses to external data memory that use 8-bit addresses (MOVX @Ri), port 2 emits the contents of the P2 special function register.
The Program Store Enable
The read strobe to external program memory when the device is executing code from the external program memory. PSEN is activated twice each machine cycle, except that two PSEN
activati ons are skipped during each access to external data memory. PSEN is not activated during fetches from internal program memory.
RESET
A high level on this pin for two machine cycles while the oscilla tor is runni ng resets the device. An interna l diffused resistor to V only an external capacitor to V
permits power-on reset using
SS
CC
.
Jan. 2001 Ver 1.0 7
HYUNDAI MicroElectronics GMS90X5XC Series
Symbol
ALE /
Pin Number
PLCC-44PDIP-40MQFP-
44
33 30 27 O
Input/
Output
PROG
EA
/ V
PP
35 31 29 I External Access Enable / Program Supply Voltage
P0.0-P0.7 36-43 32-39 30-37 I/O
V
SS
V
CC
N.C. 1,12
22 20 16 ­44 40 38 -
-6,17
23,34
28,39
Function
The Address Latch Enable / Program pulse
Output pulse for latching the low byte of the address during an access to external memory. In normal operation, ALE is emitted at a constant rate of 1/6 the oscillator frequency, and can be used for external timing or clocking. Note that one ALE pulse is skipped during each access to external data memory. This pin is also the program pulse input (PROG EPROM programming.
If desired, ALE operation can be disabled by setting bit 0 of SFR location 8E
. With this bit set, the pin is
H
weakly pulled high. The ALE disable feature will be terminated by reset. Setting the ALE-disable bit has no affect if the microcontroller is in external execution mode.
must be external held low to enable the device to
EA fetch code from external program memory locations 0000H to FFFFH. If EA is held high, the device executes from internal program memory unless the program counter contains an address greater than its internal memory size. This pin also receives the
12.75V programming supply voltage (V EPROM programming.
Note; however, that if any of the Lock bits are
programmed, EA
will be internally
latched on reset.
Port 0
Port 0 is an 8-bit open-drain bidirectional I/O port. Port 0 pins that have 1s written to them float and can be used as high-impedance inputs. Port 0 is also the multipl exed low-orde r address and data bus during accesses to external program and data memory. In this application it uses strong internal pull-ups when emitting 1s. Port 0 also outputs the code bytes during program verification in the GMS97X5X. External pull-up resistors are required during program verification.
Circuit ground potential Supply terminal No connection
-
for all operating modes
) during
) during
PP
8 Jan. 2001 Ver 1.0
GMS90X5XC Series HYUNDAI MicroElectronics

FUNCTIONAL DESCRIPTION

The GMS90X5XC series is fully compatible to the standard 8051 microcontroller family. It is compatible with the general 8051 family. While maintaining all architectural and operational characteristics
of the general 8051 family.
Figure 1 shows a block diagram of the GMS90X5XC series
XTAL1 XTAL2
RESET
EA
/V
ALE/PROG
PSEN
OSC & TIMING
CPU
PP
Timer 0
Timer 1
Timer 2
Interrupt Unit
Serial Channel
RAM
128/256×8
Figure 1. Block Diagram of the GMS90X5XC series
ROM/EPROM
4K/8K/16K
Port 0
Port 1
Port 2
Port 3
Port 0 8-bit Digit. I/O
Port 1 8-bit Digit. I/O
Port 2 8-bit Digit. I/O
Port 3 8-bit Digit. I/O
Jan. 2001 Ver 1.0 9
HYUNDAI MicroElectronics GMS90X5XC Series
CPU
The GMS90X5XC series is efficient both as a controller and as an arithmetic processor. It has exten sive facili­ties for binary and BCD arithmetic and excels in its bit-handling capabilities. Efficient use of program memory results from an i nstructio n set consist ing of 44% o ne-byte, 41% two-byte, and 15% three-byt e instruction s. With a 12 MHz crystal, 58% of the instructions are executed in 1.0µs (40MHz: 300ns).
Special Function Register PSW
LSB
PSW
Bit No.
Addr. D0
MSB
76543210
H
CY AC F0 RS1 RS0 OV F1 P
Bit Function
Carry Flag Auxiliary Carry Flag
(for BCD operations)
General Purpose Flag Register Bank select control bits
Bank 0 selected, data address 00 Bank 1 selected, data address 08H - 0F Bank 2 selected, data address 10H - 17 Bank 3 selected, data address 18H - 1F
H
- 07
H
H
H
H
Overflow Flag General Purpose Flag Parity Flag
Set/cleared by hardware each instruction cycle to indicate an odd/even number of "one" bits in the accumulator, i.e. even parity.
RS1
0 0 1 1
CY AC
F0
RS0
0 1 0 1
OV
F1
P
Reset value of PSW is 00H.
10 Jan. 2001 Ver 1.0
GMS90X5XC Series HYUNDAI MicroElectronics

SPECIAL FUNCTION REGISTERS

All registers, except the program co unter and the four general pu rpose register banks, r eside in the special fu nc­tion register area.
The 28 special function registers (SFR) include pointers and registers that provide an interface b etween the CPU and the other on-chip peripherals. There are also 128 directly addressable bits within the SFR area.
All SFRs are listed in Table 1, Table 2, and Table 3. In Table 1 they are organized in numeric order of their addresses. In Table 2 they are organized in groups which
refer to the functional blocks of the GMS90X5XC series. Table 3 illustrates the contents of the SFRs
Table 1. Special Function Registers in Numeric Order of their Addresses
Address Register
80H
81H 82H 83H 84H 85H 86H 87H
90H
91H 92H 93H 94H 95H 96H 97H
A0H
A1H A2H A3H A4H A5H A6H A7H
B0H
B1H B2H B3H B4H B5H B6H B7H
1)
P0
SP
DPL
DPH reserved reserved reserved
PCON
1)
P1
reserved reserved reserved reserved reserved reserved reserved
3)
P2
reserved reserved reserved reserved reserved reserved reserved
1)
P3
reserved reserved reserved reserved reserved reserved reserved
Contents after
0XXX0000
Reset
FFH
07H 00H
00H XXH XXH XXH
FF
00 XXH XXH XXH XXH XXH XXH
FFH
XXH XXH XXH XXH XXH XXH XXH
FFH
XXH XXH XXH XXH XXH XXH XXH
Address Register
88H
89H 8AH 8BH
2)
2)
2)
2)
B
H
H
2)
2)
2)
2)
2)
2)
2)
2)
2)
2)
2)
2)
2)
8CH 8DH 8EH 8FH
98H
99H 9AH 9BH 9CH 9DH 9EH 9FH
A8H
A9H AAH ABH
ACH ADH AEH AFH
B8H
2)
2)
2)
2)
2)
2)
2)
B9H
BAH BBH BCH BDH BEH BFH
(cont’d)
TCON
TMOD
TL0
TL1 TH0 TH1
AUXR0
CKCON
SCON
SBUF reserved reserved reserved reserved reserved reserved
1)
IE
reserved reserved reserved reserved reserved reserved reserved
1)
IP
reserved reserved reserved reserved reserved reserved reserved
1)
1)
Contents after
XXXXXXX0
Reset
00H
00H 00H 00H 00H 00H
2)
XXH
00H
2)
XXH
2)
XXH
2)
XXH
2)
XXH
2)
XXH
2)
XXH
2)
XXH
0X000000B
2)
XXH
2)
XXH
2)
XXH
2)
XXH
2)
XXH
2)
XXH
2)
XXH
XX000000B
2)
XXH
2)
XXH
2)
XXH
2)
XXH
2)
XXH
2)
XXH
2)
XXH
2)
B
2)
2)
Jan. 2001 Ver 1.0 11
HYUNDAI MicroElectronics GMS90X5XC Series
Table 1. Special Function Registers in Numeric Order of their Addresses
Address Register
C0H
C1H C2H C3H C4H C5H C6H C7H
D0H
D1H D2H D3H D4H D5H D6H D7H
E0H
E1H E2H E3H E4H E5H E6H E7H
F0H
F1H F2H F3H F4H F5H F6H F7H
1) Bit-addressable Special Function Register.
2) X means that the value is indeterminate and the location is reserved.
3) Bit-addressable Special Function Register.
4) These Registers are in the GMS90X52C/54C only.
reserved reserved reserved reserved reserved reserved reserved reserved
1)
PSW
reserved reserved reserved reserved reserved reserved reserved
1)
ACC
reserved reserved reserved reserved reserved reserved reserved
1)
B
reserved reserved reserved reserved reserved reserved reserved
Contents after
Reset
XX
H
2)
XXH
2)
XXH
2)
XXH
2)
XXH
2)
XXH
2)
XXH
2)
XXH
FFH
2)
XXH
2)
XXH
2)
XXH
2)
XXH
2)
XXH
2)
XXH
2)
XXH
00H
2)
XXH
2)
XXH
2)
XXH
2)
XXH
2)
XXH
2)
XXH
2)
XXH
00H
2)
XXH
2)
XXH
2)
XXH
2)
XXH
2)
XXH
2)
XXH
2)
XXH
Address Register
3)
C8H
4)
C9H
3)
CAH
3)
CBH
3)
CCH
3)
CDH
CEH CFH
D8H
D9H DAH DBH DCH DDH DEH DFH
E8H
E9H EAH EBH ECH EDH EEH EFH
F8H
F9H FAH FBH FCH FDH FEH
FFH
(cont’d)
T2CON
T2MOD
RC2L
RC2H
TL2
TH2 reserved reserved
reserved reserved reserved reserved reserved reserved reserved reserved
reserved reserved reserved reserved reserved reserved reserved reserved
reserved reserved reserved reserved reserved reserved reserved reserved
1)
Contents after
Reset
00H
XXXXXX00
2)
B
00H 00H 00H 00H
2)
XXH
2)
XXH
2)
XXH
2)
XXH
2)
XXH
2)
XXH
2)
XXH
2)
XXH
2)
XXH
2)
XXH
2)
XXH
2)
XXH
2)
XXH
2)
XXH
2)
XXH
2)
XXH
2)
XXH
2)
XXH
2)
XXH
2)
XXH
2)
XXH
2)
XXH
2)
XXH
2)
XXH
2)
XXH
2)
XXH
12 Jan. 2001 Ver 1.0
GMS90X5XC Series HYUNDAI MicroElectronics
Table 2. Special Function Registers - Functional Blocks
Block Symbol Name Address
CPU ACC
B DPH DPL PSW SP
Interrupt System IE
IP
Ports P0
P1 P2 P3
Serial Channels PCON
SBUF SCON
Timer 0/ Timer 1 TCON
TH0 TH1 TL0 TL1 TMOD
Timer 2 T2CON
T2MOD RC2H RC2L TH2 TL2 AUXR0
Power Saving
PCON
Accumulator B-Register Data Pointer, High Byte Data Pointer, Low Byte Program Status Word Register Stack Pointer
Interrupt Enable Register Interrupt Priority Register
Port 0 Port 1 Port 2 Port 3
3)
Power Control Register Serial Channel Buffer Reg. Serial Channel 0 Control Reg.
Timer 0/1 Control Register Timer 0, High Byte Timer 1, High Byte Timer 0, Low Byte Timer 1, Low Byte Timer Mode Register
Timer 2 Control Register Timer 2 Mode Register Timer 2 Reload Capture Reg., High Byte Timer 2 Reload Capture Reg., Low Byte Timer 2, High Byte Timer 2, Low Byte Aux. Register 0
3)
Power Control Register 87H 0XXX0000B
Modes
E0H F0H
83H 82H
D0H
81H
A8H B8H
80H 90H A0H B0H
87H 99H
98H 88H
8CH 8DH 8AH 8BH 89H
C8H
C9H CBH CAH CDH CCH 8EH
1)
1)
1)
1)
1)
1)
1)
1)
1)
1)
1)
1)
Contents
after Reset
00H 00H 00H 00H 00H 07H
0X000000B XX000000B
FFH FFH FFH FFH
0XXX0000B
2)
XXH 00H
00H 00H 00H 00H 00H 00H
00H 00H 00H 00H 00H 00H XXXXXXX0B
2)
2)
2)
2)
2)
1) Bit-addressable Special Function register
2) X means that the value is indeterminate and the location is reserved
3) This special function register is listed repeatedly since some bit of it also belong to other functional blocks
Table 3. Contents of SFRs, SFRs in Numeric Order
Address Register
Bit 76543210
80H P0
Jan. 2001 Ver 1.0 13
HYUNDAI MicroElectronics GMS90X5XC Series
Table 3. Contents of SFRs, SFRs in Numeric Order
Address Register
81H SP 82H DPL 83H DPH 87H PCON 88H TCON TF1 TR1 TF0 TR0 IE1 IT1 IE0 IT0
89H TMOD GATE C/T 8AH TL0 8BH TL1 8CH TH0 8DH TH1 8EH AUXR0
8FH CKCON
90H P1
Bit 76543210
SMOD
-
-
---GF1GF0PDEIDLE
M1 MT GATE C/T M1 M0
------A0
------X2
98H SCON SM0 SM1 SM2 REN TB8 RB8 TI RI
99H SBUF A0H P2 A8H IE EA - ET2 ES ET1 EX1 ET0 EX0 B0H P3 B8H IP - - PT2 PS PT1 PX1 PT0 PX0
SFR bit and byte addressable
SFR not bit addressable
- : this bit location is reserved
14 Jan. 2001 Ver 1.0
GMS90X5XC Series HYUNDAI MicroElectronics
Table 3. Contents of SFRs, SFRs in Numeric Order
Address Register
Bit 76543210
C8H T2CON TF2 EXF2 RCLK TCLK
(cont’d)
EXEN2
TR2 C/T2 C9HT2MOD -----­CAH RC2L CBH RC2H CCH TL2 CDH TH2 D0H PSW CY AC F0 RS1 RS0 OV F1 P E0H ACC
F0H B
† indicates resident in the GMS90X52C/54C, not in 90X51C.
8EH
A0
A0 : ALE Signal Disable bit
0 : Enable ALE Signal (Generated ALE Signal) 1 : Disable ALE Signal (Not Generated ALE Signal)
CP/RL2
T2OE
DCEN
8FH
X2
X2 : CPU & Peripheral Clock Select bit
0 : Select 12 clock periods per machi ne cycle 1 : Select 6 clock periods per machine cycle
C9H
T2OE
T2OE : Timer2 Output Enable bit
0 : Disable Timer2 Output 1 : Enable Timer2 Output
SFR bit and byte addressable
SFR not bit addressable
- : this bit location is reserved
Jan. 2001 Ver 1.0 15
HYUNDAI MicroElectronics GMS90X5XC Series

X2 MODE

The GMS90X5XC core needs only 6 clock periods per machine cycle. This feature called ”X2” provides the following advantages:
• Divide frequency crystals by 2 (cheaper crystals) while keeping same CPU power.
• Save power consumption while keeping same CPU power (oscillator power saving).
• Save power consumption by dividing dynamically operating frequency by 2 in operating and idle modes.
• Increase CPU power by 2 while keeping same crystal frequency.
In order to keep the original C51 compatibility, a divider by 2 is in serted between the XTAL1 signal and th e main clock input of the core (phase generator). This divider may be disabled by software.
X2 Mode Description
The clock for the whole circuit and peripheral is first divided by two before being used by the CPU core and peripherals. This allows any cyclic ratio to be accepted on XTAL1 input. In X2 mo de, as this divider is bypassed, the signals on XTAL1 must have a cyclic ratio between 40 to 60%. Figure 2. shows the clock generation block diagram. X2 bit is validated on XTAL1 Figure 3.shows the mode switching waveforms:
÷
2 rising edge to avoid glitches when switching from X2 to STD mode.
f
XTAL1
Figure 2. Clock Generation Diagram
OSC
2
÷
0 1
X2
CKCON Register
State Machine: 6 clokc cyles CPU control
The X2 bit in the CKCON register allows to switch from 12 clock cycles per instruction to 6 clock cycles and vice versa. At reset, the standard speed is activated (STD mode). Setting this bit activates the X2 feature(X2 mode).
CAUTION
In order to prevent any incorrect operation while operating in X2 mode, user must be aware that all peripherals using clock frequency as time reference (UART, timers) will have their time reference divide d by two. For ex­ample a free running timer generating an interrupt every 30 ms will then generate an interrupt every 15 ms. UART with 2400 baud rate will have 4800 baud rate.
16 Jan. 2001 Ver 1.0
GMS90X5XC Series HYUNDAI MicroElectronics
XTAL1
XTAL1:2
X2 bit
CPU Clock
STD Mode STD Mode
Figure 3. Mode Swithcing Waveforms
.
X2 Mode
Jan. 2001 Ver 1.0 17
HYUNDAI MicroElectronics GMS90X5XC Series

TIMER / COUNTER 0 AND 1

Timer/Counter 0 and 1 can be used in four operating modes as listed in Table 4:
Table 4. Timer/Counter 0 and 1 Operating Modes
Mode Description
TMOD Input Clock
Gate C/T M1 M0 internal external (Max.)
0 8-bit timer/counter with a
XX00f
÷(12×32) f
OSC
OSC
÷(24×32)
divide-by-32 prescaler 1 16-bit timer/counter X X 0 1 f 2 8-bit timer/counter with
XX10 f
÷12 f
OSC
÷12 f
OSC
OSC OSC
÷24 ÷24
8-bit auto-reload 3 Timer/counter 0 used as
XX11 f
÷12 f
OSC
OSC
÷24 one 8-bit timer/counter and one 8-bit timer Timer 1 stops
In the "timer" function (C/T f
/12.
OSC
= "0") the register is incremented every machine cycle. Therefore the count rate is
In the "counter" function the register is incremented in response to a 1-to-0 transition at its corresponding exter­nal input pin (P3.4/T0, P3.5/T1). Since it takes two machine cycles to detect a falling edge the max. count rate is f
/24. External inputs INT0 and INT1 (P3.2, P3.3) can b e programmed to functi on as a gate to facilit ate
OSC
pulse width measurements. Figure 4 illustrates the inpu t clock logic.
12
f
OSC
÷
f
OSC
12
÷
C/T TMOD 0
P3.4/T0 P3.5/T1
Max.
f
OSC
P3.2 / INT0 P3.3 / INT1
/24
TR0 / 1
TCON
Gate
TMOD
1
&
=1
1
Timer 0/1 Input Clock
Figure 4. Timer/Counter 0 and 1 Input Clock Logic
18 Jan. 2001 Ver 1.0
GMS90X5XC Series HYUNDAI MicroElectronics

TIMER 2

Timer 2 is a 16-bit timer/Counter with an up/down count feature. It can operate either as timer or as an event counter which is selected by bit C/T2
Table 5. Timer/Counter 2 Operating Modes
(T2CON.1). It has three operating modes as shown in Table 5.
Mode
16-bit Auto-
Reload
RCLK or
TCLK
0 0
T2CON T2MOD T2CON
CP/RL2 TR2 DCEN EXEN2 internal
0
1
0
P1.1/
T2EX
0
X
Remarks
reload upon over­flow
0
1
0
1
reload trigger (fall-
Input Clock
÷ 12 Max.
f
OSC
external
(P1.0/T2)
f
OSC
ing edge)
16-bit
Capture
0 0
0
0
1
1
X
0
Down counting
0
1
1
X
1
Up counting
1
1
X
0
X↓16 bit Timer/ Coun-
ter (only up-count-
÷ 12 Max.
f
OSC
f
OSC
ing)
Baud Rate
Generator
0
1
1
1
X
1
X
1
X
0
capture TH2,TL2
RC2H,RC2L
X↓no overflow
interrupt request
÷ 12 Max.
f
OSC
f
OSC
(TF2)
1
X
1
X
1
extra external inter­rupt ("Timer 2")
Off X X 0 X X X Timer 2 stops - -
Note: ↓ = falling edge
÷24
÷ 24
÷ 24
Jan. 2001 Ver 1.0 19
HYUNDAI MicroElectronics GMS90X5XC Series
2
SMOD
32
------------------
Timer 1 overflow
()×
2
SMOD
32
------------------
f
OSC
12 256 TH1
()[]×
--------------------------------------------------
×

SERIAL INTERFACE (USART)

The serial port is full du plex and can operate in four modes (one synchronous mode, t hree asynchronous modes ) as illustrated in Table 6. The possible baud rates can be calculated using the formulas give n in Table 7.
Table 6. USART Operating Modes
Mode
Baudrate Description
SM0 SM1
SCON
f
OSC
0 0 0 Serial data enters and exits through RxD.
------------
12
TxD outputs the shift clock. 8-bit are transmit­ted/received (LSB first)
1 0 1 Time r 1/2 overfl ow rate 8-bit UA RT
10 bits are transmitted (through TxD) or received (RxD)
f
2 1 0 or 9-bit UART
------------
OSC
32
f
OSC
------------
64
11 bits are transmitted (TxD) or received (RxD)
3 1 1 Time r 1/2 overfl ow rate 9-bit UA RT
Like mode 2 except the variable baud rate
Table 7. Formulas for Calculating Baud rates
Baud Rate
derived from
Oscillator 0
Timer 1 (16-bit timer)
(8-bit timer with
8-bit auto reload)
Timer 2 1,3
Interface Mode Baudrate
f
OSC
------------
12
SMOD
2
------------------
×
2
64
f
OSC
1,3 1,3
f
--------------------------------------------------------------------------------- -
32 65536 RC2H RC2L
OSC
,()[]×
20 Jan. 2001 Ver 1.0
GMS90X5XC Series HYUNDAI MicroElectronics

INTERRUPT SYSTEM

The GMS90X5XC series provides 5 (4K bytes ROM version) or 6 (above 8K bytes ROM version) interrupt sources with two priority levels. Figure 5 gives a general overview of the interrupt sources and illustrates the request and control flags.
High Priority
Timer 0 Overflow
TF0
TCON.5
ET0 IE.1
PT0
IP.1
Low Priority
P1.1/
T2EX
P3.2/ INT0
P3.3/ INT1
Timer 1 Overflow
Timer 2 Overflow
EXEN2
T2CON.3
UART
IT0
TCON.0
IT1
TCON.2
TF2
T2CON.7
EXF2
T2CON.6
RI
SCON.0
TI
SCON.1
TF1
TCON.7
1
1
IE0
TCON.1
IE1
TCON.3
ET1 IE.3
ET2 IE.5
ES
IE.4
EX0 IE.0
EX1 IE.2
EA
IE.7
PT1
IP.3
PT2
IP.5
PS
IP.4
PX0
IP.0
PX1
IP.2
: Low level triggered
: Falling edge triggered
Figure 5. Interrupt Request Sources
Jan. 2001 Ver 1.0 21
HYUNDAI MicroElectronics GMS90X5XC Series
Table 8. Interrupt Sources and their Corresponding Interrupt Vectors
Source (Request Flags) Vectors Vector Address
RESET IE0 TF0 IE1 TF1 RI + TI TF2 + EXF2
RESET External interrupt 0 Timer 0 interrupt External interrupt 1 Timer 1 interrupt Serial port interrupt Timer 2 interrupt
0000H 0003H 000BH 0013H 001BH 0023H 002BH
A low-priority interrupt can itself be interrupted by a high-priority interrupt, but not by another low priority in­terrupt. A high-priority interrupt cannot be interrupted by any other interrupt source.
If two requests of different priority level are received simultaneously, the request of higher priority is serviced. If requests of the same priority are received simultaneously, an internal polling sequence determines which re­quest is serviced. Thus within each priority level there is a second priority structure determined by the polling sequence as shown in Table 9.
Table 9. Interrupt Priority-Within-Level
Interrupt Source Priority
External Interrupt 0 Timer 0 Interrupt External Interrupt 1 Timer 1 Interrupt Serial Channel Timer 2 Interrupt
IE0 TF0 IE1 TF1 RI + TI TF2 + EXF2
High
↓ ↓ ↓ ↓
Low
22 Jan. 2001 Ver 1.0
GMS90X5XC Series HYUNDAI MicroElectronics

Power Saving Modes

Two power down modes are available, the Idle Mode and Power Down Mode. The bits PDE and IDLE of the register PCON select the Power Down mode or the Idle mode, respectively. If
the Power Down mode and the Idle mode are set at the same time, the Power Down mode takes precedence. Table 10 gives a general overview of the power saving modes.
Table 10. Power Saving Modes Overview
Entering
Mode
Instruction
Example
Leaving by Remarks
Idle mode ORL PCON, #01H - Enabled interrupt
- Hardware Reset
Power-Down mode ORL PCON, #02H Hardware Reset Oscillator is stopped, contents of on-
In the Power Down mode of operatio n, V however, that V
is not reduced before the Power Down m ode is invoked, and th at VCC is restored to its normal
CC
can be reduced to minimize power consump tion. It must be ensured,
CC
CPU is gated off CPU status registers maintain their data. Peripherals are active
chip RAM and SFR’s are maintained (leaving Power Down Mode means redefinition of SFR contents).
operating level, before the Power Down mode is terminated. The reset signal that terminates th e Power Down mode also restarts the oscillator. The reset should not be activated before V
is restored to its normal operating
CC
level and must be held active long enough to allow the oscillator to rest art and stabilize (similar to po wer-on reset).
Jan. 2001 Ver 1.0 23
HYUNDAI MicroElectronics GMS90X5XC Series

ELECTRICAL CHARACTERISTICS

Absolute Maximum Ratings

Ambient temperature under bias (TA)......................................................................................-40 to + 85 °C
Storage temperature (T Voltage on V
pins with respect to ground (VSS) .................................................................-0.5V to 6.5V
CC
Voltage on any pin with respect to ground (V
)...................................................................................................... -65 to + 150 °C
ST
) ..........................................................-0.5V to VCC + 0.5V
SS
Input current on any pin during overload condition............................................................-15mA to +15mA
Absolute sum of all input currents during overload condition...........................................................|100mA|
Power dissipation ....................................................................................................................................1.5W
Note: Stresses above those listed under "Abs olute Maximum Ratings" may cau se permanent da mage of the de­vice. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated i n the operat ional sec tions of th is speci fication is not imp lied. Exposure to absolu te maxim um rat­ing conditions for longer periods may affect device reliability. During overload conditions (V the Voltage on V mum ratings.
pins with respect to ground (VSS) must not exceed the values defined by the absolute maxi-
CC
> VCC or VIN < VSS)
IN
24 Jan. 2001 Ver 1.0
GMS90X5XC Series HYUNDAI MicroElectronics

DC Characteristics

DC Characteristics for GMS90C51C/52C/54C
= 5V + 10%, -15%; VSS=0V; TA= 0°C to 70°C
V
CC
Parameter Symbol
Input low voltage (except EA
Input low voltage (EA
, RESET)
)V Input low voltage (RESET) V Input high voltage (except
XTAL1, EA
, RESET) Input high voltage to XTAL1 V Input high voltage to EA
,
V
IL
IL1 IL2
V
IH
IH1
V
IH2
0.2VCC + 0.9 VCC + 0.5 V -
Limit Values
Min. Max.
Unit Test Conditions
-0.5 0.2VCC - 0.1 V -
-0.5 0.2VCC - 0.3 V -
-0.5 0.2VCC + 0.1 V -
0.7V
0.6V
CC CC
VCC + 0.5 V ­VCC + 0.5 V -
RESET Output low voltage
V
OL
-0.45VI
= 1.6mA
OL
1)
(ports 1, 2, 3) Output low voltage
(port 0, ALE, PSEN
)
Output high voltage (ports 1, 2, 3)
Output high voltage (port 0 in external bus
V
V
V
OL1
OH
OH1
-0.45VI
2.4
0.9V
2.4
0.9V
CC
CC
-VI
-VI
= 3.2mA
OL
= -80µA
OH
= -10µA
I
OH
= -800µA
OH
IOH= -80µA
1)
2)
2)
mode, ALE, PSEN) Logic 0 input current
I
IL
-10 -50
µ
AVIN= 0.45V
(ports 1, 2, 3) Logical 1-to-0 transition cur-
I
TL
-65 -650
µ
AVIN= 2.0V
rent (ports 1, 2, 3) Input leakage current
I
LI
-
±
1
µ
A 0.45 < VIN < V
CC
(port 0, EA) Pin capacitance C
Power supply current:
Active mode, 12MHz Idle mode, 12MHz Active mode, 24 MHz Idle mode, 24MHz Active mode, 40 MHz Idle mode, 40 MHz Power Down Mode
1) Capacitive loading on ports 0 and 2 may cause spurious noise pulses to be superimposed on the VOL of ALE and port 3. The noise is due to external bus capacitance discharging into the port 0 and port 2 pins when these pins make 1-to-0 tran­sitions during bus operation. In the worst case (capacitive loading: > 50pF at 3.3V, > 100pF at 5V), the noise pulse on ALE line may exceed 0.8V. In such cases it may be desirable to qualify ALE with a schmitt-trigger, or use an address latch with a schmitt-trigger strobe input.
3)
3)
3)
3)
3)
3)
3)
I I I I I I I
IO
CC CC CC CC CC CC
PD
-10pFf
-
-
-
-
-
-
-
21
4.8
36.2
8.2
58.5
12.5 50
mA mA mA mA mA mA
µ
A
= 1MHz
C
T
= 25°C
A
V
= 5V
CC
VCC= 5V VCC= 5V VCC= 5V VCC= 5V VCC= 5V VCC= 5V
4)
5)
4)
5)
4)
5)
6)
Jan. 2001 Ver 1.0 25
HYUNDAI MicroElectronics GMS90X5XC Series
2) Capacitive loading on ports 0 and 2 may cause the VOH on ALE and PSEN to momentarily fall below the 0.9VCC specifica­tion when the address lines are stabilizing.
3) I
Max at other frequencies is given by:
CC
active mode: I idle mode: I where f
OSC
(active mode) is measured with:
4) I
CC
XTAL1 driven with t
= Port0 = RESET = VCC; all other pins are disconnected. ICC would be slightly higher if a crystal oscillator is used (appr.
EA 1mA).
(Idle mode) is measured with all output pins disconnected and with all peripherals disabled;
5) I
CC
XTAL1 driven with t RESET = EA
(Power Down Mode) is measured under following conditions:
6) I
PD
= Port0 = VCC; RESET = VSS; XTAL2 = N.C.; XTAL1 = VSS; all other pins are disconnected.
EA
= 1.27 × f
CC
= 0.28 × f
CC
+ 5.73
OSC
+ 1.45 (except OTP devices)
OSC
is the oscillator frequency in MHz. ICC values are given in mA and measured at VCC = 5V.
, t
CLCH
CLCH
= 5ns, VIL = VSS + 0.5V, VIH = VCC - 0.5V; XTAL2 = N.C.;
CHCL
, t
= 5ns, VIL = VSS + 0.5V, VIH = VCC - 0.5V; XTAL2 = N.C.;
CHCL
= VSS; Port0 = VCC; all other pins are disconnected;
26 Jan. 2001 Ver 1.0
GMS90X5XC Series HYUNDAI MicroElectronics
DC Characteristics for GMS90L51C/52C/54C
= 3.3V + 0.3V, -0.6V; VSS=0V; TA= 0°C to 70°C
V
CC
Parameter Symbol
Input low voltage V Input high voltage V Output low voltage
V
(ports 1, 2, 3) Output low voltage
(port 0, ALE, PSEN Output high voltage
)
V
V
(ports 1, 2, 3) Output high voltage
V (port 0 in external bus mode, ALE, PSEN
)
Logic 0 input current (ports 1, 2, 3)
Logical 1-to-0 transition cur­rent (ports 1, 2, 3)
Input leakage current (port 0, EA
)
Pin capacitance C
Power supply current:
Active mode, 16 MHz Idle mode, 16MHz Power Down Mode
3)
3)
3)
OL
OL1
OH
OH1
I
IL
I
TL
I
LI
I
CC
I
CC
I
PD
Limit Values
Unit Test Conditions
Min. Max.
IL IH
IO
-0.5 0.8 V -
2.0 VCC + 0.5 V -
-0.45
0.30
-0.45
0.30
2.0
0.9V
2.0
0.9V
CC
CC
-VI
-VI
-1 -50
-25 -250
-
±
1
-10pFf
-
-
-
15
5
10
VIOL= 1.6mA
IOL= 100µA
VIOL= 3.2mA
IOL= 200µA
= -20µA
OH
I
= -10µA
OH
= -800µA
OH
IOH= -80µA
µ
AVIN= 0.45V
µ
AVIN= 2.0V
µ
A 0.45 < VIN < V
= 1MHz
C
= 25°C
T
A
V
mA mA
µ
A
= 3.6V
CC
VCC= 2.6V VCC=2~ 5.5V
1)
1)
1)
1)
2)
2)
CC
4)
5)
6)
Jan. 2001 Ver 1.0 27
HYUNDAI MicroElectronics GMS90X5XC Series

AC Characteristics

Explanation of the AC Symbols
Each timing symbol has 5 characters. The first character is always a ‘t’ (stand for time). The other characters, depending on their positions, stand for the name of a signal or the logical status of that signal. The following is a list of all the characters and what they stand for.
A: Address C: Clock D: Input Data H: Logic level HIGH I: Instruction (program memory contents) L: Logic level LOW, or ALE P: PSEN Q: Output Data R: RD
signal
AC Characteristics for GMS90X5XC series (12MHz version)
T: Time V: Valid
signal
W: WR X: No longer a valid logic level Z: Float
For example,
= Time from Address Valid to ALE Low
t
AVLL
t
= Time from ALE Low to PSEN Low
LLPL
VCC= 5V :
V
= 3.3V :
CC
Variable clock :
= 5V + 10%, − 15%; VSS= 0V; TA= 0°C to 70°C
V
CC
for port 0. ALE and PSEN outputs = 100pF; CL for all other outputs = 80pF)
(C
L
= 3.3V + 0.3V, − 0.6V; VSS= 0V; TA= 0°C to 70°C
V
CC
(C
for port 0. ALE and PSEN outputs = 50pF; CL for all other outputs = 50pF)
L
Vcc = 5V : 1/t Vcc = 3.3V : 1/t
= 3.5 MHz to 12 MHz
CLCL
= 1 MHz to 12 MHz
CLCL
External Program Memory Characteristics
Parameter Symbol
ALE pulse width t Address setup to ALE t Address hold after ALE t ALE low to valid instruction in t ALE to PSEN t PSEN
pulse width t
PSEN
to valid instr uction in t Input instruction hold after PSEN t Input instruction float after PSEN Address valid after PSEN Address to valid instruction in t Address float to PSEN
LHLL AVLL LLAX LLIV LLPL PLPH PLIV PXIX
t
PXIZ
t
PXAV AVIV
t
AZPL
12 MHz Oscillator
Variable Oscillator
1/t
= 3.5 to 12MHz
CLCL
Unit
Min. Max. Min. Max.
127 - 2t
43 - t 30 - t
-233 -4t
58 - t
215 - 3t
-150 -3t
-40 - ns
CLCL
-40 - ns
CLCL
-53 - ns
CLCL
-100 ns
CLCL
-25 - ns
CLCL
-35 - ns
CLCL
-100 ns
CLCL
0- 0 - ns
-63 -t
75 - t
-8 - ns
CLCL
-302 -5t
-20 ns
CLCL
-115 ns
CLCL
0- 0 - ns
28 Jan. 2001 Ver 1.0
GMS90X5XC Series HYUNDAI MicroElectronics
Interfacing the GMS90X5XC series to devices with float times up to 75 ns is permissible. This limited bus contention will not
cause any damage to port 0 Drivers.
Jan. 2001 Ver 1.0 29
HYUNDAI MicroElectronics GMS90X5XC Series
AC Characteristics for GMS90X5XC series (12MHz)
External Data Memory Characteristics
Parameter Symbol
pulse width t
RD WR
pulse widt h t Address hold after ALE t RD
to valid data in t Data hold after RD Data float after RD ALE to valid data in t Address to valid data in t ALE to WR
or RD t Address valid to WR or RD t WR
or RD high to ALE high t
Data valid to WR
transition t Data setup before WR t Data hold after WR Address float after RD
RLRH WLWH LLAX2 RLDV
t
RHDX
t
RHDZ LLDV AVDV LLWL AVWL WHLH QVWX QVWH
t
WHQX
t
RLAZ
12 MHz Oscillator
Variable Oscillator
1/t
= 3.5 to 12MHz
CLCL
Unit
Min. Max. Min. Max.
400 - 6 t 400 - 6 t
53 - t
-252 -5t
-100 - ns
CLCL
-100 - ns
CLCL
-30 - ns
CLCL
-165 ns
CLCL
0- 0 - ns
-97 -2t
-517 -8t
-585 -9t 200 300 3t 203 - 4t
43 123 t 33 - t
433 - 7t
33 - t
-50 3 t
CLCL
-130 - ns
CLCL
-40 t
CLCL
-50 - ns
CLCL
-150 - ns
CLCL
-50 - ns
CLCL
-70 ns
CLCL
-150 ns
CLCL
-165 ns
CLCL
+50 ns
CLCL
+40 ns
CLCL
-0 - 0 ns
Advance Information (12MHz)
External Clock Drive
Variable Oscillator
Parameter Symbol
(Freq. = 3.5 to 12MHz)
Unit
Min. Max.
Oscillator period (VCC=5V) Oscillator period (V
CC
=3.3V) High time t Low time t Rise time t Fall time t
t
CLCL
t
CLCL CHCX CLCX CLCH CHCL
83.3
83.3 20 t 20 t
CLCL
CLCL
285.7 1
- t
- t
CLCX
CHCX
ns
ns ns
-20ns
-20ns
30 Jan. 2001 Ver 1.0
GMS90X5XC Series HYUNDAI MicroElectronics
AC Characteristics for GMS90X5XC series (16MHz version)
= 3.3V + 0.3V, 0.6V; VSS= 0V; TA= 0°C to 70°C
V
CC
(CL for port 0. ALE and PSEN outputs = 50pF; CL for all other outputs = 50pF)
External Program Memory Characteristics
Parameter Symbol
16 MHz Oscillator
Variable Oscillator
= 3.5 to 16MHz
1/t
CLCL
Unit
Min. Max. Min. Max.
ALE pulse width t Address setup to ALE t Address hold after ALE t ALE low to valid instruction in t ALE to PSEN t PSEN
pulse width t
PSEN
to valid instr uction in t Input instruction hold after PSEN t Input instruction float after PSEN Address valid after PSEN Address to valid instruction in t Address float to PSEN
Interfacing the GMS90X5XC series to devices with float times up to 35 ns is permissible. This limited bus contention will not
cause any damage to port 0 Drivers.
LHLL AVLL LLAX LLIV LLPL PLPH PLIV PXIX
t
PXIZ
t
PXAV AVIV
t
AZPL
85 - 2t 23 - t 23 - t
-150 -4t
38 - t
153 - 3t
-88 -3t
-40 - ns
CLCL
-40 - ns
CLCL
-40 - ns
CLCL
-100 ns
CLCL
-25 - ns
CLCL
-35 - ns
CLCL
-100 ns
CLCL
0- 0 - ns
-43 -t
55 - t
-8 - ns
CLCL
-198 -5t
-20 ns
CLCL
-115 ns
CLCL
0- 0 - ns
Jan. 2001 Ver 1.0 31
HYUNDAI MicroElectronics GMS90X5XC Series
AC Characteristics for GMS90X5XC series (16MHz)
External Data Memory Characteristics
Parameter Symbol
pulse width t
RD WR
pulse widt h t Address hold after ALE t RD
to valid data in t Data hold after RD Data float after RD ALE to valid data in t Address to valid data in t ALE to WR
or RD t Address valid to WR or RD t WR
or RD high to ALE high t
Data valid to WR
transition t Data setup before WR Data hold after WR Address float after RD
RLRH WLWH LLAX2 RLDV
t
RHDX
t
RHDZ LLDV AVDV LLWL AVWL WHLH QVWX
t
QVWH
t
WHQX
t
RLAZ
16 MHz Oscillator
Variable Oscillator
1/t
= 3.5 to 16MHz
CLCL
Unit
Min. Max. Min. Max.
275 - 6 t 275 - 6 t
23 - t
-183 -5t
-100 - ns
CLCL
-100 - ns
CLCL
-40 - ns
CLCL
-130 ns
CLCL
0- 0 - ns
-75 -2t
-350 -8t
-398 -9t 138 238 3t 120 - 4t
28 97 t 13 - t
288 - 7t
23 - t
50 3t
CLCL
-130 - ns
CLCL
35 t
CLCL
50 - ns
CLCL
-150 - ns
CLCL
40 - ns
CLCL
-50 ns
CLCL
-150 ns
CLCL
-165 ns
CLCL
+50 ns
CLCL
+35 ns
CLCL
-0 - 0 ns
Advance Information (16MHz)
External Clock Drive
Variable Oscillator
Parameter Symbol
(Freq. = 3.5 to 16MHz)
Unit
Min. Max.
Oscillator period t High time t Low time t Rise time t Fall time t
CLCL CHCX CLCX CLCH CHCL
62.5 285.7 ns 17 t 17 t
CLCL
CLCL
- t
- t
CLCX CHCX
ns ns
-17ns
-17ns
32 Jan. 2001 Ver 1.0
GMS90X5XC Series HYUNDAI MicroElectronics
AC Characteristics for GMS90X5XC series (24MHz version)
= 5V + 10%, 15%; VSS= 0V; TA= 0°C to 70°C
V
CC
(CL for port 0. ALE and PSEN outputs = 100pF; CL for all other outputs = 80pF)
External Program Memory Characteristics
Parameter Symbol
24 MHz Oscillator
Variable Oscillator
= 3.5 to 24MHz
1/t
CLCL
Unit
Min. Max. Min. Max.
ALE pulse width t Address setup to ALE t Address hold after ALE t ALE low to valid instruction in t ALE to PSEN t PSEN
pulse width t
PSEN
to valid instr uction in t Input instruction hold after PSEN t Input instruction float after PSEN Address valid after PSEN Address to valid instruction in t Address float to PSEN
Interfacing the GMS90X5XC series to devices with float times up to 35 ns is permissible. This limited bus contention will not
cause any damage to port 0 Drivers.
LHLL AVLL LLAX LLIV LLPL PLPH PLIV PXIX
t
PXIZ
t
PXAV AVIV
t
AZPL
43 - 2t 17 - t 17 - t
-80 -4t 22 - t 95 - 3t
-60 -3t
-40 - ns
CLCL
-25 - ns
CLCL
-25 - ns
CLCL
-87 ns
CLCL
-20 - ns
CLCL
-30 - ns
CLCL
-65 ns
CLCL
0- 0 - ns
-32 -t 37 - t
-5 - ns
CLCL
-148 -5t
-10 ns
CLCL
-60 ns
CLCL
0- 0 - ns
Jan. 2001 Ver 1.0 33
HYUNDAI MicroElectronics GMS90X5XC Series
AC Characteristics for GMS90X5XC series (24MHz)
External Data Memory Characteristics
Parameter Symbol
pulse width t
RD WR
pulse widt h t Address hold after ALE t RD
to valid data in t Data hold after RD Data float after RD ALE to valid data in t Address to valid data in t ALE to WR
or RD t Address valid to WR or RD t WR
or RD high to ALE high t
Data valid to WR
transition t Data setup before WR t Data hold after WR Address float after RD
RLRH WLWH LLAX2 RLDV
t
RHDX
t
RHDZ LLDV AVDV LLWL AVWL WHLH QVWX QVWH
t
WHQX
t
RLAZ
24 MHz Oscillator
Variable Oscillator
1/t
= 3.5 to 24MHz
CLCL
Unit
Min. Max. Min. Max.
180 - 6t 180 - 6t
15 - t
-118 -5t
-70 - ns
CLCL
-70 - ns
CLCL
-27 - ns
CLCL
-90 ns
CLCL
0- 0 - ns
-63 -2t
-200 -8t
-220 -9t 75 175 3t 67 - 4t 17 67 t
5-t
170 - 7t
15 - t
-50 3 t
CLCL
-97 - ns
CLCL
-25 t
CLCL
-37 - ns
CLCL
-122 - ns
CLCL
-27 - ns
CLCL
-20 ns
CLCL
-133 ns
CLCL
-155 ns
CLCL
+50 ns
CLCL
+25 ns
CLCL
-0 - 0 ns
Advance Information (24MHz)
External Clock Drive
Variable Oscillator
Parameter Symbol
(Freq. = 3.5 to 24MHz)
Unit
Min. Max.
Oscillator period t High time t Low time t Rise time t Fall time t
CLCL CHCX CLCX CLCH CHCL
41.7 285.7 ns 12 t 12 t
CLCL
CLCL
- t
- t
CLCX CHCX
ns ns
-12ns
-12ns
34 Jan. 2001 Ver 1.0
GMS90X5XC Series HYUNDAI MicroElectronics
AC Characteristics for GMS90X5XC series (33MHz version)
= 5V + 10%, 15%; VSS= 0V; TA= 0°C to 70°C
V
CC
(CL for port 0. ALE and PSEN outputs = 100pF; CL for all other outputs = 80pF)
External Program Memory Characteristics
Parameter Symbol
33 MHz Oscillator
Variable Oscillator
= 3.5 to 33MHz
1/t
CLCL
Unit
Min. Max. Min. Max.
ALE pulse width t Address setup to ALE t Address hold after ALE t ALE low to valid instruction in t ALE to PSEN t PSEN
pulse width t
PSEN
to valid instr uction in t Input instruction hold after PSEN t Input instruction float after PSEN Address valid after PSEN Address to valid instruction in t Address float to PSEN
Interfacing the GMS90X5XC series to devices with float times up to 35 ns is permissible. This limited bus contention will not
cause any damage to port 0 Drivers.
LHLL AVLL LLAX LLIV LLPL PLPH PLIV PXIX
t
PXIZ
t
PXAV AVIV
t
AZPL
40 - 2t 10 - t 10 - t
-56 -4t 15 - t 80 - 3t
-35 -3t
-20 - ns
CLCL
-20 - ns
CLCL
-20 - ns
CLCL
-65 ns
CLCL
-15 - ns
CLCL
-20 - ns
CLCL
-55 ns
CLCL
0- 0 - ns
-20 -t 25 - t
-5 - ns
CLCL
-91 -5t
-10 ns
CLCL
-60 ns
CLCL
0- 0 - ns
Jan. 2001 Ver 1.0 35
HYUNDAI MicroElectronics GMS90X5XC Series
AC Characteristics for GMS90X5XC series (33MHz)
External Data Memory Characteristics
Parameter Symbol
pulse width t
RD WR
pulse widt h t Address hold after ALE t RD
to valid data in t Data hold after RD Data float after RD ALE to valid data in t Address to valid data in t ALE to WR
or RD t Address valid to WR or RD t WR
or RD high to ALE high t
Data valid to WR
transition t Data setup before WR t Data hold after WR Address float after RD
RLRH WLWH LLAX2 RLDV
t
RHDX
t
RHDZ LLDV AVDV LLWL AVWL WHLH QVWX QVWH
t
WHQX
t
RLAZ
33 MHz Oscillator
Variable Oscillator
1/t
= 3.5 to 33MHz
CLCL
Unit
Min. Max. Min. Max.
132 - 6t 132 - 6t
10 - t
-81 -5t
-50 - ns
CLCL
-50 - ns
CLCL
-20 - ns
CLCL
-70 ns
CLCL
0- 0 - ns
-46 -2t
-153 -8t
-183 -9t 71 111 3t 66 - 4t 10 40 t
5-t
142 - 7t
10 - t
-20 3 t
CLCL
-55 - ns
CLCL
-20 t
CLCL
-25 - ns
CLCL
-70 - ns
CLCL
-20 - ns
CLCL
-15 ns
CLCL
-90 ns
CLCL
-90 ns
CLCL
+20 ns
CLCL
+20 ns
CLCL
-0 - 0 ns
Advance Information (33MHz)
External Clock Drive
Variable Oscillator
Parameter Symbol
(Freq. = 3.5 to 24MHz)
Unit
Min. Max.
Oscillator period t High time t Low time t Rise time t Fall time t
CLCL CHCX CLCX CLCH CHCL
30.3 285.7 ns
11.5 t
11.5 t
CLCL
CLCL
- t
- t
CLCX CHCX
ns ns
-5ns
-5ns
36 Jan. 2001 Ver 1.0
GMS90X5XC Series HYUNDAI MicroElectronics
AC Characteristics for GMS90X5XC series (40MHz version)
= 5V + 10%, 15%; VSS= 0V; TA= 0°C to 70°C
V
CC
(CL for port 0. ALE and PSEN outputs = 100pF; CL for all other outputs = 80pF)
External Program Memory Characteristics
Parameter Symbol
40 MHz Oscillator
Variable Oscillator
= 3.5 to 40MHz
1/t
CLCL
Unit
Min. Max. Min. Max.
ALE pulse width t Address setup to ALE t Address hold after ALE t ALE low to valid instruction in t ALE to PSEN
pulse width t
PSEN
to valid instr uction in t
PSEN Input instruction hold after PSEN Input instruction float after PSEN Address valid after PSEN Address to valid instruction in t Address float to PSEN
Interfacing the GMS90X5XC series to devices with float times up to 20 ns is permissible. This limited bus contention will not
cause any damage to port 0 Drivers.
LHLL AVLL LLAX LLIV
t
LLPL PLPH PLIV
t
PXIX
t
PXIZ
t
PXAV AVIV
t
AZPL
35 - 2t 10 - t 10 - t
-55 -4t 10 - t 60 - 3t
-25 -3t
0- 0 - ns
-15 -t 20 - t
-65 -5t
5- 5 - ns
15 - ns
CLCL
15 - ns
CLCL
15 - ns
CLCL
45 ns
CLCL
15 - ns
CLCL
15 - ns
CLCL
50 ns
CLCL
10 ns
CLCL
5- ns
CLCL
60 ns
CLCL
Jan. 2001 Ver 1.0 37
HYUNDAI MicroElectronics GMS90X5XC Series
AC Characteristics for GMS90X5XC series (40MHz)
External Data Memory Characteristics
Parameter Symbol
pulse width t
RD WR
pulse widt h t Address hold after ALE t RD
to valid data in t Data hold after RD Data float after RD ALE to valid data in t Address to valid data in t ALE to WR
or RD t Address valid to WR or RD t WR
or RD high to ALE high t
Data valid to WR
transition t Data setup before WR t Data hold after WR Address float after RD
RLRH WLWH LLAX2 RLDV
t
RHDX
t
RHDZ LLDV AVDV LLWL AVWL WHLH QVWX QVWH
t
WHQX
t
RLAZ
at 40 MHz Clock
Variable Clock
1/t
= 3.5 to 40MHz
CLCL
Unit
Min. Max. Min. Max.
120 - 6t 120 - 6t
10 - t
-75 -5t
-30 - ns
CLCL
-30 - ns
CLCL
-15 - ns
CLCL
-50 ns
CLCL
0- 0 - ns
-38 -2t
-150 -8t
-150 -9t 60 90 3t 70 - 4t 10 40 t
5-t
125 - 7t
5-t
-15 3 t
CLCL
-30 - ns
CLCL
-15 t
CLCL
-20 - ns
CLCL
-50 - ns
CLCL
-20 - ns
CLCL
-12 ns
CLCL
-50 ns
CLCL
-75 ns
CLCL
+15 ns
CLCL
+15 ns
CLCL
-0 - 0 ns
Advance Information (40MHz)
External Clock Drive
Variable Oscillator
Parameter Symbol
(Freq. = 3.5 to 40MHz)
Unit
Min. Max.
Oscillator period t High time t Low time t Rise time t Fall time t
CLCL CHCX CLCX CLCH CHCL
25 285.7 ns 10 t 10 t
CLCL
CLCL
- t
- t
CLCX CHCX
ns ns
-10ns
-10ns
38 Jan. 2001 Ver 1.0
GMS90X5XC Series HYUNDAI MicroElectronics
t
LHLL
ALE
t
LLPL
t
LLIV
t
PLIV
t
PLPH
INSTR.
IN
t
PXAV
t
PXIZ
t
PXIX
A0-A7
PSEN
PORT 0
t
AVLL
t
LLAX
A0-A7
t
AZPL
t
AVIV
PORT 2
A8-A15 A8-A15
Figure 6. External Program Memory Read Cycle
Jan. 2001 Ver 1.0 39
HYUNDAI MicroElectronics GMS90X5XC Series
ALE
t
LHLL
PSEN
t
LLWL
RD
t
AVLL
t
LLAX2
PORT 0
PORT 2
A0-A7 from
RI or DPL
t
AVWL
t
P2.0-P2.7 or A8-A15 from DPH
Figure 7. External Data Memory Read Cycle
ALE
t
LHLL
t
AVDV
LLDV
t
t
RLAZ
RLDV
t
RLRH
t
WHLH
t
RHDZ
t
RHDX
DATA IN A0-A7 from PCL INSTR. IN
A8-A15 from PCH
t
WHLH
PSEN
t
LLWL
t
WLWH
WR
t
t
LLAX2
A0-A7 from
RI or DPL
t
AVWL
QVWX
P2.0-P2.7 or A8-A15 from DPH
t
QVWH
DATA OUT
t
WHQX
A0-A7 from PCL
A8-A15 from PCH
INSTR. IN
PORT 0
PORT 2
t
AVLL
Figure 8. External Data Memory Write Cycle
40 Jan. 2001 Ver 1.0
GMS90X5XC Series HYUNDAI MicroElectronics
V
0.5V
CC
0.45V
0.2VCC + 0.9 Test Points
0.2V
− 0.1
CC
AC Inputs during testing are driven at V Timing measurements are made a V
0.5V for a logic ‘1’ and 0.45V for a logic ‘0’.
CC
for a logic ‘1’ and V
IHmin
for a logic ‘0’.
ILmax
Figure 9. AC Testing: Input, Output Waveforms
V
0.1
OH
+ 0.1
V
OL
V
LOAD
V
V
LOAD
LOAD
+ 0.1
− 0.1
Timing Reference Points
0.2VCC − 0.1
For timing purposes a port pin is no longer floating when a 100mV change from load voltage occurs and begins to float when a 100mV change from the loaded VOH / VOL level occurs.
IOL / IOH ≥ 20mA.
Figure 10. Float Waveforms
t
t
CLCH
CLCL
t
CLCX
V
0.5V
CC
0.45V
0.7 V
0.2 V
CC
CC
0.1
t
CHCX
t
CHCL
Figure 11. External Clock Cycle
Jan. 2001 Ver 1.0 41
HYUNDAI MicroElectronics GMS90X5XC Series

OSCILLATOR CIRCUIT

CRYSTAL OSCILLATOR MODE DRIVING FROM EXTERNAL SOURCE
C2
C1
XTAL2 P-LCC-44/Pin 20 P-DIP-40/Pin 18 M-QFP-44/Pin 14
XTAL1 P-LCC-44/Pin 21 P-DIP-40/Pin 19 M-QFP-44/Pin 15
N.C.
External Oscillator Signal
XTAL2 P-LCC-44/Pin 20 P-DIP-40/Pin 18 M-QFP-44/Pin 14
XTAL1 P-LCC-44/Pin 21 P-DIP-40/Pin 19 M-QFP-44/Pin 15
C1, C2 = 30pF ±10pF for Crystals
For Ceramic Resonators, contact resonator manufacturer.
Figure 12. Recommended Oscillator Circuits
Oscillation circuit is designed to be used either with a ceramic resonator or crystal oscillator. Since each crystal and ceramic resonator have their own characteristics, the user should consult the crystal manufacturer for ap­propriate values of external components.
42 Jan. 2001 Ver 1.0
GMS90X5XC Series HYUNDAI MicroElectronics
Plastic Package P-LCC-44
(Plastic Leaded Chip-Carrier)
44PLCC
UNIT: INCH
0.695
0.685
0.021
0.013
min. 0.020
0.630
0.590
0.656
0.650
0.032
0.026
0.656
0.650
0.695
0.685
0.050 BSC
0.012
0.0075
0.120
0.090
0.180
0.165
Jan. 2001 Ver 1.0 43
HYUNDAI MicroElectronics GMS90X5XC Series
Plastic Package P-DIP-40
(Plastic Dual in-Line Package)
40DIP
UNIT: INCH
2.075
2.045
0.600 BSC
0.550
0-15
0.530
12
0
.
0
8
0
.0
°
0
0.200 max.
0.022
0.015
0.065
0.045
0.100 BSC
min. 0.015
0.140
0.120
44 Jan. 2001 Ver 1.0
GMS90X5XC Series HYUNDAI MicroElectronics
Plastic Package P-MPQF-44
(Plastic Metric Quad Flat Package)
44MQFP
13.45
12.95
2.10
1.95
UNIT: MM
0-7
°
3
3
2
1
.
.
0
0
10.10
9.90
9.90
10.10
13.45
12.95
SEE DETAIL "A"
2.35 max.
0.45
0.30
0.80 BSC
0.25
0.10
DETAIL "A"
1.60 REF
1.03
0.73
Jan. 2001 Ver 1.0 45
HYUNDAI MicroElectronics GMS90X5XC Series
46 Jan. 2001 Ver 1.0
MASK ORDER & VERIFICATION SHEET
GMS90X5XC-GC
Customer should write inside thick line box.
1. Customer Information
2. Device Information
Company Name
Application
YYYY MM DD
Order Date
Tel:
Fax:
Name & Signature:
3. Marking Specification
40PD IP or 44PLC C 44M Q FP
HME
C
GMS90 -GC
5
➀➁
Y YWW K OR EA
SIEMENS ’92
ROM size
4K
8K
16K
ROM Protection
File Name: ( .HEX) Check Sum:
Mask Data
HME
C
5
90 -G C
➀➁
YYW W KO REA
SIEMENS ’92
Package
44MQFP
44PLCC
40PDIP
Without
Vol. / Freq.
12MHz
5V
3V
Normal Super
(Please check mark into )
C: 5V L: 3V
24MHz 40MHz
12MHz 16MHz
HitelChollianInternet
ROM size
1: 4K 2: 8K
4: 16K
Customer’s part num ber
4. Delivery Schedule
Customer Sample Risk Order
YYYY MM DD
YYYY MM DD
5. ROM Code Verification
Ve rifica tio n Date:
YYYY MM DD
P lea se co n firm ou r ve rific atio n d ata .
Check Sum: Tel:
Fax:
Name & Signature:
Date
Quantity
HME Confirmation
pcs pcs
This box is written after “5.Verification”.
YYYY MM DD
Approval Date:
I ag re e w ith y ou r ve rifica tio n da ta a n d c on fir m y o u to
make mask set.
Tel:
Fax:
Name & Signature:
HYUNDAI MicroElectronics
Loading...