Emerson Fisher Vee-Ball V150E Reference Manual

Page 1
CONTROL VALVE
SOURCEBOOK
PULP & PAPER
Page 2
Page 3
Copyright © 2011 Fisher Controls International LLC All Rights Reserved.
Fisher, ENVIRO-SEAL, Whisper Trim, Cavitrol, WhisperFlo, Vee‐Ball, Control‐Disk, NotchFlo, easy‐e and FIELDVUE are marks owned by Fisher Controls International LLC, a business of Emerson Process Management. The Emerson logo is a trademark and service mark of Emerson Electric Co. All other marks are the property of their respective owners.
Printed in U.S.A., First Edition
Page 4
Page 5
Table of Contents
Introduction v
Chapter 1 Control Valve Selection 1-1
Chapter 2 Actuator Selection 2-1
Chapter 3 Liquid Valve Sizing 3-1
Chapter 4 Cavitation & Flashing 4-1
Chapter 5 Gas Valve Sizing 5-1
Chapter 6 Control Valve Noise 6-1
Chapter 7 Steam Conditioning 7-1
Chapter 8 Process Overview 8-1
Chapter 9 Pulping 9-1
Chapter 10A Batch Digesters 10A-1
Chapter 10B Continuous Digesters 10B-1
Chapter 11 Black Liquor Evaporators/Concentrators 11-1
Chapter 12 Kraft Recovery Boiler 12-1
Chapter 13 Recausticizing & Lime Recovery 13-1
Chapter 14 Bleaching & Brightening 14-1
Chapter 15 Stock Preparation 15-1
Chapter 16 Wet End Chemistry 16-1
Chapter 17 Paper Machine 17-1
Chapter 18 Power & Recovery Boiler 18-1
iii
Page 6
iv
Page 7
Pulp and Paper Control Valves
Introduction
This sourcebook’s intent is to introduce a pulp and paper mill’s processes, as well as the use of control valves in many of the processes found in the mill. It is intended to help you:
D Understand pulp and paper processes D Learn where control valves are typically
located within each process
D Identify valves commonly used for specific
applications
D Identify troublesome/problem valves within
the process The information provided will follow a standard
format of:
D Description of the process D Functional drawing of the process D FisherR valves to be considered in each
process and their associated function
Control Valves
Valves described within a chapter are labeled and numbered corresponding to the identification used in the proces s flow chart for that chapter. Their valve function is described, and a specification section gives added information on process conditions, names of Fisher valves that may be considered, process impact of the valve, and any special considerations for the process and valve(s) of choice.
Process Drawings
The process drawings within each chapter show major equipment items, their typical placement within the processing system, and process flow direction. Utilities and pumps are not shown unless otherwise stated.
Many original equipment manufacturers (OEMs) provide equipment to the pulp and paper industry, each with their own processes and proprietary information. Process drawings are based on general equipment configurations unless otherwise stated.
D Impacts and/or considerations for
troublesome/problem valves
Valve Selection
The information presented in this sourcebook is intended to assist in understanding the control valve requirements of general pulp and paper mill’s processes.
Since every mill is different in technology and layout, the control valve requirements and recommendations presented by this sourcebook should be considered as general guidelines. Under no circumstances should this information alone be used to select a control valve without ensuring the proper valve construction is identified for the application and process conditions.
All valve considerations should be reviewed by the local business representative as part of any valve selection or specification activity.
Problem Valves
Often there are references to valve-caused problems or difficulties. The list of problems include valve erosion from process media, stickiness caused by excessive friction (stiction), excessive play in valve to actuator linkages (typically found in rotary valves) that causes deadband, excessive valve stem packing leakage, and valve materials that are incompatible with the flowing medium. Any one, or a combination of these difficulties, may affect process quality and throughput with a resulting negative impact on mill profitability.
Many of these problems can be avoided or minimized through proper valve selection. Consideration should be given to valve style and size, actuator capabilities, analog versus digital instrumentation, materials of construction, etc. Although not being all-inclusive, the information found in this sourcebook should facilitate the valve selection process.
v
Page 8
vi
Page 9
Chapter 1
Control Valve Selection
In the past, a customer simply requested a control valve and the manufacturer offered the product best-suited for the job. The choices among the manufacturers were always dependent upon obvious matters such as cost, delivery, vendor relationships, and user preference. However, accurate control valve selection can be considerably more complex, especially for engineers with limited experience or those who have not kept up with changes in the control valve industry.
An assortment of sliding-stem and rotary valve styles are available for many applications. Some are touted as “universal” valves for almost any size and service, while others are claimed to be optimum solutions for narrowly defined needs. Even the most knowledgeable user may wonder whether they are really getting the most for their money in the control valves they have specified.
Like most decisions, selection of a control valve involves a great number of variables; the everyday selection process tends to overlook a number of these important variables. The following discussion includes categorization of available valve types and a set of criteria to be considered in the selection process.
What Is A Control Valve?
Process plants consist of hundreds, or even thousands, of control loops all networked together to produce a product to be offered for sale. Each of these control loops is designed to control a critical process variable such as pressure, flow, level, temperature, etc., within a required operating range to ensure the quality of the end-product.
These loops receive, and internally create, disturbances that detrimentally affect the process variable. Interaction from other loops in the network provides disturbances that influence the process variable. To reduce the effect of these load disturbances, sensors and transmitters collect information regarding the process variable and its relationship to a desired set point. A controller then processes this information and decides what must occur in order to get the process variable back to where it should be after a load disturbance occurs. When all measuring, comparing, and calculating are complete, the strategy selected by the controller is implemented via some type of final control element. The most common final control element in the process control industries is the control valve.
A control valve manipulates a flowing fluid such as gas, steam, water, or chemical compounds to compensate for the load disturbance and keep the regulated process variable as close as possible to the desired set point.
Many people who speak of “control valves” are actually referring to “control valve assemblies.” The control valve assembly typically consists of the valve body, the internal trim parts, an actuator to provide the motive power to operate the valve, and a variety of additional valve accessories, which may include positioners, transducers, supply pressure regulators, manual operators, snubbers, or limit switches.
It is best to think of a control loop as an instrumentation chain. Like any other chain, the entire chain is only as good as its weakest link. It is important to ensure that the control valve is not the weakest link.
www.Fisher.com
Page 10
Valve Types and Characteristics
The control valve regulates the rate of fluid flow as the position of the valve plug or disk is changed by force from the actuator. To do this, the valve must:
D Contain the fluid without external leakage. D Have adequate capacity for the intended
service.
D Be capable of withstanding the erosive, corrosive, and temperature influences of the process.
D Incorporate appropriate end connections to mate with adjacent pipelines and actuator attachment means to permit transmission of actuator thrust to the valve plug stem or rotary shaft.
Many styles of control valve bodies have been developed. Some can be used effectively in a number of applications while others meet specific service demands or conditions and are used less frequently. The subsequent text describes popular control valve body styles utilized today.
Globe Valves
Single-Port Valve Bodies
Single-port is the most common valve body style and is simple in construction. Single-port valves are available in various forms, such as globe, angle, bar stock, forged, and split constructions. Generally, single-port valves are specified for applications with stringent shutoff requirements. They use metal-to-metal seating surfaces or soft-seating with PTFE or other composition materials forming the seal.
W7027-1
Figure 1-1. Single-Ported Globe-Style Valve
Body
characteristics. Retainer-style trim also offers ease of maintenance with flow characteristics altered by changing the plug. Cage or retainer-style single-seated valve bodies can also be easily modified by a change of trim parts to provide reduced-capacity flow, noise attenuation, or cavitation eliminating or reducing trim (see chapter 4).
Figure 1-1 shows one of the more popular styles of single-ported or single-seated globe valve bodies. They are widely used in process control applications, particularly in sizes NPS 1 through NPS 4. Normal flow direction is most often flow-up through the seat ring.
Angle valves are nearly always single ported, as shown in figure 1-2. This valve has cage-style trim construction. Others might have screwed-in seat rings, expanded outlet connections, restricted trim, and outlet liners for reduction of erosion damage.
Single-port valves can handle most service requirements. Because high pressure fluid is normally loading the entire area of the port, the unbalance force created must be considered when selecting actuators for single-port control valve bodies. Although most popular in the smaller sizes, single-port valves can often be used in NPS 4 to 8 with high thrust actuators.
Many modern single-seated valve bodies use cage or retainer-style construction to retain the seat ring cage, provide valve plug guiding, and provide a means for establishing particular valve flow
1−2
Bar stock valve bodies are often specified for corrosive applications in the chemical industry (figure 1-3), but may also be requested in other low flow corrosive applications. They can be machined from any metallic bar-stock material and from some plastics. When exotic metal alloys are required for corrosion resistance, a bar-stock valve body is normally less expensive than a valve body produced from a casting.
High pressure single-ported globe valves are often found in power plants due to high pressure steam (figure 1-4). Variations available include
Page 11
W0971
Figure 1-2. Flanged Angle-Style
Control Valve Body
W0540
Figure 1-4. High Pressure Globe-Style
Control Valve Body
W9756
Figure 1-3. Bar Stock Valve Body
cage-guided trim, bolted body-to-bonnet connection, and others. Flanged versions are available with ratings to Class 2500.
Balanced-Plug Cage-Style Valve Bodies
This popular valve body style, single-ported in the sense that only one seat ring is used, provides the advantages of a balanced valve plug often
W0992-4
Figure 1-5. Valve Body with Cage-Style Trim,
Balanced Valve Plug, and Soft Seat
associated only with double-ported valve bodies (figure 1-5). Cage-style trim provides valve plug guiding, seat ring retention, and flow characterization. In addition, a sliding piston ring-type seal between the upper portion of the valve plug and the wall of the cage cylinder virtually eliminates leakage of the upstream high pressure fluid into the lower pressure downstream system.
1−3
Page 12
W0997
Figure 1-6. High Capacity Valve Body with
Cage-Style Noise Abatement Trim
liquid service. The flow direction depends upon the intended service and trim selection, with unbalanced constructions normally flow-up and balanced constructions normally flow-down.
Port-Guided Single-Port Valve Bodies
D Usually limited to 150 psi (10 bar) maximum
pressure drop.
D Susceptible to velocity-induced vibration. D Typically provided with screwed in seat rings
which might be difficult to remove after use.
Three-Way Valve Bodies
D Provide general converging (flow-mixing) or
diverging (flow-splitting) service.
D Best designs use cage-style trim for positive
valve plug guiding and ease of maintenance.
Downstream pressure acts upon both the top and bottom sides of the valve plug, thereby nullifying most of the static unbalance force. Reduced unbalance permits operation of the valve with smaller actuators than those necessary for conventional single-ported valve bodies.
Interchangeability of trim permits the choice of several flow characteristics or of noise attenuation or anticavitation components. For most available trim designs, the standard direction of flow is in through the cage openings and down through the seat ring. These are available in various material combinations, sizes through NPS 20, and pressure ratings to Class 2500.
High Capacity, Cage-Guided Valve Bodies
This adaptation of the cage-guided bodies mentioned above was designed for noise applications, such as high pressure power plants, where sonic steam velocities are often encountered at the outlet of conventional valve bodies (figure 1-6).
The design incorporates oversized end connections with a streamlined flow path and the ease of trim maintenance inherent with cage-style constructions. Use of noise abatement trim reduces overall noise levels by as much as 35 decibels. The design is also available in cageless versions with a bolted seat ring, end connection sizes through NPS 20, Class 600, and versions for
D Variations include trim materials selected for high temperature service. Standard end connections (flanged, screwed, butt weld, etc.) can be specified to mate with most any piping scheme.
D Actuator selection demands careful consideration, particularly for constructions with unbalanced valve plug.
A balanced valve plug style three-way valve body is shown with the cylindrical valve plug in the down position (figure 1-7). This position opens the bottom common port to the right-hand port and shuts off the left-hand port. The construction can be used for throttling mid-travel position control of either converging or diverging fluids.
Rotary Valves
Traditional Butterfly Valve
Standard butterfly valves are available in sizes through NPS 72 for miscellaneous control valve applications. Smaller sizes can use versions of traditional diaphragm or piston pneumatic actuators, including the modern rotary actuator styles. Larger sizes might require high output electric or long-stroke pneumatic cylinder actuators.
Butterfly valves exhibit an approximately equal percentage flow characteristic. They can be used
1−4
Page 13
W8380
W9045-1
Figure 1-7. Three Way Valve with
Balanced Valve Plug
W4641
Figure 1-8. High-Performance Butterfly
Control Valve
for throttling service or for on-off control. Soft-seat constructions can be obtained by utilizing a liner or by including an adjustable soft ring in the body or on the face of the disk.
Figure 1-9. Eccentric-Disk Rotary-Shaft
Control Valve
D Offer an economic advantage, particularly in larger sizes and in terms of flow capacity per dollar investment.
D Mate with standard raised-face pipeline flanges.
D Depending on size, might require high output or oversized actuators due to valve size valves or large operating torques from large pressure drops.
D Standard liner can provide precise shutoff and quality corrosion protection with nitrile or PTFE liner.
Eccentric-Disk Control Valve
Eccentric disk rotary control valves are intended for general service applications not requiring precision throttling control. They are frequently applied in applications requiring large sizes and high temperatures due to their lower cost relative to other styles of control valves. The control range for this style of valve is approximately one third as large as a ball or globe-style valves. Consequently, additional care is required in sizing and applying this style of valve to eliminate control problems associated with process load changes. They are well-suited for constant process load applications.
D Provide effective throttling control.
D Require minimum space for installation
(figure 1-8).
D Provide high capacity with low pressure loss
through the valves.
D Linear flow characteristic through 90 degrees of disk rotation (figure 1-9).
D Eccentric mounting of disk pulls it away from the seal after it begins to open, minimizing seal wear.
1−5
Page 14
W9425 W9418
WAFER STYLE SINGLE FLANGE STYLE
Figure 1-10. Fisher Control-Disk Valve with 2052 Actuator and FIELDVUE DVC6200 Digital Valve Controller
D Bodies are available in sizes through NPS 24
compatible with standard ASME flanges.
D Utilize standard pneumatic diaphragm or
piston rotary actuators.
D Standard flow direction is dependent upon seal design; reverse flow results in reduced capacity.
Control-Disk Valve
The Control-Diskt valve (figure 1-10) offers excellent throttling performance, while maintaining the size (face-to-face) of a traditional butterfly valve. The Control-Disk valve is first in class in controllability, rangeability, and tight shutoff, and it is designed to meet worldwide standards.
D Utilizes a contoured edge and unique patented disk to provide an improved control range of 15 - 70% of valve travel. Traditional butterfly
lever design to increase torque range within each actuator size.
valves are typically limited to 25% - 50% control range.
V-notch Ball Control Valve
D Includes a tested valve sealing design, available in both metal and soft seats, to provide an unmatched cycle life while still maintaining excellent shutoff
D Spring loaded shaft positions disk against the inboard bearing nearest the actuator allowing for the disk to close in the same position in the seal, and allows for either horizontal or vertical mounting.
D Complimenting actuator comes in three, compact sizes, has nested springs and a patented
This construction is similar to a conventional ball valve, but with patented, contoured V-notch in the ball (figure 1-11). The V-notch produces an equal-percentage flow characteristic. These control valves provide precise rangeability, control, and tight shutoff.
pressure drop.
erosive or viscous fluids, paper stock, or other slurries containing entrained solids or fibers.
W8172-2
Figure 1-11. Rotary-Shaft Control Valve
with V-Notch Ball
D Straight-through flow design produces little
D Bodies are suited to provide control of
1−6
Page 15
on-off operation. The flanged or flangeless valves feature streamlined flow passages and rugged metal-trim components for dependable service in slurry applications.
W4170-4
Figure 1-12. Sectional of Eccentric-Plug
Control Valve Body
D They utilize standard diaphragm or piston rotary actuators.
D Ball remains in contact with seal during rotation, which produces a shearing effect as the ball closes and minimizes clogging.
D Bodies are available with either heavy-duty or PTFE-filled composition ball seal ring to provide excellent rangeability in excess of 300:1.
D Bodies are available in flangeless or flanged-body end connections. Both flanged and flangeless valves mate with Class 150, 300, or 600 flanges or DIN flanges.
D Valves are capable of energy absorbing special attenuating trim to provide improved performance for demanding applications.
Eccentric-Plug Control Valve
Control Valve End Connections
The three common methods of installing control valves in pipelines are by means of:
D Screwed pipe threads D Bolted gasketed flanges D Welded end connections
Screwed Pipe Threads
Screwed end connections, popular in small control valves, are typically more economical than flanged ends. The threads usually specified are tapered female National Pipe Thread (NPT) on the valve body. They form a metal-to-metal seal by wedging over the mating male threads on the pipeline ends. This connection style, usually limited to valves not larger than NPS 2, is not recommended for elevated temperature service. Valve maintenance might be complicated by screwed end connections if it is necessary to take the body out of the pipeline. This is because the valve cannot be removed without breaking a flanged joint or union connection to permit unscrewing the valve body from the pipeline.
D Valve assembly combats erosion. The rugged body and trim design handle temperatures to 800°F (427°C) and shutoff pressure drops to 1500 psi (103 bar).
D Path of eccentric plug minimizes contact with the seat ring when opening, thus reducing seat wear and friction, prolonging seat life, and improving throttling performance (figure 1-12).
D Self-centering seat ring and rugged plug allow forward or reverse-flow with tight shutoff in either direction. Plug, seat ring, and retainer are available in hardened materials, including ceramics, for selection of erosion resistance.
D Designs offering a segmented V-notch ball in place of the plug for higher capacity requirements are available.
This style of rotary control valve is well-suited for control of erosive, coking, and other hard-to-handle fluids, providing either throttling or
Bolted Gasketed Flanges
Flanged end valves are easily removed from the piping and are suitable for use through the range of working pressures for which most control valves are manufactured (figure 1-13). Flanged end connections can be used in a temperature range from absolute zero to approximately 1500°F (815°C). They are used on all valve sizes. The most common flanged end connections include flat-face, raised-face, and ring-type joint.
The flat face variety allows the matching flanges to be in full-face contact with the gasket clamped between them. This construction is commonly used in low pressure, cast iron, and brass valves, and minimizes flange stresses caused by initial bolting-up force.
The raised-face flange features a circular raised-face with the inside diameter the same as the valve opening, and the outside diameter less than the bolt circle diameter. The raised-face is
1−7
Page 16
or Monelt, but is available in almost any metal. This makes an excellent joint at high pressures and is used up to 15,000 psig (1034 bar), however, it is generally not used at high temperatures. It is furnished only on steel and alloy valve bodies when specified.
Welding End Connections
Welding ends on control valves (figure 1-14) are leak-tight at all pressures and temperatures, and are economical in first cost. Welding end valves are more difficult to take from the line and are limited to weldable materials. Welding ends come in two styles:
D Socket welding
A7098
Figure 1-13. Popular Varieties of
Bolted Flange Connections
A7099
Figure 1-14. Common Welded End Connections
finished with concentric circular grooves for precise sealing and resistance to gasket blowout. This kind of flange is used with a variety of gasket materials and flange materials for pressures through the 6000 psig (414 bar) pressure range and for temperatures through 1500°F (815°C). This style of flanging is normally standard on Class 250 cast iron bodies and all steel and alloy steel bodies.
The ring-type joint flange is similar in looks to the raised-face flange except that a U-shaped groove is cut in the raised-face concentric with the valve opening. The gasket consists of a metal ring with either an elliptical or octagonal cross-section. When the flange bolts are tightened, the gasket is wedged into the groove of the mating flange and a tight seal is made. The gasket is generally soft iron
D Buttwelding
The socket welding ends are prepared by boring in a socket at each end of the valve with an inside diameter slightly larger than the pipe outside diameter. The pipe slips into the socket where it butts against a shoulder and then joins to the valve with a fillet weld. Socket welding ends in a given size are dimensionally the same regardless of pipe schedule. They are usually furnished in sizes through NPS 2.
The buttwelding ends are prepared by beveling each end of the valve to match a similar bevel on the pipe. The two ends are then butted to the pipeline and joined with a full penetration weld. This type of joint is used on all valve styles and the end preparation must be different for each schedule of pipe. These are generally furnished for control valves in NPS 2-1/2 and larger. Care must be exercised when welding valve bodies in the pipeline to prevent excessive heat transmitted to valve trim parts. Trims with low-temperature composition materials must be removed before welding.
Valve Body Bonnets
The bonnet of a control valve is the part of the body assembly through which the valve plug stem or rotary shaft moves. On globe or angle bodies, it is the pressure retaining component for one end of the valve body. The bonnet normally provides a means of mounting the actuator to the body and houses the packing box. Generally, rotary valves do not have bonnets. (On some rotary-shaft valves, the packing is housed within an extension of the valve body itself, or the packing box is a separate component bolted between the valve body and bonnet.)
1−8
Page 17
W0989
Figure 1-15. Typical Bonnet, Flange,
and Stud Bolts
guides the valve plug to ensure proper valve plug stem alignment with the packing.
As mentioned previously, the conventional bonnet on a globe-type control valve houses the packing. The packing is most often retained by a packing follower held in place by a flange on the yoke boss area of the bonnet (figure 1-15). An alternate packing retention means is where the packing follower is held in place by a screwed gland (figure 1-3). This alternate is compact, thus, it is often used on small control valves, however, the user cannot always be sure of thread engagement. Therefore, caution should be used if adjusting the packing compression when the control valve is in service.
Most bolted-flange bonnets have an area on the side of the packing box which can be drilled and tapped. This opening is closed with a standard pipe plug unless one of the following conditions exists:
D It is necessary to purge the valve body and bonnet of process fluid, in which case the opening can be used as a purge connection.
On a typical globe-style control valve body, the bonnet is made of the same material as the valve body or is an equivalent forged material because it is a pressure-containing member subject to the same temperature and corrosion effects as the body. Several styles of valve body-to-bonnet connections are illustrated. The most common is the bolted flange type shown in figure 1-15. A bonnet with an integral flange is also illustrated in figure 1-15. Figure 1-3 illustrates a bonnet with a separable, slip-on flange held in place with a split ring. The bonnet used on the high pressure globe valve body illustrated in figure 1-4, is screwed into the valve body. Figure 1-8 illustrates a rotary-shaft control valve in which the packing is housed within the valve body and a bonnet is not used. The actuator linkage housing is not a pressure­containing part and is intended to enclose the linkage for safety and environmental protection.
On control valve bodies with cage- or retainer-style trim, the bonnet furnishes loading force to prevent leakage between the bonnet flange and the valve body, and also between the seat ring and the valve body. The tightening of the body-bonnet bolting compresses a flat sheet gasket to seal the body-bonnet joint, compresses a spiral-wound gasket on top of the cage, and compresses an additional flat sheet gasket below the seat ring to provide the seat ring-body seal. The bonnet also provides alignment for the cage, which, in turn,
D The bonnet opening is being used to detect leakage from the first set of packing or from a failed bellows seal.
Extension Bonnets
Extension bonnets are used for either high or low temperature service to protect valve stem packing from extreme process temperatures. Standard PTFE valve stem packing is useful for most applications up to 450°F (232°C). However, it is susceptible to damage at low process temperatures if frost forms on the valve stem. The frost crystals can cut grooves in the PTFE, thus, forming leakage paths for process fluid along the stem. Extension bonnets remove the packing box of the bonnet far enough from the extreme temperature of the process that the packing temperature remains within the recommended range.
Extension bonnets are either cast (figure 1-16) or fabricated (figure 1-17). Cast extensions offer better high temperature service because of greater heat emissivity, which provides better cooling effect. Conversely, smooth surfaces that can be fabricated from stainless steel tubing are preferred for cold service because heat influx is usually the major concern. In either case, extension wall thickness should be minimized to cut down heat transfer. Stainless steel is usually preferable to
1−9
Page 18
W0667-2
Figure 1-16. Extension Bonnet
W1416
Figure 1-17. Valve Body with
Fabricated Extension Bonnet
W6434
Figure 1-18. ENVIRO-SEALt Bellows
Seal Bonnet
Bellows Seal Bonnets
Bellows seal bonnets (figure 1-18) are used when no leakage (less than 1x10−6 cc/sec of helium) along the stem can be tolerated. They are often used when the process fluid is toxic, volatile, radioactive, or highly expensive. This special bonnet construction protects both the stem and the valve packing from contact with the process fluid. Standard or environmental packing box constructions above the bellows seal unit will prevent catastrophic failure in case of rupture or failure of the bellows.
As with other control valve pressure/ temperature limitations, these pressure ratings decrease with increasing temperature. Selection of a bellows seal design should be carefully considered, and particular attention should be paid to proper inspection and maintenance after installation. The bellows material should be carefully considered to ensure the maximum cycle life.
Two types of bellows seal designs are used for control valves:
D Mechanically formed as shown in figure 1-19
carbon steel because of its lower coefficient of thermal conductivity. On cold service applications, insulation can be added around the extension to protect further against heat influx.
1−10
D Welded leaf bellows as shown in figure 1-20 The welded-leaf design offers a shorter total
package height. Due to its method of manufacture and inherent design, service life may be limited.
Page 19
B2565
Figure 1-21. Comprehensive Packing Material Arrangements
for Globe-Style Valve Bodies
Control Valve Packing
Most control valves use packing boxes with the packing retained and adjusted by a flange and stud bolts (figure 1-27). Several packing materials can be used depending upon the service conditions expected and whether the application requires compliance to environmental regulations. Brief descriptions and service condition guidelines for several popular materials and typical packing material arrangements are shown in figure 1-21.
A5954
Figure 1-19. Mechanically Formed Bellows
A5955
Figure 1-20. Welded Leaf Bellows
The mechanically formed bellows is taller in comparison and is produced with a more repeatable manufacturing process.
PTFE V-Ring
D Plastic material with inherent ability to minimize friction.
D Molded in V-shaped rings that are spring loaded and self-adjusting in the packing box. Packing lubrication not required.
D Resistant to most known chemicals except molten alkali metals.
D Requires extremely smooth (2 to 4 micro-inches RMS) stem finish to seal properly. Will leak if stem or packing surface is damaged.
D Recommended temperature limits: −40°F to +450°F (−40°C to +232°C)
D Not suitable for nuclear service because PTFE is easily destroyed by radiation.
1−11
Page 20
B2566
Figure 1-22. Measurement Frequency for Valves
Controlling Volatile Organic Chemicals (VOC)
Laminated and Filament Graphite
D Suitable for high temperature nuclear service or where low chloride content is desirable (Grade GTN).
D Provides leak-free operation, high thermal conductivity, and long service life, but produces high stem friction and resultant hysteresis.
D Impervious to most hard-to-handle fluids and high radiation.
D Suitable temperature range: Cryogenic temperatures to 1200°F (649°C).
D Lubrication not required, but an extension bonnet or steel yoke should be used when packing box temperature exceeds 800°F (427°C).
USA Regulatory Requirements for Fugitive Emissions
Fugitive emissions are non-point source volatile organic emissions that result from process equipment leaks. Equipment leaks in the United States have been estimated at over 400 million pounds per year. Strict government regulations, developed by the US, dictate Leak Detection and Repair (LDAR) programs. Valves and pumps have been identified as key sources of fugitive emissions. In the case of valves, this is the
leakage to atmosphere due to packing seal or gasket failures.
The LDAR programs require industry to monitor all valves (control and noncontrol) at an interval that is determined by the percentage of valves found to be leaking above a threshold level of 500 ppmv (some cities use a 100 ppmv criteria). This leakage level is so slight you cannot see or hear it. The use of sophisticated portable monitoring equipment is required for detection. Detection occurs by sniffing the valve packing area for leakage using an Environmental Protection Agency (EPA) protocol. This is a costly and burdensome process for industry.
The regulations do allow for the extension of the monitoring period for up to one year if the facility can demonstrate an extremely low ongoing percentage of leaking valves (less than 0.5% of the total valve population). The opportunity to extend the measurement frequency is shown in figure 1-22.
Packing systems designed for extremely low leakage requirements also extend packing seal life and performance to support an annual monitoring objective. The ENVIRO-SEALt packing system is one example. Its enhanced seals incorporate four key design principles including:
D Containment of the pliable seal material
through an anti-extrusion component.
1−12
Page 21
D Proper alignment of the valve stem or shaft within the bonnet bore.
D Applying a constant packing stress through Belleville springs.
D Minimizing the number of seal rings to reduce consolidation, friction, and thermal expansion.
The traditional valve selection process meant choosing a valve design based upon its pressure and temperature capabilities as well as its flow characteristics and material compatibility. Valve stem packing used in the valve was determined primarily by the operating temperature in the packing box area. The available material choices included PTFE for temperatures below 93°C (200°F) and graphite for higher temperature applications.
Today, choosing a valve packing system has become much more complex due to the number of considerations one must take into account. For example, emissions control requirements, such as those imposed by the Clean Air Act within the United States and by other regulatory bodies, place tighter restrictions on sealing performance. Constant demands for improved process output mean that the valve packing system must not hinder valve performance. Also, today’s trend toward extended maintenance schedules dictates that valve packing systems provide the required sealing over longer periods.
In addition, end user specifications that have become de facto standards, as well as standards organizations specifications, are used by customers to place stringent fugitive emissions leakage requirements and testing guidelines on process control equipment vendors. Emerson Process Management and its observance of limiting fugitive emissions is evident by its reliable valve sealing (packing and gasket) technologies, global emissions testing procedures, and emissions compliance approvals.
A6161-1
Figure 1-23. Single PTFE V-Ring Packing
Single PTFE V-Ring Packing (Fig. 1-23)
The single PTFE V-ring arrangement uses a coil spring between the packing and packing follower. It meets the 100 ppmv criteria, assuming that the pressure does not exceed 20.7 bar (300 psi) and the temperature is between −18°C and 93°C (0°F and 200°F). It offers excellent sealing performance with the lowest operating friction.
ENVIRO-SEAL PTFE Packing (Fig. 1-24)
The ENVIRO-SEAL PTFE packing system is an advanced packing method that utilizes a compact, live-load spring design suited to environmental applications up to 51.7 bar and 232°C (750 psi and 450°F). While it most typically is thought of as an emission-reducing packing system, ENVIRO-SEAL PTFE packing is, also, well-suited for non-environmental applications involving high temperatures and pressures, yielding the benefit of longer, ongoing service life.
ENVIRO-SEAL Duplex Packing (Fig. 1-25)
Given the wide variety of valve applications and service conditions within industry, these variables (sealing ability, operating friction levels, operating life) are difficult to quantify and compare. A proper understanding requires a clarification of trade names.
This special packing system provides the capabilities of both PTFE and graphite components to yield a low friction, low emission, fire-tested solution (API Standard 589) for applications with process temperatures up to 232°C (450°F).
1−13
Page 22
A6163
Figure 1-24. ENVIRO-SEAL PTFE Packing System
Figure 1-25. ENVIRO-SEAL Duplex (PTFE and
Graphite) Packing System
39B4612-A
Figure 1-26. ENVIRO-SEAL Graphite
ULF Packing System
carbon fiber reinforced TFE, is suited to 260°C (500°F) service.
KALREZt Valve Stem Packing (KVSP) systems
The KVSP pressure and temperature limits referenced are for Fisher valve applications only. KVSP with PTFE is suited to environmental use up to 24.1 bar and 204°C (350 psi and 400°F) and, to some non-environmental services up to 103 bar (1500 psi). KVSP with ZYMAXXt, which is a
1−14
ENVIRO-SEAL Graphite Ultra Low Friction (ULF) Packing (Fig. 1-26)
This packing system is designed primarily for environmental applications at temperatures in excess of 232°C (450°F). The patented ULF packing system incorporates thin PTFE layers inside the packing rings and thin PTFE washers on each side of the packing rings. This strategic
Page 23
W6125-1
Figure 1-27. ENVIRO-SEAL Graphite
Packing System for Rotary Valves
placement of PTFE minimizes control problems, reduces friction, promotes sealing, and extends the cycle life of the packing set.
Braided graphite filament and double PTFE are not acceptable environmental sealing solutions.
The following applies to rotary valves. In the case of rotary valves, single PTFE and graphite ribbon packing arrangements do not perform well as fugitive emission sealing solutions.
The control of valve fugitive emissions and a reduction in industry’s cost of regulatory compliance can be achieved through these stem sealing technologies.
While ENVIRO-SEAL packing systems have been designed specifically for fugitive emission applications, these technologies should also be considered for any application where seal performance and seal life have been an ongoing concern or maintenance cost issue.
Characterization of Cage-Guided Valve Bodies
HIGH-SEAL Graphite ULF Packing
Identical to the ENVIRO-SEAL graphite ULF packing system below the packing follower, the HIGH-SEAL system utilizes heavy-duty, large diameter Belleville springs. These springs provide additional follower travel and can be calibrated with a load scale for a visual indication of packing load and wear.
ENVIRO-SEAL Graphite Packing for Rotary Valves (Fig. 1-27)
ENVIRO-SEAL graphite packing is designed for environmental applications from −6°C to 316°C (20°F to 600°F) or for those applications where fire safety is a concern. It can be used with pressures to 103 bar (1500 psi) and still satisfy the 500 ppmv EPA leakage criteria.
Graphite Ribbon Packing for Rotary Valves
Graphite ribbon packing is designed for non-environmental applications that span a wide temperature range from −198°C to 538°C (−325°F to 1000°F).
The following table provides a comparison of various sliding-stem packing selections and a relative ranking of seal performance, service life, and packing friction for environmental applications.
In valve bodies with cage-guided trim, the shape of the flow openings or windows in the wall of the cylindrical cage determines flow characterization. As the valve plug is moved away from the seat ring, the cage windows are opened to permit flow through the valve. Standard cages have been designed to produce linear, equal-percentage, and quick-opening inherent flow characteristics. Note the differences in the shapes of the cage windows shown in figure 1-28. The flow rate/travel relationship provided by valves utilizing these cages is equivalent to the linear, quick-opening, and equal-percentage curves shown for contoured valve plugs (figure 1-29).
Cage-guided trim in a control valve provides a distinct advantage over conventional valve body assemblies in that maintenance and replacement of internal parts is simplified. The inherent flow characteristic of the valve can easily be changed by installing a different cage. Interchange of cages to provide a different inherent flow characteristic does not require changing the valve plug or seat ring. The standard cages shown can be used with either balanced or unbalanced trim constructions. Soft seating, when required, is available as a retained insert in the seat ring and is independent of cage or valve plug selection.
Cage interchangeability can be extended to specialized cage designs that provide noise attenuation or combat cavitation. These cages furnish a modified linear inherent flow characteristic, but require flow to be in a specific
1−15
Page 24
W0958 W0959 W0957
QUICK OPENING LINEAR EQUAL PERCENTAGE
Figure 1-28. Characterized Cages for Globe-Style Valve Bodies
Figure 1-29. Inherent Flow
Characteristics Curves
direction through the cage openings. Therefore, it could be necessary to reverse the valve body in the pipeline to obtain proper flow direction.
Characterized Valve Plugs
The valve plug, the movable part of a globe-style control valve assembly, provides a variable restriction to fluid flow. Valve plug styles are each designed to:
D Provide a specific flow characteristic.
D Permit a specified manner of guiding or
alignment with the seat ring.
D Have a particular shutoff or damage-resistance capability.
Valve plugs are designed for either two-position or throttling control. In two-position applications, the valve plug is positioned by the actuator at either of two points within the travel range of the assembly. In throttling control, the valve plug can be positioned at any point within the travel range as dictated by the process requirements.
The contour of the valve plug surface next to the seat ring is instrumental in determining the inherent flow characteristic of a conventional globe-style control valve. As the actuator moves the valve plug through its travel range, the unobstructed flow area changes in size and shape depending upon the contour of the valve plug. When a constant pressure differential is maintained across the valve, the changing relationship between percentage of maximum flow capacity and percentage of total travel range can be portrayed (figure 1-29), and is designated as the inherent flow characteristic of the valve.
Commonly specified inherent flow characteristics include:
Linear Flow
D A valve with an ideal linear inherent flow characteristic produces a flow rate directly proportional to the amount of valve plug travel throughout the travel range. For instance, at 50% of rated travel, flow rate is 50% of maximum flow; at 80% of rated travel, flow rate is 80% of maximum; etc. Change of flow rate is constant with respect to valve plug travel. Valves with a linear characteristic are often specified for liquid level control and for flow control applications requiring constant gain.
Equal-Percentage Flow
D Ideally, for equal increments of valve plug travel, the change in flow rate regarding travel may be expressed as a constant percent of the flow
1−16
Page 25
Valve Plug Guiding
Accurate guiding of the valve plug is necessary for proper alignment with the seat ring and efficient control of the process fluid. The common methods used are listed below.
A7100
Figure 1-30. Typical Construction to Provide
Quick-Opening Flow Characteristic
rate at the time of the change. The change in flow rate observed regarding travel will be relatively small when the valve plug is near its seat, and relatively high when the valve plug is nearly wide open. Therefore, a valve with an inherent equal-percentage flow characteristic provides precise throttling control through the lower portion of the travel range and rapidly increasing capacity as the valve plug nears the wide-open position. Valves with equal-percentage flow characteristics are used on pressure control applications, on applications where a large percentage of the pressure drop is normally absorbed by the system itself with only a relatively small percentage available at the control valve, and on applications where highly varying pressure drop conditions can be expected. In most physical systems, the inlet pressure decreases as the rate of flow increases, and an equal percentage characteristic is appropriate. For this reason, equal percentage flow is the most common valve characteristic.
D Cage Guiding: The outside diameter of the valve plug is close to the inside wall surface of the cylindrical cage throughout the travel range. Since the bonnet, cage, and seat ring are self-aligning upon assembly, the correct valve plug and seat ring alignment is assured when the valve closes (figure 1-15).
D Top Guiding: The valve plug is aligned by a single guide bushing in the bonnet, valve body (figure 1-4), or by packing arrangement.
D Stem Guiding: The valve plug is aligned with the seat ring by a guide bushing in the bonnet that acts upon the valve plug stem (figure 1-3, left view).
D Top-and-Bottom Guiding: The valve plug is aligned by guide bushings in the bonnet and bottom flange.
D Port Guiding: The valve plug is aligned by the valve body port. This construction is typical for control valves utilizing small-diameter valve plugs with fluted skirt projections to control low flow rates (figure 1-3, right view).
Quick-Opening Flow
D A valve with a quick opening flow characteristic provides a maximum change in flow rate at low travels. The curve is essentially linear through the first 40 percent of valve plug travel, then flattens out noticeably to indicate little increase in flow rate as travel approaches the wide-open position. Control valves with quick-opening flow characteristics are often used for on/off applications where significant flow rate must be established quickly as the valve begins to open. As a result, they are often utilized in relief valve applications. Quick-opening valves can also be selected for many of the same applications for which linear flow characteristics are recommended. This is because the quick-opening characteristic is linear up to about 70 percent of maximum flow rate. Linearity decreases significantly after flow area generated by valve plug travel equals the flow area of the port. For a typical quick-opening valve (figure 1-30), this occurs when valve plug travel equals one-fourth of port diameter.
Restricted-Capacity Control Valve Trim
Most control valve manufacturers can provide valves with reduced- or restricted- capacity trim parts. The reduced flow rate might be desirable for any of the following reasons:
D Restricted capacity trim may make it possible to select a valve body large enough for increased future flow requirements, but with trim capacity properly sized for present needs.
D Valves can be selected for adequate structural strength, yet retain reasonable travel/capacity relationship.
D Large bodies with restricted capacity trim can be used to reduce inlet and outlet fluid velocities.
D Purchase of expensive pipeline reducers can be avoided.
D Over-sizing errors can be corrected by use of restricted capacity trim parts.
1−17
Page 26
Conventional globe-style valve bodies can be fitted with seat rings with smaller port size than normal and valve plugs sized to fit those smaller ports. Valves with cage-guided trim often achieve the reduced capacity effect by utilizing valve plug, cage, and seat ring parts from a smaller valve size of similar construction and adapter pieces above the cage and below the seat ring to mate those smaller parts with the valve body (figure 1-28). Because reduced capacity service is not unusual, leading manufacturers provide readily available trim part combinations to perform the required function. Many restricted capacity trim combinations are designed to furnish approximately 40% of full-size trim capacity.
General Selection Criteria
Most of the considerations that guide the selection of valve type and brand are rather basic. However, there are some matters that may be overlooked by users whose familiarity is mainly limited to just one or a few valve types. Table 1-1 below provides a checklist of important criteria; each is discussed at length following the table.
Table 1-1. Suggested General Criteria for Selecting Type
and Brand of Control Valve
Body pressure rating High and low temperature limits Material compatibility and durability Inherent flow characteristic and rangeability Maximum pressure drop (shutoff and flowing) Noise and cavitation End connections Shutoff leakage Capacity versus cost Nature of flowing media Dynamic performance
Pressure Ratings
Body pressure ratings ordinarily are considered according to ANSI pressure classes — the most common ones for steel and stainless steel being Classes 150, 300 and 600. (Source documents are ASME/ANSI Standards B16.34, “Steel Valves,” and ANSI B16.1, “Cast Iron Pipe Flanges and Flanged Fittings.”) For a given body material, each NSI Class corresponds to a prescribed profile of maximum pressures that decrease with temperature according to the strength of the material. Each material also has a
minimum and maximum service temperature based upon loss of ductility or loss of strength. For most applications, the required pressure rating is dictated by the application. However, because all products are not available for all ANSI Classes, it is an important consideration for selection.
Temperature Considerations
Required temperature capabilities are also a foregone conclusion, but one that is likely to narrow valve selection possibilities. The considerations include the strength or ductility of the body material, as well as relative thermal expansion of various parts.
Temperature limits also may be imposed due to disintegration of soft parts at high temperatures or loss of resiliency at low temperatures. The soft materials under consideration include various elastomers, plastics, and PTFE. They may be found in parts such as seat rings, seal or piston rings, packing, rotary shaft bearings and butterfly valve liners. Typical upper temperature limits for elastomers are in the 200 - 350°F range, and the general limit for PTFE is 450°F.
Temperature affects valve selection by excluding certain valves that do not have high or low temperature options. It also may have some affect on the valve’s performance. For instance, going from PTFE to metal seals for high temperatures generally increases the shutoff leakage flow. Similarly, high temperature metal bearing sleeves in rotary valves impose more friction upon the shaft than do PTFE bearings, so that the shaft cannot withstand as high a pressure-drop load at shutoff. Selection of the valve packing is also based largely upon service temperature.
Material Selection
The third criterion in table 1-1, “material compatibility and durability”, is a more complex consideration. Variables may include corrosion by the process fluid, erosion by abrasive material, flashing, cavitation or pressure and temperature requirements. The piping material usually indicates the body material. However, because the velocity is higher in valves, other factors must be considered. When these variables are included, often valve and piping materials will differ. The trim materials, in turn, are usually a function of the body material, temperature range and qualities of the fluid. When a body material other than carbon, alloy, or stainless steel is required, use of an alternate valve type, such as lined or bar stock, should be considered.
1−18
Page 27
Flow Characteristic
The next selection criterion, “inherent flow characteristic”, refers to the pattern in which the flow at constant pressure drop changes according to valve position. Typical characteristics are quick-opening, linear, and equal-percentage. The choice of characteristic may have a strong influence upon the stability or controllability of the process (see table 1-3), as it represents the change of valve gain relative to travel.
Most control valves are carefully “characterized” by means of contours on a plug, cage, or ball element. Some valves are available in a variety of characteristics to suit the application, while others offer little or no choice. To quantitatively determine the best flow characteristic for a given application, a dynamic analysis of the control loop can be performed. In most cases, however, this is unnecessary; reference to established rules of thumb will suffice.
The accompanying drawing illustrates typical flow characteristic curves (figure 1-29). The quick opening flow characteristic provides for maximum change in flow rate at low valve travels with a fairly linear relationship. Additional increases in valve travel give sharply reduced changes in flow rate, and when the valve plug nears the wide open position, the change in flow rate approaches zero. In a control valve, the quick opening valve plug is used primarily for on-off service; but it is also suitable for many applications where a linear valve plug would normally be specified.
Rangeability
operating stability. To a certain extent, a valve with one inherent flow characteristic can also be made to perform as though it had a different characteristic by utilizing a nonlinear (i.e., characterized) positioner-actuator combination. The limitation of this approach lies in the positioner’s frequency response and phase lag compared to the characteristic frequency of the process. Although it is common practice to utilize a positioner on every valve application, each application should be reviewed carefully. There are certain examples of high gain processes where a positioner can hinder valve performance.
Pressure Drop
The maximum pressure drop a valve can tolerate at shutoff, or when partially or fully open, is an important selection criteria. Sliding-stem valves are generally superior in both regards because of the rugged nature of their moving parts. Many rotary valves are limited to pressure drops well below the body pressure rating, especially under flowing conditions, due to dynamic stresses that high velocity flow imposes on the disk or ball segment.
Noise and Cavitation
Noise and cavitation are two considerations that often are grouped together because both result from high pressure drops and large flow rates. They are treated by special modifications to standard valves. Chapter four discusses the cavitation phenomenon and its impact and treatment, while chapter six discusses noise generation and abatement.
Another aspect of a valve’s flow characteristic is its rangeability, which is the ratio of its maximum and minimum controllable flow rates. Exceptionally wide rangeability may be required for certain applications to handle wide load swings or a combination of start-up, normal and maximum working conditions. Generally speaking, rotary valves—especially partial ball valves—have greater rangeability than sliding-stem varieties.
Use of Positioners
A positioner is an instrument that helps improve control by accurately positioning a control valve actuator in response to a control signal. They are useful in many applications and are required with certain actuator styles in order to match actuator and instrument pressure signals, or to provide
End Connections
The three common methods of installing control valves in pipelines are by means of screwed pipe threads, bolted flanges, and welded end connections. At some point in the selection process, the valve’s end connections must be considered with the question simply being whether the desired connection style is available in the valve being considered.
In some situations, this matter can limit the selection rather narrowly. For instance, if a piping specification calls for welded connections only, the choice usually is limited to sliding-stem valves.
Screwed end connections, popular in small control valves, offer more economy than flanged ends.
1−19
Page 28
The threads usually specified are tapered female NPT on the valve body. They form a metal-to-metal seal by wedging over the mating male threads on the pipeline ends. This connection style is usually limited to valves not larger than NPS 2, and is not recommended for elevated temperature service.
Valve maintenance might be complicated by screwed end connections if it is necessary to take the body out of the pipeline. Screwed connections require breaking a flanged joint or union connection to permit unscrewing the valve body from the pipeline.
Flanged end valves are easily removed from the piping and are suitable for use through the range of working pressures that most control valves are manufactured (figure 1-13).
Flanged end connections can be utilized in a temperature range from absolute zero (−273°F) to approximately 1500°F (815°C). They are utilized on all valve sizes. The most common flanged end connections include flat face, raised face, and ring type joint.
the trim. Special precautions in seat material selection, seat preparation and seat load are necessary to ensure success.
Flow Capacity
Finally, the criterion of capacity or size can be an overriding constraint on selection. For extremely large lines, sliding-stem valves are more expensive than rotary types. On the other hand, for extremely small flows, a suitable rotary valve may not be available. If future plans call for significantly larger flow, then a sliding-stem valve with replaceable restricted trim may be the answer. The trim can be changed to full size trim to accommodate higher flow rates at less cost than replacing the entire valve body assembly.
Rotary style products generally have much higher maximum capacity than sliding-stem valves for a given body size. This fact makes rotary products attractive in applications where the pressure drop available is rather small. However, it is of little or no advantage in high pressure drop applications such as pressure regulation or letdown.
Welded ends on control valves are leak-tight at all pressures and temperatures and are economical in initial cost (figure 1-14). Welded end valves are more difficult to remove from the line and are limited to weldable materials. Welded ends come in two styles, socket weld and buttweld.
Shutoff Capability
Some consideration must be given to a valve’s shutoff capability, which is usually rated in terms of classes specified in ANSI/FCI70-2 (table 1-4). In service, shutoff leakage depends upon many factors, including but not limited to, pressure drop, temperature, and the condition of the sealing surfaces. Because shutoff ratings are based upon standard test conditions that can be different from service conditions, service leakage cannot be predicted accurately. However, the shutoff class provides a good basis for comparison among valves of similar configuration. It is not uncommon for valve users to overestimate the shutoff class required.
Because tight shutoff valves generally cost more both in initial cost, as well as in later maintenance expense, serious consideration is warranted. Tight shutoff is particularly critical in high pressure valves, considering that leakage in these applications can lead to the ultimate destruction of
Conclusion
For most general applications, it makes sense both economically, as well as technically, to use sliding-stem valves for lower flow ranges, ball valves for intermediate capacities, and high performance butterfly valves for the very largest required flows. However, there are numerous other factors in selecting control valves, and general selection principles are not always the best choice.
Selecting a control valve is more of and art than a science. Process conditions, physical fluid phenomena, customer preference, customer experience, supplier experience, among numerous other criteria must be considered in order to obtain the best possible solution. Many applications are beyond that of general service, and as chapter 4 will present, there are of number of selection criteria that must be considered when dealing with these sometimes severe flows.
Special considerations may require out-of-the­ordinary valve solutions; there are valve designs and special trims available to handle high noise applications, flashing, cavitation, high pressure, high temperature and combinations of these conditions.
1−20
Page 29
After going through all the criteria for a given application, the selection process may point to several types of valves. From there on, selection becomes a matter of price versus capability,
institutional preferences. As no single control valve package is cost-effective over the full range of applications, it is important to keep an open mind to alternative choices.
coupled with the inevitable personal and
Table 1-2. Major Categories and Subcategories of Control Valves with Typical General Characteristics
Valve Style
Regular
Sliding-stem
Bar Stock
Economy
Sliding-stem
Thru-Bore
Ball
Partial Ball
Eccentric Plug Erosion Resistance 1 to 8
Swing-Thru
Butterfly
Lined Butterfly
High
Performance
Butterfly
Main
Characteristics
Heavy Duty
Versatile
Machined from Bar
Stock
Light Duty
Inexpensive
On-Of f Service 1 to 24
Characterized for
Throttling
No Seal 2 to 96
Elastomer or
TFE Liner
Offset Disk
General Service
Typical Size
Range, inches
1 to 24
½ to 3
½ to 2
1 to 24
2 to 96
2 to 72
Typical
Standard Body
Materials
Carbon Steel
Cast Iron Stainless
Variety of Alloys
Bronze
Cast Iron
Carbon Steel Carbon Steel
Stainless
Carbon Steel
Stainless
Carbon Steel
Stainless
Carbon Steel
Cast Iron Stainless
Carbon Steel
Cast Iron Stainless
Carbon Steel
Stainless
Typical Standard
End Connection
ANSI Flanged
Welded
Screwed
Flangeless
Screwed
Screwed To ANSI 125 Moderate Good
Flangeless To ANSI 900 High Excellent Flangeless
Flanged Flanged To ANSI 600 Moderate Excellent
Flangeless
Lugged Welded
Flangeless
Lugged
Flangeless
Lugged
Typical
Pressure
Ratings
To ANSI 2500 Moderate Excellent
To ANSI 600 Low Excellent
To ANSI 600 High Excellent
To ANSI 2500 High Poor
To ANSI 300 High Good
To ANSI 600 High Excellent
Relative Flow
Capacity
Relative
Shutoff
Capability
1−21
Page 30
Table 1-3. Control Valve Characteristic Recommendations
Liquid Level Systems
Control Valve Pressure Drop
Constant ΔP Linear Decreasing ΔP with increasing load, ΔP at maximum load > 20% of minimum load ΔP Linear Decreasing ΔP with increasing load, ΔP at maximum load < 20% of minimum load ΔP Equal-percentage Increasing ΔP with increasing load, ΔP at maximum load < 200% of minimum load ΔP Linear Increasing ΔP with increasing load, ΔP at maximum load > 200% of minimum load ΔP Quick Opening
Best Inherent
Characteristic
Pressure Control Systems
Application
Liquid Process Equal-Percentage Gas Process, Large Volume (Process has a receiver, Distribution System or Transmission Line Exceeding 100 ft. of
Nominal Pipe Volume), Decreasing ΔP with Increasing Load, ΔP at Maximum Load > 20% of Minimum Load ΔP Linear Gas Process, Large Volume, Decreasing ΔP with Increasing Load, ΔP at Maximum Load < 20% of Minimum Load ΔP Equal-Percentage Gas Process, Small Volume, Less than 10 ft. of Pipe between Control Valve and Load Valve Equal-Percentage
Best Inherent
Characteristic
Flow Control Processes
Application Best Inherent Characteristic
Flow Measurement Signal to
Controller
Proportional to Flow In Series Linear Equal-Percentage
Proportional to Flow Squared In Series Linear Equal-Percentage
*When control valve closes, flow rate increases in measuring element.
Location of Control Valve in Relation
to Measuring Element
In Bypass* Linear Equal-Percentage
In Bypass* Equal-Percentage Equal-Percentage
Wide Range of Flow Set Point
Small Range of Flow but
Large ΔP Change at Valve
with Increasing Load
1−22
Page 31
Table 1-4. Control Valve Leakage Standards
ANSI
B16.104-1976
Class II 0.5% valve capacity at full travel Air
Class III 0.1% valve capacity at full travel Air
Class IV 0.01% valve capacity at full travel Air
Class V
Class VI
Copyright 1976 Fluid Controls Institute, Inc. Reprinted with permission.
Maximum Leakage Test Medium Pressure and Temperature
5 x 10-4 mL/min/psid/inch port dia. (5
-12 m3
x 10
/sec/Δbar/mm port dia)
Nominal Port
Diameter
In
1
1-1/2
2
2-1/2
3 4 6 8
mm
25 38 51 64
76 102 152 203
Bubbles per
Minute
1 2 3 4
6 11 27 45
Water
mL per Minute
0.15
0.30
0.45
0.60
0.90
1.70
4.00
6.75
Service ΔP or 50 psid (3.4 bar differential),
whichever is lower, at 50_ or 125_F (10_ to 52_C)
Service ΔP or 50 psid (3.4 bar differential),
whichever is lower, at 50_ or 125_F (10_ to 52_C)
Service ΔP or 50 psid (3.4 bar differential),
whichever is lower, at 50_ or 125_F (10_ to 52_C)
Service ΔP at 50_ or 125_F (10_ to 52_C)
Test
Medium
Pressure and Temperature
Service ΔP or 50 psid (3.4 bar
Air
differential), whichever is lower, at 50_
or 125_F (10_ to 52_C)
1−23
Page 32
1−24
Page 33
Chapter 2
Actuator Selection
The actuator is the distinguishing element that differentiates control valves from other types of valves. The first actuated valves were designed in the late 19th century. Today, they would be better described as regulators since they operated directly from the process fluid. These “automatic valves” were the mainstay of industry through the early 1930s.
It was at this time that the first pneumatic controllers were used. Development of valve controllers and the adaptation of standardized control signals stimulated design of the first, true, control valve actuators.
The control valve industry has evolved to fill a variety of needs and desires. Actuators are available with an array of designs, power sources and capabilities. Proper selection involves process knowledge, valve knowledge, and actuator knowledge.
A control valve can perform its function only as well as the actuator can handle the static and dynamic loads placed on it by the valve. Therefore, proper selection and sizing are very important. Since the actuator can represent a significant portion of the total control valve price, careful selection of actuator and accessory options can lead to significant dollar savings.
The range of actuator types and sizes on the market today is so great that it seems the selection process might be highly complex. With a few rules in mind and knowledge of fundamental needs, the selection process can be simple.
The following parameters are key as they quickly narrow the actuator choices:
D Power source availability D Fail-safe requirements
D Torque or thrust requirements D Control functions
Power Source Availability
The power source available at the location of a valve can often point directly to what type of actuator to choose. Typically, valve actuators are powered either by compressed air or by electricity. However, in some cases water pressure, hydraulic fluid, or even pipeline pressure can be used.
Since most plants have both electricity and compressed air readily available, the selection depends upon the ease and cost of furnishing either power source to the actuator location. Reliability and maintenance requirements of the power system must also be considered. Consideration should also be given to providing backup operating power to critical plant loops.
Fail-safe Requirements
The overall reliability of power sources is quite high. However, many loops demand specific valve action should the power source ever fail. Desired action upon a signal failure may be required for safety reasons or for protection of equipment.
Fail-safe systems store energy, either mechanically in springs, pneumatically in volume tanks, or in hydraulic accumulators. When power fails, the fail-safe systems are triggered to drive the valves to the required position and to then maintain this position until returned to normal operation. In many cases, the process pressure is used to ensure or enhance this action.
www.Fisher.com
Page 34
Actuator designs are available with a choice of failure mode between failing open, failing closed, or holding in the last position. Many actuator systems incorporate failure modes at no extra cost. For example, spring-and-diaphragm actuators are inherently fail open or closed, while electric operators typically hold their last position.
Torque or Thrust Requirements
An actuator must have sufficient thrust or torque for the prescribed application. In some cases this requirement can dictate actuator type as well as power supply requirements.
For instance, large valves requiring a high thrust may be limited to only electric or electro-hydraulic actuators due to a lack of pneumatic actuators with sufficient thrust capability. Conversely, electro-hydraulic actuators would be a poor choice for valves with very low thrust requirements.
The matching of actuator capability with valve body requirements is best left to the control valve manufacturer as there are considerable differences in frictional and fluid forces from valve to valve.
Throttling actuators have considerably higher demands put on them from both a compatibility and performance standpoint. A throttling actuator receives its input from an electronic or pneumatic instrument that measures the controlled process variable. The actuator must then move the final control element in response to the instrument signal in an accurate and timely fashion to ensure effective control. The two primary additional requirements for throttling actuators include:
D Compatibility with instrument signal D Better static and dynamic performance to
ensure loop stability Compatibility with instrument signals is inherent in
many actuator types, or it can be obtained with add-on equipment. But, the high-performance characteristics required of a good throttling actuator cannot be bolted on; instead, low hysteresis and minimal deadband must be designed into actuators.
Stroking speed, vibration, and temperature resistance must also be considered if critical to the application. For example, on liquid loops fast-stroking speeds can be detrimental due to the possibility of water hammer.
Vibration or mounting position can be a potential problem. The actuator weight, combined with the weight of the valve, may necessitate bracing.
Control Functions
Knowledge of the required actuator functions will most clearly define the options available for selection. These functions include the actuator signal (pneumatic, electric, etc.), signal range, ambient temperatures, vibration levels, operating speed, frequency, and quality of control that is required.
Signal types are typically grouped as such:
D Two-position (on-off) D Analog (throttling) D Digital
Two-position electric, electro-pneumatic, or pneumatic switches control on-off actuators. This is the simplest type of automatic control and the least restrictive in terms of selection.
It is essential to determine the ambient temperature and humidity that the actuator will experience. Many actuators contain either elastomeric or electronic components that can be subject to degradation by high humidity or temperature.
Economics
Evaluation of economics in actuator selection is a combination of the following:
D Cost D Maintenance D Reliability
A simple actuator, such as a spring-and-diaphragm, has few moving parts and is easy to service. Its initial cost is low, and maintenance personnel understand and are comfortable working with them.
2−2
Page 35
An actuator made specifically for a control valve eliminates the chance for a costly performance mismatch. An actuator manufactured by the valve vendor and shipped with the valve will eliminate separate mounting charges and ensure easier coordination of spare parts procurement. Interchangeable parts among varied actuators are also important to minimize spare-parts inventory.
splined shaft end and then is rigidly clamped to the shaft eliminates lost motion, is easy to disassemble, and is capable of high torque.
Sliding stem actuators are rigidly fixed to valve stems by threaded and clamped connections. Because they don’t have any linkage points, and their connections are rigid, they exhibit no lost motion and have excellent inherent control characteristics.
Actuator Designs
There are many types of actuators on the market, most of which fall into five general categories:
D Spring-and-diaphragm D Pneumatic piston D Rack and Pinion D Electric motor D Electro-hydraulic
Each actuator design has weaknesses, strong points and optimum uses. Most actuator designs are available for either sliding stem or rotary valve bodies. They differ only by linkages or motion translators; the basic power sources are identical.
Most rotary actuators employ linkages, gears, or crank arms to convert direct linear motion of a diaphragm or piston into the 90-degree output rotation required by rotary valves. The most important consideration for control valve actuators is the requirement for a design that limits the amount of lost motion between internal linkage and valve coupling.
Spring-and-Diaphragm Actuators
The most popular and widely used control valve actuator is the pneumatic spring-and-diaphragm style. These actuators are extremely simple and offer low cost and high reliability. They normally operate over the standard signal ranges of 3 to 15 psi or 6 to 30 psi, and therefore, are often suitable for throttling service using instrument signals directly.
Many spring-and-diaphragm designs offer either adjustable springs and/or wide spring selections to allow the actuator to be tailored to the particular application. Because they have few moving parts that may contribute to failure, they are extremely reliable. Should they ever fail, maintenance is extremely simple. Improved designs now include mechanisms to control the release of spring compression, eliminating possible personnel injury during actuator disassembly.
Use of a positioner or booster with a spring-and-diaphragm actuator can improve control, but when improperly applied, can result in poor control. Follow the simple guidelines available for positioner applications and look for:
D Rugged, vibration-resistant construction
Rotary actuators are now available that employ tilting pistons or diaphragms. These designs eliminate most linkage points (and resultant lost motion) and provide a safe, accurate and enclosed package.
When considering an actuator design, it is also necessary to consider the method by which it is coupled to the drive shaft of the control valve. Slotted connectors mated to milled shaft flats are generally not satisfactory if any degree of performance is required. Pinned connections, if solidly constructed, are suitable for nominal torque applications. A splined connector that mates to a
D Calibration ease
D Simple, positive feedback linkages
The overwhelming advantage of the spring-and-diaphragm actuator is the inherent provision for fail-safe action. As air is loaded on the actuator casing, the diaphragm moves the valve and compresses the spring. The stored energy in the spring acts to move the valve back to its original position as air is released from the casing. Should there be a loss of signal pressure to the instrument or the actuator, the spring can move the valve to its initial (fail-safe) position.
2−3
Page 36
DIAPHRAGM CASING
DIAPHRAGM
DIAPHRAGM PLATE
LOWER DIAPHRAGM CASING
ACTUATOR SPRING
ACTUATOR STEM
SPRING SEAT
SPRING ADJUSTOR
STEM CONNECTOR
YOKE
TRAVEL INDICATOR DISK INDICATOR SCALE
W0364-1
W0363-1
Figure 2-1. Spring-and-diaphragm actuators offer an excellent first choice for most control valves.
They are inexpensive, simple and have built-in, fail-safe action. Pictured above are cutaways of the popular
Fisher 667 (left) and Fisher 657 (right) actuators.
W0368-2
Figure 2-2. Spring-and-diaphragm actuators
can be supplied with a top-mounted handwheel.
The handwheel allows manual operation and also
acts as a travel stop or means of emergency
operation.
Actuators are available for either fail-open or fail-closed action. The only drawback to the spring-and-diaphragm actuator is a relatively limited output capability. Much of the thrust created by the diaphragm is taken up by the spring and thus does not result in output to the valve.
Therefore, the spring-and-diaphragm actuator is used infrequently for high force requirements. It is not economical to build and use very large spring-and-diaphragm actuators because the size, weight and cost grow exponentially with each increase in output force capability.
Piston Actuators
Piston actuators are generally more compact and provide higher torque or force outputs than spring-and-diaphragm actuators. Fisher piston styles normally work with supply pressures between 50 and 150 psi and can be equipped with spring returns (however, this construction has limited application).
Piston actuators used for throttling service must be furnished with double-acting positioners that simultaneously load and unload opposite sides of the piston. The pressure differential created across the piston causes travel toward the lower pressure side. The positioner senses the motion, and when the required position is reached, the positioner equalizes the pressure on both sides of the piston.
The pneumatic piston actuator is an excellent choice when a compact unit is required to produce high torque or force. It is also easily adapted to
2−4
Page 37
W9589-1 W9588-1
Figure 2-3. The Fisher 2052 spring-and-
diaphragm actuator has many features to provide
precise control. The splined actuator connection
features a clamped lever and single-joint linkage
to help eliminate lost motion.
W3827−1
W7447
Figure 2-5. Spring fail-safe is present in this
piston design. The Fisher 585C is an example of
a spring-bias piston actuator. Process pressure
can aid fail-safe action, or the actuator can be
configured for full spring-fail closure.
Figure 2-4. Double-acting piston actuators such
as the Fisher 1061 rotary actuator are a good
choice when thrust requirements exceed the
capability of spring-and-diaphragm actuators. Piston actuators require a higher supply pressure, but have benefits such as high stiffness and small
size. The 1061 actuator is typically used for
throttling service.
services where high ambient temperatures are a concern.
The main disadvantages of piston actuators are the high supply pressures required for positioners when used in throttling service and the lack of fail-safe systems.
W4102
Figure 2-6. Since the requirements for accuracy
and minimal lost motion are unnecessary for
on-off service, cost savings can be achieved by
simplifying the actuator design. The Fisher
1066SR incorporates spring-return capability.
There are two types of spring-return piston actuators available. The variations are subtle, but significant. It is possible to add a spring to a piston
2−5
Page 38
actuator and operate it much like a spring-and­diaphragm. These designs use a single-acting positioner that loads the piston chamber to move the actuator and compress the spring. As air is unloaded, the spring forces the piston back. These designs use large, high output springs that are capable of overcoming the fluid forces in the valve.
The alternative design uses a much smaller spring and relies on valve fluid forces to help provide the fail-safe action. In normal operation they act like a double action piston. In a fail-safe situation the spring initiates movement and is helped by unbalance forces on the valve plug. These actuators can be sized and set up to provide full spring closure action without process assistance.
An alternative to springs is a pneumatic trip system which often proves to be complex in design, difficult to maintain and costly. While a trip system is completely safe, any fail-safe requirement consideration should be given first to spring-and-diaphragm operators if they are feasible.
Special care should be given during the selection of throttling piston actuators to specify a design that has minimal hysteresis and deadband. As the number of linkage points in the actuator increases, so does the deadband. As the number of sliding parts increases, so does the hysteresis. An actuator with high hysteresis and deadband can be quite suitable for on-off service; however, caution is necessary when attempting to adapt this actuator to throttling service by merely bolting on a positioner.
The cost of a spring-and-diaphragm actuator is generally less than a comparable piston actuator. Part of this cost saving is a result of the ability to use instrument output air directly, thereby eliminating the need for a positioner. The inherent provision for fail-safe action in the spring-and­diaphragm actuator is also a consideration.
Rack and Pinion Actuators
W9479
Figure 2-7. The FieldQt actuator is a quarter turn pneumatic rack and pinion actuator. It comes with an integrated module combining the solenoid
and switchbox into a low profile, compact
package.
Electric Actuators
Electric actuators can be applied successfully in many situations. Most electric operators consist of motors and gear trains and are available in a wide range of torque outputs, travels, and capabilities. They are suited for remote mounting where no other power source is available, for use where there are specialized thrust or stiffness requirements, or when highly precise control is required.
Electric operators are economical versus pneumatic actuators for applications in small size ranges only. Larger units operate slowly and weigh considerably more than pneumatic equivalents. Available fail action is typically lock in last position.
One key consideration in choosing an electric actuator is its capability for continuous closed-loop control. In applications where frequent changes are made in control-valve position, the electric actuator must have a suitable duty cycle.
Rack and pinion actuators may come in a double-acting design, or spring return, and are a compact and economical solution for rotary shaft valves. They provide high torque outputs and are typically used for on-off applications with high cycle life. They may also be used in processes where higher variability is not a concern.
2−6
High performance electric actuators using continuous rated DC motors and ball screw output devices are capable of precise control and 100% duty cycles.
Compared to other actuator designs, the electric actuator generally provides the highest output
Page 39
available within a given package size. Additionally, electric actuators are stiff, that is, resistant to valve forces. This makes them an excellent choice for good throttling control of large, high-pressure valves.
A. Unbalance Force
The unbalance force is that resulting from fluid pressure at shutoff, and in the most general sense can be expressed as:
Unbalance force = net pressure differential X net unbalance area
Actuator Sizing
The last step in the selection process is to determine the required actuator size. Fundamentally, the process of sizing is to match as closely as possible the actuator capabilities to the valve requirements.
In practice, the mating of actuator and valve requires the consideration of many factors. Valve forces must be evaluated at the critical positions of valve travel (usually open and closed) and compared to actuator output. Valve force calculation varies considerably between valve styles and manufacturers. In most cases it is necessary to consider a complex summation of forces including:
D Static fluid forces D Dynamic fluid forces and force gradients D Friction of seals, bearings, and packing D Seat loading
Although actuator sizing is not difficult, the great variety of designs on the market and the ready availability of vendor expertise (normally at no cost) make detailed knowledge of the procedures unnecessary.
Frequent practice is to take the maximum upstream gauge pressure as the net pressure differential unless the process design always ensures a back pressure at the maximum inlet pressure. Net unbalance area is the port area on a single seated flow up design. Unbalance area may have to take into account the stem area depending on configuration. For balanced valves there is still a small unbalance area. This data can be obtained from the manufacturer. Typical port areas for balanced valves flow up and unbalanced valves in a flow down configuration are listed in table 2-1.
Table 2-1. Typical Unbalance Areas of Control Valves
Unbalance Area
Port Diameter,
Inches
1/4 0.049 – – – 3/8 0.110 – – – 1/2 0.196 – – – 3/4 0.441 – – –
1 0.785 – – –
1 5/16 1.35 0.04
1 7/8 2.76 0.062 2 5/16 4.20 0.27 3 7/16 9.28 0.118
4 3/8 15.03 0.154
7 38.48 0.81 8 50.24 0.86
Single-Seated
Unbalanced
Valves, In
2
Unbalance Area
Balanced Valves,
2
In
Actuator Spring for Globe Valves
The force required to operate a globe valve includes:
A. Force to overcome static unbalance of the valve plug
B. Force to provide a seat load C. Force to overcome packing friction D. Additional forces required for certain specific
applications or constructions Total force required = A + B + C + D
B. Force to Provide Seat Load
Seat load, usually expressed in pounds per lineal inch or port circumference, is determined by shutoff requirements. Use the guidelines in table 2-2 to determine the seat load required to meet the factory acceptance tests for ANSI/FCI 70-2 and IEC 534-4 leak Classes II through VI.
Because of differences in the severity of service conditions, do not construe these leak classifications and corresponding leakage rates as indicators of field performance. To prolong seat life and shutoff capabilities, use a higher than recommended seat load. If tight shutoff is not a prime consideration, use a lower leak class.
2−7
Page 40
Table 2-2. Recommended Seat Load Per Leak Class for Control Valves
Class I As required by customer
specification, no factory leak test required
Class II 20 pounds per lineal inch of port
circumference
Class III 40 pounds per lineal inch of port
circumference
Class IV Standard (Lower) Seat only—40
pounds per lineal inch of port circumference (up through a 4–3/8 inch diameter port) Standard (Lower) Seat only—80 pounds per lineal inch of port circumference (larger than 4–3/8 inch diameter port)
Class V Metal Seat—determine pounds
per lineal inch of port circumference from figure 2-9
C. Packing Friction
Packing friction is determined by stem size, packing type, and the amount of compressive load placed on the packing by the process or the bolting. Packing friction is not 100% repeatable in its friction characteristics. Newer live loaded packing designs can have significant friction forces especially if graphite packing is used. Table 2-3 lists typical packing friction values.
D. Additional Forces
Additional forces to consider may include bellows stiffness, unusual frictional forces resulting from seals or special seating forces for soft metal seals. The manufacturer should either supply this information or take it into account when sizing an actuator.
A2222−4/IL
Figure 2-8. Recommended Seat Load
pre-compression can be calculated as the difference between the lower end of the bench set (6 psig) and the beginning of the operating range (3 psig). This 3 psig is used to overcome the pre-compression so the net pre-compression force must be:
3 psig X 100 sq. in. = 300 lbf. This exceeds the force required and is an
adequate selection.
Actuator Force Calculations
Pneumatic spring-and-diaphragm actuators provide a net force with the additional air pressure after compressing the spring in air-to-close, or with the net pre-compression of the spring in air-to-open. This may be calculated in pounds per square inch of pressure differential.
For example, suppose 275 pound-force (lbf) is required to close the valve as calculated per the process described earlier. An air-to-open actuator with 100 square inches of diaphragm area and a bench set of 6 to 15 psig is one available option. The expected operating range is 3 to 15 psig. The
2−8
Piston actuators with springs are sized in the same manner. The thrust from piston actuators without springs can be calculated as:
Piston area X minimum supply pressure = minimum available thrust (maintain compatibility of units)
In some circumstances an actuator could supply too much force and cause the stem to buckle, to bend sufficiently to cause a leak, or to damage valve internals.
The manufacturer normally takes responsibility for actuator sizing and should have methods documented to check for maximum stem loads. Manufacturers also publish data on actuator thrusts, effective diaphragm areas, and spring data.
Page 41
Table 2-3. Typical Packing Friction Values (Lb)
Stem Size
(Inches)
5/16 All 20 30 – – –
3/8 125
1/2 125
5/8 125
3/4 125
1 300
1–1/4 300
2 300
Values shown are frictional forces typically encountered when using standard packing flange bolt-torquing procedures.
ANSI
Class
150 250 300
600 900
1500
150 250 300
600
900 1500 2500
150
250
300
600
150
250
300
600
900 1500 2500
600
900 1500 2500
600
900 1500 2500
600
900 1500 2500
PTFE Packing
Single Double
38 56 – – –
50 75 – – –
63 95 – – –
75 112.5 – – –
100 150 610
120 180 800
200 300 1225
Graphite
Ribbon/
Filament
125
– – –
190 250
320 380
180
– – –
230 320
410 500 590
218
– – –
290 400
350
– – –
440 660
880 1100 1320
850 1060 1300 1540
1100 1400 1700 2040
1725 2250 2750 3245
Torque Equations
Rotary valve torque equals the sum of a number of torque components. To avoid confusion, a number of these have been combined, and a number of calculations have been performed in advance. Thus, the torque required for each valve type can be represented with two simple and practical equations.
Breakout Torque
TB=A(DP
shutoff
)+B
Dynamic Torque
TD=C(DP
)
eff
Specific A, B, and C factors, for example, rotary valve designs are included in tables 2-4 and 2-5.
Maximum Rotation
Maximum rotation is defined as the angle of valve disk or ball in the fully open position.
Normally, maximum rotation is 90 degrees. The ball or disk rotates 90 degrees from the closed position to the wide-open position.
Some of the pneumatic spring-return piston and pneumatic spring-and-diaphragm actuators are limited to 60 or 75 degrees rotation.
For pneumatic spring-and-diaphragm actuators, limiting maximum rotation allows for higher initial spring compression, resulting in more actuator breakout torque. Additionally, the effective length of each actuator lever changes with valve rotation. Published torque values, particularly for pneumatic piston actuators, reflect this changing lever length.
Actuator Sizing for Rotary Valves
In selecting the most economical actuator for a rotary valve, the determining factors are the torque required to open and close the valve and the torque output of the actuator.
This method assumes the valve has been properly sized for the application and the application does not exceed pressure limitations for the valve.
The Selection Process
In choosing an actuator type, the fundamental requirement is to know your application. Control signal, operating mode, power source available, thrust/torque required, and fail-safe position can make many decisions for you. Keep in mind simplicity, maintainability and lifetime costs.
Safety is another consideration that must never be overlooked. Enclosed linkages and controlled compression springs available in some designs are important for safety reasons. Table 2-6 lists the pros and cons of the various actuator styles.
2−9
Page 42
Table 2-4. Typical Rotary Shaft Valve Torque Factors V-Notch Ball Valve with Composition Seal
Fisher TCMt Plus Ball Seal
Valve Size,
NPS
1
1-1/2
2 3 4 6 8
10 12 14 16 16 20
1. PEEK/PTFE or metal/PTFE bearings.
Valve Shaft
Diameter,
Inches
1/2 5/8 5/8 3/4 3/4
1
1-1/4 1-1/4
1-1/2 1-3/4
2 2-1/8 2-1/2
Composition Bearings
Table 2-5. Typical High Performance Butterfly Torque Factors for Valve with Composition Seal
Valve Size Shaft Diameter
NPS Inch
2 1/2 0.30 100 1.05 2.45 515 515 3 5/8 0.56 150 3.59 10.8 1087 1028 4 3/4 0.99 232 7.65 21.2 1640 1551 6 1 2.30 438 17.5 46.7 4140 4140
8 1-1/4 4.80 705 33.4 223 7988 7552 10 1-1/4 8.10 1056 82.2 358 9792 9258 12 1-1/2 12.5 1470 106 626 12000 12000
A
(1)
0.07
0.12
0.19
0.10
0.10
1.80
1.80
1.80
4.00 42 60 60 97
PEEK/PTFE Bearings with PTFE Seal
A B
B
50 100 175 280 380 500 750
1250 3000 2400 2800 2800 5200
ANGLE OF OPENING S17400 H1075 S20910
60_ (K) 90_ (q) lbfSin lbfSin
60 Degrees 70 Degrees
0.38
1.10
1.30
0.15
1.10
1.10
3.80
3.80
11.0 75
105 105 190
C Maximum Allowable Torque
C
0.48
1.10
2.40
3.80
18.0
36.0
60.0 125
143 413 578 578
1044
Maximum TD,
LbfSIn.
515 1225 1225 2120 2120 4140 9820
9820
12,000 23,525 23,525 55,762 55,762
Table 2-6. Actuator Feature Comparison
Actuator Type Advantages Disadvantages
Spring-and-Diaphragm Lowest cost
Ability to throttle without positioner Simplicity Inherent fail-safe action Low supply pressure requirement Adjustable to varying conditions Ease of maintenance
Pneumatic Piston High thrust capability
Compact Lightweight Adaptable to high ambient temperatures Fast stroking speed Relatively high actuator stiffness
Electric Motor Compactness
Very high stiffness High output capability
Electro-Hydraulic High output capability
High actuator stiffness Excellent throttling ability Fast stroking speed
2−10
Limited output capability Larger size and weight
Higher cost Fail-safe requires accessories or addition of a spring Positioner required for throttling High supply pressure requirement
High cost Lack of fail-safe action Limited duty cycle Slow stroking speed
High cost Complexity and maintenance difficulty Large size and weight Fail-safe action only with accessories
Page 43
Actuator Selection Summary
D Actuator selection must be based upon a balance of process requirements, valve requirements and cost.
D Simple designs such as the spring-and­diaphragm are simpler, less expensive and easier to maintain. Consider them first in most situations.
D Piston actuators offer many of the advantages of pneumatic actuators with higher thrust capability than spring-and-diaphragm styles. They are especially useful where compactness is desired or long travel is required.
D Electric and electro-hydraulic actuators provide excellent performance. They are, however, much more complex and difficult to maintain.
D Actuator sizing is not difficult, but the wide variety of actuators and valves make it difficult to master. Vendor expertise is widely available.
D Systems such as control valves are best purchased, assembled and tested by one source.
W9915
Figure 2-9. The FIELDVUE Digital Valve Controller
brings increased control accuracy and flexibility.
When utilized with AMS ValveLinkt software,
FIELDVUE instruments provide valuable diagnostic
data that helps to avoid maintenance problems.
Use of actuators and accessories of the same manufacturer will eliminate many problems.
2−11
Page 44
2−12
Page 45
Chapter 3
Liquid Valve Sizing
Valves are selected and sized to perform a specific function within a process system. Failure to perform that given function in controlling a process variable results in higher process costs. Thus, valve sizing becomes a critical step to successful process operation. The following sections focus on correctly sizing valves for liquid service: the liquid sizing equation is examined, the nomenclature and procedures are explained, and sample problems are solved to illustrate their use.2-
Valve Sizing Background
Standardization activities for control valve sizing can be traced back to the early 1960s when a trade association, the Fluids Control Institute, published sizing equations for use with both compressible and incompressible fluids. The range of service conditions that could be accommodated accurately by these equations was quite narrow, and the standard did not achieve a high degree of acceptance.
In 1967, the International Society of America (ISAt) established a committee to develop and publish standard equations. The efforts of this committee culminated in a valve sizing procedure that has achieved the status of American National Standards Institute (ANSI). Later, a committee of the International Electrotechnical Commission (IEC) used the ISA works as a basis to formulate international standards for sizing control valves.* Except for some slight differences in nomenclature and procedures, the ISA and IEC standards have been harmonized. ANSI/ISA Standard S75.01 is harmonized with IEC Standards 534-2-1 and 534-2-2 (IEC Publications 534-2, Sections One and Two for incompressible and compressible fluids, respectively).
Liquid Sizing Equation Background
This section presents the technical substance of the liquid sizing equations. The value of this lies in not only a better understanding of the sizing equations, but also in knowledge of their intrinsic limitations and relationship to other flow equations and conditions.
The flow equations used for sizing have their roots in the fundamental equations, which describe the behavior of fluid motion. The two principle equations include the:
D Energy equation D Continuity equation
The energy equation is equivalent to a mathematical statement of the first law of thermodynamics. It accounts for the energy transfer and content of the fluid. For an incompressible fluid (e.g. a liquid) in steady flow, this equation can be written as:
2
V
2g
P
)
) gZǓ* w ) q ) U + constant (1)
ò
c
2
V
P
)
) gZ + constant (2)
ò
2g
c
ǒ
The three terms{ in parenthesis are all mechanical, or available, energy terms and carry a special significance. These quantities are all capable of directly doing work. Under certain conditions more thoroughly described later, this quantity may also remain constant:
This equation can be derived from purely kinematic methods (as opposed to thermodynamic methods) and is known as “Bernoulli’s equation”.
The other fundamental equation, which plays a vital role in the sizing equation, is the continuity
www.Fisher.com
*Some information in this introductory material has been extracted from ANSI/ISA S75.01 standard with the permission of the publisher, the ISA. {All terms are defined in the nomenclature section.
Page 46
Figure 3-1. Liquid Critical Pressure Ratio Factor for Water
equation. This is the mathematical statement of conservation of the fluid mass. For steady flow conditions (one-dimensional) this equation is written as follows:
òVA + constant (3)
Using these fundamental equations, we can examine the flow through a simple, fixed restriction such as that shown in figure 3-1. We will assume the following for the present:
1. The fluid is incompressible (a liquid)
2. The flow is steady
3. The flow is one-dimensional
4. The flow can be treated as inviscid (having no viscosity)
5. No change of fluid phase occurs As seen in figure 3-1, the flow stream must
contract to pass through the reduced flow area. The point along the flow stream of minimum cross sectional flow area is the vena contracta. The flow processes upstream of this point and downstream of this point differ substantially, thus it is convenient to consider them separately.
The process from a point several pipe diameters upstream of the restriction to the vena contracta is very nearly ideal for practical intents and purposes (thermodynamically isentropic, thus having constant entropy). Under this constraint, Bernoulli’s equation applies and we see that no mechanical energy is lost — it merely changes from one form to the other. Furthermore, changes in elevation are negligible since the flow stream centerline changes very little, if at all. Thus, energy contained in the fluid simply changes from pressure to kinetic. This is quantified when considering the continuity equation. As the flowstream passes through the restriction, the velocity must increase inversely proportional to the change in area. For example, from equation 4 below:
VVC+
Using upstream conditions as a reference, this becomes:
Thus, as the fluid passes through the restriction, the velocity increases. Below, equation 2 has been
(constant)
VVC+ V
A
VC
A
ǒ
1
A
(4)
1
Ǔ
(5)
VC
3−2
Page 47
applied and elevation changes have been neglected (again using upstream conditions as a reference):
Consequently, the pressure decreases across the restriction, and the thermal terms (internal energy and heat lost to the surroundings) increase.
òV1
2g
2
) P1+
c
òVVC
2g
c
2
) PVC (6 )
In the equation below, equation 5 has been inserted and rearranged:
2
A
1
ǒ
Ǔ
* 1ƫ(7)
A
VC
PVC+ P1*
òV1
2g
2
ƪ
c
Thus, at the point of minimum cross sectional area, we see that fluid velocity is at a maximum (from equation 5 above) and fluid pressure is at a minimum (from equation 6 above).
The process from the vena contracta point to a point several diameters downstream is not ideal, and equation 2 no longer applies. By arguments similar to the above, it can be reasoned (from the continuity equation) that, as the original cross sectional area is restored, the original velocity is also restored. Because of the non-idealities of this process, however, the total mechanical energy is not restored. A portion of it is converted into heat that is either absorbed by the fluid itself, or dissipated to the environment.
Losses of this type are generally proportional to the square of the velocity (references one and two), so it is convenient to represent them by the following equation:
2
HI+ KI
òV
2
 (11)
In this equation, the constant of proportionality, KI, is called the available head loss coefficient, and is determined by experiment.
From equations 10 and 11, it can be seen that the velocity (at location two) is proportional to the square root of the pressure drop. Volume flow rate can be determined knowing the velocity and corresponding area at any given point so that:
2(P1* P2)
Q + V2A2
Ǹ
òK
  A2(12)
I
Now, letting:
ò + Gò
W
and, defining:
Let us consider equation 1 applied from several diameters upstream of the restriction to several diameters downstream of the restriction:
U1)
V1
2g
P
gZ
1
)
g
C
1
) q +
)
ò
c
2
(8)
U2)
V2
2g
P
gZ
2
)
2
) w
g
C
)
ò
c
2
No work is done across the restriction, thus the work term drops out. The elevation changes are negligible and as a result, the respective terms cancel each other. We can combine the thermal terms into a single term, HI:
òV1
2g
2
) P1+
c
2
òV2
) P2) HI (9 )
2g
c
The velocity was restored to its original value so that equation 9 reduces to:
P1+ P2) HI(10)
2
CV+ A2
Ǹ
òWK
 (13)
I
Where G is the liquid specific gravity, equation 12 may be rewritten as:
Q + CV
P1* P
Ǹ
G
2
 (14)
Equation 14 constitutes the basic sizing equation used by the control valve industry, and provides a measure of flow in gallons per minute (GPM) when pressure in pounds per square inch (PSI) is used. At times, it may be desirable to work with other units of flow or independent flow variables (pressure, density, etc). The equation fundamentals are the same for such cases, and only constants are different.
Determination of Flow Coefficients
Rather than experimentally measure KI and calculate Cv, it is more straightforward to measure Cv directly.
3−3
Page 48
A2738-1
Figure 3-2. Liquid Critical Pressure Ratio Factor for Liquids Other Than Water
In order to assure uniformity and accuracy, the procedures for both measuring flow parameters and use in sizing are addressed by industrial standards. The currently accepted standards are sponsored by the ISA.
The basic test system configuration is shown in figure 3-2. Specifications, accuracies, and tolerances are given for all hardware installation and data measurements such that coefficients can be calculated to an accuracy of approximately 5%. Fresh water at approximately 68°F is circulated through the test valve at specified pressure differentials and inlet pressures. Flow rate, fluid temperature, inlet and differential pressure, valve travel, and barometric pressure are all measured and recorded. This yields sufficient information to calculate the following sizing parameters:
D Flow coefficient (Cv)
D Pressure recovery coefficient (FL)
D Piping correction factor (Fp)
D Reynolds number factor (FR)
Basic Sizing Procedure Overview
The procedure by which valves are sized for normal, incompressible flow is straightforward. Again, to ensure uniformity and consistency, a standard exists that delineates the equations and correction factors to be employed for a given application.
The simplest case of liquid flow application involves the basic equation developed earlier. Rearranging equation thirteen so that all of the fluid and process related variables are on the right side of the equation, we arrive at an expression for the valve Cv required for the particular application:
Ǹ
Q
P1*P
G
 (15)
2
Cv+
It is important to realize that valve size is only one aspect of selecting a valve for a given application. Other considerations include valve style and trim characteristic. Discussion of these features can be referenced in chapter 2, chapter 4, and other thorough resources.
In general, each of these parameters depends on the valve style and size, so multiple tests must be performed accordingly. These values are then published by the valve manufacturer for use in sizing.
3−4
Once a valve has been selected and Cv is known, the flow rate for a given pressure drop, or the pressure drop for a given flow rate, can be predicted by substituting the appropriate quantities into equation 16.
Page 49
Many applications fall outside the bounds of the basic liquid flow applications just considered. Rather than develop special flow equations for all of the possible deviations, it is possible (and preferred) to account for different behavior with the use of simple correction factors. These factors, when incorporated, change the form of equation 14 to the following:
Q + (N1FPFR)CV
P1* P
Ǹ
G
2
 (16)
All of the additional factors in this equation are explained in the following sections.
Use N1 if sizing the valve for a flow rate in volumetric units (gpm or m3/h).
Use N
if sizing the valve for a flow rate in mass
6
units (lb/h or kg/h).
3. Determine F
, the piping geometry factor.
p
Fp is a correction factor that accounts for pressure losses due to piping fittings such as reducers, elbows, or tees that might be attached directly to the inlet and outlet connections of the control valve to be sized. If such fittings are attached to the valve, the Fp factor must be considered in the sizing procedure. If, however, no fittings are attached to the valve, Fp has a value of 1.0 and simply drops out of the sizing equation.
Sizing Valves for Liquids
Following is a step-by-step procedure for the sizing of control valves for liquid flow using the IEC procedure. Each of these steps is important and must be considered during any valve sizing procedure. Steps three and four concern the determination of certain sizing factors that may, or may not, be required in the sizing equation depending upon the service conditions of the sizing problem. If one, two, or all three of these sizing factors are to be included in the equation for a particular sizing problem, please refer to the appropriate factor determination section(s) located in the text proceeding step six.
1. Specify the variables required to size the valve as follows:
D Desired design
D Process fluid (water, oil, etc.)
D Appropriate service conditions Q or w, P1, P
or ΔP, T1, Gf, Pv, Pc, and υ*
2. Determine the equation constant, N. N is a numerical constant contained in each of the
flow equations to provide a means for using different systems of units. Values for these various constants and their applicable units are given in the Equation Constants Table (table 3-2).
For rotary valves with reducers (swaged installations), and other valve designs and fitting styles, determine the Fp factors by using the procedure for determining Fp, the piping geometry factor.
4. Determine q given upstream conditions) or ΔP
(the maximum flow rate at
max
max
(the
allowable sizing pressure drop). The maximum or limiting flow rate (q
max
), commonly called choked flow, is manifested by no additional increase in flow rate with increasing pressure differential with fixed upstream conditions. In liquids, choking occurs as a result of vaporization of the liquid when the static pressure within the valve drops below the vapor pressure of the liquid.
The IEC standard requires the calculation of an allowable sizing pressure drop (ΔP
) to account
max
for the possibility of choked flow conditions within the valve. The calculated ΔP
2
compared with the actual pressure drop specified in the service conditions, and the lesser of these
max
value is
two values is used in the sizing equation. If it is desired to use ΔP
to account for the possibility
max
of choked flow conditions it can be calculated using the procedure for determining q maximum flow rate, or ΔP
, the allowable sizing
max
max
, the
pressure drop. If it can be recognized that choked flow conditions will not develop within the valve ΔP
need not be calculated.
max
* The ability to recognize which terms are appropriate for a specific sizing procedure can only be acquired through experience with different valve sizing problems. If any of the above terms appears to be new or unfamiliar, refer to the Abbreviations and Terminology Table (table 3-1) for a complete definition.
3−5
Page 50
Table 3-1. Abbreviations and Terminology
Symbol Symbol
C
Valve sizing coefficient P
v
d Nominal valve size P
1 2
Upstream absolute static pressure Downstream absolute static
pressure
D Internal diameter of the piping P
F
Valve style modifier,
d
dimensionless
F
Liquid critical pressure ratio factor,
F
dimensionless
F
Ratio of specific heats factor,
k
dimensionless
F
Rated liquid pressure recovery
L
factor, dimensionless
F
Combined liquid pressure recovery
LP
factor and piping geometry factor
ΔP
ΔP
max(LP)
Absolute thermodynamic critical
c
pressure
P
Vapor pressure absolute of liquid at
v
inlet temperature
ΔP Pressure drop (P1-P2) across the
valve Maximum allowable liquid sizing
max(L)
pressure drop Maximum allowable sizing pressure
drop with attached fittings
q Volume rate of flow
of valve with attached fittings (when there are no attached fittings, FLP equals FL), dimensionless
F
Piping geometry factor,
P
dimensionless
q
Maximum flow rate (choked flow
max
conditions) at given upstream conditions
G
Liquid specific gravity (ratio of
f
density of liquid at flowing
T
Absolute upstream temperature
1
(degree K or degree R) temperature to density of water at 60_F), dimensionless
G
Gas specific gravity (ratio of
g
density of flowing gas to density of air with both at standard conditions
(1)
, i.e., ratio of
w Mass rate of flow
molecular weight of gas to molecular weight of air), dimensionless
k Ratio of specific heats,
dimensionless
x Ratio of pressure drop to upstream
absolute static pressure (ΔP/P1),
dimensionless
K Head loss coefficient of a device,
dimensionless
x
Rated pressure drop ratio factor,
T
dimensionless
M Molecular weight, dimensionless Y Expansion factor (ratio of flow
coefficient for a gas to that for a
liquid at the same Reynolds
number), dimensionless
N Numerical constant
Z Compressibility factor,
dimensionless
Specific weight at inlet conditions
γ
1
υ Kinematic viscosity, centistokes
1. Standard conditions are defined as 60_F (15.5_C) and 14.7 psia (101.3kPa).
3−6
Page 51
Table 3-2. Equation Constants
N
1
N
2
N
5
N
6
Normal Conditions
TN = 0_C
Standard Conditions
(3)
N
7
(3)
N
9
1. Many of the equations used in these sizing procedures contain a numerical constant, N, along with a numerical subscript. These numerical constants provide a means for using different units in the equations. Values for the various constants and the applicable units are given in the above table. For example, if the flow rate is given in U.S. gpm and the pressures are psia, N1 has a value of 1.00. If the flow rate is m3/hr and the pressures are kPa, the N constant becomes 0.0865.
2. All pressures are absolute.
3. Pressure base is 101.3 kPa (1.013 bar)(14.7 psia).
Ts = 15.5_C
Standard Conditions
Ts = 60_F
N
8
Normal Conditions
TN = 0_C
Standard Conditions
Ts = 15.5_C
Standard Conditions
TS = 60_F
(1)
N w q p
0.0865
0.865
1.00
0.00214 890
0.00241
1000
2.73
27.3
63.3
3.94 394
4.17 417
1360 - - - scfh psia - - - deg R - - -
0.948
94.8
19.3
21.2
2120
22.4
2240 7320 - - - scfh psia - - - deg R - - -
- - -
- - -
- - -
- - -
- - -
- - -
- - -
kg/h kg/h
lb/h
- - -
- - -
- - -
- - -
kg/h kg/h
lb/h
- - -
- - -
- - -
- - -
m3/h m3/h
gpm
- - -
- - -
- - -
- - -
- - -
- - -
- - -
m3/h m3/h
m3/h m3/h
- - -
- - -
- - -
m3/h m3/h
m3/h m3/h
(2)
kPa
bar
psia
- - -
- - -
- - -
- - ­kPa
bar
psia kPa
bar
kPa
bar
kPa
bar
psia kPa
bar
kPa
bar
g
- - -
- - -
- - -
- - -
- - -
- - -
- - -
kg/m kg/m
lb/ft
- - -
- - -
- - -
- - -
- - -
- - -
- - -
- - -
- - -
- - -
- - -
3 3
3
T d, D
- - -
- - -
- - -
- - -
- - -mminch
- - -
- - -mminch
- - -
- - -
- - -
deg K deg K
deg K deg K
deg K deg K
deg R
deg K deg K
deg K deg K
- - -
- - -
- - -
- - -
- - -
- - -
- - -
- - -
- - -
- - -
- - -
- - -
- - -
- - -
- - -
- - -
- - -
1
5. Solve for required Cv, using the appropriate equation.
For volumetric flow rate units:
Cv+
N1FP
q
Ǹ
P1*P
G
f
 (17)
2
For mass flow rate units:
Cv+
N6FP (P1* P2)g
In addition to Cv, two other flow coefficients, K
w
Ǹ
 (18)
v
and Av, are used, particularly outside of North America. The following relationships exist:
KV+ (0.865)(CV)
AV+ (2.40 10*5)(CV)
6. Select the valve size using the appropriate flow coefficient table and the calculated Cv value.
Determining Piping Geometry Factor (Fp)
Determine an Fp factor if any fittings such as reducers, elbows, or tees will be directly attached to the inlet and outlet connections of the control valve that is to be sized. When possible, it is recommended that Fp factors be determined experimentally by using the specified valve in actual tests.
Calculate the Fp factor using the following equation:
*1ń2
2
C
SK
v
ǒ
Fp+ƪ1 )
where, N2 = Numerical constant found in the Equation
Constants table d = Assumed nominal valve size Cv = Valve sizing coefficient at 100% travel for the
assumed valve size
Ǔ
2
N
d
2
ƫ
(19)
3−7
Page 52
In the above equation, the “K” term is the algebraic sum of the velocity head loss coefficients of all of the fittings that are attached to the control valve.
SK + K1) K2) KB1* KB2(20)
where, K1 = Resistance coefficient of upstream fittings
Determining Maximum Flow Rate (q
Determine either q choked flow to develop within the control valve that is to be sized. The values can be determined by using the following procedures:
max
q
)
max
max
+ N1FLCv
or ΔP
P1* FFP
Ǹ
if it is possible for
max
v
G
 (25)
f
K2 = Resistance coefficient of downstream fittings KB1 = Inlet Bernoulli coefficient KB2 = Outlet Bernoulli coefficient The Bernoulli coefficients, KB1 and KB2, are used
only when the diameter of the piping approaching the valve is different from the diameter of the piping leaving the valve, whereby:
4
d
ǒ
KB1orKB2+ 1 *
where, d = Nominal valve size D = Internal diameter of piping If the inlet and outlet piping are of equal size, then
the Bernoulli coefficients are also equal, KB1 = KB2, and therefore they are dropped from the equation.
Ǔ
D
(21)
Values for FF, the liquid critical pressure ratio factor, can be obtained from figure 3-3, or from the following equation:
P
v
FF+ 0.96 * 0.28 
Values of FL, the recovery factor for rotary valves installed without fittings attached, can be found in published coefficient tables. If the given valve is to be installed with fittings such as reducer attached to it, FL in the equation must be replaced by the quotient FLP/Fp, where:
K
C
1
FLP+
and
K1 = K1 + K
where,
ǒ
ƪ
N
d
2
B1
Ǹ
 (26)
P
c
FL
*1ń2
1
(27)
ƫ
2
2
v
Ǔ
)
2
The most commonly utilized fitting in control valve installations is the short-length concentric reducer. The equations for this fitting are as follows:
For an inlet reducer:
2
2
d
K1+ 0.5ǒ1 *
For an outlet reducer:
K2+ 1.0ǒ1 *
For a valve installed between identical reducers:
K1) K2+ 1.5ǒ1 *
3−8
D
2
d
D
Ǔ
(22)
2
2
Ǔ
(23)
2
2
d
Ǔ
2
D
2
(24)
K1 = Resistance coefficient of upstream fittings KB1 = Inlet Bernoulli coefficient Note: See the procedure for determining Fp, the
piping geometry factor, for definitions of the other constants and coefficients used in the above equations.)
Determining Allowable Sizing Pressure Drop (DP
ΔP
(the allowable sizing pressure drop) can be
max
determined from the following relationships: For valves installed without fittings:
DP
)
max
+ FL2ǒP1* FFP
max(L)
Ǔ
(28)
v
Page 53
Figure 3-3. Liquid Critical Pressure Ratio Factor for Water
For valves installed with fittings attached:
2
F
LP
DP
max(LP)
+
ǒ
ǒ
Ǔ
P1* FFP
F
P
Ǔ
(29)
V
where, P1 = Upstream absolute static pressure P2= Downstream absolute static pressure Pv = Absolute vapor pressure at inlet temperature Values of FF, the liquid critical pressure ratio
factor, can be obtained from figure 3-3 or from the following equation:
P
v
FF+ 0.96 * 0.28
Ǹ
 (30)
P
c
An explanation of how to calculate values of FLP, the recovery factor for valves installed with fittings attached, is presented in the preceding procedure determining q
Once the ΔP
(the maximum flow rate).
max
value has been obtained from the
max
appropriate equation, it should be compared with the actual service pressure differential (ΔP = P1 −
P2). If ΔP
is less than ΔP, this is an indication
max
that choked flow conditions will exist under the service conditions specified. If choked flow conditions do exist (ΔP
< P1 − P2), then step
max
five of the procedure for sizing valves for liquids must be modified by replacing the actual service pressure differential (P1 − P2) in the appropriate valve sizing equation with the calculated ΔP
max
value. Note: Once it is known that choked flow conditions
will develop within the specified valve design (ΔP
is calculated to be less than ΔP), a further
max
distinction can be made to determine whether the choked flow is caused by cavitation or flashing. The choked flow conditions are caused by flashing if the outlet pressure of the given valve is less than the vapor pressure of the flowing liquid. The choked flow conditions are caused by cavitation if the outlet pressure of the valve is greater than the vapor pressure of the flowing liquid.
Liquid Sizing Sample Problem
Assume an installation that, at initial plant start-up, will not be operating at maximum design capability. The lines are sized for the ultimate system capacity, but there is a desire to install a control valve now which is sized only for currently
3−9
Page 54
anticipated requirements. The line size is 8-inches, and an ANSI Class 300 globe valve with an equal percentage cage has been specified. Standard concentric reducers will be used to install the valve into the line. Determine the appropriate valve size.
1. Specify the necessary variables required to size the valve:
D Desired valve design is an ANSI Class 300 globe valve with equal percentage cage and an assumed valve NPS 3.
D Process fluid is liquid propane
D Service conditions are q = 800 gpm
P1 = 300 psig = 314.7 psia
To compute ΣK for a valve installed between identical concentric reducers:
SK + K
where, D = 8 inches, the internal diameter of the piping
so,
) K
1
2
+ 1.5ǒ1 *
+ 1.5ǒ1 *
+ 1.11
d
D
(3) (8)
2
2
Ǔ
2
2
2
Ǔ
2
P2 = 275 psig = 289.7 psia ΔP = 25 psi T1 = 70°F Gf = 0.50 Pv = 124.3 psia Pc = 616.3 psia
2. Use an N1 value of 1.0 from the Equation Constants table.
3. Determine Fp, the piping geometry factor. Because it is proposed to install a NPS 3 valve in
an 8-inch line, it will be necessary to determine the piping geometry factor, Fp, which corrects for losses caused by fittings attached to the valve.
From Equation 19,
*1ń2
2
C
SK
v
ǒ
Fp +ƪ1 )
where, N2 = 890, from the Equation Constants Table d = 3 inches, from step one Cv = 121, from the flow coefficient table for an
ANSI Class 300, NPS 3 globe valve with equal percentage cage.
Ǔ
ƫ
2
N
d
2
*1ń2
ǒ
max
q
Ǹ
P
121
Ǔ
2
3
> ΔP).
P1*P
G
f
800
2
ƫ
2
25
Ǹ
)
0.5
Fp+ƪ1 )
+ 0.90
4. Determine ΔP pressure drop)
Based upon the small required pressure drop, the flow will not be choked (ΔP
5. Solve for Cv, using equation 17.
6. Select the valve size using the flow coefficient table and the calculated Cv value.
The required Cv of 125.7 exceeds the capacity of the assumed valve, which has a Cv of 121.
Although, for this example, it may be obvious that the next larger size (NPS 4) would be the correct valve size, this may not always be true, and a repeat of the above procedure should be carried out. This is assuming that a NPS 4 valve, Cv =
203. This value was determined from the flow coefficient table for an ANSI Class 300, NPS 4 globe valve with an equal percentage cage.
Recalculate the required Cv using an assumed C value of 203 in the Fp calculation.
1.11 890
(the allowable sizing
max
Cv+
N1F
+
(
1.0)(0.90
+ 125.7
v
3−10
Page 55
where,
The required Cv then becomes:
and
and
+ƪ1 )
F
p
+ƪ1 )
+ 0.93
SK + K1) K
+ 1.5ǒ1 *
+ 1.5ǒ1 *
+ 0.84
C
SK
ǒ
N
d
2
0.84
203
ǒ
890
4
N1F
Ǹ
p
(
1.0)(0.97
q
P1*P
800
2
G
f
)
v
25
Ǹ
0.5
is close to the
2
2
2
d
Ǔ
2
D
2
16
Ǔ
64
Because this newly determined C
used initially for this recalculation (116.2 versus
C
v
121.7), the valve sizing procedure is complete,
*1ń2
2
v
Ǔ
ƫ
2
*1ń2
2
Ǔ
ƫ
2
and the conclusion is that a NPS 4 valve opened to about 75% of total travel should be adequate for the required specifications.
Sizing for Pulp Stock
The behavior of flowing pulp stock is different from water or viscous Newtonian fluids. It is necessary to account for this behavior when determining the required valve size. Methods have been developed to aid in determining correct valve size for these types of applications.
Cv+
+
+ 116.2
N1F
Ǹ
p
(
1.0)(0.93
SK
ǒ
N
2
0.84 890
q
P1*P
800
C
d
121.7
ǒ
2
G
f
25
Ǹ
)
0.5
*1ń2
2
v
Ǔ
ƫ
2
*1ń2
2
Ǔ
ƫ
2
4
Cv+
+
+ 121.7
This solution indicates only that the NPS 4 valve is large enough to satisfy the service conditions given. There may be cases, however, where a more accurate prediction of the Cv is required. In such cases, the required Cv should be determined again using a new Fp value based on the Cv value obtained above. In this example, Cv is 121.7, which leads to the following result:
Fp+ƪ1 )
+ƪ1 )
+ 0.97
The pulp stock sizing calculation uses the following modified form of the basic liquid sizing equation (equation thirteen, above):
Q + CvKpDP
where, ΔP = sizing pressure drop, psid Cv = valve flow coefficient Kp = pulp stock correction factor Q = volumetric flow rate, gpm The root of this calculation is the pulp stock
correction factor, Kp. This factor is the ratio of the pulp stock flow rate to water flow rate under the same flowing conditions. It, therefore, modifies the relationship between Q, Cv, and ΔP to account for the effects of the pulp stock relative to that for water. The value of this parameter, in theory, depends on many factors such as pulp stock type, consistency, freeness, fiber length, valve type and pressure drop. However, in practice, it appears that the dominant effects are due to three primary factors: pulp type, consistency and pressure differential. Values of Kp for three different pulp stock types are shown in figure 3-4 through 3-6.
Ǹ
3−11
Page 56
Once the value of the pulp stock correction factor is known, determining the required flow coefficient or flow rate is equivalent to basic liquid sizing. For example, consider the following:
Q = 1000 gpm of 8% consistency Kraft pulp stock ΔP = 16 psid
P1 = 150 psia Kp = 0.83 from figure 3-5
therefore, C
v
+
Q
Ǹ
KpDP
+
0.83 16
1000
Ǹ
+ 301
3−12
E1377
Figure 3-4. Pulp Stock Correction Factors for Kraft Pulp
Page 57
E1378
Figure 3-5. Pulp Stock Correction Factors for Mechanical Pulp
E1379
Figure 3-6. Pulp Stock Correction Factors for Recycled Pulp
3−13
Page 58
3−14
Page 59
Cavitation and Flashing
Severe Liquid Flow Sizing
Proper control valve sizing is important to successful plant operation. However, sizing is not always straightforward. At times, it involves considering phenomena beyond that of general service. Selecting the appropriate control valve can be extremely critical to the complete process loop. Liquid sizing for severe flow service, including events involving cavitation or flashing, must be closely examined in order to obtain successful plant operation.
Sizing for severe flow service applications can be explained by expanding upon base liquid sizing knowledge. The following sections will build upon the basic liquid sizing equations presented in chapter 3 in order to study liquid fluid behaviors involved with choked flow, cavitation, flashing, viscous flow, and sizing for pulp stock. In addition, discussion of considerations in selecting the appropriate control valves for cavitating and flashing services will take place.
Choked Flow
The equation illustrated below (chapter 3, equation
14) would imply that, for a given valve, flow could be continually increased to infinity by simply increasing the pressure differential across the valve.
P1* P
Q + C
In reality, the relationship given by this equation holds for only a limited range. As the pressure differential is increased a point is reached where the realized mass flow increase is less than expected. This phenomenon continues until no additional mass flow increase occurs in spite of
v
Ǹ
2
G
(31)
Chapter 4
A3442 / IL
Figure 4-1. Typical Flow Curve Showing Relationship
Between Flow Rate Q and Imposed Pressure
Differential DP
increasing the pressure differential (figure 4-1). This condition of limited maximum mass flow is known as choked flow. To understand more about what is occurring, and how to correct it when sizing valves, it is necessary to revisit some of the fluid flow basics discussed in chapter 3.
Recall that, as a liquid passes through a reduced cross-sectional area, velocity increases to a maximum and pressure decreases to a minimum. As the flow exits, velocity is restored to its original value while the pressure is only partially restored thus creating a pressure differential across the device. As this pressure differential is increased, the velocity through the restriction increases (increasing flow) and the vena contracta pressure decreases. If a sufficiently large pressure differential is imposed upon the device, the minimum pressure may decrease to, or below, the vapor pressure of the liquid under these conditions. When this occurs the liquid becomes thermodynamically unstable and partially vaporizes. The fluid now consists of a liquid and vapor mixture that is no longer incompressible.
www.Fisher.com
Page 60
While the exact mechanisms of liquid choking are not fully confirmed, there are parallels between this and critical flow in gas applications. In gas flows, the flow becomes critical (choked) when the fluid velocity is equal to the acoustic wave speed at that point in the fluid. Pure incompressible fluids have high wave speeds and, practically speaking, they do not choke. Liquid-to-gas or liquid-to-vapor mixtures, however, typically have low acoustic wave speeds (actually lower than that for a pure gas or vapor), so it is possible for the mixture velocity to equal the sonic velocity and choke the flow.
Another way of viewing this phenomenon is to consider the density of the mixture at the vena contracta. As the pressure decreases, so does the density of the vapor phase, hence, the density of the mixture decreases. Eventually, this decrease in density of the fluid offsets any increase in the velocity of the mixture to the point where no additional mass flow is realized.
It is necessary to account for the occurrence of choked flow during the sizing process so that undersizing of a valve does not occur. In other words, knowing the maximum flow rate a valve can handle under a given set of conditions is necessary. To this end, a procedure was developed which combines the control valve pressure recovery characteristics with the thermodynamic properties of the fluid to predict the maximum usable pressure differential, i.e. the pressure differential at which the flow chokes.
A pressure recovery coefficient can be defined as:
Km+
P1* P
P1* P
2
vc
(32)
A3443 / IL
Figure 4-2. Generalized rc Curve
P
vc
rc+ FF+ 0.96 * 0.28
Ǹ
P
c
(34)
The value of Km is determined individually by test for each valve style and accounts for the pressure recovery characteristics of the valve.
By rearranging equation sixteen, the pressure differential at which the flow chokes can be determined is known as the allowable pressure differential:
(P1* P2)
+ Km(P1* rcPv)
allowab le
(35)
When this allowable pressure differential is used in the equation below (equation 14 from chapter 3), the choked flow rate for the given valve will result.
Under choked flow conditions, it is established that:
Pvc+ rcP
v
(33)
The vapor pressure, Pv, is determined at inlet temperature because the temperature of the liquid does not change appreciably between the inlet and the vena contracta. The term “rc” is known as the critical pressure ratio, and is another thermodynamic property of the fluid. While it is actually a function of each fluid and the prevailing conditions, it has been established that data for a variety of fluids can be generalized, according to figure 4-2 or the following equation, without significantly compromising overall accuracy:
4−2
Q + C
Ǹ
v
P1* P
2
G
If this flow rate is less than the required service flow rate, the valve is undersized. It is then necessary to select a larger valve, and repeat the calculations using the new values for Cv and Km.
The equations supplied in the sizing standard are, in essence, the same as those presented in this chapter, except the nomenclature has been changed. In this case:
Q
max
+ N1FLC
P1* FFP
Ǹ
v
v
G
(36)
Page 61
where:
W1350
Figure 4-3. Typical Cavitation Damage
= K
L
= rc
F
Ǹ
m
F F N1 = units factor
Cavitation
Closely associated with the phenomenon of choked flow is the occurrence of cavitation. Simply stated, cavitation is the formation and collapse of cavities in the flowing liquid. It is of special concern when sizing control valves because if left unchecked, it can produce unwanted noise, vibration, and material damage.
As discussed earlier, vapor can form in the vicinity of the vena contracta when the local pressure falls below the vapor pressure of the liquid. If the outlet pressure of the mixture is greater than the vapor pressure as it exits the valve, the vapor phase will be thermodynamically unstable and will revert to a liquid. The entire liquid-to-vapor-to-liquid phase change process is known as “cavitation,” although it is the vapor-to-liquid phase change that is the primary source of the damage. During this phase change a mechanical attack occurs on the material surface in the form of high velocity micro-jets and shock waves. Given sufficient intensity, proximity, and time, this attack can remove material to the point where the valve no longer retains its functional or structural integrity. figure 4-3 shows an example of such damage.
A3444
Figure 4-4. Comparison of High and Low Recovery Valves
The concept of pressure recovery plays a key role in characterizing a valve’s suitability for cavitation service. A valve that recovers a significant percentage of the pressure differential from the inlet to the vena contracta is appropriately termed a high recovery valve. Conversely, if only a small percent is recovered, it is classified as a low recovery valve. These two are contrasted in figure 4-4. If identical pressure differentials are imposed upon a high recovery valve and a low recovery valve, all other things being equal, the high recovery valve will have a relatively low vena contracta pressure. Thus, under the same conditions, the high recovery valve is more likely to cavitate. On the other hand, if flow through each valve is such that the inlet and vena contracta pressures are equal, the low recovery valve will have the lower collapse potential (P2−Pvc), and cavitation intensity will generally be less.
Therefore, it is apparent that the lower pressure recovery devices are more suited for cavitation service.
The possibility of cavitation occurring in any liquid flow application should be investigated by checking for the following two conditions:
Cavitation and the damage it causes are complex processes and accurate prediction of key events such as damage, noise, and vibration level is difficult. Consequently, sizing valves for cavitation conditions requires special considerations.
1. The service pressure differential is approximately equal to the allowable pressure differential.
2. The outlet pressure is greater than the vapor pressure of the fluid.
4−3
Page 62
W2842
Figure 4-6. Typical Flashing Damage
A3445
Figure 4-5. Pressure Profiles for Flashing
and Cavitating Flows
If both of these conditions are met, the possibility exists that cavitation will occur. Because of the potentially damaging nature of cavitation, sizing a valve in this region is not recommended. Special purpose trims and products to control cavitation should be considered. Because of the great diversity in the design of this equipment, it is not possible to offer general guidelines for sizing valves with those specialized trims. Please refer to specific product literature for additional information.
Cavitation in Pulp Stock
Cavitation behavior in low consistency pulp stock (less than 4%) is treated as equivalent to that of water. Generally, pulp stock consistency greater than 4% is not known to be problematic, as the stock itself absorbs the majority of the energy produced by the cavitating microjets.
Flashing
Flashing shares some common features with choked flow and cavitation in that the process begins with vaporization of the liquid in the vicinity of the vena contracta. However, in flashing applications, the pressure downstream of this point never recovers to a value that exceeds the vapor pressure of the fluid. Thus, the fluid remains in the vapor phase. Schematic pressure profiles for flashing and cavitating flow are contrasted in figure 4-5.
Flashing is of concern not only because of its ability to limit flow through the valve, but also because of the highly erosive nature of the liquid-vapor mixture. Typical flashing damage is smooth and polished in appearance (figure 4-6) in
stark contrast to the rough, cinder-like appearance of cavitation (figure 4-3).
If P2 < Pv, or there are other service conditions to indicate flashing, the standard sizing procedure should be augmented with a check for choked flow. Furthermore, suitability of the particular valve style for flashing service should be established with the valve manufacturer. Selection guidelines will be discussed later in the chapter.
Viscous Flow
One of the assumptions implicit in the sizing procedures presented to this point is that of fully developed, turbulent flow. Turbulent flow and laminar flow are flow regimes that characterize the behavior of flow. In laminar flow, all fluid particles move parallel to one another in an orderly fashion and with no mixing of the fluid. Conversely, turbulent flow is highly random in terms of local velocity direction and magnitude. While there is certainly net flow in a particular direction, instantaneous velocity components in all directions are superimposed on this net flow. Significant fluid mixing occurs in turbulent flow. As is true of many physical phenomena, there is no distinct line of demarcation between these two regimes. Thus, a third regime of transition flow is sometimes recognized.
The physical quantities which govern this flow regime are the viscous and inertial forces; this ratio is known as the Reynolds number. When the viscous forces dominate (a Reynolds number below 2,000) the flow is laminar, or viscous. If the inertial forces dominate (a Reynolds number above 3,000) the flow is turbulent, or inviscid.
Consideration of these flow regimes is critical because the macroscopic behavior of the flow changes when the flow regime changes. The primary behavior characteristic of concern in sizing is the nature of the available energy losses. In earlier discussion it was asserted that, under the assumption of inviscid flow, the available energy
4−4
Page 63
A3446
Figure 4-7. Viscous Flow Correction Factors
losses were proportional to the square of the velocity.
consists of a prescribed length of straight pipe up and downstream of the valve.) Field installation may require elbows, reducers, and tees, which will induce additional losses immediately adjacent to the valve. To correct for this situation, two factors are introduced:
D F
p
D F
lp
Factor Fp is used to correct the flow equation when used in the incompressible range, while factor Flp is used in the choked flow range. The expressions for these factors are:
Fp+
2
C
SK
v
ǒ
ƪ
Ǔ
2
N
d
2
) 1
*1ń2
ƫ
In the laminar flow regime, these same losses are linearly proportional to the velocity; in the transitional regime, these losses tend to vary. Thus, for equivalent flow rates, the pressure differential through a conduit or across a restriction will be different for each flow regime.
To compensate for this effect (the change in resistance to flow) in sizing valves, a correction factor was developed. The required Cv can be determined from the following equation:
C
+ FRC
v
reqȀd
The factor FR is a function of the Reynolds number and can be determined from a simple nomograph procedure, or by calculating the Reynolds number for a control valve from the following equation and determining FR from figure 4-7.
Rev+
N4FdQ
nFL1ń2Cv1ń2
v
rated
(37)
) 1
1ń4
ƫ
2
(FL)
C
v
2
ǒ
Ǔ
2
d
1
ƪ
N
2
(39)
) 1
*1ń2
ƫ
(40)
4
(41a)
(41b)
FIp+ F
The term K in equation 39 is the sum of all loss coefficients of all devices attached to the valve and the inlet and outlet Bernoulli coefficients. Bernoulli coefficients account for changes in the kinetic energy as a result of a cross-sectional flow area change. They are calculated from the following equations.
Thus, if reducers of identical size are used at the inlet and outlet, these terms cancel out.
The term “KI” in equation 40 includes the loss coefficients and Bernoulli coefficient on the inlet side only.
FL2K
ƪ
L
K
B
inlet
K
B
outlet
N
2
+ 1 * (dńD)
+ (dńD)4* 1
2
C
I
v
ǒ
Ǔ
2
d
(38)
To predict flow rate, or resulting pressure differential, the required flow coefficient is used in place of the rated flow coefficient in the appropriate equation.
When a valve is installed in a field piping configuration which is different than the specified test section, it is necessary to account for the effect of the altered piping on flow through the valve. (Recall that the standard test section
In the absence of test data or knowledge of loss coefficients, loss coefficients may be estimated from information contained in other resources.
The factors Fp and FI would appear in flow equations 31 and 36 respectively as follows:
For incompressible flow:
Q + FpC
v
Ǹ
P1* P
2
G
(42)
4−5
Page 64
E0111
Figure 4-8. The implosion of cavitation vapor cavities is rapid, asymmetric and very energetic. The mechanics of
collapse give rise to high velocity liquid jets, which impinge on metallic surfaces. Ultimately, the metal fatigues and
breaks away in small pieces.
For choked flow:
P1* FFP
Q
+ FIC
max
v
Ǹ
v
G
(43)
Valve Material Damage
Cavitation damage is usually the most troublesome side effect plaguing the control valve industry. It does not take many examples of such damage to fully demonstrate the destructive capabilities of cavitation.
Typically, cavitation damage is characterized by an irregular, rough surface. The phrase “cinder-like appearance” is used frequently to describe cavitation damage. It is discernible from other types of flow damage such as erosion and flashing damage which are usually smooth and shiny in appearance. This next section will deal with cavitation damage, although most of the comments can also apply to flashing damage. A comparison of figures 4-3 and 4-6 illustrates these differences.
While the results of cavitation damage are all too familiar, the events and mechanisms of the cavitation damage process are not known or understood completely in spite of extensive study over the years. There is general agreement, however, on a number of aspects of the process and consistency in certain observations.
Cavitation damage has been observed to be associated with the collapse stage of the bubble dynamics. Furthermore, this damage consists of two primary events or phases:
1. An attack on a material surface as a result of cavitation in the liquid.
2. The response or reaction of the material to the attack.
Any factor that influences either of these events will have some sort of final effect on the overall damage characteristics.
The attack stage of the damage process has been attributed to various mechanisms, but none of them account for all the observed results. It appears that this attack involves two factors that interact in a reinforcing manner:
1. Mechanical attack
2. Chemical attack There is evidence indicating the almost universal
presence of a mechanical attack component which can occur in either of two forms:
1. Erosion resulting from high-velocity microjets impinging upon the material surface.
2. Material deformation and failure resulting from shock waves impinging upon the material surface.
In the first type of mechanical attack a small, high-velocity liquid jet is formed during the asymmetrical collapse of a vapor bubble. If orientation and proximity of the jets is proper, a damaging attack occurs on the metal surface as shown in figure 4-8. This is the most probable form of mechanical attack. High-speed cinematography, liquid drop impingement comparisons, and various analytical studies support its presence.
The second type of mechanical attack, shock wave impingement, does not appear to be as
4−6
Page 65
dominant. Analytical estimations of vapor bubble collapse pressures do not suggest that the shock waves are on a damaging order of magnitude — at least during the initial collapse. Experimental studies bear this out. They also reveal that resulting collapse pressures increase in magnitude with subsequent rebound collapses and become potentially damaging.
The other primary component of attack, chemical attack, is perhaps more significant because it interacts with the mechanical component rather than acting by itself. After a period of mechanical attack, many of the protective coatings of a material (films, oxides, etc.) are physically removed, making the base material more vulnerable to chemical attack.
Just as a number of variables have an affect on the behavior of individual cavities, a number of variables influence the degree and extent of material damage. The principal variables that influence cavitation damage include air content, pressure, velocity and temperature.
Air content impacts cavitation damage primarily through its effect on cavity mechanics. Again, two opposing trends are evident on increasing the amount of air. Adding air supplies more entrained air nuclei which, in turn, produce more cavities that can increase the total damage. After a point, however, continued increases in air content disrupt the mechanical attack component and effectively reduce the total damage.
Pressure effects also exhibit two opposing trends. Given a fixed inlet pressure P1, decreasing the backpressure P2 tends to increase the number of cavities formed, which creates a worse situation. However, a lower backpressure also creates a lower collapse pressure differential (P2 − Pv), resulting in a decrease in the intensity of the cavitation.
An additional pressure effect, unrelated to the above, concerns the location of damage. As the backpressure is changed, the pressure required to collapse the cavities moves upstream or downstream depending upon whether the pressure is increased or decreased, respectively. In addition to a change in the severity of the total damage, there may be an accompanying change in the physical location of the damage when pressure conditions are altered.
It should now be apparent that the cavitation and flashing damage process is a complex function of:
1. Intensity and degree of cavitation (cavitation attack)
2. Material of construction (material response)
3. Time of exposure While the above-mentioned influences have been
observed, they remain to be quantified. Often, experience is the best teacher when it comes to trying to quantify cavitation damage.
Noise
Although the noise associated with a cavitating liquid can be quite high, it is usually of secondary concern when compared to the material damage that can exist. Therefore, high intensity cavitation should be prevented to decrease the chance of material damage. If cavitation is prevented, the noise associated with the liquid flow will be less than 90 dBA.
For a flashing liquid, studies and experience have shown that the noise level associated with the valve will be less than 85 dBA, regardless of the pressure drop involved to create the flashing.
Cavitation / Flashing Damage Coefficients and Product Selection
Cavitation in control valves can be an application challenge. It is important to understand the guidelines when selecting an appropriate valve and trim. Experience, knowledge of where cavitation problems begin, and the effect of valve size and type, are all useful in deciding which valve and trim can be used.
Terminology
FL: Pressure recovery coefficient. A valve parameter used to predict choked flow.
ΔP
: Allowable sizing pressure drop. The
max
limiting pressure drop beyond which any increase in pressure drop brought about by decreasing P will not generate additional flow through the valve. Therefore the valve is “choked”. Per equation 28 of chapter 3:
DP
max(L)
+ F
2
(P1* FFPv)
L
where, P1 = Upstream absolute static pressure Pv = Absolute vapor pressure at inlet temperature
2
4−7
Page 66
FF = the liquid critical pressure ratio factor. Can be obtained from the following equation:
P
v
FF+ 0.96 * 0.28
Ǹ
P
c
Kc: Cavitation coefficient. A valve parameter dependent upon valve style and trim. It predicts the beginning of cavitation related damage and vibration problems for a particular valve/trim style.
DP
+ Kc(P1* Pv)
Cavitation
Ar: Application ratio. A cavitation index which is dependent upon the actual service conditions. It indicates the presence of flashing or potentially cavitating services.
indicate an absence of cavitation. Thus, noise due to cavitation may still be present. If noise is a concern, use hydrodynamic noise prediction to assist in selecting a valve.
The following restrictions apply to these guidelines:
D Water only D Customer requirements that may require use
of different guidelines Examples:
D Long maintenance intervals D Very low noise requirements
Ar+ (DP
)ń(P1* Pv)
Flow
Ki: Incipient cavitation coefficient. A valve parameter which predicts the point of initial generation and collapse of vapor bubbles. (Specific values of Ki are generally not available).
DP
IncipientCav.
+ Ki(P1* Pv)
Valve Selection Coefficient Criteria and Selection Procedure
1. Determine ΔP
2. Calculate A
r
a. If Ar 1.0, the service is flashing. b. If Ar 1.0, the service is potentially
cavitating.
3. Use ΔP
and Ar in conjunction with the K
Flow
values of valve trim ΔP limits and Kc indices, as well as other valve selection criteria (P1, temp., style, etc.), to make a valve selection.
The cavitation coefficient (Kc) is based upon valve type and pressure drop limit. Select a valve/trim that has a ΔP limit higher than the service ΔP and a Kc higher that the service Ar.
Flowing
(ΔP
Flow
)
c
Flow
D Different fluids D Corrosive an/or erosive environment D Installation limitations D Valve usage rate
These guidelines will aid in selecting a valve and trim designed to help prevent cavitation damage and thus offer long term valve life in potentially cavitating services.
For detailed cavitating service valve selection guidelines, please contact your local sales office.
Additional Guidelines
D For all valve styles and sizes, applying backpressure to the valve can eliminate cavitation. This solution is most effective when the service conditions do not vary widely.
D Fluids information:
— Cold water is the most common problem fluid.
— Pure component fluids, similar to water, can also cause problems.
Application Guidelines
Guidelines (including Ar and Kc ratios) were developed to help select the proper valve construction when cavitation is present. These guidelines are intended to provide valve selections free of cavitation related material and vibration damage over the long term. The guidelines do not
4−8
— Fluid mixtures, like that of pulp stock, can be less damaging even when the numbers indicate cavitation is present. Experience is most useful here.
These guidelines have been constructed from a broad base of experience. There are undoubtedly exceptions to these guidelines and, as always,
Page 67
recent experience should be used to select the best valve for specific applications.
Hardware Choices for Flashing Applications
It was stated previously that flashing is a liquid flow phenomenon that is defined by the system, and not by the valve design. Therefore, since flashing cannot be prevented by the control valve, all that can be done is to prevent flashing damage. There are three main factors that affect the amount of flashing damage in a control valve:
1. Valve design
2. Materials of construction
3. System design
RESTRICTED-TRIM ADAPTOR
Valve Design
While valve design has no bearing upon whether flashing does or does not occur, it can have a large impact on the intensity of flashing damage. Generally, there are two valve designs that are more resistant to flashing damage.
An angle valve with standard trim in the flow down direction and with a downstream liner is perhaps the best solution to preventing flashing damage. figure 4-9 shows a typical angle valve for flashing service.
This construction is an excellent choice because flashing damage occurs when high velocity vapor bubbles impinge on the surface of a valve. An angle valve reduces the impingement by directing flow into the center of the downstream pipe, not into the valve body. If damage does occur, the downstream liner can be replaced much more economically than the valve body.
A rotary plug style of valve is also an excellent choice for medium to low pressure flashing applications. This valve can be installed with the plug facing the downstream side of the body (figure 4-10) so when flashing occurs, it does so downstream of the valve. In some cases, a spool piece of sacrificial pipe is used to absorb the flashing damage.
Materials of Construction
There are several factors that determine the performance of a given material in a particular flashing and/or cavitating situation including the materials’ toughness, hardness, and its corrosion
LINER
W0970
Figure 4-9. Fisher EAS valve with outlet liner is
used for flashing service. The liner resists
erosion and protects the body.
resistance in the application environment. Within a given material family (e.g. the 400-series stainless steels), hardness is a fairly accurate method for ranking materials. However, when comparing materials from different families, hardness does not correlate with overall resistance to damage. For example, cobalt-chromium-tungsten based alloy 6 has much more resistance to cavitation and flashing than either hardened type 410 or 17-4 stainless steels, even though they all exhibit roughly the same hardness. In fact, alloy 6 equals or exceeds the performance of many materials with a hardness of 60 HRC and higher. The superior performance of alloy 6 is attributed to a built-in “energy-absorbing” mechanism shared by a number of cobalt-base alloys.
Materials commonly used for flashing and cavitating services are alloy 6 (solid and overlays), nickel-chromium-boron alloys (solid and overlays), hardened 440C stainless steel, hardened 17-4 stainless steel, and hardened 410/416 stainless steel.
Because the standard mater ials used in valv e bodies are relat iv ely soft, selec tion for cav it at ion and flashing resist ance must rely upon fact ors other than hardness. In general, as the chromium and molybdenum content s increas e, the resist ance to damage by bot h cavitation and flashing increase. Thus, the chromium-molybdenum alloy steels have
4−9
Page 68
W8359
Figure 4-10. Rotary plug valves, such as the V500 Vee-Ball valve(reverse flow trim direction, trim level 3) have excellent
erosion resistance and perform well in flashing service
better resist anc e than the carbon steels, and the stainless st eels have even better resist anc e than the chromium-molybdenum alloy steels.
In the past, ASME SA217 grade C5 was the most commonly specified chromium-molybdenum alloy steel. However, because of the poor casting, welding, and manufacturing characteristics of C5, ASME SA217 grade WC9 has become a more popular alternative. Experience indicates that WC9 performs on par with C5 in cavitation and flashing services despite its lower chromium content (2-1/4% vs. 5%). This is apparently because its higher molybdenum content (1% vs. 1/2%) makes up for the lower chromium content.
E0864
Figure 4-11. Location of a control valve can often be changed to lengthen its life or allow use of less expensive products. Mounting a heater drain valve
near the condenser is a good example.
ASTM A217 grade C12A is becoming more common in the power industry. This material has excellent high temperature properties, and is typically used at temperatures exceeding 1000°F (538°C). Its higher chromium and molybdenum contents (9% Cr, 1% Mo) would indicate excellent cavitation resistance.
While angle bodies are a better choice for flashing applications than globe bodies, they are also a more economical choice in most cases. This is because carbon steel bodies can be used in an angle valve with an optional hardened downstream liner (17-4PH SST or alloy 6) because only the downstream portion of the valve will experience the flashing liquid (see figure 4-9). If a globe valve is used, it is better to use a chromium-molybdenum alloy steel body because the flashing will occur within the body itself.
4−10
System Design
This section discusses system design where it is assumed flashing will occur. The optimum position of the valve in a flashing service can have a great impact on the success of that valve installation.
Figure 4-11 shows the same application with the exception of the location of the control valve. These figures are fairly representative of a valve that controls flow to a condenser. In the top illustration, the flashing will occur in the downstream pipe between the control valve and the tank. Any damage that occurs will do so in that downstream piping area. In the bottom illustration, the flashing will occur downstream of the valve within the tank.
Because the tank has a much larger volume compared to the pipe, high velocity fluid
Page 69
impingement on a material surface will not occur as there is essentially no material surface. This system design will help prevent flashing damage.
Hardware Choices for Cavitating Applications
The design of a control valve greatly affects the ability of a valve to control cavitation. This section discusses the theories behind each type of trim design that is used for cavitation control and also reviews each type of Fisher trim used to control cavitation.
The design theories or ideas behind the various trim designs include:
D Tortuous path D Pressure drop staging D Expanding flow area D Drilled hole design D Characterized cage D Separation of seating and throttling locations D Cavitation control in lieu of prevention
Tortuous Path
Providing a tortuous path for the fluid through the trim is one way to lower the amount of pressure recovery of that trim. Although this tortuous path can be in the form of drilled holes, axial flow passages or radial flow passages, the effect of each design is essentially the same. The use of a tortuous path design concept is used in virtually every cavitation control style of hardware.
Pressure Drop Staging
This approach to damage control routes flow through several restrictions in series, as opposed to a single restriction. Each restriction dissipates a certain amount of available energy and presents a lower inlet pressure to the next stage.
A well-designed pressure-staging device will be able to take a large pressure differential while maintaining the vena contracta pressure above the vapor pressure of the liquid, which prevents the liquid from cavitating.
A2149-1
Figure 4-12. In Cavitrol trim, the pressure drop is
staged in two or more unequal steps. Staging is
accomplished by increasing the flow area from
stage to stage. This stepped reduction allows full
pressure drop without the vena contracta pressure
falling below the vapor pressure of the liquid.
For the same pressure differential then, the vena contracta pressure in conventional trim will be lower than for the staged trim, and the liquid will be more prone to cavitate.
Trims that dissipate available energy have an additional advantage. If the design pressure differential is exceeded and cavitation does occur, the intensity will be less. This is because the pressure that causes the collapse of cavities (i.e., the recovered pressure) will be less.
Expanding Flow Areas
The expanding flow area concept of damage control is closely related to the pressure drop staging concept. Figure 4-12 shows a pressure versus distance curve for flow through a series of fixed restrictions where the area of each succeeding restriction is larger than the previous. Notice that the first restriction takes the bulk of the pressure drop, and the pressure drop through successive sections decreases.
4−11
Page 70
provides relatively high flow efficiency while maintaining a high F
2
, which results in a low
L
pressure recovery. This design represents the optimal choice between capacity and cavitation control.
Another benefit of this type of drilled hole design is that the vena contracta point is further from the exit of the hole when compared to a straight through drilled hole. Consequently, if pressure recovery above the vapor pressure occurs (cavitation), it will do so further away from the external wall of the cage, and the amount of damage will be smaller.
E0113−1
Figure 4-13. By combining the geometric effects of
thick plates and thin plates, it is possible to design
a flow passage that optimizes capacity and
recovery coefficient values. These carefully
designed passages are used exclusively in
Cavitrol cages.
In the last restriction, where cavitation is most likely to occur, the pressure drop is only a small percentage of the total drop, and the pressure recovery is substantially lowered.
The expanding flow area concept requires fewer pressure drop stages to provide the same cavitation protection as the equal area concept. Because the pressure drop of the last stage is rather low compared to the total pressure drop, if cavitation does occur, the intensity and cavitation damage will be much less.
Drilled Hole Design
Drilled hole cages are used in the Fisher Cavitrolt cavitation control trim line to provide a tortuous path, pressure drop staging, and expanding flow area. The design of each particular drilled hole has a significant impact on the overall pressure recovery of the valve design.
One disadvantage of cavitation control trims is the potential for flow passages to become plugged with sand, dirt or other debris. Particulate laden flow is common to water injection applications. The flowing media often times contains small particulate that can plug the passages, restricting or totally stopping flow through the valve. If this potential exists, the particles must be removed from the flow stream, usually by filtration or an alternative approach to cavitation should be taken.
An alternative is to use a trim that is designed to allow the particulate to pass, but still control cavitation. The Fisher Dirty Service Trim (DST) has been designed to allow particles up to 3/4” to be passed and to control cavitation up to pressure drops of 4000 psi. This trim has been used extensively in produced water injection, water injection pump recirculation, and other liquid flow, particulate containing, high pressure drop applications.
Characterized Cage
The characterized cage design theory has evolved from the fact that “capacity is inversely related to a design’s ability to prevent cavitation.” In those applications where the pressure drop decreases as the flow rate increases, characterized cages can be used to optimize cavitation prevention and capacity.
Figure 4-13 illustrates a cross section of three types of drilled holes that could be used in a cavitation control cage. The thin plate design is an inefficient flow device, but it does provide a high
2
F
and, therefore, a low pressure recovery. The
L
thick plate design provides an efficient design, but also provides a high pressure recovery as denoted by a low F
2
value.
L
The Cavitrol trim hole design is a balance between the thick plate and the thin plate hole designs. It
4−12
For a Cavitrol III trim design, as the travel increases, the cage design changes. It begins as a pressure-staging design and then develops into a straight-through hole design. Consequently, the cavitation control ability of this trim design is greatest at low travels and decreases with increasing valve plug travel.
Care should be taken to employ characterized cages only in applications where the pressure drop decreases as travel increases.
Page 71
utilizing this soft seating material are capable of providing Class VI shutoff.
Cavitation Control Hardware Alternatives
In the previous sections, theories behind modern types of cavitation control hardware were discussed. This section presents alternatives to the, sometimes, costly cavitation hardware. Guidelines are also presented to help determine when cavitation control hardware is required or when other alternatives can be employed.
System Design
Correct liquid system design is the most economical way to prevent the damaging effects caused by cavitation without applying cavitation prevention control valves. Unfortunately, even the best system design is likely to need cavitation type control valves, but by applying certain design features, the complexity of these control valves may be simplified.
W3668−1
Figure 4-14. Cavitrol IV trim provides cavitation
protection at pressures to 6500 psi. It uses
expanding flow areas to affect a four-stage
pressure drop. All significant pressure drop is
taken downstream of the shutoff seating surface.
Separate Seating and Throttling Locations
In a modern power plant, most cavitating applications require a control valve to not only provide cavitation control, but also provide tight shutoff. The best way to accomplish this is to separate the throttling location from the seating location as shown in figure 4-14. The seating surface of the plug is upstream of the throttling location, and the upper cage is designed such that it takes very little pressure drop. The seating surface experiences relatively low flow velocities as velocity is inversely related to pressure. A recent technological advancement has been to implement the use of a softer seating material relative to the material of the plug. This allows for a slight deformation of the seating material, which provides much better plug/seat contact and, as a result, greatly enhanced shutoff capability. Valves
The most common and oldest method of designing a liquid flow system where large pressure drops must occur is to use a standard trim control valve with a downstream backpressure device. Although these devices come in various sizes, shapes, and designs, they all perform the same function of lowering the pressure drop across the control valve by raising its downstream pressure.
Because the downstream pressure of the valve is increased, the vena contracta pressure is increased. If the backpressure device is sized correctly, the vena contract pressure will not fall below the vapor pressure, and cavitation will not occur.
While this is a simple and cost-effective way to prevent cavitation damage in the control valve, there are several serious considerations to look at before using a downstream backpressure device.
D A larger valve may be required to pass the
required flow as the pressure drop is lowered.
D Although cavitation may not occur at the control valve, it may occur at the backpressure device.
D The backpressure device can only be sized for one condition. If other conditions exist, the
4−13
Page 72
backpressure provided may allow cavitation to occur.
D If the backpressure device becomes worn, the backpressure will decrease and cavitation in the valve may occur.
Another disadvantage that is rarely mentioned occurs when a valve is opened against a high upstream pressure. Until the flow reaches the backpressure device and stabilizes, the valve will experience the entire pressure drop of the system. Although this may only occur for a short period of time, the potential for damage exists.
In the instance of rotary valves, air injection (known as aspiration) also can be used to minimize the effects of cavitation in a system. With this method, air is injected upstream of the vena contracta. The dispersed air acts as a buffer when the vapor bubbles implode so that the intensity of the cavitation is lowered. Unfortunately, the location of the vena contracta, the amount of air to be injected, etc. are hard to quantify.
Because air is being injected into the system, this method of cavitation control is usually used on large valves dumping to a tank or pond or where solids in the system prevent the use of other cavitation control devices.
Cavitation is an interesting but destructive phenomenon. Preventing cavitation is the most acceptable way of limiting potential for damage. Proper application of available products, based upon sizing equations and field experience, will provide long term success.
Summary
The past two chapters have indicated that a fundamental relationship exists between key variables (P1, P2, Pv, G, Cv, Q) for flow through a device such as a control valve. Knowledge of any four of these allows the fifth to be calculated or predicted. Furthermore, adjustments to this basic relationship are necessary to account for special considerations such as installed piping configuration, cavitation, flashing, choked flow, and viscous flow behavior. Adherence to these guidelines will ensure correct sizing and optimum performance.
It is important to understand that pulp stock flow exhibits characterizations that closely resemble those of water. Guidelines for hindering the effects of cavitation are based upon process testing using water. One must consider that a pulp stock multi-phase flow may result in less severe damage when compared to that of water for flashing, cavitation, or turbulent flow. However, it must be noted that pulp stock can lead to other issues such as erosion and corrosion, depending on process make-up and the materials used in the process. Therefore, it is important to understand the process media, as well as firm process conditions, in order to ensure the correct valve is properly sized and selected for the given severe service application.
As noted throughout the chapter, it is evident that severe flow phenomena through a control valve can occur under the proper conditions. In general, the most common liquid severe service applications involve either cavitation or flashing. It is important to have a basic understanding of both liquid service incidents as presented in this chapter.
4−14
Page 73
Chapter 5
Gas Sizing
This chapter addresses the six-step procedure for sizing control valves for compressible flow using the standardized ISA procedure. All six steps are outlined below, and must be accounted for when sizing a valve for compressible flow. Steps three and four are involved in determining specific sizing factors that may or may not be required in the sizing equation depending on the service conditions of the application. When steps three and/or four are required, refer to the appropriate section of the book referenced below.
Standardized ISA Procedure
1. Specify the necessary variables required to size the valve as follows:
D Desired valve design (globe, butterfly, ball)
D Process fluid (air, natural gas, steam, etc.)
D Appropriate service conditions (q, or w, P1,
P2 or DP, T1, Gg, M, k, Z, and g1) The ability to recognize the appropriate terms for a
specific valve sizing application is gained through experience sizing valves for different applications. Refer to the notations table in chapter three for any new or unfamiliar terms.
2. Determine the equation constant, N. N is a numerical constant contained in each of the
flow equations to provide a means for using different systems of units. Values for these various constants and their applicable units are given in the equation constants table 5-2 at the end of this chapter.
Use N7 or N9 when sizing a valve with a specified flow rate in volumetric units (scfh or m3/h). Selecting the appropriate constant depends upon the specified service conditions. N7 is used only
when specific gravity, Gg, has been specified along with the other required service conditions. N9 is used only when the molecular weight, M, of the gas has been specified.
Use N6 or N8 when sizing a valve with a specified flow rate in mass units (lb/h or kg/h). In this case, N6 is used only when specific weight, g1, has been specified along with the other required service conditions. N8 is used only when the molecular weight, M, of the gas has been specified.
3. Determine Fp, the piping geometry factor. Fp is a correction factor that accounts for any
pressure losses due to piping fittings such as reducers, elbows, or tees that might be attached directly to the inlet and outlet connections of the control valve. If such fittings are attached to the valve, the Fp factor must be considered in the sizing procedure. If no fittings are attached to the valve, Fp has a value of one and drops out of the sizing equation.
For rotary valves with reducers, other valve designs and fitting styles refer to the determining piping geometry section of chapter three to determine the appropriate Fp value.
4. Determine Y, the expansion factor.
Y + 1 *
where,
Fk = k/1.4, the ratio of specific heats factor k = Ratio of specific heats x = DP/P
xT = The pressure drop ratio factor for valves installed without attached fittings. More definitively, xT is the pressure drop ratio required
1
x
3Fkx
T
www.Fisher.com
Page 74
to produce critical, or maximum, flow through the valve when Fk = 1.0
D when molecular weight, M, of the gas has
been specified:
When the control valve to be installed has fittings, such as reducers or elbows attached to it, their effect is accounted for in the expansion factor equation by replacing the xT term with a new factor xTP. A procedure for determining the x factor is described in the following section: Determining xTP, the Pressure Drop Ratio Factor.
Note: Conditions of critical pressure drop are realized when the value of x becomes equal to or exceeds the appropriate value of the product of either Fk*xT or Fk*xTP at which point::
y + 1 *
In actual service, pressure drop ratios can, and often will exceed the indicated critical values. At this point, critical flow conditions develop. Thus, for a constant P1, decreasing P2 (i.e., increasing DP) will not result in an increase in the flow rate through the valve. Therefore, the values of x greater than the product of either Fk*xT or Fk*x must never be substituted in the expression for Y. This means that Y can never be less than 0.667. This same limit on values of x also applies to the flow equations introduced in the next section.
x
+ 1 * 1ń3 + 0.667
3Fkx
T
TP
TP
Cv+
N8FpP1Y
6. Select the valve size using the appropriate flow coefficient table using the calculated CV value.
M
Ǹ
xM
T1Z
Determining xTP, the Pressure Drop Ratio Factor
When the control valve is to be installed with attached fittings such as reducers or elbows, their affect is accounted for in the expansion factor equation by replacing the xT term with a new factor, xTP.
*1
2
C
i
v
ǒ
Ǔ
ƫ
2
d
ƪ
1 )
xTK
N
5
x
Fp
T
2
xTP+
where,
N5 = numerical constant found in the equation constants table
d = assumed nominal valve size CV = valve sizing coefficient from flow
coefficient table at 100% travel for the assumed valve size
5. Solve for the required CV using the appropriate equation.
For volumetric flow rate units —
D when specific gravity, Gg, of the gas has been specified:
Cv+
N7FpP1Y
D when molecular weight, M, of the gas has been specified:
Cv+
N9FpP1Y
For mass flow rate units —
D when specific weight, g1, of the gas has been specified:
Cv+
q
Ǹ
GgT1Z
q
Ǹ
MT1Z
w
Ǹ
N6FpYxP1g
x
x
1
Fp = piping geometry factor xT = pressure drop ratio for valves installed
without fittings attached. xT values are included in the flow coefficient tables.
In the above equation, Ki is the inlet head loss coefficient, which is defined as:
Ki+ K1) K
where,
K1 = resistance coefficient of upstream fittings (see the procedure: Determining Fp, the Piping Geometry Factor, which is contained in Chapter 3: Liquid Valve Sizing
KB1 = Inlet Bernoulli coefficient (see the procedure: Determining Fp, the Piping Geometry Factor, which is contained in chapter three: Liquid Valve Sizing
B1
Compressible Fluid Sizing Sample Problem No. 1
Assume steam is to be supplied to a process designed to operate at 250 psig. The supply
5−2
Page 75
source is a header maintained at 500 psig and 500_F. A 6-inch line from the steam main to the process is being planned. Also, make the assumption that if the required valve size is less than 6 inches, it will be installed using concentric reducers. Determine the appropriate ED valve with a linear cage.
d = 4 in. Cv = 236, which is the value listed in the flow
coefficient table 4-2 for a NPS 4 ED valve at 100% total travel.
and
1. Specify the necessary variables required to size the valve.
D Desired valve design—ANSI Class 300 ED valve with a linear cage. Assume valve size is 4 inches.
D Process fluid—superheated steam
D Service conditions—
w = 125,000 lb/h P1 = 500 psig = 514.7 psia P2 = 250 psig = 264.7 psia DP = 250 psi x = DP/P1 = 250/514.7 = 0.49 T1 = 500_F
= 1.0434 lb/ft3 (from properties of
g1
saturated steam table) k= 1.28 (from properties of saturated steam
table)
2. Determine the appropriate equation constant, N, from the equation constants table 3-2 in chapter three.
Because the specified flow rate is in mass units, (lb/h), and the specific weight of the steam is also specified, the only sizing equation that can be used is that which contains the N6 constant.
Therefore, N6 = 63.3
3. Determine Fp, the piping geometry factor.
SK + K1) K
+ 1.5ǒ1 *
+ 1.5ǒ1 *
+ 0.463
Finally:
ȱ ȧ Ȳ
1 )
0.463 890
+ 0.95
Y + 1 *
Fk+
+
+ 0.91
x
T
1 )
ƪ
2
Fp
ǒ
1.28
1.40
Fp+
4. Determine Y, the expansion factor.
where,
x + 0.49(Ascalculatedinstep1.)
Because the size 4 valve is to be installed in a 6-inch line, the xT term must be replaced by xTP.
xTP+
where,
2
d
Ǔ
2
D
2
4
Ǔ
2
6
(
1.0)(236
(4)
x
3Fkx
k
1.40
xTK
i
N
5
2
2
2
*1ń2
2
ȳ
)
Ǔ
ȧ
2
ȴ
TP
*1
2
C
v
ǒ
Ǔ
ƫ
2
d
*1ń2
2
C
SK
v
ǒ
Fp+ƪ1 )
where,
N2 = 890, determined from the equation
constants table
Ǔ
ƫ
2
N
d
2
N5 = 1000, from the equation constants table d = 4 inches Fp = 0.95, determined in step three xT = 0.688, a value determined from the
appropriate listing in the flow coefficient table
5−3
Page 76
Cv = 236, from step three
where D = 6 inches
and
Ki+ K1) K
+ 0.5ǒ1 *
+ 0.5ǒ1 *
2
2
d
Ǔ
2
D
2
2
4
Ǔ
2
6
+ 0.96
B1
)ƪ1 *
)ƪ1 *
so:
*1
(
0.69
X
+
4
d
ǒ
Ǔ
ƫ
D
4
4
ǒ
Ǔ
ƫ
6
TP
Finally:
2
0.95
+ 1 *
ƪ
0.69)(0.96
1 )
1000
Y + 1 *
0.49
(3)(0.91)(0.67)
3F
)
x
x
k
ǒ
236
4
TP
2
Ǔ
ƫ
2
+ 0.73
+ 0.67
5−4
Page 77
Table 5-1. Abbreviations and Terminology
Symbol Symbol
C
Valve sizing coefficient P
v
d Nominal valve size P
1 2
Upstream absolute static pressure Downstream absolute static
pressure
D Internal diameter of the piping P
F
Valve style modifier,
d
dimensionless
F
Liquid critical pressure ratio factor,
F
dimensionless
F
Ratio of specific heats factor,
k
dimensionless
F
Rated liquid pressure recovery
L
factor, dimensionless
F
Combined liquid pressure recovery
LP
factor and piping geometry factor
ΔP
ΔP
max(LP)
Absolute thermodynamic critical
c
pressure
P
Vapor pressure absolute of liquid at
v
inlet temperature
ΔP Pressure drop (P1-P2) across the
valve Maximum allowable liquid sizing
max(L)
pressure drop Maximum allowable sizing pressure
drop with attached fittings
q Volume rate of flow
of valve with attached fittings (when there are no attached fittings, FLP equals FL), dimensionless
F
Piping geometry factor,
P
dimensionless
q
Maximum flow rate (choked flow
max
conditions) at given upstream conditions
G
Liquid specific gravity (ratio of
f
density of liquid at flowing
T
Absolute upstream temperature
1
(degree K or degree R) temperature to density of water at 60_F), dimensionless
G
Gas specific gravity (ratio of
g
density of flowing gas to density of air with both at standard conditions
(1)
, i.e., ratio of
w Mass rate of flow
molecular weight of gas to molecular weight of air), dimensionless
k Ratio of specific heats,
dimensionless
x Ratio of pressure drop to upstream
absolute static pressure (ΔP/P1),
dimensionless
K Head loss coefficient of a device,
dimensionless
x
Rated pressure drop ratio factor,
T
dimensionless
M Molecular weight, dimensionless Y Expansion factor (ratio of flow
coefficient for a gas to that for a
liquid at the same Reynolds
number), dimensionless
N Numerical constant
Z Compressibility factor,
dimensionless
Specific weight at inlet conditions
γ
1
υ Kinematic viscosity, centistokes
1. Standard conditions are defined as 60_F (15.5_C) and 14.7 psia (101.3kPa).
5−5
Page 78
Table 5-2. Equation Constants
N
1
N
2
N
5
N
6
Normal Conditions
TN = 0_C
Standard Conditions
(3)
N
7
(3)
N
9
1. Many of the equations used in these sizing procedures contain a numerical constant, N, along with a numerical subscript. These numerical constants provide a means for using different units in the equations. Values for the various constants and the applicable units are given in the above table. For example, if the flow rate is given in U.S. gpm and the pressures are psia, N1 has a value of 1.00. If the flow rate is m3/hr and the pressures are kPa, the N constant becomes 0.0865.
2. All pressures are absolute.
3. Pressure base is 101.3 kPa (1.013 bar)(14.7 psia).
Ts = 15.5_C
Standard Conditions
Ts = 60_F
N
8
Normal Conditions
TN = 0_C
Standard Conditions
Ts = 15.5_C
Standard Conditions
TS = 60_F
(1)
N w q p
0.0865
0.865
1.00
0.00214 890
0.00241
1000
2.73
27.3
63.3
3.94 394
4.17 417
- - -
- - -
- - -
- - -
- - -
- - -
- - -
kg/h kg/h
lb/h
- - -
- - -
- - -
- - -
m3/h m3/h
gpm
- - -
- - -
- - -
- - -
- - -
- - -
- - -
m3/h m3/h
m3/h m3/h
(2)
kPa
bar
psia
- - -
- - -
- - -
- - ­kPa
bar
psia kPa
bar
kPa
bar
g
- - -
- - -
- - -
- - -
- - -
- - -
- - -
kg/m kg/m
lb/ft
- - -
- - -
- - -
- - -
3 3
3
T d, D
- - -
- - -
- - -
- - -
- - -mminch
- - -
- - -mminch
- - -
- - -
- - -
deg K deg K
deg K deg K
1360 - - - scfh psia - - - deg R - - -
0.948
94.8
19.3
21.2
2120
22.4
2240
kg/h kg/h
lb/h
- - -
- - -
- - -
- - -
- - -
- - -
- - -
m3/h m3/h
m3/h m3/h
kPa
bar
psia kPa
bar
kPa
bar
- - -
- - -
- - -
- - -
- - -
- - -
- - -
deg K deg K
deg R
deg K deg K
deg K deg K
7320 - - - scfh psia - - - deg R - - -
- - -
- - -
- - -
- - -
- - -
- - -
- - -
- - -
- - -
- - -
- - -
- - -
- - -
- - -
- - -
- - -
- - -
1
5−6
Page 79
Table 5-3. Flow Coefficient Table
Gas or Liquid Flow
Valve
Size,
Inches
1. Valves should not be required to throttle at a Cv less than the minimum throttling Cv.
Minimum
Throttling
C
V
8 86.7
10 136
12 196
16 347
20 542
(1)
Coefficient
s
C
v
K
V
F
L
F
d
X
T
C
v
K
V
F
L
F
d
X
T
C
v
K
V
F
L
F
d
X
T
C
v
K
V
F
d
F
L
X
T
C
v
K
V
F
d
F
L
X
T
10 20 30 40 50 60 70 80 90
47.3 126 236 382 604 972 1600 3000 4960
40.9 109 204 330 522 841 1380 2600 4290
0.79 0.87 0.91 0.91 0.85 0.81 0.73 0.63 0.63
0.37 0.64 0.78 0.88 0.94 0.97 0.98 0.99 1.00
0.44 0.64 0.77 0.77 0.67 0.51 0.38 0.20 0.13
74.1 197 369 598 946 1520 2510 4700 7770
64.1 171 320 517 818 1320 2170 4060 6720
0.79 0.87 0.91 0.91 0.85 0.81 0.73 0.63 0.63
0.37 0.64 0.78 0.87 0.94 0.97 0.99 0.99 1.00
0.44 0.64 0.77 0.77 0.67 0.51 0.38 0.20 0.13 107 284 532 861 1360 2190 3610 6760 11 200
92.2 246 460 745 1180 1890 3120 5850 9670
0.79 0.87 0.91 0.91 0.85 0.81 0.73 0.63 0.63
0.39 0.67 0.79 0.87 0.93 0.97 0.99 1.00 1.00
0.44 0.64 0.77 0.77 0.67 0.51 0.38 0.20 0.13 189 505 945 1530 2420 3890 6410 12 000 19 900 164 437 818 1320 2090 3370 5540 10 400 17 200
0.38 0.64 0.79 0.87 0.93 0.97 0.99 0.99 1.00
0.79 0.87 0.91 0.91 0.85 0.81 0.73 0.63 0.63
0.44 0.64 0.77 0.77 0.67 0.51 0.38 0.20 0.13 296 788 1480 2390 3780 6080 10 000 18 800 31 000 256 681 1280 2070 3270 5260 8660 16 200 26 800
0.42 0.66 0.79 0.87 0.93 0.97 0.99 1.00 1.00
0.79 0.87 0.91 0.91 0.85 0.81 0.73 0.63 0.63
0.44 0.63 0.76 0.76 0.66 0.50 0.38 0.20 0.13
Percentage Characteristic
Modified Equal
Valve Rotation, Degrees
5−7
Page 80
Table 5-4. Representative Sizing Coefficients for ED Single-Ported Globe Style Valve Bodies
3/4 3/4 3/4 3/4 3/4
3/4 3/4 3/4 3/4 3/4
1 1/8 1 1/8
Rated Travel
(in.)
136
224
394
818
C
3.07
4.91
8.84
20.6
17.2
3.20
5.18
10.2
39.2
35.8
72.9
59.7
V
F
L
0.89
0.93
0.97
0.84
0.88
0.84
0.91
0.92
0.82
0.84
0.77
0.85
0.82
0.82
0.82
0.82
0.84
0.85
0.87
0.86
X
T
0.66
0.80
0.92
0.64
0.67
0.65
0.71
0.80
0.66
0.68
0.64
0.69
0.62
0.68
0.69
0.72
0.74
0.78
0.81
0.81
Valve Size
(inches)
Valve Plug Style Flow Characteristic
Port Dia.
(in.)
1/2 Post Guided Equal Percentage 0.38 0.50 2.41 0.90 0.54 0.61 3/4 Post Guided Equal Percentage 0.56 0.50 5.92 0.84 0.61 0.61
Micro Form
Equal Percentage
3/8 1/2
1
Cage Guided
Linear Equal Percentage
Micro-Form
Equal Percentage
3/4 1 5/16 1 5/16
3/8
1/2
1 1/2
2
3
4
6
8
Cage Guided
Linear Equal Percentage
Cage Guided Linear
Equal Percentage
Cage Guided Linear
Equal Percentage
Cage Guided Linear
Equal Percentage
Cage Guided Linear
Equal Percentage
Cage Guided Linear
Equal Percentage
3/4
1 7/8 1 7/8
2 5/16 2 5/16
3 7/16 1 1/2 148
4 3/8 2 236
7 2 433
8 3 846
F
D
0.72
0.67
0.62
0.34
0.38
0.72
0.67
0.62
0.34
0.38
0.33
0.31
0.30
0.32
0.28
0.28
0.28
0.26
0.31
0.26
5−8
Page 81
Chapter 6
Control Valve Noise
Noise has always been present in control valves. It is a natural side effect of the turbulence and energy absorption inherent in control valves. This chapter will address how noise is created, why it can be a problem, and methods to attenuate noise created in control valves.
The major problem with industrial noise is its affect on humans. Companies usually build town border stations on sites remote from residential developments. Isolation, however, is not always possible, and noise prevention is a must.
The U.S. Occupational Safety and Health Act (OSHA) establishes maximum permissible noise levels for all industries whose business affects interstate commerce. These standards relate allowable noise levels to the permissible exposure time. Notice in table 6-1 that the maximum permissible levels depend upon the duration of exposure. For example, the maximum sound level a person should be exposed to for an eight hour day is 90 dBA. These maximum sound levels have become the accepted noise exposure standard for most regulatory agencies. Thus, they have become the standard by which much noise generating equipment has been specified and measured.
Table 6-1. Maximum Permissible Noise Levels
Duration of Exposure
(Hours)
16 85
8 90 4 95 2 100
1 105 1/2 110 1/4 115
Maximum Sound Pressure
(dBA)
Decibels (dB) are a measure to give an indication of loudness. The “A” added to the term indicates the correction accounting for the response of the human ear. The sensitivity of our ears to sound varies at different frequencies. Applying this “A” correction is called weighting, and the corrected noise level is given in dBA.
The A-weighting factor at any frequency is determined by how loud noise sounds to the human ear at that particular frequency compared to the apparent loudness of sound at 1000 hertz. At 1000 hertz the A-weighting factor is zero, so if the sound pressure level is 105 dB, we say it sounds like 105 dB.
On the other hand, if we listen to a sound at 200 hertz with a sound pressure level of 115 dB, it sounds more like 105 dB. Therefore, we say that the A-weighted loudness of the noise with a sound pressure level of 115 dB is 105 dBA.
Essentially, if two or more sounds with different sound pressure levels and frequencies sound like the same loudness, they have the same dBA, regardless of what their individual, unweighted sound pressure levels may be.
The effect of A-weighting on control valve noise depends upon the flowing medium since each develops its own characteristic spectrum. Noise levels for hydrodynamic noise, or liquid flow noise, have appreciable energy at frequencies below 600 hertz. When the levels are A-weighted, it makes the low frequency terms more meaningful and the government standards somewhat more difficult to meet.
On the other hand, aerodynamic noise levels produced by steam or gas flow are the same in either dB or dBA. This is because aerodynamic noise occurs primarily in the 1000 to 8000 hertz frequency range. The human ear has a fairly flat response in the frequency range of 600 to 10,000
www.Fisher.com
Page 82
hertz, and the A-weighting factor is essentially zero in this range. Thus, there is negligible difference between the dB and dBA ratings.
Sound Characteristics
Analyzing noise, in the context of piping and control valves, requires consideration of its origin. This indicates how the noise will propagate. Generally speaking, noise originates from either a line source or a point source.
A sound level meter is used to determine sound pressure levels. Readings for line source noise levels are normally measured one meter from the pipe’s surface and at a point one meter downstream from the valve outlet. Measurements should be made in an unobstructed free field area with no sound reflecting surfaces nearby.
Line source noise levels are radiated from the piping in the form of an imaginary cylinder, the pipe centerline as the axis. As you move away from the pipeline, the sound pressure level decreases inversely to the changes in surface area of the imaginary cylinder. The following equation defines the sound pressure level (LpA) at distances other than one meter from the pipeline surface:
The other type of noise source needed to be discussed is point source. Point source noise measurements are taken at a three meter distance in the horizontal plane through the source. Vent applications are typical examples of point source noise. Point source noise levels are radiated in the form of an imaginary sphere with the source at the center of the sphere. As you move away from a point source, the sound pressure level decreases inversely in proportion to the changes in the surface area of the imaginary sphere. The equation that defines the sound pressure level at distances other than three meters from the point source and below a horizontal plane through the point source is:
LpA + F ) 20 log
where,
LpA = the sound pressure level
F = the noise level at three meters from
the source
R = the distance in meters from the
source
This procedure determines the noise level radiated only by the point source. Other noise sources could combine with the point source noise to produce a greater overall sound pressure level.
3
R
LpA + F ) 10 log
where,
LpA = sound pressure level F = noise level at one meter from the pipe surface r = pipe radius in meters based on the pipe outside diameter
R = distance in meters from the pipe
surface
What this equation tells us is that the sound pressure level decreases dramatically as the distance from the pipeline increases. Keep in mind that this equation determines the noise level radiated only by the pipeline. Other noise sources could combine with the pipeline noise source to produce greater overall sound pressure level.
1 ) r
R ) r
Combining Noise Sources
The noise level in a certain area is the result of combining all of the noise generated by every noise source in the vicinity. The methodology of combining sources is important to prediction and actually lies at the root of noise abatement technology.
To determine the resultant noise level of two noise sources, it is necessary to combine two sources of energy. The energy, or power, of two sources combines directly by addition. The power levels must be calculated separately and then logarithmically combined as one overall noise source. The sources can be line, point, or a combination of both. Table 6-2 simplifies the process of combining two known noise levels.
6−2
Page 83
Table 6-2. Combined Noise Corrections
dBA1 - dBA
To use table 6-2:
1. Determine the noise level of each source at the point where you want to determine the combined noise level.
2. Determine the arithmetic dB difference between the two sources at the location of interest.
3. Find the difference between the two sources in the table.
4. Read across the table to find the dB factor to be used. Add this factor to the louder of the two sources. This value is the combined dB of the two sources.
2
0 3.01 1 2.54 2 2.12 3 1.76 4 1.46 5 1.2 6 <1
dBA Adder to Loudest Noise Source
incurred by the valve plug and associated guiding surfaces is generally of more concern than the noise emitted.
Another source of mechanical vibration noise is resonant vibration, which occurs when a valve component resonates at its natural frequency. Resonant vibration produces a single-pitched tone normally having a frequency between 3000 and 7000 hertz. This type of vibration produces high levels of mechanical stress that may produce fatigue failure of the vibrating part. Valve components susceptible to natural frequency vibration include contoured valve plugs with hollow skirts and flexible seals.
Let’s put this table to work to illustrate how noise sources combine. Two interesting examples help illustrate how sound levels combine:
1. When two noise sources with equal sound pressure levels of 90 dB are combined, the correction factor is 3.01. Therefore, the resultant combined noise level is 93 dB.
2. If two sources have considerably different noise levels, say 95 dB and 65 dB, the correction factor is nearly zero. Therefore, the combined noise level is essentially the same as the louder of the two sources, that is, 95 dB. This leads us to the first rule of noise control: Preventing or controlling the loudest noise sources first.
While this appears obvious, in practice it is not the easiest path.
Sources of Valve Noise
Control valves have long been recognized as a contributor to excessive noise levels in many fluid process and transmission systems. The major sources of control valve noise are mechanical vibration noise, aerodynamic noise, and hydrodynamic noise.
Mechanical noise generally results from valve plug vibration. Vibration of valve components is a result of random pressure fluctuations within the valve body and/or fluid impingement upon the movable or flexible parts. The most prevalent source of noise resulting from mechanical vibration is the lateral movement of the valve plug relative to the guiding surfaces. The sound produced by this type of vibration normally has a frequency less than 1500 hertz and is often described as a metallic rattling. In these situations, the physical damage
The noise caused by the vibration of valve components is usually of secondary concern, and, ironically, may even be beneficial because it gives warning when conditions exist that could produce valve failure. Noise resulting from mechanical vibration has for the most part been eliminated by improved valve design. Most modern control valves employ cage guiding and more precise bearings to eliminate vibration problems. Testing helps isolate and eliminate resonant frequency problems before installation.
The second type of noise is hydrodynamic noise. Hydrodynamic noise results from liquid flow and is caused by the implosion of vapor bubbles formed in the cavitation process. Vapor bubble formation occurs in valves controlling liquids when the service conditions are such that the local static pressure, at some point within the valve, is less than or equal to the liquid vapor pressure. Localized areas of low static pressures within the valve are a result of the pressure-to-velocity-head interchange that occurs at the valve vena contracta. When the vapor bubbles move downstream, they encounter pressures higher than the vapor pressure and collapse. The rapid implosion can result in severe damage to adjacent valve or pipeline surfaces, and generate high noise levels.
Hydrodynamic noise sounds similar to that of gravel flowing through a pipe. Intense cavitation can cause noise levels as high as 115 dBA, but such cavitation would not be tolerated because cavitation damage would drastically shorten the operating life of the installation. Therefore, control valve damage is normally of more concern than the noise produced in cavitating services.
Aerodynamic noise is generated by the turbulence associated with control of gas, steam, or vapors. While generally thought of as accompanying high capacity, high pressure systems, damaging noise
6−3
Page 84
levels can be produced in a two-inch line with as little as a 200 psi pressure drop. Major sources of aerodynamic noise are the stresses or shear forces present in turbulent flow.
Some of the sources of turbulence in gas transmission lines are obstructions in the flow path, rapid expansion or deceleration of high-velocity gas, and directional changes in the fluid stream. Specific areas that are inherently noisy include headers, pressure regulators, line size expansions, and pipe elbows.
Aerodynamic noise is generally considered the primary source of control valve noise. There are several reasons for this:
D This type of noise has its highest energy components at the same frequencies where the human ear is most sensitive - between 1000 and 8000 hertz.
D Large amounts of energy can be converted to aerodynamic noise without damaging the valve. In the past, the noise was considered a nuisance, but as long as the valve did its job, it was not of major concern. Today, with increasing focus on environmental issues, including noise, there are guidelines on the amount of noise a valve can emit in a given workplace. Research has also shown that sustained noise levels above 110 decibels can produce mechanical damage to control valves.
High noise levels are an issue primarily because of OSHA’s standards for permissible noise limits and the potential for control valve damage above 110 dBA. Additionally, loud hydrodynamic noise is symptomatic of the more dangerous and destructive phenomenon known as cavitation.
The method defines five basic steps to noise prediction:
1. Calculate the total stream power in the process at the vena contracta.
The noise of interest is generated by the valve in and downstream of the vena contracta. If the total power dissipated by throttling at the vena contracta can be calculated, then the fraction that is noise power can be determined. Because power is the time rate of energy, a form of the familiar equation for calculating kinetic energy can be used. The kinetic energy equation is:
Ek+ 1ń2mv
2
where,
m = mass v = velocity
If the mass flow rate is substituted for the mass term, then the equation calculates the power. The velocity is the vena contracta velocity and is calculated with the energy equation of the first law of thermodynamics.
2. Determine the fraction of total power that is acoustic power.
This method considers the process conditions applied across the valve to determine the particular noise generating mechanism in the valve. There are five defined regimes dependent upon the relationship of the vena contracta pressure and the downstream pressure. For each of these regimes an acoustic efficiency is defined and calculated. This acoustic efficiency establishes the fraction of the total stream power, as calculated in step one, which is noise power. In designing a quiet valve, lower acoustic efficiency is one of the goals.
Noise Prediction
Industry leaders use the International Electrotechnical Commission standard IEC 534-8-3. This method consists of a mix of thermodynamic and aerodynamic theory and empirical information. This method allows noise prediction for a valve to be based only upon the measurable geometry of the valve and the service conditions applied to the valve. There is no need for specific empirical data for each valve design and size. Because of this pure analytical approach to valve noise prediction, the IEC method allows an objective evaluation of alternatives.
6−4
3. Convert acoustic power to sound pressure. The final goal of the IEC prediction method is to
determine the sound pressure level at a reference point outside the valve where human hearing is a concern. Step two delivers acoustic power, which is not directly measurable. Acoustic or sound pressure is measurable and, therefore, has become the default expression for noise in most situations. Converting from acoustic power to the sound pressure uses basic acoustic theory.
4. Account for the transmission loss of the pipe wall and restate the sound pressure at the outside surface of the pipe.
Steps one and three are involved with the noise generation process inside the pipe. There are
Page 85
times when this is the area of interest, but the noise levels on the outside of that pipe are the prime requirement. This method must account for the change in the noise as the reference location moves from inside the pipe to outside the pipe.
The pipe wall has physical characteristics, due to its material, size, and, shape, that define how well the noise will transmit through the pipe. The fluid-borne noise inside the pipe interacts with the inside pipe wall causing the pipe wall to vibrate, then the vibration transmits through the pipe wall to the outside pipe wall, and there the outside pipe wall interacts with the atmosphere to generate sound waves. These three steps of noise transmission are dependent upon the noise frequency. The method represents the frequency of the valve noise by determining the peak frequency of the valve noise spectrum. It also determines the pipe transmission loss as a function of frequency. The method then compares the internal noise spectrum to determine how much the external sound pressure will be attenuated by the pipe wall.
5. Account for distance and calculate the sound pressure level at the observer’s location.
Step four delivers the external sound pressure level at the outside surface of the pipe wall. Again, basic acoustic theory is applied to calculate the sound pressure level at the observer’s location. Sound power is constant for any given situation, but the associated sound pressure level varies with the area of distributed power. As the observer moves farther away from the pipe wall, the total area of distributed sound power increases. This causes the sound pressure level to decrease.
W1257/IL
Figure 6-1 . Whisper Trim I cage used for reducing
aerodynamic noise
Noise control techniques fall into one of two basic categories:
D Source treatment D Path treatment
While preventing noise at the source is the preferred approach to noise control, it is sometimes economically or physically impractical due to particular application requirements. Path treatment is then a reasonable approach. There are also instances when source treatment alone does not provide sufficient noise reduction; path treatment is then used as a supplement.
In any event, the decision to use source treatment, path treatment, or a combination of both should be made only after the application requirements and alternative approaches have been thoroughly analyzed.
Methods to Attenuate Noise
With increasing interest in the environmental impact of all aspects of industry, there are increasing demands for noise abatement procedures and equipment.
In a closed system, (not vented to the atmosphere) noise becomes airborne only by transmission through the valves and adjacent piping that contains the flowstream. The sound field in the flowstream forces these solid boundaries to vibrate, causing disturbances in the surrounding air to propagate as sound waves.
Source Treatment
The Fisher Whisper Trimt I cage, illustrated in figure 6-1 , is interchangeable with standard trim in many globe valves. It uses many narrow parallel slots designed to minimize turbulence and provide a favorable velocity distribution in the expansion area of the valve. It provides a multitude of low noise flowpaths, which combine to produce less overall noise than standard cages. A Whisper Trim I cage is most efficient when the ratio of pressure drop to inlet pressure is equal to or less than 0.65 (that is, ΔP/P1 is less than or equal to 0.65). In addition, this approach is most effective when the maximum downstream velocity of the fluid is equal to or less than half the sonic velocity of that fluid. This style of cage will provide up to 18 dBA attenuation versus a standard cage with little sacrifice in flow capacity.
6−5
Page 86
W2618
Figure 6-2 . Valve with Whisper Trim I and Inline Diffuser Combination
When the pressure drop ratio exceeds 0.65, the Whisper Trim I cage loses its effectiveness. Diffusers, used in conjunction with the Whisper Trim I cage to divide the overall pressure drop into two stages, can extend the useful capability and also improve noise performance (figure 6-2). The diffuser provides a fixed restriction, which increases backpressure to the valve thereby reducing the pressure drop across the valve. This decreases the pressure drop ratio which in turn decreases the sound pressure level. The use of a diffuser allows the Whisper Trim I cage to remain within its most efficient P/P1 range. Diffusers are only effective for the condition they are sized for. They are not effective in throttling applications. At this optimum condition they can provide up to an additional attenuation of 25 dBA.
When pressure drop ratios are high, a Whisper Trim III cage (figure 6-3) may be used. Fluid flows from the inside of the cage out through many orifices. The performance of these cages is closely tied to spacing of these orifices. As the pressure drop ratio increases, the centerline distance to hole diameter of these orifices also needs to increase to prevent jet recombination. Therefore, as the level of the Whisper Trim III cage increases, so does the centerline distance to hole diameter. For many applications involving high pressure drop ratios, a baffle is installed outside the cage. For very high pressure drop
6−6
W9039
Figure 6-3 . Whisper Trim III
ratios a baffle is often used to act on the fluid jets exiting from the cage to further reduce turbulence. Cages similar to the Fisher Whisper Trim III cage can reduce control valve noise by as much as 30 dBA. These cages are most effective when the maximum downstream velocity of the fluid is equal to or less than 0.3 of the sonic velocity of that fluid.
Page 87
W7065
W7056
Figure 6-4 . WhisperFlo Technology
Fisher WhisperFlot trim (figure 6-4) is well-suited for applications that have high noise levels and require large Cvs. It is effective in applications that have a pressure drop ratio up to 0.99. When a pressure drop ratio of .94 or higher is expected, and WhisperFlo is desired, the noise calculations will be performed by the engineering experts at Emerson Process Management. This design is a multi-path, two-stage design that has the capability of reducing noise up to 50 dBA. The key factor behind this attenuation is allowing the pressure to recover between stages. This allows for the pressure drop ratio of the second stage to be less than the pressure drop ratio of the first stage. In achieving this, along with special passage shapes, the frequency is shifted to a higher spectrum, velocities are managed, and the jets maintain independence.
All of the Whisper Trim cages and WhisperFlo trims are designed for sliding stem valves. In applications requiring rotary valves that have high noise, an attenuator, diffuser, or combination there of may be applied. Applications with ball valves can apply an attenuator to obtain up to 10 dBA reduction in noise. These attenuators are designed to reduce both aerodynamic and hydrodynamic noise. With butterfly valves you can only attenuate aerodynamic noise utilizing an inline diffuser. As mentioned above, these diffusers can provide up to a 25 dBA reduction in noise.
W6116
Figure 6-5 . Vee-Ball Noise Attenuator
For control valve applications operating at high pressure ratios (ΔP/P1 is greater than 0.8), a series approach can be very effective in minimizing the noise. This approach splits the total pressure drop between the control valve and a fixed restriction (such as a diffuser) downstream of the valve. In order to optimize the effectiveness of the diffuser, it must be designed for each unique installation so that the noise levels generated by the valve and diffuser are equal.
Control systems venting to atmosphere are generally very noisy, as well. This is because of the high pressure ratios and high exit velocities involved. In these applications, a vent silencer may be used to divide the total pressure drop between the actual vent and an upstream control valve (figure 6-6). This approach quiets both the valve and the vent. A properly sized vent silencer and valve combination can reduce the overall system noise level by as much as 60 dBA.
Path Treatment
Path treatment can be applied where source treatment is more expensive, or in combination with source treatment where source treatment alone is inadequate. Path treatment consists of increasing the resistance of the transmission path to reduce the acoustic energy that is transmitted to the environment. Common path treatments include the use of:
D Heavy walled pipe
The noise attenuation possible with heavy-walled pipe varies with the size and schedule used. As an example, increasing a pipeline from schedule 40 to schedule 80 may reduce sound levels by approximately 4 dB.
6−7
Page 88
W2672
Figure 6-6 . Valve and Vent Diffuser Combination
D Acoustical or thermal insulation
The noise level near the valve can be lowered by applying insulation to absorb the noise. Insulation absorbs much of the noise that would normally reach the atmosphere, but does not absorb any of the noise going up or down inside the pipe walls.
Thermal insulation can give 3 to 5 dBA noise reduction per inch of insulation thickness to a maximum attenuation of 12 to 15 dBA. Acoustical insulation can give 8 to 10 dBA noise reduction per inch of blanket type insulation. The maximum attenuation that should be expected is 24 to 27 dBA.
Path treatments such as heavy-walled pipe or external insulation can be a very economical and effective technique for localized noise abatement. However, they are effective for localized noise reduction only. That is, they do not reduce the noise in the process stream, but only shroud it where the treatment is used. Noise propagates for long distances via the fluid stream and the effectiveness of the treatment ends where the treatment ends.
D Silencers
The silencer differs from other path treatments in that it does actually absorb some of the noise energy. Therefore, it reduces sound intensity both in the working environment and in the pipeline. In gas transmission systems, in-line silencers effectively dissipate the noise within the fluid stream and attenuate the noise level transmitted to the solid boundaries. Where high mass flow rates and/or high pressure ratios across the valve exist, an in-line silencer is often the most realistic and economical approach to noise control. Use of absorption-type in-line silencers can provide almost any degree of attenuation desired. However, economic considerations generally limit noise attenuation to approximately 35 dBA.
Hydrodynamic Noise
The primary source of hydrodynamic noise is cavitation. Recall that cavitation is the formation and subsequent collapse of vapor bubbles in a flowing liquid. This phenomenon sounds similar to that of gravel flowing down the pipe.
Source treatment for noise problems associated with control valves handling liquid is directed primarily at eliminating or minimizing cavitation. Cavitation and its associated noise and damage can often be avoided at the design stage of a project by giving proper consideration to service conditions. However, where service conditions are fixed, a valve may have to operate at pressure conditions normally resulting in cavitation. In such instances, noise control by source treatment can be accomplished by using one of several methods; multiple valves in series, a special control valve, or the use of special valve trim that uses the series restriction concept to eliminate cavitation.
Cavitrol Trim is a source treatment solution as it eliminates cavitation across the control valve. This is achieved by staging the pressure drop across the valve so the pressure of the fluid never drops below its vapor pressure (figure 6-7). Cavitrol Trim is only effective in clean processes. If a process contains particulate, it will require Dirty Service Trim (DST). DST also operates on the concept of staging the pressure drops (figure 6-8).
While path treatment of aerodynamic noise is often an economical and efficient alternative, path treatment of hydrodynamic noise is not generally recommended. This is because the physical damage to control valve parts and piping produced by cavitation is generally a much more serious issue than the noise generated.
6−8
Page 89
W2479
Figure 6-7 . Cavitrol III Trim
Prediction techniques accurately alert the designer to the need for noise control. When it is a problem, a variety of solutions are available ranging from simple path insulation to sophisticated control valves which eliminate noise at the source.
Two-Phase Noise
As the properties of the fluids vary, the noise generation, propagation, and pipe excitation processes area are all affected. Acoustical wave speed and the density of the fluid are key considerations. In an all gas or all liquid application, these are reasonably predictable at any point from the inlet of the downstream piping.
However, for a multiphase fluid, either one-component or two-component, there can be tremendous variations in these important parameters. In fact, at the vena contracta where the velocities are greatest, the phases may separate and form annular flow, with the gas and the liquid phases having different velocities. This possibility makes the noise generation process nearly impossible to model.
W8538
Figure 6-8. NotchFlo DST Trim for
Fisher Globe Style Valves
However, if cavitation damage can be eliminated using the special trims discussed, it becomes practical to use the path treatment method to further reduce the local noise caused by the cavitating liquid. This may be accomplished through the use of heavy-walled pipe and acoustical or thermal insulation.
Much technology now exists for predicting and controlling noise in the industrial environment.
Between the vena contracta and the downstream piping, the phases may be re-oriented to a homogenous mixture. Propagation of a pressure wave in this region would be again nearly impossible to model, as even if it is perfectly homogenous, the void fraction would be constantly changing with pressure.
Wave speed and density are also important in determining the efficiency with which a sound field is coupled to the pipe wall to cause vibrations and subsequent external noise radiation.
Emerson engineers have conducted field studies on applications where flashing noise was present in an attempt to quantify the problem, if indeed there was one. After an extensive search there were not any applications which were considered noise problems, nor have any surfaced since.
Based upon this experience, two conclusions were made:
1. 1. A technically appropriate two-phase noise prediction method does not exist
2. Two-phase, or pure flashing, applications do not create noise problems.
6−9
Page 90
Control Valve Noise Summary
The requirement for noise control is a function of legislation to protect our wellbeing and to prevent physical damage to control valves and piping.
Noise prediction is a well defined science. Actual results will be within 5 dBA of predicted levels.
Prediction is based upon contributions for:
D Pressure drop
D Flow rate
D P/P
D Piping and insulation
D Downstream pressure
Noise reduction is accomplished in two general ways:
1. Source treatment, which acts upon the amount of noise generated
and trim style
1
2. Path treatment, which blocks transmission on noise to the environment.
There are two common source treatments:
1. Valve noise trim is based on principles of dividing the flow to create many small noise sources which combine to a lower level than a single large flow noise. Diffusers used with control valves share pressure drop creating two lower noise sources which again combine to an overall lower level.
2. Path treatment involves use of insulation or absorptive devices to lower the sound level which reaches observers.
Hydrodynamic noise from liquid flow streams can mainly be traced to cavitation. In this case, damage from the cavitation is of more concern than the noise. Appropriate treatment of the cavitation source should be initiated through staging the pressure drop.
Two-phase, or pure flashing, applications do not create noise problems, and there is no technically appropriate two-phase noise prediction method.
6−10
Page 91
Chapter 7
Steam Conditioning
Introduction
Power producers have an ever-increasing need to improve efficiency, flexibility, and responsiveness in their production operations. Changes resulting from deregulation, privatization, environmental factors, and economics are combining to alter the face of power production worldwide. These factors are affecting the operation of existing power plants and the design of future plants resulting in a myriad of changes in the designs and operating modes of future and existing power plants. 3-
Competing in today’s power market requires heavy emphasis on the ability to throttle back operations during non-peak hours in order to minimize losses associated with power prices falling with demand. These changes are implemented in the form of increased cyclical operation, daily start and stop, and faster ramp rates to assure full load operation at daily peak hours.
Advanced combined cycle plants are now designed with requirements including operating temperatures up to 1500°F, noise limitation in urbanized areas, life extension programs, cogeneration, and the sale of export steam to independent customers. These requirements have to be understood, evaluated, and implemented individually with a minimum of cost and a maximum of operational flexibility to assure profitable operation.
Great strides have been made to improve heat rates and increase operational thermal efficiency by the precise and coordinated control of the temperature, pressure, and quality of the steam. Most of the steam produced in power and process plants, today, is not at the required conditions for all applications. Thus, some degree of
conditioning is warranted in either control of pressure and/or temperature, to protect downstream equipment, or desuperheating to enhance heat transfer. Therefore, the sizing, selection, and application of the proper desuperheating or steam conditioning systems are critical to the optimum performance of the installation.
Thermodynamics of Steam
Highly superheated steam, (i.e. 900 - 1100°F) is usually generated to do mechanical work such as drive turbines. As the dry steam is expanded through each turbine stage, increasing amounts of thermal energy is transformed into kinetic energy and turns the turbine rotor at the specified speed. In the process, heat is transferred and work is accomplished. The spent steam exits the turbine at greatly reduced pressure and temperature in accordance with the first law of thermodynamics.
This extremely hot vapor may appear to be an excellent source for heat transfer, but in reality it is just the opposite. Utilization of superheated steam for heat transfer processes is very inefficient. It is only when superheated steam temperatures are lowered to values closer to saturation that its heat transfer properties are significantly improved. Analysis has shown that the resultant increase in efficiency will very quickly pay for the additional desuperheating equipment that is required.
In order to understand why desuperheating is so essential for optimization of heat transfer and efficiency, we must examine the thermodynamic relationship of temperature and the enthalpy of water. Figure 7-1 illustrates the changes of state that occur in water over a range of temperatures, at constant pressure, and relates them to the enthalpy or thermal energy of the fluid.
www.Fisher.com
Page 92
300
200
100
212 deg F
970 Btu to
boil water
These lines curve and meet at
705.4 deg F the critical temperature, above which water cannot exist as a liquid
Evaporation at more than 14.7 psi
Evaporation at 14.7 psi
Atmospheric pressure
Water heating at 1 Btu per degree
Steam superheating at about
0.4 Btu per degree
Temperataure, def F
LIQUID
T-H DIAGRAM WATER
800 PSIA
Temperataure, def F
32
0
0 500 1000
E0117
144 Btu to melt ice
Ice heating at about
1/2 Btu per degree
Btu added to 1 pound of water
All data for 1 lb. water
Figure 7-1 . Temperature enthalpy diagram for
water. Note that the greatest amount of thermal
energy input is used to vaporize the water.
Maximum efficiency in heat transfer requires
operation at near saturation temperature to recover
this energy.
In the lower left portion of the graph, the water is frozen at atmospheric pressure and below 32°F. At this point, heat is being rejected from the water as it maintains its solid state. As heat is gradually added the ice begins to change. Addition of heat to the ice raises the temperature and slows the rate of heat rejection. It requires approximately 1/2 BTU of thermal energy to be added to a pound of ice to raise its temperature 1°F. Upon reaching 32°F, the addition of more heat does not immediately result in an increase in temperature. Additional heat at this point begins to melt the ice and results in a transformation of state from a solid to a liquid. A total of 144 BTUs is required to melt one pound of ice and change it to water at 32°F.
Once the phase change from a solid to a liquid is complete, the addition of more heat energy to the water will again raise its temperature. One BTU of heat is required to raise the temperature of one pound of water by 1°F. This relationship remains proportionate until the boiling point (212°F) is reached. At this point, the further addition of heat energy will not increase the temperature of the water. This is called the saturated liquid stage.
14.7 PSIA
VAPOR
E0118
LIQUID-VAPOR
ENTHALPY, BTU/LBM
Figure 7-2. Temperature enthalpy diagram for
water showing that saturation temperature varies
with pressure. By choosing an appropriate
pressure, both correct system temperature and
thermal efficiency can be accommodated.
The water begins once again to change state, in this case from water to steam. The complete evaporation of the water requires the addition of 970 BTUs per pound. This is referred to as the latent heat of vaporization, and is different at each individual pressure level. During the vaporization process the liquid and vapor states co-exist at constant temperature and pressure. Once all the water, or liquid phase, has been eliminated we now have one pound of steam at 212°F. This is called the saturated vapor stage. The addition of further thermal energy to the steam will now again increase the temperature. This process is known as superheating. To superheat one pound of steam 1°F requires the addition of approximately
0.4 BTUs of thermal energy. The potential thermal energy release resulting
from a steam temperature change differs significantly depending on temperature and superheat condition. It is much more efficient, on a mass basis, to cool by addition of ice rather than by the addition of cold fluids. Similarly, it is more efficient to heat with steam at temperatures near the saturation temperature rather than in the superheated region. In the saturated region much more heat is liberated per degree of temperature change than in the superheated range because
7−2
Page 93
production of condensate liberates the enthalpy of evaporation, the major component of the total thermal energy content. The temperature­enthalpy diagram in figure 7-2 is generalized to show the thermodynamic relationship at various pressures.
The graph in figure 7-2 illustrates three distinct phases (i.e., liquid, vapor, and liquid-vapor) and how enthalpy relates to temperature in each phase at constant pressure. The rounded section in the middle of the graph is called the ”steam dome” and encompasses the two-phase, liquid-vapor region. The left boundary of the steam dome is called the saturated liquid line. The right boundary line is the saturated vapor line. The two boundaries meet at a point at the top of the dome called the critical point. Above this point, 3206 psi and 705°F, liquid water will flash directly to dry steam without undergoing a two-phase coexistence. When conditions exceed this critical point they are considered to be existing in the supercritical state.
In the lower left side of the graph, the saturated liquid line intersects the temperature axis at 32°F. At this point we have water and a defined enthalpy of 0 BTU/LB. As heat is added to the system, the temperature and enthalpy rise and we progress up the saturated liquid line. Water boils at 212°F at
14.7 psia. Thus, at 212°F and 180 BTU/LB, we note a deviation from the saturated liquid line. The water has begun to boil and enter a new phase; Liquid-Vapor.
As long as the liquid stays in contact with the vapor, the temperature will remain constant as more heat is added. At 1150 BTU/LB (at 14.7 psi) we break through to the saturated vapor line. Thus, after inputting 970 BTU/LB, all of the water has been vaporized and enters the pure vapor state. As more heat is added, the temperature rises very quickly as the steam becomes superheated.
Why Desuperheat?
Desuperheating, or attemperation as it is sometimes called, is most often used to:
D Improve the efficiency of thermal transfer in heat exchangers
D Reduce or control superheated steam temperatures that might otherwise be harmful to equipment, process or product
D Control temperature and flow with load
variation Dry superheated steam is ideally suited for
mechanical work. It can be readily converted to kinetic energy to drive turbines, compressors and fans. However, as the steep temperature­enthalpy line slope would indicate, the amount of heat output per unit of temperature drop is very small. A heat exchanger using superheated steam would have to be extremely large, use great quantities of steam, or take tremendous temperature drops. A 10°F drop in temperature liberates only 4.7 BTU per pound.
If this same steam had been desuperheated to near saturation the thermal capabilities would be greatly enhanced. The same 10°F drop in temperature would result in the release of over 976 BTU of heat. This illustrates the obvious advantages of desuperheating when thermal processes are involved. Only by desuperheating the superheated steam is it possible to economically retrieve the energy associated with vaporization. By changing steam pressure, the saturation temperature can be moved to match the temperature needs of the process and still gain the thermal benefits of operating near saturation.
The previous discussion centered on why we superheat steam (to do mechanical work) and when it should be desuperheated back to saturation (to heat). There are many situations when saturated steam suddenly and unintentionally acquires more superheat than the downstream process was designed to accommodate. This “unintentional” superheat produces the same thermal inefficiencies mentioned previously. In this case, we are talking about the sudden expansion and temperature change associated with a pressure reducing valve. Take the following steam header conditions for example:
Conditions: P1 = 165 psia
T
= 370°F
1
Enthalpy = 1198.9 BTU/LB
Saturation temperature at 165 psia is 366°F. Therefore, the steam has only 4°F of superheat and would be excellent for heat transfer. Assume that another thermal process requires some steam, but at 45 psia rather than 165 psia. The simple solution is to install a pressure reducing valve. Since throttling devices, such as valves and orifices, are isenthalpic (constant enthalpy processes) the total heat content of the steam will not change as flow passes through the restriction.
7−3
Page 94
After the valve, the steam will have the following conditions:
Conditions: P2 = 45 psia
Enthalpy = 1198.9 BTU/LB
Referencing a set of steam tables, we see that at the above conditions the steam temperature is 328°F giving the impression that it has cooled. However, from the steam tables we see that the saturation temperature for 45 psia steam has also dropped to 274°F. The net result is that our steam now has 54°F of superheat (328°F - 274°F). Use of this steam for heat transfer could be uneconomical and return on investment on a desuperheater would be most favorable.
E0865
Figure 7-3. Insertion style desuperheater injects a
controlled amount of cooling water into super-
heated steam flow.
Desuperheating
In this section we will briefly discuss the process of desuperheating. The need to desuperheat is usually performed simply to control the steam temperature, or heat content, of the flowing vapor media. Depending on the process downstream of the main steam source, a desuperheater will be utilized to transform the steam into a medium that is more efficient for heat transfer or just more conducive for interaction with its surrounding components. One means of accomplishing this is with a direct contact heat transfer mechanism. This can easily be achieved by the use of a single spray injection nozzle that, when properly placed, diffuses a calculated quantity of liquid into the turbulent flow stream. Vaporization of the liquid phase proceeds while mass, momentum, and energy transfer occurs, and the resultant vapor exits the process at the desired temperature or heat content level.
Desuperheaters
A desuperheater is a device that injects a controlled amount of cooling water into a superheated steam flow in an effort to reduce or control steam temperature (figure 7-3). Desuperheaters come in various physical configurations and spray types that optimize performance within specified control and installation parameters. Selection should also always include attention to those details that would provide the most economic solution without sacrificing required performance.
The success of a particular desuperheater station can rest on a number of physical, thermal, and geometric factors. Some of the factors are quite obvious and others are more obscure, but they all have a varying impact on the performance of the equipment and the system that it is installed in. Considerable research has been conducted into the characteristics of desuperheaters and the transformation of spraywater to vapor. The findings are of considerable interest to both design and process engineers. In the next several sections, we will discuss these findings and how they relate to the desuperheating system as a whole.
The most important factor is the selection of the correct desuperheater type for the respective application. Units come in all shapes and sizes and use various energy transfer and mechanical techniques to achieve the desired performance criteria and optimize the utilization of the system environment. These design criteria include:
D Mechanically Atomized − Fixed and Variable
Geometry Spray Orifice
D Geometrically Enhanced D Externally Energized
The mechanically atomized style of desuperheater is the most popular and simplistic style that provides nominal performance over a wide range of flow and conditions. These models are of the internally energized variety. The atomization and injection of the spray water is initiated by the pressure differential between the spraywater and the steam. The DMA, fixed geometry spray orifice, units are the simplest and by design have a constant area flow path. These units are highly
7−4
Page 95
W6310-1
Figure 7-4. The DMA/AF desuperheater
utilizes variable-geometry, back-pressure
activated spray nozzles.
dependent on the pressure differential and thus provide levels of performance that are commensurate with the magnitude of the difference. Obviously, the larger the water/steam differential the better the unit will perform (i.e., penetration velocity, flow variation and droplet size). Since the equipment turndown is usually limited to 4:1, it is best suited for near steady load applications.
An upgrade from the fixed geometry unit is the DMA/AF (figure 7-4) variable geometry nozzle desuperheater. Here the actual flow geometry of the unit is varied to maintain an optimum differential across the discharge orifice. As a result of this change, the level of flow variation is greatly enhanced and so is the performance. Equipment turndowns can exceed 40:1, thus making this style a good choice for medium to high load change applications.
Another form of mechanically atomized desuperheater is the DVI, Geometric Enhanced style, (figure 7-5). Here, the unit is supplied a high pressure recovery flow restriction that alters flow geometry and helps to keep the level of turbulence and kinetic energy at a high level during all phases of the units operation due to an increased velocity at the point of spray water injection. This increased level of surrounding energy helps to
W6313-1
Figure 7-5. The DVI desuperheater injects
spraywater in the outlet of the venturi section,
assuring excellent mixing and rapid atomization.
impart energy transfer to the droplets and assists in break-up, mixing, and vaporization. This style is best suited for medium turndown applications typically around 15:1.
The last group of desuperheater units utilizes an external energy source for the atomization of the spraywater. The most common medium is a high pressure steam source. In this case, the high levels of kinetic energy are provided by a critical pressure reduction in the desuperheater sprayhead. The critical drop is used to shear the water into a fine mist of small droplets, which is ideal for vaporization, as shown in figure 7-6. This type of system can provide a very high degree of flow variation without requiring a high pressure water supply. Applications requiring turndown ranges greater then 40:1 utilize this type of equipment for best performance. In addition to an external spraywater control valve, the system will also require an atomizing steam shut-off valve (figure 7-7).
Other factors that have a large amount of impact on the performance of a desuperheating system include:
D Installation Orientation D Spray Water Temperature D Spray Water Quantity D Pipeline Size D Equipment vs. System Turndown
7−5
Page 96
W6311-2
Figure 7-6. The DSA desuperheater uses
high-pressure steam for rapid and complete
atomization of spraywater in low-velocity steam
lines.
Installation orientation is often overlooked, but a critical factor in the performance of the system. Correct placement of the desuperheater can have more impact on the operation than the style of the unit itself. For most units, the optimum orientation is in a vertical pipeline with the flow direction up. This flow direction is ideal, as the natural flow direction of the injected water tends to be in the counter direction due to effect of gravity. The role of gravity in this orientation will suspend the droplets in the flow longer while they are being evaporated, thus shortening the required downstream distance or efficient mixing.
Other orientation factors that are of concern include downstream pipefittings, elbows, and any other type of pipeline obstruction that can provide a point for water impingement or fallout.
D Surface Tension D Drop Size Distribution D Latent Heat of Vaporization D Vaporization Rate
Improvement in all these areas will act to improve the overall performance of the system, as the spraywater will evaporate and mix with the steam at a faster rate.
The quantity of water to be injected will, as with any mass flow calculation, have a directly proportionate affect on the time for vaporization.
The heat transfer process is time dependent; thus, the quantity of spray water will increase the time for complete vaporization and thermal stability.
Another concern for proper system performance is pipeline size. Pipe size should be determined in an effort to balance the velocity of the steam flow. Steam traveling at a fast rate will require longer distances to effectively cool, as heat transfer is a function of time. Steam traveling at low velocity will not have enough momentum to suspend water droplets long enough for evaporation. As a result, water will fall out of the steam flow to collect along the bottom of the pipe, and it will not cool the steam effectively. Ideal velocity is typically in the range of 250 ft/sec to 300 ft/sec.
As the pipeline size increases to limit steam velocity, more attention must be paid to the penetration velocity of the spray and the coverage in the flow stream. Experience shows that single point injection type desuperheaters will have insufficient nozzle energy to disperse throughout the entire cross-sectional flow area of the pipeline. As a result, the spray pattern collapses and thermal stratification occurs (i.e., sub-cooled center core within a superheated outer jacket.)
This condition normally is eliminated after the flow stream undergoes several direction changes, although this is not always possible within the limits of the control system or process. Proper placement of high-energy TBX-T (figure 7-8) multi-nozzle steam coolers in the larger pipelines will normally prevent thermal stratification.
Spraywater temperature can have an great impact on the desuperheater performance. While it goes against logical convention, hotter water is better for cooling. As the temperature increases and moves closer to saturation, its flow and thermal characteristics are improved and impact most significantly the following:
7−6
The most over used and misunderstood word in the field of desuperheating is “turndown.” When applied to a final control element, such as a valve, it is a simple ratio of the maximum to minimum controllable flow rate. Turndown is sometimes used interchangeably with rangeability; however, the exact meaning differs considerably when it
Page 97
C0817 / IL
Figure 7-7. The DSA desuperheater utilizes two external control valves: a spraywater unit and an atomizing steam valve.
DSA DESUPERHEATER
desuperheater failure if the unit is not designed for the operation. Design upgrades for this application consist of thermal liners to reduce thermal loads and structural optimization to reduce induced vibration at stress sensitive welds.
To summarize the requirements to correctly size a desuperheater, the following system and operating information is required:
D Minimum and Maximum Steam Flow D Steam Pressure and Temperatures
W8786-1
Figure 7-8. TBX-T Cooler
comes to actual performance comparisons. Since a desuperheater is not a final control element its performance is linked directly to its system environment; thus, the actual turndown is more a function of system parameters rather than based on the equipment’s empirical flow variations. Once this is understood, it is obvious that even a good desuperheater cannot overcome the limitations of a poorly designed system. They must be evaluated on their own merits and weighed accordingly.
A final design parameter for all insertion type desuperheaters is its ability to withstand high levels of thermal cycling. Due to the nature of operation of today’s plants, desuperheaters should be designed with the intent to operate under daily cycling environments. Exposure to frequent daily cycling can lead to thermal fatigue and
D Cooling Water Pressure and Temperature D Required System Turndown Ratio D Pipe Size and System Layout D Planned Mode of Operating
Steam Conditioning Valves
Steam conditioning valves represent state-of-the-art control of steam pressure and temperature by integrally combining both functions within one control element unit. These valves address the need for better control of steam conditions brought on by increased energy costs and more rigorous plant operation. Steam conditioning valves also provide better temperature control, improved noise abatement, and require fewer piping and installation restrictions than the equivalent desuperheater and pressure reduction station.
7−7
Page 98
W8493-1
Figure 7-9. The TBX utilizes an external
spraywater manifold with multiple nozzles for
moderate to large volume applications.
Steam conditioning valve designs can vary considerably, as do the applications they are required to handle. Each has particular characteristics or options that yield efficient operation over a wide range of conditions and customer specified requirements.
The TBX steam-conditioning valve (figure 7-9) combines pressure and temperature control in a single valve. Finite element analysis (FEA) and computational fluid dynamic (CFD) tools were used in its development to optimize the valve’s operating performance and overall reliability. The rugged design of the TBX proves capable of handling full mainstream pressure drops, while its flow-up configuration, in conjunction with Whisper Trim technology, prevents the generation of excessive noise and vibration.
The simplified trim configuration used in the TBX accommodates rapid changes in temperature as experienced during a turbine trip. The cage is casehardened for maximum life and is allowed to expand during thermally induced excursions. The valve plug is continuously guided and utilizes cobalt-based overlays both as guide bands and to provide tight, metal-to-metal shutoff against the seat.
W8494-1
Figure 7-10. Detail of AF Spray Nozzle.
The TBX incorporates a spraywater manifold downstream of its pressure reduction stage. The manifold features variable geometry, backpressure activated AF nozzles that maximize mixing and quick vaporization of the spraywater.
The AF nozzle (figure 7-10) was developed originally for condenser dump systems in which the downstream steam pressure can fall below the saturation level. In these instances, the spraywater may flash and significantly change the flow characteristic and capacity of the associated nozzle at a critical point in the operation.
Spring loading of the valve plug within the AF nozzle prevents any such changes by forcing the plug to close when flashing occurs. With flashing, the compressibility of the fluid changes, and the nozzle spring will force closure and re-pressurization of the fluid leg. Once this is done, the fluid will regain its liquid properties and reestablish flow to the condenser.
The TBX injects the spray water towards the center of the pipeline and away from the pipe wall. The number of injection points varies by application. With high differentials in steam pressure, the outlet size of the valve increases drastically to accommodate the larger specific volumes. Correspondingly, an increased number of nozzles are arranged around the circumference of the outlet making for a more even and complete distribution of the spray water (figure 7-11).
The simplified trim arrangement in the TBX permits extending its use to higher pressure classes (through ANSI Class 2500) and operating temperatures. Its balanced plug configuration
7−8
Page 99
W8520
Figure 7-11. The TBX showing external
spraywater manifold.
provides Class V shutoff and a linear flow characteristic.
The TBX typically uses high-performance, pneumatic piston actuators in combination with FIELDVUE Digital Valve Controllers to achieve full stroke in less than two seconds while maintaining highly accurate step response. The FIELDVUE instruments along with AMS ValveLinkt software provide a self-diagnostic capability that gives answers about valve performance. The current valve/actuator signature (seat load, friction, etc.) can be compared against previously stored signatures to identify performance changes before they cause process control problems.
When piping dictates, the TBX valve can be provided as separate components, allowing pressure control in the valve body and temperature reduction in a downstream steam cooler. The steam cooler is equipped with a water supply manifold (multiple manifolds are also possible). The manifold provides cooling water flow to a number of individual spray nozzles that are installed in the pipe wall of the cooler section. The result is a fine spray injected radially into the high turbulence of the axial steam flow.
Installation Guidelines
Installation of desuperheaters and steam conditioning valves is key to long term success
and performance. It is best to install desuperheaters in a straight run of horizontal or vertical pipe. Installation in elbows is also possible, but it can affect system turndown and thermal stratification due to momentum caused changes in the velocity profile.
Momentum forces the majority of the steam flow to the outside surfaces of the bend. This results in a low velocity void on the inside of the elbow. If high turndowns are not required, this installation is satisfactory since the voids would rarely be below minimum velocity at maximum flow. As the flow is reduced, however, these areas may lose their ability to perform as required to desuperheat the steam.
Other installation parameters that are always of interest to the piping designer are how much straight run of pipe is required and where the temperature sensor should be located. Both are thermally derived questions and require thermally derived answers. It is desirable to have the thermal sensor as close as possible to the desuperheater in order to reduce the signal lag time. It is also desirable not to have any piping components (e.g., elbows or tees) that would detract from the thermal process.
The following equations provide guidelines for designing a proper system. These equations relate to time required for complete vaporization and mixing.
Downstream Straight Pipe Requirements (SPR): SPR (ft) = 0.1 Sec. x Maximum Steam Velocity (ft/sec)
Downstream Temperature Sensor Distance (TS):
15% Spraywater or less:
TS (ft) = 0.2 Sec. x Maximum Steam Velocity (ft/sec)
Greater than 15% Spraywater:
TS (ft) = 0.3 Sec. x Maximum Steam Velocity (ft/sec)
Temperature control is not limited to receiving a signal from a downstream temperature sensor. Another valid alternative is feed-forward control.
Feedforward control is accomplished using an algorithm that is characterized specifically to the valve installed in the application. The algorithm is programmed into the distributed control system to provide an accurate calculation of the spray water that is required to reduce the steam enthalpy and temperature to the desired outlet set point. The algorithm requires input of upstream temperature
7−9
Page 100
and pressure as well as the position of the valve. Upstream and spraywater enthalpies are then determined using an inherent steam table within the DCS. The total spraywater required is calculated from a heat balance using the final enthalpy into the condenser. This method of temperature control is a practical solution for applications that do not have enough downstream pipe distance for accurate measurement by a temperature sensor.
Turbine Bypass Systems
The most severe and critical application of any steam conditioning installation is that of the turbine bypass.
limiting temperature differentials during turbine admission the effects of thermal fatigue are minimized and longevity of components maximized. This is especially important for life extension programs where the role and justification of the bypass system may be centered solely on this aspect.
D The ability to avoid a boiler trip following
a full load rejection. A boiler (HRSG) / turbine
unit with a bypass can withstand a complete system load rejection and remain available for rapid reloading after the disturbance has been removed. This important advantage for system flexibility and operating efficiency can make the difference between a more costly and time consuming warm start and a hot start.
The concept of the turbine bypass has been around for a long time; however, its application and importance has broadened significantly in recent years. Steam turbine bypass systems have become essential to today’s power plant performance, availability, responsiveness, and major component protection.
The following will concentrate on the general application of bypass systems as used in fossil fueled utility power plants. The closed water/steam heat cycle of such typical units may be comprised, but not limited to, sub- or super-critical pressures, to single, double, or triple reheat sections and to condensation at or near ambient temperatures. The steam generating principles where such bypass systems are employed include natural or assisted circulation drum boilers, combined circulation boilers, and once-through boilers. The turbine may be of single or double shaft design and operated either at fixed inlet pressure or on sliding pressure.
Bypass System Benefits
Just how beneficial a bypass system proves to be depends upon many factors (e.g., plant size, mode of operation, age of existing components, size of the condenser, main fuel type, control philosophy, etc). However, the main benefits for the application of a comprehensive bypass system in the 25-100% size range are:
D The matching of steam and heavy turbine metal component temperatures during the startup and shutdown phase. This has proven
to be of major economic significance in terms of fuel savings and the thermal protection of critical heavy wall boiler and turbine components. By
D Reduction in solid-particle erosion of
turbine components. The loss of material from
the boiler tubing and internals is most prevalent during commissioning startup and after the unit has been shutdown for an expended period of time. Thermal transients assist in the dislodging of scale, oxides, and weldments within the boiler circuit to form an abrasive steam flow that, over time, could accelerate the wear of sensitive turbine blades and seriously affect operating efficiencies and maintenance costs. Damage can be reduced or eliminated by routing the steam through the bypass system.
D Independent operation of the boiler and
turbine set. The ability to operate the boiler
without the turbine, at any load up to the limit of the bypass capacity, can be surprisingly useful for operational or testing purposes. For example, all boiler controls and firing systems can be tested and fine-tuned independent of the turbine operation. This significantly reduces both cost and time relating to initial commissioning of the plant, retrofitting and checking equipment performance, and system troubleshooting.
General System Description
A complete and comprehensive turbine bypass system can be comprised of many inter-linked and coordinated components. These include the bypass valves, spray water control valves, control system, and the actuation and positioning system. For this discussion, we will center our attention on the bypass valves themselves.
The bypass system incorporates the dual operating function of steam conditioning valves (i.e., for the controlled reduction of both pressure and temperature). The bypass valve incorporates
7−10
Loading...