DragonWave LT3G User Manual

Harmony Lite, R1.1
Product Description
Revision 1, Updated in September, 2014 Document Number: PM-000157-01-EN
NOTICE
This document contains DragonWave proprietary information. Use, disclosure, copying or distribution of any part of the information contained herein, beyond that for which it was originally furnished, requires the written permission of DragonWave Inc.
The information in this document is subject to change without notice and relates only to the product defined in the introduction of this document. DragonWave intends that information contained herein is, to the best of its knowledge, correct and accurate. However, any/all liabilities associated with the use or accuracy of the information contained herein must be defined in a separate agreement between DragonWave and the custom er /u ser .
Copyright © DragonWave Inc. 2014. All rights reserved.
2
Table of Contents
Table of Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1 Preface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
1.1 What’s New in This Release? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
1.2 Changes History . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
1.3 Scope of The Document . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
1.4 Intended Audience. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
1.5 FCC & IC RF Exposure Warnings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
1.6 Waste Electrical and Electronic Equipment (WEEE). . . . . . . . . . . . . . . 10
1.7 RoHS Compliance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
1.8 CE Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.1 Available Bandwidth and Modulation. . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.2 Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.2.1 Small Cell Backhaul in Non-line-of-sight (NLOS) Environment . . . . . . . 13
2.2.2 Rural Backhaul . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.2.3 Public Safety and Vertical Applications . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.3 Environmental Standards . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
3 Features. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
3.1 Main Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
3.2 Adaptive Coding and Modulation (ACM) . . . . . . . . . . . . . . . . . . . . . . . . 15
3.3 Transmit Power Control (TPC). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
3.4 2x2 Multiple-input and Multiple-output (2x2 MIMO). . . . . . . . . . . . . . . . 16
3.5 Dynamic Frequency Selection (DFS). . . . . . . . . . . . . . . . . . . . . . . . . . . 17
3.6 Dynamic Channel Selection (DCS) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
3.7 Retransmission . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
3.8 Configurable Uplink/Downlink Ratio. . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
3.9 Quality of Service (QoS) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
3.9.1 Priority Determination (Classification) . . . . . . . . . . . . . . . . . . . . . . . . . . 20
3.9.2 Scheduling. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
3.9.3 CoS Queue and Egress Port Rate Limiting (Shaping). . . . . . . . . . . . . . 22
3.10 Power over Ethernet . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
3.10.1 P+E . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
3.10.2 PoE+ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
3.11 Synchronization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
3.12 Co-site Synchronization. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
3.13 OFDM Modulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
3.14 Low-density Parity Check (LDPC) Encoding . . . . . . . . . . . . . . . . . . . . . 29
3.15 LLDP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
3.16 Radio Port Performance Monitoring. . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
3.17 Adaptive Noise Immunity (ANI) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
4 Mechanical Structure and Interfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
4.1 Dimensions and Weight. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
4.2 Interfaces. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
3
4.2.1 P+E In (Eth 1) Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
4.2.2 P+E Out (Eth 2) Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
4.2.3 PoE+ In Interface (optional) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
4.2.4 Internal Interface (optional). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
4.2.5 RF Interface (optional) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
4.2.6 RSSI/EVM Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
5 Product Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
5.1 Packet Processing Module . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
5.2 Power Supply Module. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
5.3 IEEE 1588v2 Module . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
5.4 Baseband and RF Module . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
5.5 Antenna. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
6 Management. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
6.1 Web-based GUI (Link Viewer) Management . . . . . . . . . . . . . . . . . . . . . 42
6.2 Accessing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
6.3 SNMP Agent. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
6.4 SNTP, SFTP and SSH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
6.5 Software Upgrade. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
6.6 License . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
7 Technical Specification. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
7.1 Regulation Compliance. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
7.2 Radio Performance. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
7.3 Ethernet Throughput. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
7.4 Latency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
8 Standards . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
4
List of Figures
Figure 1 WEEE Label . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
Figure 2 CE Mark. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
Figure 3 Equipment Appearance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
Figure 4 NLOS Application . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
Figure 5 ACM for Traffic Growing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
Figure 6 TPC Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
Figure 7 QoS Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
Figure 8 P+E functionality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
Figure 9 Power Feeding Two Lites with P+E PSE Equipment at A Chain Site . . 23
Figure 10 PoE+ functionality schema . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
Figure 11 Power Feeding Two Lites Using PoE+ Equipment at A Chain Site. . . . 24
Figure 12 Co-site Synchronization Realization . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
Figure 13 Co-site Synchronization Mechanism . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
Figure 14 PoE+/P+E Interfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
Figure 15 P+E Interfaces. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
Figure 16 Lite With Box Cover. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
Figure 17 Function modules of Lite . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
5
List of Tables
Table 1 Changes History . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
Table 2 FCC & IC RF Recommended Safe Separation Distances . . . . . . . . . . . 10
Table 3 SP Queues Configuration. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
Table 4 Dimensions and Weight . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
Table 5 P+E In. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
Table 6 Pinout Definition of P+E In . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
Table 7 P+E Out . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
Table 8 Pinout Definition of P+E Out. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
Table 9 PoE+ In. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
Table 10 Pinout Definition of PoE+ In . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
Table 11 Internal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
Table 12 Pinout Definition of Internal. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
Table 13 RSSI/EVM parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
Table 14 5 GHz . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
Table 15 3 GHz . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
Table 16 2 GHz . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
Table 17 5 GHz Radio Performance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
Table 18 3 GHz Radio Performance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
Table 19 2 GHz Radio Performance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
Table 20 MCS table. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
Table 21 Ethernet L1 Throughput of 50/50 Tx/Rx Ratio (40 MHz/GI:400 ns) . . . . 49
Table 22 Ethernet L1 throughput of 50/50 Tx/Rx ratio (40 MHz/ GI:800 ns) . . . . . 49
Table 23 Ethernet L1 throughput of 50/50 Tx/Rx ratio (20 MHz/ GI:400 ns) . . . . . 50
Table 24 Ethernet L1 throughput of 50/50 Tx/Rx ratio (20 MHz/ GI:800 ns) . . . . . 50
Table 25 Ethernet L2 throughput of 50/50 Tx/Rx ratio (40 MHz/ GI:400 ns) . . . . . 51
Table 26 Ethernet L2 throughput of 50/50 Tx/Rx ratio (40 MHz/ GI:800 ns) . . . . . 51
Table 27 Ethernet L2 throughput of 50/50 Tx/Rx ratio (20 MHz/ GI:400 ns) . . . . . 51
Table 28 Ethernet L2 throughput of 50/50 Tx/Rx ratio (20 MHz/ GI:800 ns) . . . . . 52
Table 29 Ethernet L1 Tx throughput of 70/30 Tx/Rx ratio (40 MHz/ GI:400 ns) . . 52 Table 30 Ethernet L1 Rx throughput of 70/30 Tx/Rx ratio (40 MHz/ GI:400 ns) . . 53 Table 31 Ethernet L1 Tx throughput of 70/30 Tx/Rx ratio (40 MHz/ GI:800 ns) . . 53 Table 32 Ethernet L1 Rx throughput of 70/30 Tx/Rx ratio (40 MHz/ GI:800 ns) . . 54 Table 33 Ethernet L1 Tx throughput of 70/30 Tx/Rx ratio (20 MHz/ GI:400 ns) . . 54 Table 34 Ethernet L1 Rx throughput of 70/30 Tx/Rx ratio (20 MHz/ GI:400 ns) . . 55 Table 35 Ethernet L1 Tx throughput of 70/30 Tx/Rx ratio (20 MHz/ GI:800 ns) . . 55 Table 36 Ethernet L1 Rx throughput of 70/30 Tx/Rx ratio (20 MHz/ GI:800 ns) . . 56 Table 37 Ethernet L2 Tx throughput of 70/30 Tx/Rx ratio (40 MHz/ GI:400 ns) . . 56 Table 38 Ethernet L2 Rx throughput of 70/30 Tx/Rx ratio (40 MHz/ GI:400 ns) . . 57 Table 39 Ethernet L2 Tx throughput of 70/30 Tx/Rx ratio (40 MHz/ GI:800 ns) . . 57 Table 40 Ethernet L2 Rx throughput of 70/30 Tx/Rx ratio (40 MHz/ GI:800 ns) . . 58 Table 41 Ethernet L2 Tx throughput of 70/30 Tx/Rx ratio (20 MHz/ GI:400 ns) . . 58 Table 42 Ethernet L2 Rx throughput of 70/30 Tx/Rx ratio (20 MHz/ GI:400 ns) . . 59 Table 43 Ethernet L2 Tx throughput of 70/30 Tx/Rx ratio (20 MHz/ GI:800 ns) . . 59 Table 44 Ethernet L2 Rx throughput of 70/30 Tx/Rx ratio (20 MHz/ GI:800 ns) . . 60
Table 45 Latency - 50/50 Tx/Rx Ratio 40 MHz/GI:400 ns . . . . . . . . . . . . . . . . . . . 60
6
Table 46 Latency - 50/50 Tx/Rx Ratio 40 MHz/GI:800 ns . . . . . . . . . . . . . . . . . . 61
Table 47 Latency - 50/50 Tx/Rx Ratio 20 MHz/GI:400 ns . . . . . . . . . . . . . . . . . . 61
Table 48 Latency - 50/50 Tx/Rx Ratio 20 MHz/GI:800 ns . . . . . . . . . . . . . . . . . . 61
Table 49 Latency - 70/30 Tx/Rx Ratio 40 MHz/GI:400 ns . . . . . . . . . . . . . . . . . . 62
Table 50 Latency - 70/30 Tx/Rx Ratio 40 MHz/GI:800 ns . . . . . . . . . . . . . . . . . . 62
Table 51 Latency - 70/30 Tx/Rx Ratio 20 MHz/GI:400 ns . . . . . . . . . . . . . . . . . . 63
Table 52 Latency - 70/30 Tx/Rx Ratio 20 MHz/GI:800 ns . . . . . . . . . . . . . . . . . . 63
Table 53 Latency - 30/70 Tx/Rx Ratio 40 MHz/GI:400 ns . . . . . . . . . . . . . . . . . . 63
Table 54 Latency - 30/70 Tx/Rx Ratio 40 MHz/GI:800 ns . . . . . . . . . . . . . . . . . . 64
Table 55 Latency - 30/70 Tx/Rx Ratio 20 MHz/GI:400 ns . . . . . . . . . . . . . . . . . . 64
Table 56 Latency - 30/70 Tx/Rx Ratio 20 MHz/GI:800 ns . . . . . . . . . . . . . . . . . . 65
Table 57 IEEE Standards . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
Table 58 CEPT standards . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
Table 59 ETSI Standards . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
Table 60 ITUT Standards . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
Table 61 IEC Standards . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
Table 62 NEBS Standards . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
Table 63 FCC Standards . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
Table 64 ICES Standards. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
Table 65 UL Standards. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
Table 66 ECC Standards . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
Table 67 IC Standards . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
7
8
DragonWave Inc. Preface

1Preface

1.1 What’s New in This Release?

3 GHz support;
Tx/Rx ratio: 70/30;
Co-site synchronization;
PM of radio interface;
LLDP.

1.2 Changes History

The changes history is shown below:
Revision Updates Update date
1 1st revision. September, 2014
Table 1 Changes History

1.3 Scope of The Document

This document provides the technical description and the technical specifications of Harmony Lite (also referred to as Lite in the following context) system.
g
This document only concerns Lite system release 1.1 without specific statements in the context.

1.4 Intended Audience

This document is intended for the radio network planners and technicians who are responsible for the system planning and management.
f
f
Persons handling this equipment may be exposed to hazards which could result in physical injury! It is therefore mandatory to carefully read and understand this document.
This is the text in French: Les personnes qui manipulent cet équipement peuvent être exposés à des risques q ui
pourraient entraîner des blessures graves! il est donc impératif de lire attentivement et de comprendre ce document.

1.5 FCC & IC RF Exposure Warnings

To satisfy FCC & IC RF exposure requirements for RF transmitting devices, the follow­ing distances should be maintained between the antenna of this device and persons during device operation:
9
DragonWave Inc.Preface
Equipment Separation Distance
Lite 5 GHz 39.03 cm (~ 15.37 in) or more Lite 3 GHz 80.40 cm (~ 31.51 in) or more
Table 2 FCC & IC RF Recommended Safe Separation Distances To ensure compliance, operation at closer than these distances is not recommended.
The antenna used for this transmitter must not be collocated in conjunction with any other antenna or transmitter.

1.6 Waste Electrical and Electronic Equipment (WEEE)

All waste electrical and electronic products must be disposed of separately from the municipal waste stream via designated collection facilities appointed by the government or the local authorities. The WEEE label (see Figure 1) is applied to all such devices.
Figure 1 WEEE Label The correct disposal and separate collection of waste equipment will help prevent poten-
tial negative consequences for the environment and human health. It is a precondition for reuse and recycling of used electrical and electronic equipment.
For more detailed information about disposal of such equipment, please contact Drag­onWave Inc.
The above statements are fully valid only for equipment installed in the countries o f the European Union and is covered by the directive 2002/96/EC. Countries outside the European Union may have other regulatio ns re gar din g th e disp o sa l of electrical and
electronic equipment.

1.7 RoHS Compliance

This product complies with the European Union RoHS Directive 2011/65/EU on the restriction of use of certain hazardou s substances in electrical and electronic equipment.
The directive applies to the use of lead, mercury, cadmium, hexavalent chromium, poly­brominated biphenyls (PBB), and polybrominated diphenylethers (PBDE) in electrical and electronic equipment put on the market after 1 July 2006.
Materials usage information on DragonWave Inc. Electronic Information Products imported or sold in the People’s Republic of China
This product complies with the Chinese standard SJ/T 11364-2006 on the restriction of the use of certain hazardous substances in electrical and electronic equipment. The standard applies to the use of lead, mercury, cadmium, hexavalent chromium, polybro-
10
DragonWave Inc. Preface
minated biphenyls (PBB), and polyb rominated diphenyl ethers (PBDE) in electrical and electronic equipment put on the market after 1 March 2007.

1.8 CE Statement

The CE conformity declaration for the product is fulfilled when the system is built and cabled in line with the information given in the manual and the docume ntation specified within it, such as installation instructions, cable lists or the like. Where necessary project­specific documentation should be taken into consideration. Deviations from the specifi­cations or independent modifications to the layout, such as use of cable types with lower screening values for example, can lead to violation of the CE protection requirements. In such cases the conformity declaration is invalidated. The responsibility for any problems which subsequently arise rests with the party responsible for deviating from the installation specifications.
Figure 2 CE Mark
11
DragonWave Inc.Overview

2Overview

Lite is a complete sub-6 GHz microwave system housed within a single outdoor weath­erproof enclosure. The system has standard Ethernet interfaces and the antenna can be integrated or separated. The system is an integrated, zoning-friendly, packet micro ­wave solution, optimized for the urban environment.
Figure 3 Equipment Appearance Lite provides a host of benefits, including:
Non-line-of-sight (NLOS) support across both licensed and unlicensed TDD spec­trum;
Complete scalability, supporting 20/40 MHz channel bandwidth;
Advanced interference avoidance features including site synchronization;
Flexible network architecture options.
In addition, Lite has the following advantages:
support of adaptive coding and modulation (ACM);
support of transition power control (TCP);
support of 2x2 multiple-input and multiple-output (2x2 MIMO);
support of dynamic frequency selection (DFS);
support of dynamic channel selection (DCS);
support of retransmission;
support of configurable uplink/downlink ratio;
support of QoS (advanced quality of service with 8 queues);
support of power over Ethernet (P+E, PoE+);
support of synchronization;
support of co-site synchronization;
support of OFDM modulation;
support of low-density parity check (LDPC) encoding;
software upgradable to support SyncE and 1588v2 transparent clock;
support of up to 230 Mbit/s aggregate capacity;
support of small cell optimized backhaul for NLOS applications;
performance with very low delay;
support of licensed or unlicensed spectrum;
requirement of simple installation as an integrated outd oo r unit;
12
DragonWave Inc. Overview
requirement of minimized footprint and power consumption (under 17 W) with green design;
support of adaptive noise immunity (ANI).

2.1 Available Bandwidth and Modulation

Lite product family supports the following frequency bands:
4.9 ~ 5.8 GHz (5 GHz);
3.4 ~ 3.8 GHz (3 GHz);
2.3 ~ 2.7 GHz (2 GHz).
Lite supports modulation schema BPSK, QPSK, 16 QAM and forwards error correction coding with rates of 1/2, 2/3, 3/4 and 5/6. 20 MHz and 40 MHz channel spacings are supported. See 7.2.

2.2 Applications

2.2.1 Small Cell Backhaul in Non-line-of-sight (NLOS) Environment

Many types of radio transmission depend, to varying degrees, on line of sight (LOS) between the transmitter and receiver. Small cell backhaul is changing this rule of g ame. Most small cells are installed of light poles of on the walls of buildings in urban areas and inevitably encounter obstructions such as trees, street curves and buildings between the endpoints of the backhaul links.The non-line-of-sight (NLOS) capability of Lite ideally suites itself in this environment because it operates at the frequency lower than 6 GHz. Furthermore, by supporting both licen se d an d un licen s ed spe ctr u m, Lite allo ws ope ra ­tors to select a spectrum strategy that best meets their requirements.
This wireless backhaul solution delivers significant total cost of ownership (TCO) improvements over existing macro-cell backhaul solutions, allowing operato rs to expand their networks cost-effectively.
Lite can be deployed using a tree topology (Figure 4), with macro-cell traffic aggregation points on rooftops, and tail, chain or small hub microsites at street level. This architec­ture provides:
Less network interference than point-to-multipoint system due to the use of directive antennas;
Simple network connectivity and reliable path planning.
An evolution path towards protected network architecture.
13
Figure 4 NLOS Application
DragonWave Inc.Overview

2.2.2 Rural Backhaul

The need for extending cellular phone and data network to rural areas requires a backhaul solution that achieves the lowest TCO while meeting the stringent link through­put and distance requirements. Lite provides a cost-effective solution that supports long ling-of-sight distance (> 20 km) using licensed and unlicensed frequency bands and achieves high throughput and low latency.

2.2.3 Public Safety and Vertical Applications

Lite can also be used to build secure, reliable and cost effective transport for first responders (police, fire and medical), video surveillance and sensor network backhaul­ing along motorways, sea ports, electricity grid, oil and gas pipelines and border security fence, etc.

2.3 Environmental Standards

In normal operation condition, the working temperature range for Lite is from -40 ºC to +55 ºC. For the detailed information, refer to the document of Environmental Product Declaration.
14
DragonWave Inc. Features

3Features

3.1 Main Features

Lite embraces the following features:
Adaptive Coding and Modulation (ACM)
Transmit Power Control (TPC)
2x2 Multiple-input and Multiple-output (2x2 MIMO)
Dynamic Frequency Selection (DFS)
Dynamic Channel Selection (DCS)
Retransmission
Configurable Uplink/Downlink Ratio
Quality of Service (QoS)
Power over Ethernet
Synchronization
Co-site Synchronization
OFDM Modulation
Low-density Parity Check (LDPC) Encoding
LLDP
Radio Port Performance Monitoring
Adaptive Noise Immunity (ANI)

3.2 Adaptive Coding and Modulation (ACM)

ACM allows the user to improve link utilization by making high capacity data transmis­sion reliable. ACM changes code and modulation according to the link quality in the same channel bandwidth.
Figure 5 ACM for Traffic Growing ACM refers to the automatic modulation adjustment that a wireless system can perform
to prevent weather related fading from disrupting communication on the link. When server weather condition, such as a heavy rain, affects the transmission and
reception of data over a wireless network, the radio system automatically changes the modulation, so that non-real-time data-based applications may be affected by signal degradation, but real-time applications will run smoothly and continuously.
Since communication signals are modulated, higher modulation levels increase the number of bits that are transferred per signal, thus enablin g higher throughputs, or better spectral efficiencies. It should be noted that, when using a higher modu lation technique, better signal-to-noise ratios (SNR) are needed to overcome interference and ma intain a tolerable bit error ratio (BER) level.
15
Lite measures the receiving signal quality by calculating the receiving EVM at any time. ACM allows the system to choose the best modulation in order to overcome fading and other interference.
The algorithm uses the highest possible modulation in accordance with link quality deg­radation.
The switch between modulation depends on the re ceiv ing s ign al qu a lity. For example, on a clear day, using 64 QAM modulation, the transmit and receive data
capacity can be 120 Mbit/s. When the weather becomes over cast and stormy, the ACM algorithm changes the modulation to 32 QAM and the system transmits at 100 Mbit/s.
Switchover has the ability to step up or down through all the modulation schemes between BPSK and 64 QAM. This guarantees that the link will operate at the highest possible modulation scheme at any time.

3.3 Transmit Power Control (TPC)

TPC controls the far-end transmit power level in order to keep the r eceived signa l level above a certain user-defined threshold, in accordance with the particular modulation method and capacity being used.
TPC allows traffic to transmit at a low power level while enough SNR is maintained. It is a green design which reduces the interference to other system and power con sumption.
DragonWave Inc.Features
Figure 6 TPC Design User can define target power for the local site and Lite will measure the difference
between the RSSI and target power, and feedback to remote site so that th e remote site can adjust the transmit power accordingly.
TPC feature provides the customer with more flexibility in network design.

3.4 2x2 Multiple-input and Multiple-output (2x2 MIMO)

In radio, MIMO is the use of multiple antennas at both the transmitter and receiver to improve communication performance. It is one of several forms of smart antenna tech­nology.
MIMO technology offers significant increases in data throughput without additional bandwidth. It achieves this goal by spreading the same total transmit power over the antennas to achieve an array gain that improves the spectral efficiency (more bits per second per hertz of bandwidth) or to achieve a diversity gain ghat improves the li nk reli­ability.
By using a dual polarized (cross polarization) antenna, Lite supports 2x2 MIMO with a single antenna.
16
DragonWave Inc. Features

3.5 Dynamic Frequency Selection (DFS)

Radar detection is required when Lite operates on channels that have a nominal band­width falling partly, or completely, within the frequency range from 5250 MHz to 53 50
MHz, or 5470 MHz to 5725 MHz. Furthermore, Lite does not share the channel with other de vice, so beside radar signal,
once Lite detected other equipment operating on the same channel, it will automatically switch to another channel.
Lite implements DFS according to EN 301 893, EN 302 502, FCC 47CFR part 15 oper­ating as a master.
Accordingly, the operational behavior and individual DFS requirement that are associ­ated with Lite are as follows:
At installation (or re-installation), it is assumed to have no available channels within the 5250 MHz to 5350 MHz band and/or the 5470 MHz and 5725 MHz band. In such a case, before starting operations on one of those channels, the equipment perfor ms a channel availability check (CAC) to ensure that there is no radar operating on the channel. If no radar has been detected, the channel becomes an available channel and remains as is until a radar signal is detected during the in-service monitoring. There will be no transmissions by Lite within the channel being checked during this process.
Once Lite has started operations on an available channel, that channel becomes th e operating channel. During normal operation, the operating channel will be monitored (in-service monitoring) to ensure that there is no radar operating on the channel.
If a radar signal or signal from other device is detected dur ing in-service monitoring, Lite devices in the link will stop transmitting on this channel which becomes an unavailable channel.
An unavailable channel becomes a usable channel after the n on-occupancy period. A new CAC is required to verify that there is no radar operating on the channel, before it may be used again. If no radar is detected, the channel becomes an avail­able channel once again.

3.6 Dynamic Channel Selection (DCS)

Besides DFS required by regulation, Lite also implements DCS to dynamically select the working channel according to the interference level, because the interference from co­channel and adjacent channels may affect the performance of Lite.
Spectrum scan Before occupying a channel, Lite must scan the current band and select the best channel as the operation channel. After the spectrum scan, Lite will give a graphic report of the interference level of each 20 MHz channel.
In-service monitoring After occupying a channel, Lite executes in-service monitoring to detect if there is interference from co-channel or adjacent channel. By monitoring the errors on the physical layer, Lite can count the PHY error, channel utilization ratio and packet error rate to determine whether to change to another channel.
17
Channel shutdown When interference signal detected in operation channel exceeds the threshold, Lite will notify the remote site and switch to another channel.

3.7 Retransmission

At unlicensed frequency band, especially in urban areas, the interference is not predict­able due to the complicated and dynamically changing environment. The sporad ic burst of interference may result in packet loss (defective packet is also dropped by the receiver).
Lite implements dynamic packet retransmission mechanism by which the corrupted or lost packet is retransmitted until it is received correctly or the timeout reaches.
The retransmission function implements a negative ackn owledgement (NACK) method. The receiver explicitly notifies the sender when packets, messages, or segments were received incorrectly and thus may need to be retransmitted, and the transmitter will buffer the recent transmitted packets and retransmit the requested packets.
DragonWave Inc.Features
18
DragonWave Inc. Features

3.8 Configurable Uplink/Downlink Ratio

To meet the different market data model requirements, Lite supports configurable uplink/downlink ratio to better utilize the radio bandwidth.
Lite downlink/uplink ratio can be set to 50:50, 70:30 or 30:70 which can improve the bandwidth utilization for different scenarios. E.g., uplink and downlink traffic are not usually balanced, the download traffic usually being much more than the uplink traffic. In this case, 30:70 ratio can be used to improve bandwidth utilization.
19

3.9 Quality of Service (QoS)

Figure 7 shows the QoS architecture of Lite with the following main components.
Priority determination (classification)
Scheduling
CoS queue and egress port rate limiting (shaping).
DragonWave Inc.Features
Figure 7 QoS Architecture

3.9.1 Priority Determination (Classification)

Lite supports service priority determination based on the 802.1p byte/DSCP. Dependin g on the priority determination of the data, the system will direct the data into different queues.

3.9.2 Scheduling

Lite supports 8 queues on each port, each queue corresponding to one priority, from the highest CoS7 to the lowest CoS0. The following scheduling methods are supported by Lite:
Strict priority (SP) The SP mothod schedules access to the egress port between the QoS queues, from the highest QoS queue index to the lowest. The purpose is to provide a lower latency service to the higher QoS class of traffic. Traffic in higher priority queues is scheduled first until all demand is met or until all available bandwidth is used. Strict priority queues have no limit or CIR so it will get all the bandwidth required if it is available, before bandwidth is offered to other queues.
20
DragonWave Inc. Features
Weighted round robin (WRR) WRR is used to allocate a bandwidth per queue to ensu re that each queue gets th e amount of bandwidth determined by the weighing assigned. The available bandwidth is distributed to the queues in need of bandwidth propor­tional to the assigned weight. Once every WRR minimum bandwidth per queue has been satisfied, excess band­width is allocated in proportion to the weights of the queues competing for the excess bandwidth. The weight of each queue can be configurable from 1 to 127.
Deficit Weighted Round Robin (DWRR) An inherent limitation of WRR mode is that the actual bandwidth allocated to a queue depends on the frame size, but as frame sizes are not known to the sched­uler, it is hard to control the bandwidth allocated to a queue. To address this issue, DWRR is invented. It is a modified version of WRR. DWRR has two parameters, credit counter (also called deficit counter) and quantum. DWRR serves the frames at the head of every non-empty queue whose credit counter is greater than the frame’s size. If the credit counter is lower, the queue is skipped and its credit is increased by a given value called quantum. Hence, the function of quantum is somewhat like weight but is in bytes. This increased value is used to calculate the credit counter the next time around when the scheduler examines this queue for serving its head-of-line frame. If the queue is served, the credit is decremented by the size of frame being served.
SP + WRR/DWRR The combination of SP and WRR/DWRR method is supported. In this method, a certain number of CoS queues (out of 8) on an egress por t work in SP mode , while the rest of the queues on the same port work in WRR/DWRR mode. it is possible to enable all CoS queues either in SP or WRR/DWRR mode, or some with SP and the rest with WRR/DWRR. However, the queues configured for SP mode must have a higher index value than those for WRR/DWRR mode. The SP mode iindices must also be consecutive. Up to 8 queues (starting from Q8) can be configured for strict priority queues (see
Table 3). SP queues use SP based on CoS values to assign bandwidth ahead of
other WRR or DWRR queues.
Number of SP Queues Configured Corresponding SP Queues
1Q8 2Q7, Q8 3 Q6, Q7, Q8 4 Q5, Q6, Q7, Q8 5 Q4, Q5, Q6, Q7, Q8 6 Q3, Q4, Q5, Q6, Q7, Q8 7 Q2,Q3, Q4, Q5, Q6, Q7, Q8 8 Q1, Q2,Q3, Q4, Q5, Q6, Q7, Q8
Table 3 SP Queues Configuration
21
Loading...
+ 49 hidden pages