(*) Per channel with all the output pins connected to the PCB.
■ CMOS COMPATIBLE INPUT
■ PROPORTIONAL LOAD CURRENT SENSE
■ SHORTED LOAD PROTECTION
■ UNDERVOLTAGE AND OVERVOLTAGE
DS(on)
I
OUT
V
CC
SHUTDOWN
■ OVERVOLTAGE CLAMP
■ THERMAL SHUTDOWN
■ CURRENT LIMITATION
■ PROTECTION AGAI NST LOSS OF GROUND
AND LOSS OF V
■ VERY LOW ST AND -BY P OWER DI SSIPA TION
■ REVERSE BA TTERY PROTECTION ( *)
CC
DESCRIPTION
The VND920 is a double chip device made by
usingSTMicroelectronics VIPower M0-3
Technology, intended fo r driving any kind of loa d
with one side connected to ground. Active VCC pin
CONNECTION DIAGRAM (TO P VI EW)
SO-28 (DOUBLE ISLAND)
ORDER CODES
PACKAGETUBET&R
SO-28VND920VND92013TR
voltage clamp protects the device against low
energy spikes (see ISO7637 transient
compatibility table). Active current limitation
combined with thermal shutdown a nd automatic
restart prote ct the device against over load. Builtin analog cur rent sense output deli vers a current
proportional to the load current. Device
automatically turns off in case of ground pin
disconnection.
V
1
CC
GND 1
INPUT 1
CURRENT SENSE 1
NC
NC
V
1
CC
V
2
CC
GND 2
INPUT 2
CURRENT SENSE 2
NC
NC
2
V
CC
(*) See application schematic at page 10
October 20 021/18
1
1415
28
V
OUTPUT 1
OUTPUT 1
OUTPUT 1
OUTPUT 1
OUTPUT 1
OUTPUT 1
OUTPUT 2
OUTPUT 2
OUTPUT 2
OUTPUT 2
OUTPUT 2
OUTPUT 2
V
CC
CC
1
2
1
Page 2
VND920
BLOCK DIAGRAM
V
1
CC
GND 1
INPUT 1
GND 2
V
CC
CLAMP
OVERTEMPERATURE
DETECTION
V
CC
CLAMP
LOGIC
OVERVO LTAGE
DETECTION
UNDERVOLTAGE
DETECTION
DRIVER
CURRENTLIMITER
I
OVERVOLTAGE
DETECTION
UNDERVOLTAGE
DETECTION
PowerCLAMP
OUTPUT 1
VDS LIMITER
OUTCURRENT
PowerCLAMP
K
SENSE 1
V
CC
2
2/18
INPUT 2
LOGIC
OVERTEMPERATURE
DETECTION
DRIVER
CURRENTLIMITER
VDS LIMITER
I
OUTCURRENT
K
OUTPUT 2
SENSE 2
Page 3
VND920
ABSOLUTE MAXIMUM RATI NG (Per each channel)
SymbolParameterValueUnit
tot
DC Supply Voltage41V
Reverse DC Supply Voltage- 0.3V
CC
DC Reverse Ground Pin Current- 200mA
DC Output CurrentInternally LimitedA
Reverse DC Output Current - 21A
DC Input Curr ent+/- 10mA
Current Sense Maximum Voltage-3
+15
Electros tatic Discharge (Human Body Model: R=1.5KΩ; C=100pF)
- INPUT
- CURRENT SENSE
- OUTPU T
- V
CC
Maximum Switching Energy
(L=0.25m H; R
=0Ω; V
L
=13.5V ; T
bat
=150ºC ; IL=45A)
jstart
4000
2000
5000
5000
355mJ
Powe r Dissipation Tl≤25°C6.25 (**)W
Junction Operating TemperatureInternally limited°C
j
Case Operating Temperature- 40 to 150°C
c
Storage Temperature- 55 to 150°C
V
CC
- V
- I
GND
I
OUT
- I
OUT
I
IN
V
CSENSE
V
ESD
E
MAX
P
T
T
T
STG
(**) Per island
V
V
V
V
V
V
CURRENT AND VOLTAGE CONVENTIONS
I
S1
V
CC1
I
IN1
V
IN1
I
IN2
V
IN2
INPUT1
INPUT2
GROUND1
I
GND1
V
CC2
OUTPUT1
OUTPUT2
GROUND2
V
CC1
CURRENT SENSE 1
CURRENT SENSE 2
I
GND2
I
OUT1
I
SENSE1
I
OUT2
I
SENSE2
V
SENSE2
V
V
OUT2
I
S2
SENSE1
V
OUT1
V
CC2
3/18
Page 4
VND920
THERMAL DATA (Per island)
SymbolParameterValueUnit
R
thj-lead
R
thj-amb
R
thj-amb
(*) When mounted on a standard single-sided FR-4 board with 1cm2 of Cu (at leas t 35µ m thick) connected to all VCC pins.
Horizontal mounting and no artificial air flow.
ELECTRICAL CHARACTERISTICS (8V<VCC<36V; -40°C<Tj<150°C unless otherwise specified)
(Per island)
POWER
SymbolParameterTest ConditionsMinTypMaxUnit
V
V
USD
V
R
V
clamp
I
I
L(off1)
I
L(off2)
I
L(off3)
I
L(off4)
Thermal R esistance Junction-lead20°C/W
Thermal Resistance Ju nction-ambient (one chi p ON)55 (*)°C/W
Thermal Resistance Ju nction-ambient (two chi ps ON)42 (*)°C/W
CC
Opera ting S u pply Vol tag e5.51336V
Undervoltage Shut -down345.5V
OV
ON
Overv oltage Shut -down36V
=10A; Tj =25°C
I
On State Resistance
OUT
I
=10A
OUT
I
=3A; VCC=6V
OUT
Clamp VoltageICC=20mA (See note 1)414855V
Off Stat e; V
Supply Current
S
Off Stat e; V
T
=25°C
j
On State; V
R
SENSE
Off Stat e O utput Current VIN=V
OUT
Off Stat e O utput Current VIN=0V; V
Off Stat e O utput Current VIN=V
Off Stat e O utput Current VIN=V
CAll fu nctions of the device are performed as designed after exposure to disturbance.
EOne or more functions of the device is not performed as designed after expos ure to disturbance
and cann ot be returne d to proper operation without replacing the device.
IIIIIIIVDelays and
IIIIIIIV
TEST LEVELS
TEST LEVELS RESULTS
Impedance
Ω
Ω
8/18
Page 9
Figure 3: W aveforms
INPUTn
LOAD CURRENTn
SENSEn
V
CCn
INPUTn
LOAD CURREN Tn
SENSEn
V
CCn
INPUTn
LOAD CURRENTn
SENSEn
V
USD
V
VCC > V
VND920
NORMAL OPERATION
UNDERVOLTAGE
V
USDhyst
OVERVOLT AGE
OV
V
USD
OVhyst
INPUTn
LOAD CURRENTn
LOAD VOLTAGEn
SENSEn
INPUTn
LOAD VOLTAGEn
LOAD CURRENTn
SENSEn
T
j
INPUTn
LOAD CURRENTn
SENSEn
SHORT TO GROUND
SHORT TO V
<Nominal
T
TSD
T
R
OVERTEMPERATURE
CC
<Nominal
I
SENSE
=
V
SENSEH
R
SENSE
9/18
Page 10
VND920
APPLICATION SCHEMATIC
+5V
R
prot
R
prot
R
prot
µ
C
R
prot
INPUT1
C. SENSE 1
INPUT2
C. SENSE 2
V
CC1
V
CC2
OUTPUT1
OUTPUT2
D
ld
R
SENSE1,2
GND PROTECTION NETWORK AGAINST
REVERSE BATTERY
Soluti on 1: Resistor in the ground line (R
can be us ed with any type of load.
The fo llowin g is an indica tion on how to dim ension the
resistor.
R
GND
where -I
be found in the absolute maximum rating section of the
1) R
2) R
≤ 600mV / (I
GND
≥ (−VCC) / (-I
GND
is the DC re vers e grou nd pi n cu rren t an d can
GND
S(on)ma x
)
GND
).
device’s datasheet.
Power Dissipation in R
battery situations) is:
= (-VCC)2/R
P
D
GND
(when VCC<0: during reverse
GND
This resistor can be shared amongst several different
HSD. Please note that the value of this resistor should be
calcul ated with form ula (1) wher e I
sum of the maximum on-state currents of the different
S(on)max
devices.
Please note that if the microprocessor ground is not
common with the device ground then the R
produce a shift (I
and the status output values. This shift will vary
S(on)max
* R
) in the input thresholds
GND
depend ing on how many devi ces are ON in the c ase of
several high side d rivers shar ing the same R
If the calculated power dissipation leads to a large resistor
or several devices hav e to share the sa me resisto r then
the ST suggests to utiliz e Solu tio n 2 (se e below ).
Solution 2:
A resistor (R
D
GND
A diode (D
=1kΩ) sh ould b e insert ed in paral lel to
GND
if the device will be driving an inductive load.
) in the gr ound line.
GND
only). This
GND
becomes t he
GND
.
GND
will
GND
GND2
D
GND
GND1
V
GND
R
This small signal diode can be safely shared amongst
several different HSD. Also in this case, the presence of
j
the ground network wi ll produce a shift (
600mV) in t he
input threshold and the status output values if the
microprocessor ground is not common with the device
ground. This shift will not vary if more than one HSD
shares the same diode/resisto r network.
LOAD DUMP PROTECTION
Dld is necessary (Voltage Transient Suppressor) if the
load dump peak voltage exceeds VCC max DC rating. The
same applies if the device will be subject to transients on
the VCC line that are grea ter tha n the ones sh own in the
ISO T/R 7637/1 table.
C I/Os PROTECTION:
µ
If a ground protection network is used and negative
transients are present on the VCC line, th e con trol p ins will
be pulled negative. ST suggests to insert a resistor (R
in lin e to prevent the µC I/Os pins to latch-up.
The value of these resistors is a compromise between the
leakage c urrent of µC an d the current required by the
HSD I/Os ( Input le vels comp atibilit y) wi th the lat ch-up li mit
of µC I/Os.
≤ R
-V
CCpeak/Ilatchup
prot
≤ (V
OHµC-VIH-VGND
Calculation exampl e:
CCpeak
prot
= - 100V an d I
≤ 65kΩ.
For V
5kΩ≤ R
Recommended R
value is 10kΩ.
prot
latchup
≥ 20mA; V
OHµC
) / I
prot
IHmax
≥ 4.5V
)
10/18
1
Page 11
VND920
Off State Output Current
IL(off1) (u A)
9
8
7
6
5
4
3
2
1
0
-50 -250255075 100 125 150 17 5
Tc (°C)
Input Clamp Voltage
Vicl (V)
8
7.8
7.6
7.4
7.2
7
6.8
6.6
6.4
6.2
6
Iin=1mA
-50 -250255075100 125 150 175
Tc (°C)
High Level Input Current
Iih (uA)
5
4.5
3.5
2.5
1.5
0.5
Vin=3.25V
4
3
2
1
0
-50 -250255075100 125 150 175
Input High Level
Vih (V)
3.6
3.4
3.2
3
2.8
2.6
2.4
2.2
2
-50 -250255075 100 125 150 175
Input Hysteresis VoltageInput Low Level
Tc (°C)
Tc (°C)
Vil (V)
2.6
2.4
2.2
2
1.8
1.6
1.4
1.2
1
-50 -250255075 100 125 150 175
Tc (°C)
Vhyst (V)
1.5
1.4
1.3
1.2
1.1
1
0.9
0.8
0.7
0.6
0.5
-50 -250255075 100 125 150 175
Tc (°C)
11/18
Page 12
VND920
Overvoltage Shutdown
I
LIM
Vs T
case
Vov (V)
50
48
46
44
42
40
38
36
34
32
30
-50 -250255075 100 125 150 175
Ilim (A)
100
90
80
70
60
50
40
30
20
10
Vcc=13 V
0
-50 -250255075 100 125 150 175
Tc (°C)
Turn-on Voltage SlopeTurn-off Voltage Slope
dVout/dt(on) (V/ms)
700
650
600
550
500
450
400
350
300
250
-50 -250255075 100 125 150 175
Vcc=13V
Rl=1.3Ohm
Tc (ºC)
dVout/dt(off) (V/ms)
550
500
450
400
350
300
250
200
150
100
50
Vcc=13V
Rl=1.3Ohm
0
-50 -250255075 100 125 150 175
Tc (°C)
Tc (°C)
On State Resistance Vs T
case
Ron (mOhm)
50
45
40
35
30
25
20
15
10
5
0
-50 -250255075 100 125 150 175
Iout=10A
Vcc=8V; 36V
Tc (ºC)
12/18
On State Resistance Vs V
CC
Ron (mOhm)
50
45
40
35
30
25
20
15
10
5
0
5 10152025303540
Tc= 150ºC
Tc= 25ºC
Tc= - 40ºC
Vcc (V)
Page 13
Maximum turn off current versus load inductance
LMAX (A)
I
100
10
VND920
A
B
C
1
0.010.1110100
A = Single Pulse at T
B= Repetitive pulse at T
C= Repetitive Pulse at T
Conditions:
VCC=13.5V
Values are generated with RL=0Ω
In case of repetitive pulses, T
the temperature specified above for curves B and C.
VIN, I
L
=150ºC
Jstart
=100ºC
Jstart
=125ºC
Jstart
jstart
Demagnetization
(at beginning of each demagnetization) of every pulse must not exceed
L(mH)
Demagnetization
Demagnetization
t
13/18
Page 14
SO-28 DOUBLE ISLAND THERMAL DAT A
SO-28 Double island PC Board
VND920
Layout condition of Rth and Zth measur ements (PCB FR4 area= 58mm x 58mm, PCB thi ckness=2 m m ,
Cu thickness=35µm, Copper areas: 0.5cm
2
, 3cm2, 6cm2).
Thermal calculation according to the PCB heatsink area
Chip 1Chip 2T
ONOFFR
OFFONR
ONONR
ONON(R
R
= Thermal resistance Junction to Ambient with one chip ON
thA
= Thermal resistance Junction to Ambient with both chips ON and P
R
thB
R
= Mutual thermal resistance
thC
R
Vs PCB copper area in open box free air condition
thj-amb
thA
thC
thB
thA
x P
x P
x (P
x P
dchip1
dchip2
dchip1
dchip1
+ T
+ T
+ P
) + R
jchip1
amb
amb
dchip2
thC
) + T
x P
amb
dchip2
+ T
amb(RthA
R
thC
R
thA
R
thB
RTHj_am b
(°C/W)
70
60
50
40
30
20
x P
dchip1
x P
dchip2
x (P
dchip1
x P
dchip2
dchip1=Pdchip2
T
+ T
+ T
+ P
) + R
jchip2
amb
amb
dchip2
thC
x P
) + T
dchip1
amb
+ T
R
R
R
P
ambPdchip1≠Pdchip2
thA
thB
thC
Note
dchi p1=Pdchi p2
10
01234567
PCB Cu heatsink area (cm^2)/island
14/18
Page 15
VND920
SO-28 Thermal Impedance Junction Ambient Single Pulse
Zth(°C/W)
100
10
1
0.1
0,5 cm^2/island
3 cm^2/island
6 cm^2/island
One channel ONTwo channels ON
One channel ON
onsame chip
Two channels ON
0.01
0.00010.0010.010.11101001000
time(s)
Thermal fitting model of a two channels HSD in
SO-28
Information furnished is believed to be accurate and reliable. Ho wev er, STMicroelectr onics assumes no r es ponsibility for the consequences
of use of such information nor for any infringement of patents or other rights of third parties which may results from its use. No license is
granted by implication or otherwise under any patent or patent r ights of STMicr oelectronics . Specifications mentioned in this publication are
subject to c hange withou t notice. This publicatio n s upersedes an d r eplaces all information previously supplied. STM icroelectr on ics product s
are not authorized for use as critical components in life support devices or systems without express written approval of STMicroelectronics.
Australia - Brazil - Canada - Ch ina - Finland - France - Germany - Hong K ong - India - Isra el - Italy - Japan - M alaysia -
Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - U.S.A.
The ST logo is a trademark of ST M ic r oelectronic s
2002 STMicroelectronics - Printed in ITALY- All Rights Reserved.
STMicroelectronics GROUP OF COMPANIES
http://www.st.com
18/18
Loading...
+ hidden pages
You need points to download manuals.
1 point = 1 manual.
You can buy points or you can get point for every manual you upload.