Datasheet VND92013TR, VND920 Datasheet (SGS Thomson Microelectronics)

Page 1
®
VND920
DOUBLE CHANNEL HIGH SIDE SOLID STATE RELAY
TYPE R
VND920 16m 35 A (*) 36 V
(*) Per channel with all the output pins connected to the PCB.
CMOS COMPATIBLE INPUT
SHORTED LOAD PROTECTION
UNDERVOLTAGE AND OVERVOLTAGE
DS(on)
I
OUT
V
CC
SHUTDOWN
OVERVOLTAGE CLAMP
THERMAL SHUTDOWN
CURRENT LIMITATION
PROTECTION AGAI NST LOSS OF GROUND
AND LOSS OF V
VERY LOW ST AND -BY P OWER DI SSIPA TION
REVERSE BA TTERY PROTECTION ( *)
CC
DESCRIPTION
The VND920 is a double chip device made by using STMicroelectronics VIPower M0-3 Technology, intended fo r driving any kind of loa d with one side connected to ground. Active VCC pin
CONNECTION DIAGRAM (TO P VI EW)
SO-28 (DOUBLE ISLAND)
ORDER CODES
PACKAGE TUBE T&R
SO-28 VND920 VND92013TR
voltage clamp protects the device against low energy spikes (see ISO7637 transient compatibility table). Active current limitation combined with thermal shutdown a nd automatic restart prote ct the device against over load. Built­in analog cur rent sense output deli vers a current proportional to the load current. Device automatically turns off in case of ground pin disconnection.
V
1
CC
GND 1 INPUT 1 CURRENT SENSE 1 NC NC
V
1
CC
V
2
CC
GND 2 INPUT 2
CURRENT SENSE 2 NC NC
2
V
CC
(*) See application schematic at page 10
October 20 02 1/18
1
14 15
28
V OUTPUT 1 OUTPUT 1
OUTPUT 1
OUTPUT 1
OUTPUT 1
OUTPUT 1
OUTPUT 2 OUTPUT 2 OUTPUT 2
OUTPUT 2
OUTPUT 2
OUTPUT 2
V
CC
CC
1
2
1
Page 2
VND920
BLOCK DIAGRAM
V
1
CC
GND 1
INPUT 1
GND 2
V
CC
CLAMP
OVERTEMPERATURE
DETECTION
V
CC
CLAMP
LOGIC
OVERVO LTAGE
DETECTION
UNDERVOLTAGE
DETECTION
DRIVER
CURRENT LIMITER
I
OVERVOLTAGE
DETECTION
UNDERVOLTAGE
DETECTION
Power CLAMP
OUTPUT 1
VDS LIMITER
OUT CURRENT
Power CLAMP
K
SENSE 1
V
CC
2
2/18
INPUT 2
LOGIC
OVERTEMPERATURE
DETECTION
DRIVER
CURRENT LIMITER
VDS LIMITER
I
OUT CURRENT
K
OUTPUT 2
SENSE 2
Page 3
VND920
ABSOLUTE MAXIMUM RATI NG (Per each channel)
Symbol Parameter Value Unit
tot
DC Supply Voltage 41 V Reverse DC Supply Voltage - 0.3 V
CC
DC Reverse Ground Pin Current - 200 mA DC Output Current Internally Limited A Reverse DC Output Current - 21 A DC Input Curr ent +/- 10 mA Current Sense Maximum Voltage -3
+15
Electros tatic Discharge (Human Body Model: R=1.5KΩ; C=100pF)
- INPUT
- CURRENT SENSE
- OUTPU T
- V
CC
Maximum Switching Energy (L=0.25m H; R
=0; V
L
=13.5V ; T
bat
=150ºC ; IL=45A)
jstart
4000 2000 5000 5000
355 mJ
Powe r Dissipation Tl≤25°C 6.25 (**) W Junction Operating Temperature Internally limited °C
j
Case Operating Temperature - 40 to 150 °C
c
Storage Temperature - 55 to 150 °C
V
CC
- V
- I
GND
I
OUT
- I
OUT
I
IN
V
CSENSE
V
ESD
E
MAX
P
T
T
T
STG
(**) Per island
V V
V V V V
CURRENT AND VOLTAGE CONVENTIONS
I
S1
V
CC1
I
IN1
V
IN1
I
IN2
V
IN2
INPUT1
INPUT2
GROUND1
I
GND1
V
CC2
OUTPUT1
OUTPUT2
GROUND2
V
CC1
CURRENT SENSE 1
CURRENT SENSE 2
I
GND2
I
OUT1
I
SENSE1
I
OUT2
I
SENSE2
V
SENSE2
V
V
OUT2
I
S2
SENSE1
V
OUT1
V
CC2
3/18
Page 4
VND920
THERMAL DATA (Per island)
Symbol Parameter Value Unit
R
thj-lead
R
thj-amb
R
thj-amb
(*) When mounted on a standard single-sided FR-4 board with 1cm2 of Cu (at leas t 35µ m thick) connected to all VCC pins.
Horizontal mounting and no artificial air flow.
ELECTRICAL CHARACTERISTICS (8V<VCC<36V; -40°C<Tj<150°C unless otherwise specified) (Per island) POWER
Symbol Parameter Test Conditions Min Typ Max Unit
V
V
USD
V
R
V
clamp
I
I
L(off1)
I
L(off2)
I
L(off3)
I
L(off4)
Thermal R esistance Junction-lead 20 °C/W Thermal Resistance Ju nction-ambient (one chi p ON) 55 (*) °C/W Thermal Resistance Ju nction-ambient (two chi ps ON) 42 (*) °C/W
CC
Opera ting S u pply Vol tag e 5.5 13 36 V Undervoltage Shut -down 3 4 5.5 V
OV
ON
Overv oltage Shut -down 36 V
=10A; Tj =25°C
I
On State Resistance
OUT
I
=10A
OUT
I
=3A; VCC=6V
OUT
Clamp Voltage ICC=20mA (See note 1) 41 48 55 V
Off Stat e; V
Supply Current
S
Off Stat e; V T
=25°C
j
On State; V R
SENSE
Off Stat e O utput Current VIN=V
OUT
Off Stat e O utput Current VIN=0V; V Off Stat e O utput Current VIN=V Off Stat e O utput Current VIN=V
OUT OUT
=13V; VIN=V
CC
=13V; VIN=V
CC
=13V; VIN=5V; I
CC
=3.9K
=0V 0 50 µA
=3.5V -75 0 µA
OUT
=0V; VCC=13V; Tj =125°C 5 µA =0V; VCC=13V; Tj =25°C 3 µA
OUT OUT
=0V =0V;
OUT
=0A;
10
10
16 32 55
25
20
5
m m m
µA
µA
mA
SWITCHING (VCC=13V)
Symbol Parameter Test Conditions Min Typ Max Unit
t
d(on)
t
d(off)
Turn-on Delay Time RL=1.3Ω (see figur e 2) 50 µs Turn-off Delay Time RL=1.3Ω (see figur e 2) 50 µs
See
dV
/dt
OUT
Turn-on Voltage Slope RL=1.3(see figure 2)
(on)
relative
diagram
See
/dt
dV
OUT
Turn-off Voltage Slope RL=1.3(see figure 2)
(off)
relative
diagram
LOGIC INPUT
Symbol Parameter Test Conditions Min Typ Max Unit
V
I
V
I
V
I(hyst)
V
Note 1: V
4/18
IL
IH
ICL
Input Low Level 1.25 V
IL
Low Level Input Current VIN=1.25V 1 µA Input High Level 3.25 V
IH
High Level Input Current VIN=3.25V 10 µA Input Hysteresis Voltage 0.5 V
Input Cl am p Voltage
and VOV are correlat ed. Typical dif ference is 5V.
clamp
=1mA
I
IN
I
=-1mA
IN
66.8
-0.7
8V
V/µs
V/µs
V
1
Page 5
VND920
ELECTRICAL CHARACTERISTICS (continued)
CURRENT SENSE ( 9V
Symbol Parameter Test Conditions Min Typ Max Unit
K
dK1/K1Current Se nse Ratio Drift
K
dK2/K2Current Se nse Ratio Drift
K
dK3/K3Current Se nse Ratio Drift
I
SENSEO
V
SENSE
V
SENSEH
R
VSENSEH
t
DSENSE
I
1
OUT/ISENSE
I
2
OUT/ISENSE
I
3
OUT/ISENSE
Analog Sense Leakage Current
Max Analog Sense Output Voltage
Sense Voltage in Overtemperature conditions
Analog Sense Output Impedance in Overtemperature Condition
Current sense delay response
V
≤ 16V) (See Fig.1)
CC
I
OUT
T
= -40°C...150°C
j
I
OUT
T
= -40°C...+150°C
j
I
OUT
T
=25°C... 150°C
j
I
OUT
T
=-40°C.. .+150°C
j
I
OUT
T
=25°C... 150°C
j
I
OUT
T
=-40°C.. .+150°C
j
V
CC
T
=-40°C.. .+150°C
j
V
CC
V
CC
VCC=13V; R
VCC=13V; Tj>T
to 90% I
=1A; V
SENSE
=1A; V
SENSE
=10A; V
=10A; V
=30A; V
=30A; V
=6...16V; I
=5.5V; I
OUT
>8V; I
OUT
SENSE
=0.5V;
=0.5V;
=4V; Tj=-40°C
SENSE
=4V;
SENSE
=4V; Tj=-40°C
SENSE
=4V;
SENSE
=0A;V
OUT
=5A; R
=10A; R
SENSE
SENSE
=3.9K 5.5 V
; All channels open 400
TSD
SENSE
SENSE
=0V;
=10K
=10K
3300 4400 6000
-10 +10 %
4200 4400
4900 4900
6000 5750
-8 +8 %
4200 4400
4900 4900
5500 5250
-6 +6 %
010µA
2 4
(see note 2) 500 µs
V V
PROTECTIONS
Symbol Parameter Test Conditio ns Min Typ Max Unit
T
TSD
T
T
hyst
I
lim
V
demag
V
ON
Note 2: current sense signal delay after positive input sl ope
Note: Sense pin doesn’t have to be left floating.
Shut-down Temperature 150 175 200 °C Reset Temp erature 135 °C
R
Ther ma l Hy steresi s 7 15 °C DC Short Circuit Current Turn-off Output Clamp
Voltage Output Voltage Drop
Limitation
=13V
V
CC
5V<V I
I
<36V
CC
=2A; VIN=0V; L=6mH VCC-41 VCC-48 VCC-55 V
OUT
=1A; Tj=-40°C....+150°C 50 mV
OUT
30 45 75
75
2
A A
5/18
Page 6
VND920
Figure 1: I
I
OUT/ISENSE
OUT/ISENSE
6500
6000
5500
versus I
OUT
max.Tj=25 ... 15 0 °C
5000
min.Tj=25...150°C
4500
4000
3500
3000
02468101214161820222426283032
I
(A)
OUT
Figure 2: Switching Characteristics (Resistive load RL=1.3Ω)
max.Tj=- 40°C
typical value
min.Tj=- 4 0° C
V
OUT
dV
OUT
I
SENSE
INPUT
/dt
(on)
t
d(on)
80%
90%
t
DSENSE
90%
dV
/dt
OUT
(off)
t
r
10%
t
f
t
t
t
d(off)
t
6/18
Page 7
Switching time Waveforms
V
OUT
/dt
dV
OUT
(on)
80%
90%
dV
OUT
/dt
VND920
(off)
d(off)
t
f
t
r
V
IN
t
d(on)
10%
t
TRUTH TABLE (Per each channel)
CONDITIONS INPUT OUTPUT CURRENT SENS E
Normal operation
Overtem perature
Undervol tage
Overvoltage
L H L H L H L H L
Short circuit to GND
H H
Short circuit to V
CC
L H
Negative output volt age clamp L L 0
L
H
Nominal
L L
V L L L L L L L
(T (T
j<TTSD j>TTSD
H H
< Nominal
0
0
SENSEH
0 0 0 0
0 ) 0 ) V
SENSEH
0
t
t
7/18
Page 8
VND920
ELECTRICAL TRANS IENT REQUIREMENTS
ISO T/R 7637/1
Test Pulse
1 -25 V -50 V -75 V -100 V 2 ms 10
2 +25 V +50 V +75 V +100 V 0.2 ms 10 3a -2 5 V -50 V -100 V -150 V 0.1 µs 50 3b +25 V +50 V +75 V +100 V 0.1 µs 50
4 -4 V -5 V -6 V -7 V 100 ms, 0.01
5 +26.5 V +46.5 V +66.5 V +86.5 V 400 ms, 2
ISO T/R 7637/1
Test Pulse
1CCCC
2CCCC
3aCCCC 3bCCCC
4CCCC
5CEEE
CLASS CONTENTS
C All fu nctions of the device are performed as designed after exposure to disturbance. E One or more functions of the device is not performed as designed after expos ure to disturbance
and cann ot be returne d to proper operation without replacing the device.
I II III IV Delays and
I II III IV
TEST LEVELS
TEST LEVELS RESULTS
Impedance
8/18
Page 9
Figure 3: W aveforms
INPUTn LOAD CURRENTn SENSEn
V
CCn
INPUTn
LOAD CURREN Tn SENSEn
V
CCn
INPUTn LOAD CURRENTn SENSEn
V
USD
V
VCC > V
VND920
NORMAL OPERATION
UNDERVOLTAGE
V
USDhyst
OVERVOLT AGE
OV
V
USD
OVhyst
INPUTn
LOAD CURRENTn LOAD VOLTAGEn SENSEn
INPUTn
LOAD VOLTAGEn LOAD CURRENTn
SENSEn
T
j
INPUTn LOAD CURRENTn SENSEn
SHORT TO GROUND
SHORT TO V
<Nominal
T
TSD
T
R
OVERTEMPERATURE
CC
<Nominal
I
SENSE
=
V
SENSEH
R
SENSE
9/18
Page 10
VND920
APPLICATION SCHEMATIC
+5V
R
prot
R
prot
R
prot
µ
C
R
prot
INPUT1
C. SENSE 1
INPUT2
C. SENSE 2
V
CC1
V
CC2
OUTPUT1
OUTPUT2
D
ld
R
SENSE1,2
GND PROTECTION NETWORK AGAINST REVERSE BATTERY
Soluti on 1: Resistor in the ground line (R can be us ed with any type of load.
The fo llowin g is an indica tion on how to dim ension the
resistor.
R
GND
where -I be found in the absolute maximum rating section of the
1) R
2) R
600mV / (I
GND
≥ (−VCC) / (-I
GND
is the DC re vers e grou nd pi n cu rren t an d can
GND
S(on)ma x
)
GND
).
device’s datasheet. Power Dissipation in R
battery situations) is:
= (-VCC)2/R
P
D
GND
(when VCC<0: during reverse
GND
This resistor can be shared amongst several different HSD. Please note that the value of this resistor should be calcul ated with form ula (1) wher e I sum of the maximum on-state currents of the different
S(on)max
devices. Please note that if the microprocessor ground is not
common with the device ground then the R produce a shift (I and the status output values. This shift will vary
S(on)max
* R
) in the input thresholds
GND
depend ing on how many devi ces are ON in the c ase of several high side d rivers shar ing the same R
If the calculated power dissipation leads to a large resistor or several devices hav e to share the sa me resisto r then the ST suggests to utiliz e Solu tio n 2 (se e below ).
Solution 2: A resistor (R
D
GND
A diode (D
=1kΩ) sh ould b e insert ed in paral lel to
GND
if the device will be driving an inductive load.
) in the gr ound line.
GND
only). This
GND
becomes t he
GND
.
GND
will
GND
GND2
D
GND
GND1
V
GND
R
This small signal diode can be safely shared amongst several different HSD. Also in this case, the presence of
j
the ground network wi ll produce a shift (
600mV) in t he input threshold and the status output values if the microprocessor ground is not common with the device ground. This shift will not vary if more than one HSD shares the same diode/resisto r network.
LOAD DUMP PROTECTION
Dld is necessary (Voltage Transient Suppressor) if the load dump peak voltage exceeds VCC max DC rating. The same applies if the device will be subject to transients on the VCC line that are grea ter tha n the ones sh own in the ISO T/R 7637/1 table.
C I/Os PROTECTION:
µ
If a ground protection network is used and negative transients are present on the VCC line, th e con trol p ins will be pulled negative. ST suggests to insert a resistor (R in lin e to prevent the µC I/Os pins to latch-up.
The value of these resistors is a compromise between the leakage c urrent of µC an d the current required by the HSD I/Os ( Input le vels comp atibilit y) wi th the lat ch-up li mit of µC I/Os.
R
-V
CCpeak/Ilatchup
prot
(V
OHµC-VIH-VGND
Calculation exampl e:
CCpeak
prot
= - 100V an d I
65k.
For V 5k R
Recommended R
value is 10kΩ.
prot
latchup
20mA; V
OHµC
) / I
prot
IHmax
4.5V
)
10/18
1
Page 11
VND920
Off State Output Current
IL(off1) (u A)
9
8
7
6
5
4
3
2
1
0
-50 -25 0 25 50 75 100 125 150 17 5
Tc (°C)
Input Clamp Voltage
Vicl (V)
8
7.8
7.6
7.4
7.2
7
6.8
6.6
6.4
6.2 6
Iin=1mA
-50 -25 0 25 50 75 100 125 150 175
Tc (°C)
High Level Input Current
Iih (uA)
5
4.5
3.5
2.5
1.5
0.5
Vin=3.25V
4
3
2
1
0
-50 -25 0 25 50 75 100 125 150 175
Input High Level
Vih (V)
3.6
3.4
3.2
3
2.8
2.6
2.4
2.2
2
-50 -25 0 25 50 75 100 125 150 175
Input Hysteresis VoltageInput Low Level
Tc (°C)
Tc (°C)
Vil (V)
2.6
2.4
2.2
2
1.8
1.6
1.4
1.2
1
-50 -25 0 25 50 75 100 125 150 175
Tc (°C)
Vhyst (V)
1.5
1.4
1.3
1.2
1.1
1
0.9
0.8
0.7
0.6
0.5
-50 -25 0 25 50 75 100 125 150 175
Tc (°C)
11/18
Page 12
VND920
Overvoltage Shutdown
I
LIM
Vs T
case
Vov (V)
50
48
46
44
42
40
38
36
34
32 30
-50 -25 0 25 50 75 100 125 150 175
Ilim (A)
100
90
80
70
60
50
40
30
20
10
Vcc=13 V
0
-50 -25 0 25 50 75 100 125 150 175
Tc (°C)
Turn-on Voltage Slope Turn-off Voltage Slope
dVout/dt(on) (V/ms)
700
650
600
550
500
450
400
350
300
250
-50 -25 0 25 50 75 100 125 150 175
Vcc=13V
Rl=1.3Ohm
Tc (ºC)
dVout/dt(off) (V/ms)
550 500 450 400 350 300 250 200 150 100
50
Vcc=13V
Rl=1.3Ohm
0
-50 -25 0 25 50 75 100 125 150 175
Tc (°C)
Tc (°C)
On State Resistance Vs T
case
Ron (mOhm)
50
45
40
35
30
25
20
15
10
5 0
-50 -25 0 25 50 75 100 125 150 175
Iout=10A
Vcc=8V; 36V
Tc (ºC)
12/18
On State Resistance Vs V
CC
Ron (mOhm)
50
45
40
35
30
25
20
15
10
5 0
5 10152025303540
Tc= 150ºC
Tc= 25ºC
Tc= - 40ºC
Vcc (V)
Page 13
Maximum turn off current versus load inductance
LMAX (A)
I
100
10
VND920
A
B
C
1
0.01 0.1 1 10 100
A = Single Pulse at T
B= Repetitive pulse at T C= Repetitive Pulse at T
Conditions: VCC=13.5V
Values are generated with RL=0 In case of repetitive pulses, T
the temperature specified above for curves B and C.
VIN, I
L
=150ºC
Jstart
=100ºC
Jstart
=125ºC
Jstart
jstart
Demagnetization
(at beginning of each demagnetization) of every pulse must not exceed
L(mH)
Demagnetization
Demagnetization
t
13/18
Page 14
SO-28 DOUBLE ISLAND THERMAL DAT A
SO-28 Double island PC Board
VND920
Layout condition of Rth and Zth measur ements (PCB FR4 area= 58mm x 58mm, PCB thi ckness=2 m m , Cu thickness=35µm, Copper areas: 0.5cm
2
, 3cm2, 6cm2).
Thermal calculation according to the PCB heatsink area
Chip 1 Chip 2 T
ON OFF R
OFF ON R
ON ON R ON ON (R
R
= Thermal resistance Junction to Ambient with one chip ON
thA
= Thermal resistance Junction to Ambient with both chips ON and P
R
thB
R
= Mutual thermal resistance
thC
R
Vs PCB copper area in open box free air condition
thj-amb
thA thC thB
thA
x P
x P
x (P
x P
dchip1
dchip2
dchip1 dchip1
+ T + T
+ P ) + R
jchip1
amb amb
dchip2
thC
) + T
x P
amb
dchip2
+ T
amb(RthA
R
thC
R
thA
R
thB
RTHj_am b
(°C/W)
70 60 50 40 30 20
x P
dchip1
x P
dchip2
x (P
dchip1
x P
dchip2
dchip1=Pdchip2
T
+ T + T
+ P
) + R
jchip2
amb amb
dchip2
thC
x P
) + T
dchip1
amb
+ T
R
R
R
P
ambPdchip1≠Pdchip2
thA
thB
thC
Note
dchi p1=Pdchi p2
10
01234567
PCB Cu heatsink area (cm^2)/island
14/18
Page 15
VND920
SO-28 Thermal Impedance Junction Ambient Single Pulse
Zth(°C/W)
100
10
1
0.1
0,5 cm^2/island
3 cm^2/island
6 cm^2/island
One channel ON Two channels ON
One channel ON
on same ch i p
Two channels ON
0.01
0.0001 0.001 0.01 0.1 1 10 100 1000
time(s)
Thermal fitting model of a two channels HSD in SO-28
Pulse calculation formula
Z
THδ
where
RTHδ Z
δ tpT=
Thermal Parameter
Area/island (cm2)0.56
Tj_1
Pd1
Tj_2
C1
C1 C2
R1
Pd2
R2
C3 C4
R3R1 R6R5R2
T_amb
C5 C6C2
R4
R1= (°C/W) 0.02 R2= (°C /W ) 0.1 R3= (°C /W ) 2.2 R4= (°C /W ) 11 R5= (°C /W ) 15 R6= (°C /W ) 30 1 3 C1= (W.s/° C ) 0.0015 C2= (W.s/°C) 7.00E-03 C3= (W.s/°C) 1.50E-02 C4= (W.s/°C) 0.2 C5= (W.s/°C) 1.5 C6= (W.s/°C) 5 8
THtp
1 δ()+=
15/18
Page 16
SO-28 MECHANICAL DATA
VND920
DIM.
A 2.65 0.104
a1 0.10 0.30 0.004 0.012
b 0.35 0.49 0.013 0.019
b1 0.23 0.32 0.009 0.012
C 0.50 0.020
c1 45 (typ .)
D 17.7 18.1 0.697 0.71 3 E 10.00 10.65 0.393 0.419 e 1.27 0.050
e3 16.51 0.650
F 7.40 7.60 0.291 0.299 L 0.40 1.27 0.016 0.050 S8 (max.)
MIN. TYP MAX. MIN. TYP. MAX.
mm. inc h
16/18
Page 17
VND920
SO-28 TUBE SHIPMENT (no suffix)
Base Q.ty 28 Bulk Q.ty 700
C
B
Tube length (± 0.5) 532
A 3.5 B 13.8 C (± 0.1) 0.6
All dimensions are in mm.
A
TAPE AND REEL SHIPMENT (suffix “13TR”)
REEL DIMENSIONS
Base Q.ty 1000 Bulk Q.ty 1000 A (max) 330 B (min) 1.5 C (± 0.2) 13
F 20.2 G (+ 2 / -0) 16.4 N (min) 60 T (max) 22.4
TAPE DIMENSIONS
According to Electronic Indust ries Association (EIA) S tandard 481 re v. A, Feb 1 986
Tape width W 16 Tape Hole Spacing P0 (± 0.1) 4 Component Spacing P 12 Hole Diameter D ( ± 0.1/ -0) 1.5 Hole Diameter D1 (min) 1.5 Hole Position F (± 0.05) 7.5 Compartment Depth K (max) 6.5 Hole Spacing P1 (± 0.1) 2
All dimensions are in mm.
17/18
Top
cover
tape
End
500mm min
Empty components pockets saled with cover tape.
User direction of feed
Start
No componentsNo components Components
500mm min
Page 18
VND920
Information furnished is believed to be accurate and reliable. Ho wev er, STMicroelectr onics assumes no r es ponsibility for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may results from its use. No license is granted by implication or otherwise under any patent or patent r ights of STMicr oelectronics . Specifications mentioned in this publication are subject to c hange withou t notice. This publicatio n s upersedes an d r eplaces all information previously supplied. STM icroelectr on ics product s are not authorized for use as critical components in life support devices or systems without express written approval of STMicroelectronics.
Australia - Brazil - Canada - Ch ina - Finland - France - Germany - Hong K ong - India - Isra el - Italy - Japan - M alaysia -
Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - U.S.A.
The ST logo is a trademark of ST M ic r oelectronic s
2002 STMicroelectronics - Printed in ITALY- All Rights Reserved.
STMicroelectronics GROUP OF COMPANIES
http://www.st.com
18/18
Loading...