Datasheet VND810-E Datasheet (ST)

Page 1
VND810-E
DOUBLE CHANNEL HIGH SIDE DRIVER
Table 1. General Features
Type R
VND810-E 160 m
(*) Per each channel
CMOS COMPATIBLE INPUTS
ON STATE OPEN LO AD DETECTION
OFF STATE OPEN LOAD DETECTION
SHOR T E D L O A D PROT E C TION
UNDERVOLTAGE AND OVERVOLTAGE
DS(on)
(*) 3.5A (*) 36 V
I
out
V
CC
SHUTDOWN
PROTECTION AGAINST LOSS OF GROUND
VERY LOW STAND-BY CURRENT
REVERSE BATTERY PROTECTION (**)
IN COMPLIANCE WITH THE 2002/95/EC
EUROPEAN DIRECT IVE
DESCRIPTION
The VND810-E is a monolithic device designed in STMicroelectronics VIPower M0-3 Technology, intended for driving any kind of load with one side connected to ground.
Activ e V
pin voltage clamp pro tects the device
CC
against low energy spikes (see ISO7637 transient compatibility table).
Figure 1. Package
SO-16
Active current limitation combined with thermal shutdown and automatic restart protects the device against overload. The device detects open load condition both in on and off state. Output shor te d to V
is detected in the off state. Device
CC
automatically turns off in case of ground pin disconnection.
Table 2. Order Codes
Package Tube Tape and Reel
SO-16
Note: (**) See application schematic at page 9
VND810-E VND810TR-E
Rev. 1
1/20October 2004
Page 2
VND810-E
Figure 2. Block Diagram
V
cc
CLAMP
OVERVOLTAGE
UNDERVOLTAGE
V
cc
GND
INPUT1
STATUS1
INPUT2
STATUS2
OVERTEMP. 1
OVERTEMP. 2
LOGIC
DRIVER 1
CURRENT LIMITER 1
OPENLOAD ON 1
OPENLOAD OFF 1
CLAMP 1
CLAMP 2
DRIVER 2
CURRENT LIMITER 2
OPENLOAD ON 2
OPENLOAD OFF 2
Table 3. Absolute Maximum Ratings
Symbol Parameter Value Unit
DC Supply Voltage 41 V Reverse DC Supply Voltage - 0.3 V DC Reverse Ground Pin Current - 200 mA DC Output Current Internally Limited A Reverse DC Output Current - 6 A DC Input Current +/- 10 mA DC Status Current +/- 10 mA Electrostatic Discharge (Human Body Model:
R=1.5KΩ; C=100pF)
- INPUT
- STATUS
- OUTPUT
- V
CC
4000 4000 5000 5000
Maximum Switching Energy (L=1.5mH; R
I
=5A)
L
=0; V
L
=13.5V; T
bat
jstart
=150ºC;
26 mJ
Power Dissipation TC=25°C 8.3 W Junction Operating Temperature Internally Limited °C Case Operating Temperature - 40 to 150 °C Storage Temperature - 55 to 150 °C
- V
- I I
- I
V
E
V
CC
GND
OUT
OUT
I
IN
I
stat
ESD
MAX
P
tot
T
T
T
stg
CC
j
c
OUTPUT1
OUTPUT2
V V V V
2/20
Page 3
VND810-E
Figure 3. Con fig urat i on Dia g ra m (Top View) & Sugg est ed C o nnections for Unused and N.C. Pins
V
CC
N.C.
GND
INPUT 1 STATUS 1 STATUS 2
INPUT 2
V
CC
Connection / Pin Status N.C. Output Input
Floating X X X X To Ground X Through 10Kresistor
Figure 4. Current and Voltage Conventions
1
8
16
9
V
CC
V
CC
OUTPUT 1 OUTPUT 1 OUTPUT 2 OUTPUT 2 V
CC
V
CC
I
S
V
(*)
F1
I
OUT2
V
I
OUT1
V
OUT2
OUT1
V
CC
(*) VFn = V
CCn
V
- V
I
IN1
I
IN1
V
STAT1
STAT1
I
IN2
I
V
STAT2
IN2
STATUS 2
V
STAT2
during reverse battery condition
OUTn
INPUT 1
STATUS 1
INPUT 2
GND
V
CC
OUTPUT 1
OUTPUT 2
I
GND
Table 4. Thermal Data
Symbol Parameter Value Unit
R
thj-lead
R
thj-amb
Note: 1. When mounted on a standard single-sided FR-4 board with 0.5cm
Note: 2. When mounted on a standard single-sided FR-4 board with 4cm
Thermal Resistance Junction-lead 15 °C/W
Thermal Resistance Junction-ambient 77
2
mounting and no art i f i cial air flow .
mounting and no art i f i cial air flow.
of Cu (at least 35µm thick) connected to all VCC pins. Horizontal
2
of Cu (at least 3 5µm thick) connected to all VCC pins. Hori zontal
(1)
57
(2)
°C/W
3/20
Page 4
VND810-E
ELECTRICAL CHARACTERISTICS
(8V<V
(Per each channel)
Table 5. Po we r Ou t put
Symbol Parameter Test Conditions Min. Typ. Max. Unit
V
V
V
Note: (**) Per device.
<36V; -40°C < Tj <150°C, unless otherwise specified)
CC
(**) Operating Supply Voltage 5.5 13 36 V
CC
(**) Undervoltage Shut-down 3 4 5.5 V
USD
(**) Overvoltage Shut- down 36 V
OV
I
R
ON
(**) Supply Current
I
S
I
L(off1)
I
L(off2)
I
L(off3)
I
L(off4)
On State Resistance
Off State Output Current VIN=V Off State Output Current VIN=0V; V Off State Output Current VIN=V Off State Output Current VIN=V
=1A; Tj=25°C
OUT
I
=1A; VCC>8V
OUT
Off State; V Off State; V
Tj=25°C
On State; V
OUT
OUT OUT
=13V; VIN=V
CC
=13V; VIN=V
CC
OUT OUT
=0V =0V;
12
12
=13V; VIN=5V; I
CC
OUT
=0A
5
=0V 0 50 µA
=3.5V -75 0 µA
OUT
=0V; VCC=13V; Tj =125°C 5 µA =0V; VCC=13V; Tj =25°C 3 µA
160 320
40
25
7
m m
µA
µA
mA
Table 6. Protection (see note 1)
Symbol Parameter Test Conditions Min. Typ. Max. Unit
T
TSD
T
T
hyst
t
SDL
I
lim
V
demag
Note: 1. To ensure long term reliability under heavy overload or short circuit conditions, protection and related diagnostic signals must be
Shut-down Temperature 150 175 200 °C Reset Temperature 135 °C
R
Thermal Hysteresis 7 15 °C Status Delay in Overload
Conditions
Current limitation
Turn-off Output Clamp Voltage
used together with a proper software strategy. If the device is subjected to abnormal conditions, this software must limit the duration and number of activation cycles
Tj>T
TSD
5.5V<VCC<36V
=1A; L=6mH
I
OUT
3.5 5 7.5
-
V
CC
V
41
CC
-48
V
20 µs
7.5
-
CC
55
A A
V
Table 7. VCC - Output Diode
Symbol Parameter Test Conditions Min Typ Max Unit
V
Forward on Voltage -I
F
=0.5A; Tj=150°C 0.6 V
OUT
4/20
Page 5
VND810-E
ELECTRICAL CHARACTERISTICS (continued) Table 8. Status Pin
Symbol Parameter Test Conditions Min Typ Max Unit
V
STAT
I
LSTAT
C
STAT
V
SCL
Status Low Output Voltage I
= 1.6 mA 0.5 V
STAT
Status Leakage Current Normal Operation; V Status Pin Input
Capacitance Status Clamp Voltage
Normal Operation; V I
= 1mA
STAT
= - 1mA
I
STAT
= 5V 10 µA
STAT
= 5V 100 pF
STAT
66.8
8V
-0.7
V
Table 9. Switching (V
CC
=13V)
Symbol Parameter Test Conditions Min Typ Max Unit
=13from VIN rising edge to
R
L
V
=1.3V
OUT
=13from VIN falling edge to
R
L
V
=11.7V
OUT
=13from V
R
L
V
=10.4V
OUT
=13from V
R
L
V
=1.3V
OUT
=1.3V to
OUT
=11.7V to
OUT
30 µs
30 µs
See
relative
diagram
See
relative
diagram
dV
dV
t
t
OUT
OUT
d(on)
d(off)
Turn-on Delay Time
Turn-off Delay Time
/dt
Turn-on Voltage Slope
(on)
/dt
Turn-off Voltage Slope
(off)
Table 10. Openload Detection
Symbol Parameter Test Conditions Min Typ Max Unit
I
OL
t
DOL(on)
V
OL
t
DOL(off)
Openload ON State Detection Threshold Openload ON State Detection Delay Openload OFF State
Voltage Detection Threshold
Openload Detection Delay at Turn Off
=5V 20 40 80 mA
V
IN
I
=0A 200 µs
OUT
V
=0V 1.5 2.5 3.5 V
IN
1000 µs
V/µs
V/µs
Table 11. Logic Input
Symbol Parameter Test Conditions Min Typ Max Unit
V
I(hyst)
V
V
I
V
I
IH
ICL
Input Low Level 1.25 V
IL
Low Level Input Current VIN = 1.25V 1 µA
IL
Input High Level 3.25 V
IH
High Level Input Current VIN = 3.25V 10 µA Input Hysteresis Voltage 0.5 V
Input Clamp Voltage
I
= 1mA
IN
= -1mA
I
IN
66.8
-0.7
8V
V
5/20
Page 6
VND810-E
Figure 5.
OPEN L OAD STATUS TIMING (with ex terna l pu ll-u p)
V
> V
OUT
OL
V
INn
V
STAT n
t
DOL(off)
t
DOL(on)
Tabl e 12. Truth Table
CONDITIONS INPUT OUTPUT SENSE
Normal Operation
Current Limitation
Overtemperature
Undervoltage
Overvoltage
Output Voltage > V
OL
L
H
L H H
L H
L H
L H
L H
I
OUT
< I
OVERTEMP STA TUS TIMING
OL
V
INn
V
STAT n
L
H
L X X
L
L
L
L
L
L H
H
t
SDL
Tj > T
TSD
(T
(T
< T
j
> T
j
t
TSD
TSD
SDL
H H
H
) H
) L
H L
X X
H H
L H
Output Current < I
6/20
OL
L
H
L H
H L
Page 7
Figure 6. Swi tc hing Time Wave form s
V
OUTn
80%
dV
/dt
OUT
(on)
V
INn
t
d(on)
10%
t
d(off)
90%
dV
OUT
/dt
VND810-E
(off)
t
t
Table 13. Electrical Transient Requirements On V
ISO T/R 7637/1
Test Pulse
I II III IV Delays and
CC
1 -25 V -50 V -75 V -100 V 2 ms 10
2 +25 V +50 V +75 V +100 V 0.2 ms 10 3a -25 V -50 V -100 V -150 V 0.1 µs 50 3b +25 V +50 V +75 V +100 V 0.1 µs 50
4 -4 V -5 V -6 V -7 V 100 ms, 0.01
5 +26.5 V +46.5 V +66.5 V +86.5 V 400 ms, 2
ISO T/R 7637/1
Test Pulse
I II III IV
TEST LEVELS RESULTS
1CCCC
2CCCC 3aCCCC 3bCCCC
4CCCC
5C E E E
CLASS CONTENTS
C All functions of the device are performed as designed after exposure to disturbance.
E One or more functions of the device is not performed as designed after exposure and cannot be
returned to proper operation without replacing the device.
Pin
TEST LEVELS
Impedance
7/20
Page 8
VND810-E
Figure 7. Waveforms
INPUT
n
OUTPUT VOLTAGE STATUS
V
CC
INPUT
n
OUTPUT VOLTAGE STATUS
V
CC
INPUT
n
OUTPUT VOLTAGE
STATUS
NORMAL OPERATION
n
n
UNDERVOLTAGE
V
USDhyst
V
USD
n
n
undefined
OVERVOLTAGE
VCC>V
VCC<V
OV
n
n
OV
INPUT
n
OUTPUT VOLTAGE STATUS
INPUT
n
n
OUTPUT VOLTAGE STATUS
T
INPUT
n
j
n
OUTPUT CURRENT
STATUS
n
OPEN LOAD with external pull-up
V
n
V
OL
OUT>VOL
OPEN LOAD without external pull-up
n
OVERTEMPERATURE
T
TSD
T
R
n
8/20
Page 9
Figure 8. Application Schematic
+5V
+5V
+5V
R
prot
R
µ
C
prot
R
prot
R
prot
STATUS1
INPUT1
STATUS2
INPUT2
VND810-E
V
CC
D
ld
OUTPUT1
GND PROTECTION NETWORK AGAINST REVERSE BATTERY
Solution 1: Re sistor in th e ground line (R can be used with any type of load.
The following is an indication on how to d imension the R
resistor.
GND
1) R
2) R
where -I be found in the absolute maxim um rating section of the
600mV / I
GND
≥ (−VCC) / (-I
GND
is the DC reverse ground pin current and can
GND
S(on)max
GND
.
)
device’s datasheet. Power Dissipation in R
battery situations) is:
= (-VCC)2/R
P
D
GND
(when VCC<0: during rever se
GND
This resistor can be shared amongst several different HSD. Please note that the value of this resistor should be calculated with formula (1) wh ere I sum of the maximum on-state currents of the different
S(on)max
devices. Please note that if the microprocessor ground is not
common with the device ground then the R produce a shift (I and the status output values. This shift will vary
S(on)max
* R
) in the input thresho lds
GND
depending on how many dev ices are ON in the case of several high side drivers sharing the same R
only). This
GND
becomes t he
GND
.
GND
will
D
OUTPUT2
GND
GND
R
V
GND
GND
If the calculated power dissipation leads to a large resistor or several devices have to share the same resistor then the ST suggests to utilize So lution 2 (see below).
Solution 2: A resistor (R
D
GND
A diode (D
=1kΩ) should be inserted in parallel to
GND
if the device will be driving an inductive load.
) in the ground line.
GND
This small signal diode can be safely shared amongst several different HS D. Also in this cas e, the presenc e of the ground network will produce a shift (j600mV) in the
input threshold and the status output values if the microprocessor ground is not common with the device ground. This shift will not vary if more than one HSD shares the same diode/resistor network.
Series resistor in INPUT and STATUS lines are also required to p reven t tha t, d uring bat tery voltag e tr ansie nt, the current exceeds the Absolute Maximum Rating.
Safest configu ration for unu sed INPU T and S TAT US pin is to leave them unconnected.
LOAD DUMP PROTECTIO N
Dld is necessary (Voltage Transient Suppressor) if the load dump peak voltage exceeds V The same applies if the device will be subject to transients on the V
line that are greater than the ones
CC
shown in the ISO T/R 7637/1 table.
max DC rating.
CC
9/20
Page 10
VND810-E
µC I/Os PROTECTION:
If a ground protection network is used and negative transient are present on the V be pulled negative. ST suggests to insert a resistor (R in line to prevent the µC I/Os pins to latch-up.
The value of thes e resistors is a compro mise between the leakage current of µC and the current required by the HSD I/Os (Input levels compatibility) with the latch-up limit of µC I/Os.
-V
CCpeak/Ilatchup
R
prot
Calculation example: For V 5kΩ ≤ R Recommended R
CCpeak
prot
= - 100V and I
65k.
value is 10kΩ.
prot
line, the control pins will
CC
(V
OHµC-VIH-VGND
20mA; V
latchup
) / I
OHµC
prot
IHmax
4.5V
OPEN LOAD DETECTION IN OFF STATE
Off state open load detection requires an external pull-up resistor (R
) connected between OUTPUT pin and a
PU
Figure 9. Open Load detection in off state
positive supply voltage (V
) like the +5V line used to
PU
supply the microprocessor. The external res istor has to be s electe d ac cordin g to t he following requirements:
)
1) no false o pen load indic ation when lo ad is con necte d: in this case we have to avoid V
; this results in the following condition
V
Olmin
=(VPU/(RL+RPU))RL<V
V
OUT
to be high er than
OUT
Olmin.
2) no misdetection when load is disconnected: in this case the V results in the fol lowing condition R
.
I
L(off2)
Because I
has to be higher than V
OUT
may significantly increase if V
s(OFF)
PU
<(V
pulled high (up to several mA), the pull-u p resistor R should be connected to a supply that is switched OFF when the module is in standby.
The values of V
OLmin
, V
OLmax
and I
are available in
L(off2)
the Electrical Characteristics section.
V batt. VPU
; this
OLmax
PU–VOLmax
out
)/
is
PU
INPUT
STATUS
DRIVER
+
LOGIC
V
CC
+
­VOL
GROUND
R
OUT
IL(off2)
R
PU
RL
10/20
Page 11
VND810-E
Figure 10. Off State Output Current
IL(off1) (uA)
1.6
1.44
1.28
1.12
0.96
0.8
0.64
0.48
0.32
0.16 0
-50 -25 0 25 50 75 100 125 150 175
Off state Vcc=36V
Vin=Vout=0V
Tc (ºC)
Figure 11. Input Clamp Voltage
Vicl (V)
8
7.8
7.6
7.4
7.2
7
6.8
6.6
6.4
6.2
6
Iin=1mA
-50 -25 0 25 50 75 100 125 150 175
Tc (°C)
Figure 13. High Level Input Current
Iih (uA)
5
4.5
3.5
2.5
1.5
0.5
Vin=3.25V
4
3
2
1
0
-50 -25 0 25 50 75 100 125 150 175
Tc (°C)
Figure 14. Status Leakage Current
Ilstat (uA)
0.05
0.04
Vstat= 5 V
0.03
0.02
0.01
0
-50 -25 0 25 50 75 100 125 150 175
Tc (°C)
Figure 12. S t at us Low Output Vol ta ge
Vstat (V)
0.8
0.7
Istat=1.6mA
0.6
0.5
0.4
0.3
0.2
0.1
0
-50 -25 0 25 50 75 100 125 150 175
Tc (°C)
Figure 15. Status Clamp Voltage
Vscl (V)
8
7.8
7.6
7.4
7.2
6.8
6.6
6.4
6.2
Istat=1mA
7
6
-50 -25 0 25 50 75 100 125 150 175
Tc (°C)
11/20
Page 12
VND810-E
)
Figure 16. On State Resistance Vs T
case
Ron (mOhm)
400
350
300
250
200
150
100
50
0
-50 -25 0 25 50 75 100 125 150 175
Iout=0.5A
Vcc=8V; 13V & 36V
Tc (°C)
Figure 17. Openload On State Detection
Threshol d
Iol (mA)
60
55
50
45
40
35
30
25
20
15 10
Vcc=13V
Vin=5V
-50 -25 0 25 50 75 100 125 150 175
Tc (°C
Figure 19. On State Resistance Vs V
CC
Ron (mOhm)
300
275
250
225
200
175
150
125
100
75 50
510152025303540
Iout=0.5A
Tc= 150°C
Tc= 25°C
Tc= - 40°C
Vcc (V)
Figure 20. Openload Off State Detection
Threshold
Vol (V )
5
4.5
4
3.5
3
2.5
2
1.5
1
0.5 0
Vin=0V
-50 -25 0 25 50 75 100 125 150 175
Tc (°C)
Figure 18. Input High Level
Vih (V )
3.6
3.4
3.2
3
2.8
2.6
2.4
2.2
2
-50 -25 0 25 50 75 100 125 150 175
Tc (°C)
12/20
Figure 21. Input Low Level
Vil (V)
2.6
2.4
2.2
2
1.8
1.6
1.4
1.2
1
-50 -25 0 25 50 75 100 125 150 175
Tc (°C)
Page 13
VND810-E
Figure 22. Input Hysteresis Voltage
Vhyst (V)
1.5
1.4
1.3
1.2
1.1
1
0.9
0.8
0.7
0.6
0.5
-50 -25 0 25 50 75 100 125 150 175
Tc (°C)
Figure 23. Turn-on Voltage Slope
dVout/dt( on ) (V /ms )
1000
900
800
700
600
500
400
300
200
100
Vcc=13V
Rl=13Ohm
0
-50 -25 0 25 50 75 100 125 150 175
Tc (ºC)
Figure 25. Overvoltage Shutdown
Vov (V)
50
48
46
44
42
40
38
36
34
32 30
-50 -25 0 25 50 75 100 125 150 175
Tc (°C)
Figure 26. Turn-off Voltage Slope
dVout/dt( off) (V/ms)
500
450
400
350
300
250
200
150
100
50
0
Vcc=13V
Rl=13Ohm
-50 -25 0 25 50 75 100 125 150 175
Tc (ºC)
Figure 24. I
LIM
Vs T
case
Ilim ( A)
10
9
8
7
6
5
4
3
2
1 0
Vcc=13V
-50 -25 0 25 50 75 100 125 150 175
Tc (°C)
13/20
Page 14
VND810-E
Figure 27. Maximum turn off current versus load inductance
LMAX (A)
I
10
A
B
C
1
0.1 1 10 10 0
A = Single Pulse at T
B= Repetitive pulse at T C= Repetitive Pulse at T
Conditions: VCC=13.5V
VIN, I
L
Jstart
=150ºC
=100ºC
Jstart
=125ºC
Jstart
Demagnetization
L(mH)
Values are generated with R In case of repetitive pulses, T
each demagnetization) of every pulse must not exceed the temperature specified above for curves B and C.
Demagnetization
=0
L
(at beginning of
jstart
Demagnetization
14/20
t
Page 15
PowerSO-10™ Thermal Data
Figure 28. SO-16 PC Board
VND810-E
Layout condition of Rth and Zth measurements (PCB FR4 area= 58mm x 58mm, PCB thickness=1.6mm, Cu thickness=35µm, Copper areas: 0.26cm
Figure 29. R
Vs PCB copper area in open box free air condition
thj-amb
2
, 4cm2).
RTH j-am b
(°C/W)
85 80 75 70 65 60 55 50 45 40
012345
PCB Cu heatsink area (cm^2)
15/20
Page 16
VND810-E
Figure 30. SO-16 Thermal Impedance Jun ction Ambient Single Pu lse
ZTH (°C/W)
1000
100
10
1
0.1
0.01
0.0001 0.001 0.01 0.1 1 10 100 1000 Time (s)
Figure 31. Th e rm al fit t in g m od e l of a double channel HSD in SO-16
Pulse calculation formula
Z
TH
R
δ Z
δ
TH
THtp
2
0.26 cm
2
4 cm
1 δ()+=
Tj_1
Tj_2
16/20
Pd1
C1
C1 C2
R1
Pd2
where
δ tpT=
Table 14. Thermal Parameter
C3 C4
R4
R3R1 R6R5R2
R2
T_amb
C5 C6C2
Area/island (cm2) 0.5 4
R1 (°C/W) 0.35 R2 (°C/W) 1.8 R3 ( °C/W) 4.5 R4 (°C/W) 10 R5 (°C/W) 16 R6 (°C/W) 48 25 C1 (W.s/°C) 0.0001 C2 (W.s/°C) 7.00E-04 C3 (W.s/°C) 6.00E-03 C4 (W.s/°C) 0.2 C5 (W.s/°C) 0.7 C6 (W.s/°C) 2 4
Page 17
PACKAGE MECHANICAL
Table 15. SO-16 Mechanical Data
Symbol
A 1.75 a1 0.1 0.2 a2 1.65
b 0.35 0.46 b1 0.19 0..25
C 0.5
c1 45° (typ.)
D 9.8 10
E 5.8 6.2
e 1.27 e3 8.89
F 3.8 4.0
G 4.6 5.3
L 0.5 1.27
M 0.62
S 8° (max.)
Min Typ Max
Figure 32. SO-16 Package Dimensions
VND810-E
millimeters
17/20
Page 18
VND810-E
Figure 33. SO-16 Sugge st ed P a d Layout And Tube Shipment ( no suffix)
B
C
A
Figure 34. Tape And Reel Shipment (suffix “TR”)
Base Q.ty 50 Bulk Q.ty 1000 Tube length (± 0.5) 532 A 3.2 B 6 C (± 0.1) 0.6
All dimensions are in mm.
REEL DIMENSIONS
.All dimensions are in mm.
Base Q.ty 1000 Bulk Q.ty 1000 A (max) 330 B (min) 1.5 C (± 0.2) 13
F 20.2 G (+ 2 / -0) 16.4 N (min) 60 T (max) 22.4
TAPE DIMENSIONS
According to Electronic Industries Association (EIA) Standard 481 rev. A, Feb 1986
Tape width W 16 Tape Hole Spacing P0 (± 0.1) 4 Component Spacing P 8 Hole Diameter D (± 0.1/-0) 1.5 Hole Diameter D1 (min) 1.5 Hole Position F (± 0.05) 7.5 Compartment Depth K (max) 6.5 Hole Spacing P1 (± 0.1) 2
All dimensions are in mm.
18/20
Top
cover
tape
End
500mm min
Empty componen ts poc kets saled with cov e r ta pe.
User direction of feed
Start
No componentsNo components Com ponents
500mm m in
Page 19
REVISION HIST ORY
Date Revision Descrip tion of Changes
Oct. 2004 1 - First Issue
VND810-E
19/20
Page 20
VND810-E
Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences of use of such i nformat ion nor f or any infr ingement of patents or other rig hts of third par ties w hich may res ults from i ts use. No license is granted by i m pl i cation or ot herwise under any pate nt or patent rights of STMicroelectr oni cs. Specif i cations ment i oned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics products are not authorized for use as critical c om ponents in lif e support de vices or syste m s without express written approval of STMicroelectronics.
The ST logo is a registered trademark of STMicroelectroni cs.
All other names are the propert y of their respective owne rs
2004 STMi croele c tronics - All ri gh ts reserved
Austra lia - Belgium - B razil - Canada - China - Czech Republic - Finla nd - France - Germany - Hon g Kong - India - I srael - Italy - Japan -
Malaysia - Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America
STMicroelectron i cs group of com pani es
www.st.com
20/20
Loading...