Datasheet STV9420, STV9421 Datasheet (SGS Thomson Microelectronics)

Page 1
MULTISYNCON-SCREENDISPLAY FOR MONITOR
.
CMOSSINGLECHIP OSDFOR MONITOR
.
- PAGES’DESCRIPTORS
- CHARACTER CODES
- USERDEFINABLECHARACTERS
.
128 ALPHANUMERIC CHARACTERS OR GRAPHIC SYMBOLS IN INTERNAL ROM (12 x 18 DOTMATRIX)
.
UP TO 26 USERDEFINABLECHARACTERS
.
INTERNALHORIZONTAL PLL(15 TO120kHz)
.
PROGRAMMABLE VERTICAL HEIGHT OF CHARACTER WITH A SLICEINTERPOLATOR TO MEET MULTI-SYNCH REQUIREMENTS
.
PROGRAMMABLE VERTICAL AND HORI­ZONTALPOSITIONING
.
FLEXIBLESCREENDESCRIPTION
.
CHARACTER BY CHARACTER COLOR SE­LECTION(UP TO 8 DIFFERENT COLORS)
.
PROGRAMMABLE BACKGROUND (COLOR, TRANSPARENTOR WITH SHADOWING)
.
CHARACTER BLINKING
.
2-WIRES ASYNCHRONOUS SERIAL MCU INTERFACE (I
.
4 x 8 BITS PWM DAC OUTPUTS ON THE STV9421
.
SINGLEPOSITIVE5V SUPPLY
2
C PROTOCOL)
STV9420 STV9421
DIP16
(Plastic Package)
ORDER CODE : STV9420
DESCRIPTION
The STV9420/21is an ON SCREEN DISPLAYfor monitor.It is built as a slaveperipheralconnected to a host MCU via a serial I display memory, controls all the display attributes and generatespixels from the data read in its on chip memory. The line PLL and a special slice interpolator allow to have a display aspect which doesnotdependonthelineandframefrequencies.
2
C interface allows MCU to make transparent in-
I ternal accessto preparethe next pagesduring the display of the current page. Toggle from one page to anotherby programmingonly one register.
4 x 8 bits PWM DAC are available (STV9421) to provide DC voltage control to other peripherals. The STV9420/21providesthe user aneasy to use and cost effective solutionto displayalphanumeric or graphicinformation on monitor screen.
October 1995
2
C bus. It includes a
DIP20
(Plastic Package)
ORDER CODE : STV9421
1/16
Page 2
STV9420 - STV9421
PINCONNECTIONS
DIP16
FBLK
H-SYNC
V-SYNC
V
DD
PXCK
CKOUT
XTALOUT
XTALIN
1 2 3 4 5 6 7 8
16 15 14 13 12 11 10
TEST B G R GND RESET SDA
9
SCL
PWM1
FBLK H-SYNC V-SYNC
PXCK
CKOUT
XTALOUT
XTALIN
PWM4
PIN DESCRIPTION
Symbol
PWM1 1 O DAC1 Output
FBLK 1 2 O Fast Blanking Output H-SYNC 2 3 I Horizontal Sync Input V-SYNC 3 4 I Vertical Sync Input
V
DD
PXCK 5 6 O PixelFrequency Output
CKOUT 6 7 O Clock Output
XTALOUT 7 8 O Crystal Output
XTALIN 8 9 I Crystal or Clock Input
PWM4 10 O DAC4 Output PWM2 11 O DAC2 Output
SCL 9 12 I SerialClock
SDA 10 13 I/O SerialInput/output Data
RESET 11 14 I Reset Input
GND 12 15 S Ground
R 13 16 O Red Output G 14 17 O Green Output B 15 18 O Blue Output
TEST 16 19 I Reserved (grounded in Normal Operation)
PWM3 20 O DAC3 Output
Pin Number
DIP16 DIP20
I/O Description
4 5 S +5V Supply
DIP20
1 2 3 4
V
DD
5 6 7 8 9 10
20 19 18 17 16 15 14 13 12 11
PWM3 TEST B G R GND RESET SDA SCL PWM2
9420-01.AI /9421-01.AI
9420-01.TBL
2/16
Page 3
BLOCK DIAGRAMS
STV9420
XTALINXTAL
OUT
78
PXCK TES TV
DD
45
STV9420 - STV9421
16
STV9421
CKOUT HSYNC
CKOUT HSYNC
VSYNC
RESET
6 2
3
11
STV9420
XTALINXTAL
7 3
PXCK TEST
OUT
89
HORIZONTAL
DIGITAL PLL
Address/Data
HORIZONTAL
DIGITAL PLL
Addre ss/Data
DISPLAY
CONTROLLER
1
G B FBLK GND SCL
R
V
DD
56
4KROM
(128 characters)
4KROM
(128 characters)
1213 14 15
19
1K RAM Page Descriptors + User Defined Char.
1KRAM Page Descriptors + User Defined Char.
2
I C BUS
INTERFACE
910
SDA
10 20
9420-02.EPS
PWM4 PWM3
VSYNC
RESET
14
4
DISPLAY
CONTROLLER
2
1516 17 18
R G B FBLK GND SCL SDA
2
I C BUS
INTERFACE
12 13
PWM
STV9421
11
1
PWM2 PWM1
9421-02.EPS
3/16
Page 4
STV9420 - STV9421
ABSOLUTEMAXIMUM RATINGS
Symbol Parameter Value Unit
V
DD
V
IN
T
oper
T
stg
ELECTRICAL CHARACTERISTICS
=5V,VSS=0V,TA=0 to 70°C, F
(V
DD
Symbol Parameter Min. Typ. Max. Unit
SUPPLY
V
DD
I
DD
INPUTS
SCL, SDA, TEST, RESET, V-SYNC and H-SYNC
V
IL
V
IH
I
IL
OUTPUTS
R, G, B, FBLK, SDA, CKOUT, PXCK and PWMi(i = 1 to 4)
V
OL
V
OH
For R, G, B and FBLK outputs, see Figure 1.
Supply Voltage -0.3, +7.0 V Input Voltage -0.3, +7.0 V Operating Ambient Temperature 0, +70 °C Storage Temperature -40, +125 °C
= 8 to15MHz, TEST= 0 V,unless otherwise specified)
XTAL
Supply Voltage 4.75 5 5.25 V Supply Current - - 50 mA
Input Low Voltage 0.8 V Input High Voltage 0.8 V
DD
Input Leakage Current -20 +20 µ
Output Low Voltage (IOL= 1.6mA) 0 0.4 V Output High Voltage (IOL= -0.1mA) 0.8 V
DD
V
DD
9420-02.TBL
V
A
V
9420-03.TBL
Figure 1 : TypicalR, G, B OutputsCharacteristics
(V)
V
,
V
OH
V
OL
I (A)
10
-4
10
-3
10
-2
10
-1
5
2.5
0
V
10
OL OH
-5
9420-17.EPS
4/16
Page 5
STV9420 - STV9421
TIMINGS
Symbol Parameter Min. Typ. Max. Unit
OSCILATOR INPUT : XTI (see Figure 2)
t
WH
t
WL
f
XTAL
f
PXL
RESET
t
RES
R, G, B, FBLK (C
t
R
t
F
t
SKEW
2
I
C INTERFACE : SDA AND SCL (see Figure 3)
f
SCL
t
BUF
t
HDS
t
SUP
t
LOW
t
HIGH
t
HDAT
t
SUDAT
t
F
t
R
Note 1 : These parameters are not tested on each unit. They are measured during our internal qualification procedure which includes
Clock High Level 35 ns Clock Low Level 35 ns Clock Frequency 6 15 MHz Pixel Frequency 30 MHz
Reset High Level Pulse 4
= 30pF)
LOAD
Rise Time (Note 1) 5 ns Fall Time (Note 1) 5 ns Skew between R, G, B, FBLK (Note 1) 5 ns
SCL Clock Frequency 0 1 MHz Time the bus must be free between 2 access 500 ns Hold Time for Start Condition 500 ns Set up Time for Stop Condition 500 ns The Low Period of Clock 400 ns The High Period of Clock 400 ns Hold Time Data 0 ns Set up Time Data 375 ns Fall Time of SDA 20 ns
Rise Time of Both SCL and SDA
characterization on batches comming from corners of our processes and also temperature characterization.
Depend on the pull-up resistor
and the load capacitance
µs
9420-04.TBL
Figure2
XTI
Figure 3
STOP START DATA STOP
t
t
WL
SDA
t
WH
SCL
9420-03.EPS
BUF
t
HDS
t
HIGH
t
S UDAT
t
HDAT
t
SUP
t
LOW
9420-04.EPS
5/16
Page 6
STV9420 - STV9421
FUNCTIONAL DESCRIPTION
The STV9420/21 display processor operation is controlledby a host MCU via the I fully programmable through 8 internal read/write registers (12 for STV9421) and performs all the display functions by generating pixels from data stored in its internal memory. Afterthe page down­loading from the MCU, the STV9420/21refreshes screen by its built in processor, without any MCU control (access).In addition, the host MCU has a direct access to the on chip 1Kbytes RAM during the displayof thecurrent page tomake anyupdate of itscontents. With the STV9420/21, a page displayed on the screenis made of severalstrips which can be of 2 types : spacing or character and which are de­scribed by a table of descriptors and character codes in RAM.Several pages can be downloaded at thesame time in the RAMand the choiceof the currentdisplay page is made by programmingthe CONTROLregister.
I - Serial Interface
The 2-wires serial interface is an I be connectedto theI
2
C bus,a devicemust own its sl ave ad dre ss ; the sla ve a dd re ss of t he STV9420/21is BA (in hexadecimal).
A6 A5 A4 A3 A2 A1 A0 R/W
1011101
Figure 3 : STV9420/I2C Write Operation
2
C interface.It is
2
C interface. To
I.1 - Data Transferin Write Mode
The hostMCU canwrite data into the STV9420/21 registersor RAM.
Towrite datainto theSTV9420/21,aftera start,the MCUmust send(Figure 3) :
- First, the I
2
C address slave byte with a low level
for the R/W bit,
- The two bytes of the internal address where the MCU wants to write data(s),
- The successive bytesof data(s).
All bytes are sent MS bit first and the write data transferis closed by a stop.
I.2 - Data Transferin Read Mode
Thehost MCUcanreaddatafromthe STV9420/21 registers,RAM or ROM.
To read data from the STV9420/21(Figure 4), the MCUmust send2 different I Thefirst oneis madeof I
2
C sequences.
2
Cslaveaddressbytewith R/W bit at low level and the 2 internal address bytes.
2
The secondone ismade of I
C slave addressbyte with R/W bit at high level and all the successive data bytes read at successive addressesstarting fromthe initialaddress givenby the first sequence.
SCL
R/W
SDA
2
C Slave Address
I
SCL
D7 D6 D5 D4 D3 D2 D1 D0 D7 D6 D5 D4 D3 D2 D1 D0 D7 D6 D5 D4 D3 D2 D1 D0
SDA
ACK ACKData Byte 1 Data Byte 2 ACK Data Byte n Stop
A7 A6 A5 A4 A3 A2 A1 A0 - - A13 A12 A11 A10 A9 A8
ACK LSB Address ACK MSB Address ACKStart
Figure 4 : STV9420/I2C Read Operation
SCL
R/W
SDA
I1C Slave Address
SCL
SDA R/W
I1C SlaveAddress
6/16
A7 A6 A5
ACK LSB Address ACK MSB Address ACKStart
D7 D6 D5 D4 D3 D2 D1 D0
ACK ACK Data Byte n ACKStart
A4 A3 A2 A1 A0
Data Byte 1
- - A13 A12 A10 A10 A9 A8
D7 D6 D5 D4 D3 D2 D1 D0
Stop
Stop
9420-05.AI
9420-06.EPS
Page 7
FUNCTIONAL DESCRIPTION (continued) I.3 - Addressing Space
STV9420/21registers,RAMandROMare mapped in a 16Kbytesaddressing space. The mapping is the following:
0000
1024 bytes
RAM
03FF
Descriptorscharacter codesuser definable characters
0400
Empty
Space
1FFF
2000
Character
Generator
ROM
32FF
3300
Empty Space
3FFF
3FF0
Internal
Registers
3FFF
I.4 - RegisterSet
LINE DURATION
3FF0 - - LD5 LD4 LD3 LD2 LD1 LD0 * --111111
LD[5:0] : LINE DURATION (number of character
period,1LSB =12 pixelperiods).
HORIZONTALDELAY
3FF1 DD7 DD6 DD5 DD4 DD3 DD2 DD1 DD0 * 00001000
DD[7:0] : HORIZONTAL DISPLAY DELAY from
the H-SYNC reference falling edge to
st
the 1
pixel position of the character strips. Unit = 3 pixel periods.
CHARACTERS HEIGHT
3FF2 - - CH5 CH4 CH3 CH2 CH1 CH0 * --010010
CH[5:0] : HEIGHT of the character strips in scan
lines.For each scan line, the number of theslice which is displayedis given by:
SLICE-NUMBER =
SCAN±LINE±NUMBER x 18
round
 
SCAN-LINE-NUMBER = Number of the current scan line of the strip.
CH[5:0]
  
STV9420 - STV9421
DISPLAYCONTROL
3FF3 OSD FBK FL1 FL0 - P8 P7 P6 * 0000-000
OSD : ON/OFF(i f0, R, G, B andFBLKare 0). FBK : Fast blanking control :
= 1 : FBLK = 1, forcing black where theseis no display, =0:FBLKisactiveonlyduring characterdisplay.
FL[1:0] : Flashing mode :
- 0 0 : No flash ing. T he chara cter attributeis ignored,
- 01 : 1/1 flashing(a duty cycle = 50%),
- 10 : 1/3 flashing,
- 11: 3/1 flashing.
P[8:6] : Address of the 1
currentdisplayed pages. P[13:9]and P[5:0] = 0 ; up to 8 different pages can be stored in the RAM.
LOCKINGCONDITION TIME CONSTANT
3FF4 FR AS2 AS1 AS0 - BS2 BS1 BS0 * 0010-010
FR : FreeRunning; if=1PLLis disabledand
the pixel frequency keepsits last value.
AS[2:0] : Phase constant during locking
conditions.
BS[2:0] : Frequen cy constant during loc king
conditions.
CAPTUREPROCESSTIME CONSTANT
3FF5 - AF2 AF1 AF0 - BF2 BF1 BF0 * -011-011
AF[2:0] : Phase constant during the capture
process.
BF[2:0] : Frequencyconstant during the capture
process.
INITIALPIXELPERIOD
3FF6 PP7 PP6 PP5 PP4 PP3 PP2 PP1 PP0 * 00101000
PP[7:0] : Value to initialize the pixel period of the
PLL.
FREQUENCY MULTIPLIER
3FF7 - - - - FM3 FM2 FM1 FM0
*----1010
FM[3:0] : Frequency multiplier of the crystal
frequency toreach the high frequency used by the PLL to derive the pixel frequency.
st
descriptor of the
7/16
Page 8
STV9420 - STV9421
FUNCTIONAL DESCRIPTION (continued)
The last fourth registers described below are only availablewith the STV9421 :
PULSE WIDTH MODULATOR 1
3FF8 V17 V16 V15 V14 V13 V12 V11 V10 * 00000000
V1[7:0] : Digital value of the 1stPWM D to A
converter(Pin1).
PULSE WIDTH MODULATOR 2
3FF9 V27 V26 V25 V24 V23 V22 V21 V20 * 00000000
V2[7:0] : Digitalvalueof the2dPWMDAC(Pin11). PULSE WIDTH MODULATOR 3
3FFA V37 V36 V35 V34 V33 V32 V31 V30 * 00000000
V3[7:0] : Digital value of the 3rdPWM DAC
(Pin20).
PULSE WIDTH MODULATOR 4
3FFB V47 V46 V45 V44 V43 V42 V41 V40 * 00000000
V4[7:0] : Digital value of the 4thPWM DAC
(Pin10).
Note : * is power on reset value.
II - Descriptors
SPACING
MSB0------­LSB SL7 SL6 SL5 SL4 SL3 SL2 SL1 SL0
SL[7:0] : The number of the scan lines of the
spacingstrip (1 to 255).
CHARACTER
MSB 1 DE - ZY - - C9 C8 LSB C7 C6 C5 C4 C3 C2 C1 0
C[9:0] : The addressof thefirst charactercodeof
the strip (even).
DE : Displayenable :
- DE =0, R =G = B =0 and FBLK =FBK (display controlregister)on wholestrip,
- DE = 1, display of the characters.
ZY : Zoom, ZY = 1 all the scan lines are
repeated once.
III - CodeFormat
MSB SET CHARACTER NUMBER LSB BK3 BK2 BK1 BK0 FL RF GF BF
FL : Flashing attribute (the flashing mode is
definedinthe DISPLAY CONTROLregister).
SET : The set CHARACTER NUMBER
- If SET= 0 : ROM character,
-IfSET=1:
If CHARACTER NUMBER is 0 to 25, a user redefinable character (UDC) locate d in RAM at the address equal to : 38 x CHARACTER NUMBER,
If CHARACTER NUMBER is 26 to 63, space character,
If CHARACTER NUMBER >63, end of line.
RF, GF, BF : Foregroundcolor. BK[3:0] : Background:
- If BK3 = 0, BK[2:0] = background
color R, G andB,
- If BK3 = 1, shadowing :
BK2 : vertival shadowing,
BK1 : horizontal shadowing.
(if BK2 = BK1 = 0, the backgroundis transparent).
IV - Clock and Timing
The whole timing is derived from the XTALIN and the SYNCHRO (horizontal and vertival) input fre­quencies.The XTALINinput frequency can be an external clock or a crystal signal thanks to XTALIN/XTALOUT pins. The value of this fre­quencycan be chosenbetween 8 and 15MHz, itis availableon theCKOUTpinandis usedbythePLL to generate a pixel clock locked on the horizontal synchroinput signal.
IV.1 - Horizontal Timing
The number of pixel periods is given by the LINE DURATIONregister and is equal to : [LD[5:0]+ 1 ] x 12 (LD[5:0] : value of the LINE DURATION register). This value allows to choose the horizontal size of the characters.
The horizontal left margin is given by the HORI­ZONTALDELAYregisterand is equal to : [DD[7:0] + 8] x 3 x t
PXCK
(DD[7:0] : value of the DISPLAY DELAY register and T
:pixel period).
PXCK
This value allows to choosethe horizontalposition of the characters on the screen. The value of DD[7:0] must be equal or greater than 4 (the mini­mum valueof the horizontaldelay is 36 x t
PXCK
=3 character periods). The length of the active area, where R,G, B are differentfrom 0, dependson the number of charactersof the strips.
8/16
Page 9
FUNCTIONAL DESCRIPTION (continued) Figure 5 : Horizontal Timing
H-SYNC
R, G, B
STV9420 - STV9421
Character Period
LD[5:0] Fixed
DD[7:0] Given by
number of characters of the strips
0123n+1n+2n+3n+4 LD-1LD01
= 4 (min) = 4n + 2
IV.2- D to ATiming (STV9421) The D to A converters of the STV9421 are pulse
width modulaterconverter.
F
The frequencyof the output signal is :
and the duty cycle is :
V1[7:0]
256
per cent.
XTAL
256
After a low pass filter, the average value of the output is :
V1[7:0]
256
V
DD
Figure 6 : PWM Timing
PWM1 Signal
V1[7:0]
0
1
128 255
t
XTAL
256.t
XTAL
V - DisplayControl
Ascreeniscomposedofsuccessivescanlinesgath­ered in several strips. Each strip is defined by a descriptorstoredin memory. Atable of descriptors
allowsscreencompositionand differenttablescan be stored in memory at the page addresses (8
possible addresses). Two types of stripsare available :
- Spacing strip : its descriptor (see II) gives the
numberofblack(FBK= 1inDISPLAYCONTROL register)or transparent (FBK = 0) lines.
- Character strip : its descriptorgives the memory
address ofthe charactercodescorrespondingto
st
the 1
displayed character. The characters and attributes (see code format III) are defined by a succession of codes stored in the RAM at ad­dresses starting from the 1
st
one given by the descriptor. A character strip can be displayed or not by using the DE bit of its descriptor. A zoom canbe made on it byusing the ZYbit.
After the falling edge on V-SYNC, the first strip descriptoris read at the top of the current table of descriptors at the address given by P[8:6] (see DISPLAY CONTROL register) ; if it is a spacing strip, SL[7:0] black or transparent scan lines are displayed;if it is a characterstrip, duringCH[5:0]x (I+ ZY) scanlines(CH[5:0]givenby theCHARAC-
9420-08.EPS
TER HEIGHT register), the character codes are read at the addresses starting from the 1 givenby the descriptoruntil aend of line character or the end of the scan line ; the next descriptoris then read and the same process is repeateduntil the next falling edge on V-SYNC.
9420-07.AI
st
one
9/16
Page 10
STV9420 - STV9421
FUNCTIONAL DESCRIPTION (continued) Figure 7 : Relation between Screen/AddressPage/CharacterCode in RAM
DISPLAY CONTROL Register
CSD FBK
FL[1:0] P8 P7 P8
V-SYNC
2nd CHARACTER
STRIP CODES
OTHER
TABLE OF
DESCRIPTORS
OTHER
(UDC for example)
1st CHARACTER
STRIP CODES
3rd CHARACTER
SRTIP CODES
OTHER
(CODES OR
DESCRIPTORS)
RAM CODE
AND DESCRIPTORS
Figure 8 : User DefinableCharacter
ON THE SCREEN
36 Pixels (= 3 Characters)
123
36 Slices (= 2 Characters)
456
SPACING
ROW1 ROW2
SPACING
ROW3
SPACING
TABLE OF THE DESCRIPTORS
Character Number
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
Character Number
TOP SPACING STRIP
1st CHARACTER STRIP
2nd CHARACTER STRIP
SPACING STRIP
3rd CHARACTER STRIP
|
BOTTOM SPACING STRIP
SCREEN
IN THE RAM
(example for Character n°5)
Slice 0
Slice 1 Slice 2 Slice 3 Slice 4 Slice 5 Slice 6 Slice 7 Slice 8 Slice 9 Slice 10 Slice 11 Slice 12 Slice 13 Slice 14 Slice 15 Slice 16 Slice 17 Slice 18
: 0x01
: 0x00 : 0x08 : 0x0c : 0x0e : 0x0f : 0x0f : 0x0f : 0x0f : 0x0e : 0x0c : 0x00 : 0x00 : 0x00 : 0x00 : 0x00 : 0x00 : 0x00 : 0x00
Odd Address
0xff =
Slice 18 of the character n°2 only for vertical shadowing
(not displayed). 0xff 0x7f 0x3f 0x1f 0x1f 0x1f 0x1e 0x1e 0x3c 0x3c 0x78 0x78 0xf1 0x00 0x00 0x00 0x00 0x00
Even Address
9420-09.EPS
9420-10.AI
10/16
Page 11
FUNCTIONAL DESCRIPTION (continued) Table 1 : ROM CharacterGenerator
CHARACTERNUMBER C(6:0)
C(6:4)
01234567
C(3:0)
0
1
2
3
4
5
STV9420 - STV9421
6
7
8
9
a
b
c
d
e
f
9420-11.EPS
11/16
Page 12
STV9420 - STV9421
FUNCTIONAL DESCRIPTION (continued) VI - User Definable Character
The STV9420/21 allows the user to dynamically define character(s)for his ownneeds(for a special LOGO for example). Like the ROM characters, a UDC is made of a 12 pixelsx 18 slicesdot matrix, but one more slice is added for the vertical shad­owing whenseveral UDCsare gatheredto makea special great character(see Figure 8).
In a UDC,each pixel is defined with a bit, 1 refers to foreground, and 0 to background color. Each slice of aUDC uses 2 bytes:
add+1----PX11 PX10 PX9 PX8 add
(even)
PX11is theleft mostpixel.Characterslice address: SLICEADDRESS=38x (CHARACTERNUMBER) + (SLICENUMBER).
Where :
- CHARACTER NUMBER is the number given by
- SLICE NUMBER isthe number givenbythe slice
VII - ROM Character Generator
The STV9420/21includes a ROM character gen­erator which is made of 128 alphanumeric or graphic characters(see Table 1)
VIII - PLL
The PLL function of the STV9420/21provides the internalpixelclocklockedonthehorizontalsynchro signal andused by thedisplay processorto gener­ate theR,G,Bandfast blanckingsignals.It ismade of 2 PLLs. The first one analogic (see Figure 9), provides a high frequency signal locked on the crystal frequency.The frequencymultiplierisgiven by : N=2⋅(FM[3:0]+ 3) Where FM[3:0] is the value of the FREQUENCY MULTIPLIER register.
Figure 9 : Analogic PLL
PX7 PX6 PX5 PX4 PX3 PX2 PX1 PX0
the character code, interpolator (n° of the current slice of the strip :
1 < <18)
N.F
XTAL
VCO
%N F
FILTRE
XTAL
The second PLL, full digital (see Figure 10), pro­vides a pixel frequency locked on the horizontal synchrosignal. The ratio between the frequencies of these 2 signals is :M = 12x (LD[5:0] + 1) WhereLD[5:0]is the value of theLINEDURATION register.
Figure 10 : Digital PLL
M.F
H-SYNC
N.F
XTAL
%D
%M F
ALGO
err(n)D(n)
VIII.1- Programmingof the PLL Registers
FrequencyMultiplier
(@3FF7) This register gives the ratio between the crystal frequency and the high frequency of the signal usedbythe2
nd
PLLtoprovide,bydivision,thepixel clock. The value of this high frequency must be near to 200MHz (for example if the crystal is a 8MHz, the value of FM must be equal to 10) and greater than 6 x (pixel frequency).
Initial Pixel Period
(@3FF6) This register allows to increase the speed of the convergence of the PLL when the horizontal fre­quencychanges(new graphic standart).The rela­tionshipbetweenFM[3:0],PP[7:0],LD[5:0],F and F
PP[7:0] = round
LockingCondition Time Constant
XTAL
is :
2 ⋅ (FM[3:0] + 3) F
8
12 LD[5:0] F
XTAL
HSYNC
(@3FF4) This register gives the constants AS[2:0] and BS[2:0]usedbythe algopart ofthePLL(seeFigure
10) to calculate, from the phase error, err(n), the new value, D(n), of the division of the high fre­quencysignalto providethepixel clock.Thesetwo constantsare usedonlyin lockingcondition,which istrue, if the phase error is less than a fixedvalue during at least, 4 scan lines. If The phase error becomes greater than the fixed value, the PLL is not in locking condition but in capture process. In this case, the algo part of the PLLused the other constants, AF[2:0] and BF[2:0],given by the next register.
CaptureProcess Time Constant
(@ 3FF5) The choice between these two time constants (locking condition or capture process) allows to decreasethecaptureprocesstimebychangingthe
9420-12.AI
time responseof the PLL.
H-SYNC
± 24
HSYNC
  
9420-13.AI
12/16
Page 13
FUNCTIONAL DESCRIPTION (continued) VIII.2 - How to choose the value of the time
constant ?
The timeresponse of the PLL is given by its char­acteristicequationwhich is :
2
(x ± 1)
+(α+β)(x±1)+β=0.
Where : α=3⋅LD[5:0] 2
A ± 11
and β=3LD[5:0] 2
B ± 19
(LD[5:0] = value of the LINE DURATION register, A = value of the 1st time constant, AF or AS and B =value of the 2
d
timeconstant, BF or BS).
As you can see, the solution depend only on the LINE DURATION and the TIME CONSTANTS given by the I
If (α + β)
2
C registers.
2
± 4β ≥ 0 and 2α±β<4, thePLL is sta- ble and its response is like this presented on Figure11.
Figure 11 : Time Response of the PLL/Charac-
teristic Equation Solutions (with Real Solutions)
PLL Frequency
f
1
If (α + β)
f
0
Input Frequency
f
1
f
0
2
± 4β ≤ 0, the responseof the PLL is like
t
t
this presentedon Figure12.
STV9420 - STV9421
In this case the PLL is stable if τ > 0.7 (damping coefficient).
Figure 12 : Time Response of thePLL/Charac-
teristic Equation Solutions(with ComplexSolutions)
PLL
.
9420-14.AI
Frequency
f
1
f
0
Input Frequency
f
1
f
0
The Table 2 gives some good values for A and B constants for different values of the LINE DURA­TION.
Summary
For a goodworking of the PLL :
- A and B time constants must be chosen among values for which the PLLis stable,
- B mustbe equalor greater thanA and the differ­ence betweenthem must be less than 3,
- The greater (A, B) are, the fasterthe captureis.
Anoptimalchoicefor themostof applicationsmight be :
- For locking condition: AS = 0 and BS =1,
- For capture process : AS = 2 and BS = 4.
But for each applicationthe time constants can be calculated by solving the characteristic equation and choosing thebest response.
t
t
9420-115.AI
Table 2 : Valid Time ConstantsExamples
B\A0123456
0YYYY YYYY YYYY YYYN YNNN NNNN NNNN 1 YYYY YYYY YYYY YYYN YNNN NNNN NNNN 2 NYYY YYYY YYYY YYYN YNNN NNNN NNNN 3 NNNY YYYY YYYY YYYN YNNN NNNN NNNN 4 NNNN NYYY 5 NNNN NNNY YYYY YYYN YNNN NNNN NNNN 6 NNNN NNNN NYYY YYYN YNNN NNNN NNNN 7 NNNN NNNN NNNY YYYN YNNN NNNN NNNN
Note : 1. Case of A[2:0] =1 (001) and B[2:0] = 4 (100) :
LD 16 32 48 63 Valid Time Constants NYYY
(1)
YYYY YYYN YNNN NNNN NNNN
Value of LINE DURATION Register (@ 3FF0) : LD = 16 : LD[5:0] = 010000 LD = 32 : LD[5:0] = 100000 LD = 48 : LD[5:0] = 110000 LD = 63 : LD[5:0] = 111111 Tablemeaning : N = No possible capture Y = PLL can lock
13/16
9420-05.TBL
Page 14
STV9420 - STV9421
DEMO KIT
5V POWER SUPPLY
J5
J6
PCmon
APPL mon
A demonstration board is available through your usual SGS-THOMSON Sales Office. This demonstration board alllows to test very easily the STV9420/21 performances on any personnal computer. The board is delivered together witha ”pagemaker” software which allows to easily generate pages of text or graphics on the PC monitor, or ona second monitor.
2
C sequences are generated by the PC parallel port and send to the demobaord through an I2C interface which is also delivered
The I together withdemoboard. Of course, a small manual is also inside thekit.
J2
to PC
J3
J4
100nF
C6
1 6
11
2 7
12
3 8
13
4 9
14
5 10 15
1
6 11
2
7 12
3
8 13
4
9 14
5 10 15
1
6 11
2
7 12
3
8 13
4
9 14
5 10 15
V
CC
C7 470µF
R5 1k
OSD PWM1 OSD FBLK
OSD HS OSD VS
OSD PXCK OSD CKOUT
OSD PWM4
C4
47pF
VGA1R
VGA1 G
VGA1 B
VGA2R
VGA2 G
VGA2 B
H-SYNC
VGA3R
VGA3 G
VGA3 B
V-SYNC
R6 1k
100nF
Q1
12MHz
BC547B
T1
BC547B
T2
BC547B
T3
8 OSD HS
11 OSD VS
2.2k
R4
R9 75
R12 75
R15 75
V
CC
R3
2.2k
V
CC
OSD PWM1 OSD PWM2 OSD PWM3 OSD PWM4 OSD HS OSD VS OSD R OSD G OSD B OSD FBLK OSD PXCK OSD CKOUT
V
CC
R17 10 R8 82Ω
R10 3.3k R22 1.8k
D1
OSDR
1N4148
R18 10 R11 82
R13 3.3k R21 1.8k
D2
OSD G
1N4148
R19 10 R14 82
R16 3.3k R20 1.8k
D3
OSD B
1N4148
U2A
1
R2
2
1k
74HC86
C2 10µF
U2B
4
R1
5
1k
74HC86
C1 10µF
V
CC
C3
1 2
S
3
T
4
V
5
9
6
4
7
2
8
1
9
10
C5 47pF
U2C
39
10
74HC86
V
CC
U2D
61213
74HC86
V
CC
Reset
S1
Button
OSDPWM3
20 19
OSD B
18
OSD G
17
OSD R
16 15 14
OSD SDA
13
OSD SCL
12
OSDPWM2
11
R7
2.2k
S2
S3
S4
J1
4 3 2 1
2
IC
VGA2 R VGA1 R VGA3 R
VGA2 G VGA1 G VGA3 G
VGA2 B VGA1 B VGA3 B
TP1 TP2 TP3 TP4 TP5 TP6 TP7 TP8 TP9 TP10 TP11 TP12 TP13 TP14 TP15
9420-16.EPS
14/16
Page 15
PACKAGE MECHANICAL DATA (STV9420) 16 PINS- PLASTICDIP
STV9420 - STV9421
Dimensions
Min. Typ. Max. Min. Typ. Max.
Millimeters Inches
a1 0.51 0.020
B 0.77 1.65 0.030 0.065
b 0.5 0.020
b1 0.25 0.010
D 20 0.787 E 8.5 0.335
e 2.54 0.100
e3 17.78 0.700
F 7.1 0.280
I 5.1 0.201 L 3.3 0.130 Z 1.27 0.050
PM-DIP16.WMF
DIP16.TBL
15/16
Page 16
STV9420 - STV9421
PACKAGE MECHANICAL DATA (STV9421)
20 PINS- PLASTICDIP
Dimensions
Min. Typ. Max. Min. Typ. Max.
Millimeters Inches
a1 0.254 0.010
B 1.39 1.65 0.055 0.065
b 0.45 0.018
b1 0.25 0.010
D 25.4 1.000 E 8.5 0.335
e 2.54 0.100
e3 22.86 0.900
F 7.1 0.280 I 3.93 0.155 L 3.3 0.130 Z 1.34 0.053
Information furnishedis believed to be accurate and reliable. However, SGS-THOMSON Microelectronics assumes no responsibility for the consequences of use of such information nor for any infringement of patents or other rights of third partieswhich may result from its use. Nolicence is granted by implication or otherwise underany patent or patent rights of SGS-THOMSON Microelectronics. Specifications mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previouslysupplied. SGS-THOMSON Microelectronics products arenot authorized for use as critical components in life support devices or systems without express written approval of SGS-THOMSON Microelectronics.
1995 SGS-THOMSON Microelectronics- All RightsReserved
Purchase of I
2
I
C Patent. Rights to use these components in a I2C system, is granted provided that the system conforms to
Australia - Brazil - China- France - Germany - Hong Kong - Italy - Japan- Korea - Malaysia -Malta - Morocco
The Netherlands - Singapore - Spain - Sweden - Switzerland - Taiwan - Thailand - United Kingdom -U.S.A.
2
C Components of SGS-THOMSON Microelectronics, conveys a license under the Philips
2
the I
C Standard Specifications as defined by Philips.
SGS-THOMSON Microelectronics GROUP OF COMPANIES
PM-DIP20.EPS
DIP20.TBL
16/16
Loading...