Datasheet STV7801S Datasheet (SGS Thomson Microelectronics)

Page 1
STV7801S
PLASMA DATA POWER SWITCH
PRELIMINARY DATA
FEATURES
High Voltage - Low Power Pulse Generator
High Load Drive Capability (25nF)
5V Compatible Input Logic
Very Low Stand-by Current
Power Recovery High Current (±7A)
Totem Pole High Output Current (±5A)
Built-in Timing Control & Thermal Protection
BCD Technology
Packaging: Multiwatt 15, Power SO20
DESCRIPTION
STV7801 is a m onolithic integrated circuit imple­mented in STMicroelectronics BCD proprietary technology designed as a switched power supply generator for data drivers in a Plasma Display Panel (P.D.P.) application.
The high load drive capabil ity of the STV7 801 re­duces the number of devices necessary to drive a complete PDP (4 to 6 devices for a 42” VGA 16/9 PDP monitor).
The STV7801 high current drive capability pro­vides a high power recovery efficiency coefficient superior to 85% on constant capacitive load.
To limit the numbe r of external components, the device integrates level shifters driven with 5V CMOS compatible levels.
To increase the reliability of the system, the device integrates several protections such as output over-voltage, over-temperature, power-ON pro­tection.
.
MULTIWATT 15 (Plastic Package)
ORDER CODE: STV7801S
Customer samples will be available
by september 2000
POWERSO20 (Plast ic Package)
20 leads
ORDER CODE: STV7801SP
Revision 3.3
June 2000 1/18
This is preliminary information on a new product in development or undergoing evaluation. Details are subject to change without notice.
1
Page 2
STV7801S
1 - PIN CONNE CT ION
Multiwatt 15
PowerSO20
15 14 13 12 11 10
Vpp Vpp
CBoot Out
Vssp
Vdd 9 8 7 6 5 4 3 2 1
DM-LH
Vsslog
PR
DM-HL
PR-FPS
LH-Tr
L-Clmp
H-Clmp
HL-Tr
2/18
Vsssub
HL-Tr
H-Clmp
L-Clmp
LH-Tr PR-FPS PR-FPS
DM-HL
PR
Vsssub
1 2 3 4
5 6 7 8 9
10
20 19 18 17
16
15
14 13 12
11
Vsssub Vpp Vpp
CBoot Out
Vssp Vssp
Vdd DM-LH
Vsslog
2
Page 3
2 - BLOC DIAGRAM
MULTIWATT 15
Vdd
10
Protection
Control
Voltage Control
CBoot Vpp
13 15 14
Bootstrap
control
STV7801S
H-Clmp
LH-Tr
HL-Tr
L-Clmp
Vsslog
2
4
1
3
8
STV7801S
Timing Control
LH Transistor
HL Transistor
DM-HLPR-FPS
DM-LH
H-Clmp Transistor
L-Clmp Transistor
11965
Vssp
7
12
PR
Out
3/18
Page 4
STV7801S
3 - PIN DESCRIPTION
Multiwatt 15
Pin Number Pin Name Function Description
1 HL-Tr Input Power Recovery High Level/Low Level Transition 2 H-Clmp Input Main Switch High-Side Clamp Input 3 L-Clmp Input Main Switch Low-Side Clamp Input 4 LH-Tr Input Power Recovery Low Level/High Level Transition 5 PR-FPS Input Power Recovery Floating Supply 6 DM-HL Input Current Recirculation- Input Pin - High/Low Transition 7 PR Output Power Recirculation Output Stage 8 Vsslog Ground Logic Ground/Substrate Ground
9 DM-LH Output Current Recirculation- Output Pin - Low/High Transition 10 Vdd Supply Logic Supply 11 Vssp Ground Power Ground 12 Out Output Main Switch Output 13 CBoot Input Bootstrap Capacitor Input Pin 14 Vpp Supply High Voltage Supply 15 Vpp Supply High Voltage Supply
PowerSO20
Pin Number Pin Name Function Description
1 Vssub Ground Substrate Ground
2 HL-Tr Input Power Recovery High Level/Low Level Transition
3 H-Clmp Input Main Switch High-Side Clamp Input
4 L-Clmp Input Main Switch Low-Side Clamp Input
5 LH-Tr Input Power Recovery Low Level/High Level Transition
6 PR-FPS Input Power Recovery Floating Supply
7 PR-FPS Input Power Recovery Floating Supply
8
DM-HL
9 PR Output Power Recirculation Output Stage 10 11
Vssub
Vsslog
12 DM-LH Output Current Recirculation- Output Pin - Low/High Transition 13 14 15
Vdd Vssp Vssp
16 Out Output Main Switch Output 17 CBoot Input Bootstrap Capacitor Input Pin
Input Current Recirculation- Input Pin - High/Low Transition
Ground Substrate Ground Ground Logic Ground/Substrate Ground
Supply Logic Supply Ground Power Ground Ground Power Ground
4/18
Page 5
Pin Number Pin Name Function Description
18 Vpp Supply High Voltage Supply 19 Vpp Supply High Voltage Supply 20 Vssub Ground Substrate Ground
4 - CIRCUIT DESCRIPTION
STV7801S
STV7801 is a monol ithic integrated circuit imple­mented in ST Microelectronics BCD proprietary technology designed as a switched power supp ly generator for data drivers in a Plasma Display Panel (P.D.P.) application.
The high load drive capability of STV7801 reduces the number of devices n ecessary to drive a com ­plete PDP (4 to 6 devices for a 42" VGA 16/9 PDP monitor).
STV7801 high current drive capability provides a high power recovery efficiency coefficient superior to 85% on constant capacitive load. The structure of the output stage is implemented with 2 DMOS transistors to minimise the die size. External com­ponents like bootstrap capacitor can also be im­plemented to increase the performances of the cir­cuit.
STV7801 integrates level s hifters driven with 5V CMOS compatible levels. This feature reduces the number of discrete components such as voltage trans lator s.
STV7801 integrates several protections like output over-voltage, timing control and over-tem perature to increase the reliability of the system.
Over-voltage protection consists in clamping di­odes connected between Vpp, Vssp and critical nodes of the devices.
Timing control consists in a m onitoring of the ou t­put stage control signals to avoid any cross-con­duction.
Over-temperature protection is activated when junction temperature reaches the threshold values fixed internally and sets the device in tri-state mode.
STV7801 can drive several data drivers connected to column electrodes of the panel. The maximum amount of data drivers is given by the Power Re­covery Current of the device and then the maxi­mum rise/fall time of the signal. The rise and fall time of the AC supply signal is adjusted by the val­ue of the inductance connected to the panel ca­pacitance through the data drivers. The amount of STV7801 needed to gene rate the AC supply can be reduced by increasing the rise/fall time of the generated AC supply.
5 - CONTROL SIGN ALS TR UTH TABLE
HL-Tr LH-Tr L-Clmp H-Clmp Device Output Comments
L H L L Low to High Transition Power Saving Mode
H L L L High to Low Transition Power Saving Mode
LXLH XLHL X X H H Tri-State Protection Mode XHHXTri-State Protection Mode H X X H Tri-State Protection Mode
L L L L Tri-State Protection Mode
Vpp Power Supply Clamp Vssp Power Ground Clamp
5/18
Page 6
STV7801S
6 - POWER ON SEQUENCE
If Vpp is switched ON before Vdd, the circuit remains in Tri-State mode until Vdd reaches Vdd threshold. If Vddis switched ON before Vpp, the circuit remains in Tri-State mode until Vpp reaches Vpp threshold.
7 - ABSOLUTE MAXIMUM RATINGS
Symbol Parameter Value Unit
Vdd Logic Supply Range -0.3,+14 V
Vpp Driver Supply Range -0.3 , + 100 V
VIn Logic Input Voltage Range -0.3, Vdd+0.3 °C
Ih-Out Main Switch High Side Current -5 A
Il-Out Main Switch Low Side Current 5 A Ipr-Hi Power Recovery Current (note1)-7A
Ipr-Lo Power Recovery current (note1)7A
V
CBoot-Vout
Tjmax Maximum Junction Temperature (note2)
Top Operating Temperature Range -20, +70 °C Tstg Storage Temperature Range -50, +150 °C
Difference between Boot voltage and output voltage 14 V
Internally
protected
°C
Note 1 Peak current as defined in Figure 1 on page 9 Note 2 T hese parame ters are meas ured during ST ’s internal qua lification whi ch includes tem perature ch aracterizat ion
on standard and corner batches of the process. These parameters are not tested on the parts.
Remark: ESD susceptibility
Human body Model: 100pF, 1.5k
Vpp pin (14-15: Multiwatt 15) V DM-LH pin (9: Multiwatt 15) V
By connecting a 1nF decoupling capacitor, the circuit withstands V
ESD
ESD
= 200V
=400V
=2.2kV on all pins.
ESD
8 - THERMAL DAT A
Symbol Parameter
R
th(j-a)
R
th(j-c)
Note 3 Multilayer PCB. Note 4 Package floating in the air.
Junction - Ambient Thermal Resistance 40(note3) 35 (note4C/W Junction - Case Thermal Resistance +0.6, +2.5 -0.6, +2.4
PowerSO20 MW15
Value
Unit
6/18
Page 7
STV7801S
9 - ELECTRIC AL CHARACTERISTI CS
(T
= 25°C, Vdd=12 V, Vpp=90 V, Vsslog=Vssub=0 V, Vssp=0 V, unless otherwise specified)
amb
Symbol Parameter Test Conditions Min Typ Max Unit
SUPPLY
Vdd Logic Supply Voltage 11 12 13 V Vpp Power Output Supply Voltage 20 - 100 V
Idd
Ipp
BOOTSTRAPPED SUPPLY VOLTAGE
V
CBoot-Vout
I
lkg1Boot
I
lkg2Boot
OUTPUTS
V
satH
V
satL
V
satHL
V
satLH
PROTECTION
Tth
Vdd
t
hreshold
Vpp
threshold
INPUTS
Vih Input high level (CMOS compatible) 4 V
Vil Iih High level inut current (Vih=
Iil Low level input current (Vil=0)
Logic Biasing Current without Transition (Stand-by-mode)
Power Biasing Current without Transition (Stand-by-mode)
-5-mA
-6-mA
Bootstrap supply voltage 12 V
Hiz mode
Boot leakage current Hiz mode
Vpp=100V,
-5 0 5 µA
VCBoot-Vout = 10V HClmp = high
Boot leakage current HClmp
Vpp=100V,
15 30 50 µA
VCBoot-Vout = 10V
Output Saturation Voltage (high level) Voltage Drop vs
Vpp
iH@-1A iH@-3A iH@-4A
1.5
4.5
6.5
Output Saturation Voltage (low level)
iL@1A iL@3A iL@4A
1.5
4.5
6.5
Power recirculation - Voltage drop (high to low level)
iL@1A iL@3A iL@6A
V
PR-FPS
=Vpp/2
0.8
2.5 5
Power recirculation - Voltage drop (low to high level)
iL@-1A iL@-3A iL@-6A
Thermal protection temperature thresh­old
Power ON threshold voltage on
Vdd
V
PR-FPS
=Vpp/2
0.8 2 5
- 170 - °C
7.5 V
Power ON threshold voltage on Vpp 13.3 V
dd
Input low level (CMOS compatible) 0 .9 V
Vdd
)
Vih=Vdd=12V 80 120 150 µA
-2 0 +2 µA
V V V
V V V
V V V
V V V
V
7/18
Page 8
STV7801S
10 - AC TIME REQUIREMENTS
(T
= 25°C, Vdd=12 V, Vpp=90 V, Vsslog=Vssub=0 V, Vssp=0 V, unless otherwise specified)
amb
Symbol Parameter Test Conditions Min Typ Max Unit
t
LH
t
HL
t
H
tL
t
Hsetup
t
Lsetup
t
Hhold
t
Lhold
Low/High transition high level control pulse
High/Low transition high level control pulse
Duration of high voltage clamp control pulse at high level
Duration of low voltage clamp control pulse at low level
Set-up time of Vpp voltage clamp after low to high transition
Set-up time of Vssp voltage clamp after high to low transition
Hold time Vout low before high volt­age clamp control pulse
Hold time Vout high before low volt­age clamp control pulse
10 - - ns
10 - - ns
10 - - ns
10 - - ns
10 - - ns
100 - - ns
TBD
TBD
11 - AC TIMING CHARACTERISTICS
(T
= 25°C, Vdd=12 V, Vpp=90 V, Vsslog=Vssub=0 V, Vssp=0 V, unless otherwise specified)
amb
Symbol Parameter Test Conditions Min Typ Max Unit
t
ON-LH
t
ON-HClmp
t
ON-HL
t
ON-LClmp
Delay of power output change after recirculation low to high transition
Delay of power output clamp at Vpp after output stage high side ON
Delay of power output change after recirculation high to low transition
Delay of power output clamp at GND after output stage low side ON
Vpp=40V - 140 - ns
- 160 - ns
- 140 - ns
-60-ns
8/18
Page 9
12 - AC CHARAC TERISTIC WAVEFOR MS
Figure 1.
STV7801S
Power output
Current in the inductance
Figure 2.
Power output
HClmp
LH-tr
t
ON-LH
tON-HClmp
tLH
t
H
9/18
Page 10
STV7801S
Figure 3.
ton_HL
Power output
L-Clmp
HL-tr
tON-LClmp
tL
tHL
10/18
Page 11
13 - APPLICATION DIAGRAM
STV7801S
10K
HL-Tr
100pF
10K
H-Clmp
100pF
10K
L-Clmp
100pF
10K
LH-Tr
100pF
47µF/160V 1µF/160V
Vpp
1
2
3
STV7801
4
5
15
14
13
12
11
10
Vpp
CBoot
Out
Vssp
Vdd
+90V
100
µ
F/160V
1nF
to Vpp pins
of data d r iv er I Cs
1µH
(eg pins 1, 2, 42, 66,
107,108 of STV7610A)
DM-HL
6
PR
7
The diodes for the recirculation current directly im­pact the device performances. High Voltage di­odes with recovery time inferior to 50ns are recom­mended. Shorter recovery times will improve the power efficiency of the application.
The rise and fall time of the output signal is adjust­ed by the value of the inductance for a given ca­pacitive load.
trise (tfall) is calculated by the following formula :
DM-LH
9
Vsslog
8
t
rise
πxLxCload=
A 1nF bootstrap capacitor is recommended. The bootstrap capacitor allows the output signal to reach the
Vpp value. For a given output level, the
power efficiency will be increased. A 47µF capacitor is recommended. The ripple on
the tank capacitor is reduced by increasing the tank capacitor value.
Decoupling capacitors on the power supplies will minimise the overshoots.
11/18
Page 12
STV7801S
The timing of the control signals will be adjusted by the trimmers of the RC cells. It is recommended to
the rising (falling) edge of the output signal has reached its maximum (minimum) value.
enable the clamp signals (H-Clmp, L-Clmp) after
14 - RECOVERY FACTOR MEASUREM ENT CONDITIONS
An idealised schematic of the Power Recovery application is defined below. The inductance (power sav­ing mode) and the 2 capacitors (load, floating_supply) are external components for the D.P.S. device.
Figure 4. DPS Device : Functional Diagram
Vpp
A
S3
Cfloating_supply
S4
The Power Recovery Factor (PRF) in % is given by the formula :
PRF = 100 x (Pc - Pr) / Pc.
– Pc is the theoretical capacitive power dissipated
in the switches S1, S2 of the Data Power Switch device when S3, S4 are not activated. Pc is cal­culated by the formula :
2
P
Cload Vpp
C
xF×=
Inductance
(Power Saving Mode)
with F=switching frequency.
Cload = equivalent panel capacitance
– Pr is the power dissipated in the Data Power
Switch device when it is configured in a power re­covery mode (S1, S2, S3, S4 activated). Pr is calculated by multiplying the average current giv­en by the current sensor A and the value of the supply voltage
PRF is affected by the external components of the DPS device such as the inductance and the de­coupling capacitors, also the layout of the applica­tion.
S1
Cload
S2
Vssp
Vpp.
12/18
Page 13
15 - RESULTS OF POWER EFFICIE NCY
15.1 Power recovery factor for different inductance values Figure 5. STV7801- Power Recovery Factor, L=1.1µH, T=3.3µs, BYW80-200 diodes
90
85
80
PRF (in %)
75
STV7801S
Cload=4.7nF, Trise=220ns Cload=9.4nF, Trise=310ns
70
30 40 50 60 70 80 90 100 110
Cload=14.1nF, Trise=380ns Cload=18.8nF, Trise=430ns
VPP (in V)
Cload=23.5nF, Trise=480ns
Figure 6. STV7801- Power Recovery Factor. L=0.66µH, T=3.3µs, BYW80-200 diodes
85
80
PRF (in %)
75
Cload=4.7nF, Trise=170ns Cload=9.4nF, Trise=245ns
70
30 40 50 60 70 80 90 100 110
VPP (in V)
Cload=14.1nF, Trise=290ns Cload=18.8nF, Trise=340ns
13/18
Page 14
STV7801S
Figure 7. STV7801- Power Recovery Factor - L=0.36µH, T=3.3µs, BYW80-200 diodes
85
80
75
PRF (in %)
70
Cload=4.7nF, Trise=140ns Cload=9.4nF, Trise=200ns
65
30 40 50 60 70 80 90 100 110
Cload=14.1nF, Trise=245ns Cload=18.8nF, Trise=265ns
VPP (in V)
15.2 Power recovery factor (PRF) versus time and Cload Figure 8. STV7801- PRF versus rise time and Cload - Vpp=70V, T=3. 3µs, BYW80-20 0 diodes
87
86
85
84
83
82
PRF (in %)
81
80
Cload=9.4nF Cload=14.1nF Cload=18.8nF
14/18
79
78
150 200 250 300 350 400 450
trise (tfall) in ns
Page 15
STV7801S
15.3 Power recovery factor (PRF) for fixed rise (fall) time Figure 9. PRF versus Cload and L values - Trise (fall) = 260ns, T=3.3µs, BYW 80-200 diod es
85
84
83
82
81
PRF (in %)
80
79
78
30 40 50 60 70 80 90 100 110
Cload=18.8nF, L=0.4uH Cload=10.4nF, L=0.66uH
Cload=6.7nF , L=1.1uH Cload=17nF, L=0.5uH
Vpp (in V)
Figure 10. PRF versus Cload and L values - Trise (fall) = 330ns, T=3.3µs, BYW 80-200 diodes
86
85
84
83
PRF (in %)
82
81
Cload=18.8nF, L=0.66uH Cload=11nF, L=1.0uH Cload=8.7nF , L=1.3uH
80
30 40 50 60 70 80 90 100 110
Vpp (in V)
15/18
Page 16
STV7801S
16 - PACKAGE M ECHANICAL DAT A
Multiwatt 15 horizontal, shortleads
H2
V
R
R
B
L5
F
G1
G
V
E
N
V V
C
L1L2 L3
L4
R1 P
L7
Diam 1
S1
V
A
H2
H1
S
MW15HME
Dimensions Millimeters Inches
Min. Typ. Max. Min. Typ. Max.
A 5 0.197 B 2.65 0.104 C 1.6 0.063 E 0.49 0.55 0.019 0.022 F 0.66 0.75 0.026 0.030
G 1.02 1.27 1.52 0.040 0.050 0.060 G1 17.53 17.78 18.03 0.690 0.700 0.709 H1 19.6 20.2 0.772 0.795 H2 19.6 20.2 0.772 0.795
L1 17.8 18 18.2 0.701 0.709 0.717 L2 2.3 2.5 2.8 0.091 0.098 0.110 L3 17.25 17.5 17.75 0.679 0.689 0.699 L4 10.3 10.7 10.9 0.406 0.421 0.429 L5 2.7 3 3.3 0.106 0.118 0.130 L7 2.65 2.9 0.104 0.114
R 1.5 0.059
S 1.9 2.6 0.075 0.102 S1 1.9 2.6 0.075 0.102
Dia1 3.65 3.85 0.144 0.152
16/18
3
Page 17
STV7801S
PowerSO20
NN
A
a2
a3
GAGE
PLANE
0.033
0.083
DETAIL B
be
20
E2
1
Dimensions Millimeters Inches
Min. Typ. Max. Min. Typ. Max.
A 3.50 0.138
a1 0.20 0.275 0.008 0.011 a2 3.10 3.20 0.122 0.126 a3 0 0.075 0 0.003
b 0.42 0.50 0.0165 0.020
c 0.24 0.28 0.009 0.011
D(1) 15.85 15.95 0.624 0.628
D1 9.45 9.75 0.372 0.384
E 14.10 14.20 14.35 0.555 0.559 0.565
e 1.27 0.050
e3 11.43 0.450
E1(1) 10.85 11.05 0.431 0.435
E2 2.85 0.112 E3 5.85 6.15 0.230 0.242
G 0 0.075 0 0.003
H 15.55 15.85 0.612 0.624
h 0.039
L 0.85 1.05
M 2.10 2.30 N 9d. 9d. R 0.30 0.012
S 3d. 5d. 7d. 3d. 5d. 7d.
T 10.00 0.394
Note 5 “D” and “E1” do not include mold flash or protrusions
-Mold flash or protrusions shall not exceed 0.15mm (0.006inc.)
-Critical dimensions: “E”, “G” and “a3”
e3DETA IL A
H D
M
11
10
E1
lead
DETA IL B
s
L
R
0.041
0.090
17/18
Page 18
STV7801S
Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no respon­sibility for the con sequences of use of suc h informatio n nor for any infringeme nt of patents or other right s of third parties whi ch ma y res ult fro m its u se. N o licen se is grant ed by implic ation or oth erwi se und er an y patent or patent rights of STMicroelectronics. Specifications mentioned in this publication are subject to change with­out notice. This publication supe rsedes and repl aces all informa tion previously s upplied. STMicr oelectronics products are not auth orized for use as critical componen ts in lif e support devices or syst ems with out the e x­press written approval of STMicroelectronics.
The ST logo is a registered trademark of STMicroelectronics
2000 STMicroelectronics - All Rights Reserved.
Purchase of I components in an I
Australia - Brazil - China - Finland - France - Germany - Hong Kong - India - Italy - Japan - Malaysia - Malta - Morocco -
18/18
2
C Components by STMicroelectronics conveys a license under the Philips I2C Patent. Rights to use these
2
C system is granted provided that the system conforms to the I2C Standard Specification as defined
by Philips.
STMicroelectronics Group of Companies
Singapore - Spain Sweden - Switzerland - United Kingdom - U.S.A.
http://www.st.com
4
Loading...