Datasheet RFD16N03L Datasheet (Intersil)

Page 1
RFD16N03L, RFD16N03LSM
Data Sheet April 1999
These are N-Channel power MOSFETs manufacturedusing the MegaFET process. This process, which uses feature sizes approaching those of LSI circuits, gives optimum utilization of silicon, resulting in outstanding performance. They were designed for use in applications such as switchingregulators,switchingconverters, motor drivers and relay drivers. This performance is accomplished through a special gate oxide design which provides full rated conductance at gate bias in the 3V to 5V range, thereby facilitating true on-off power control directly from logic level (5V) integrated circuits.
Formerly developmental type TA49030.
Ordering InformationS
PART NUMBER PACKAGE BRAND
RFD16N03L TO-251AA 16N03L RFD16N03LSM TO-252AA 16N03L
NOTE: When ordering, use the entire part number. Add the suffix 9A, toobtain the TO-252AAvariantin tape and reel, e.g. RFD16N03LSM9A.
File Number
Features
• 16A, 30V
DS(ON)
= 0.025
•r
• Temperature Compensating PSPICE™ Model
• Can be Driven Directly from CMOS, NMOS, and TTL Circuits
• Peak Current vs Pulse Width Curve
• UIS Rating Curve
o
C Operating Temperature
• 175
• Related Literature
- TB334 “Guidelines for Soldering Surface Mount
Components to PC Boards”
Symbol
DRAIN
GATE
4013.2
Packaging
DRAIN
(FLANGE)
SOURCE
JEDEC TO-251AA JEDEC TO-252AA
SOURCE
DRAIN
GATE
GATE
SOURCE
DRAIN (FLANGE)
6-156
CAUTION: These devices are sensitive to electrostatic discharge; follow proper ESD Handling Procedures.
PSPICE™ is a trademark of MicroSim Corporation.
http://www.intersil.com or 407-727-9207
| Copyright © Intersil Corporation 1999
Page 2
RFD16N03L, RFD16N03LSM
Absolute Maximum Ratings T
= 25oC, Unless Otherwise Specified
C
RFD16N03L, RFD16N03LSM UNITS
Drain to Source Voltage. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .V
Drain to Gate Voltage (RGS = 20k) (Note 1) . . . . . . . . . . . . . . . . . . . . . . . . . . V
Gate to Source Voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .V
Continuous Drain Current (Figure 2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .I
Pulsed Drain Current . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . I
Pulsed Avalanche Rating. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . E
Power Dissipation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .P
DSS
DGR
GS
DM
AS
D
Refer to Peak Current Curve
D
Derate Above 25oC (Figure 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Operating and Storage Temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . TJ, T
STG
Maximum Temperature for Soldering
Leads at 0.063in (1.6mm) from Case for 10s. . . . . . . . . . . . . . . . . . . . . . . . . . . . T
Package Body for 10s, See Techbrief 334 . . . . . . . . . . . . . . . . . . . . . . . . . . . . .T
CAUTION: Stresses above those listed in “Absolute Maximum Ratings” may cause permanent damage to the device. This is a stress only rating and operationofthe device at these or any other conditions above those indicated in the operational sections of this specification is not implied.
L
pkg
30 V 30 V
±10 V
16
Figures 6, 16, 17
90
0.606
-55 to 175
300 260
A
W
W/oC
o
C
o
C
o
C
LC-
1. TJ= 25oC to 150oC.
Electrical Specifications T
PARAMETER SYMBOL TEST CONDITIONS MIN TYP MAX UNITS
Drain to Source Breakdown Voltage BV Gate Threshold Voltage V Zero Gate Voltage Drain Current I
Gate to Source Leakage Current I Drain to Source On Resistance r Turn-On Time t Turn-On Delay Time t Rise Time t Turn-Off Delay Time t Fall Time t Turn-Off Time t Total Gate Charge Q Gate Charge at 5V Q Threshold Gate Charge Q
Input Capacitance C Output Capacitance C Reverse Transfer Capacitance C Thermal Resistance, Junction to Case R Thermal Resistance, Junction to Ambient R
= 25oC, Unless Otherwise Specified
C
DSS
GS(TH)
DSS
ID = 250µA, VGS = 0V (Figure 13) 30 - - V VGS = VDS, ID = 250µA (Figure 12) 1 - 2 V VDS = 30V,
VGS = 0V
GSS
DS(ON)ID
ON
d(ON)
r
d(OFF)
f
OFF
g(TOT)
g(5)
g(TH)
ISS OSS RSS
θJC
θJA
VGS = ±10V - - ±100 nA
= 16A, VGS = 5V (Figure 11) - - 0.025
VDD = 15V, ID≈ 16A, RL = 0.93, VGS = 5V, RGS = 5 (Figures 18, 19)
VGS = 0V to 10V VDD = 24V, VGS = 0V to 5V - 30 36 nC VGS = 0V to 1V - 1.5 1.8 nC
VDS = 25V, VGS = 0V, f = 1MHz (Figure 14)
Figure 3 - - 1.65 TO-251 and TO-252 - - 100
TC = 25oC--1µA TC = 150oC--50µA
- - 120 ns
-15- ns
-95- ns
-25- ns
-27- ns
- - 80 ns
-5060nC ID = 16A, RL = 1.5 I
= 0.6mA
G(REF)
(Figures 15, 20, 21
- 1650 - pF
- 575 - pF
- 200 - pF
o
C/W
o
C/W
Source to Drain Diode Specifications
PARAMETER SYMBOL TEST CONDITIONS MIN TYP MAX UNITS
Source to Drain Diode Voltage V Diode Reverse Recovery Time t
SD
rr
NOTES:
2. Pulse Test: Pulse Width 300ms, Duty Cycle 2%.
3. Repetitive Rating: Pulse Width limited by max junction temperature. See Transient Thermal Impedance curve (Figure 3).
6-157
ISD = 16A - - 1.5 V ISD = 16A, dISD/dt = 100A/µs--75ns
Page 3
RFD16N03L, RFD16N03LSM
Typical Performance Curves
Unless Otherwise Specified
1.2
1.0
0.8
0.6
0.4
0.2
POWER DISSIPATION MULTIPLIER
0
0 25 50 75 100 175
125
TC, CASE TEMPERATURE (oC)
FIGURE 1. NORMALIZED POWER DISSIPATION vs
CASE TEMPERATURE
2
1
150
20
15
10
, DRAIN CURRENT (A)
5
D
I
0
25 50 75 100
125
150
TC, CASE TEMPERATURE (oC)
FIGURE 2. MAXIMUM CONTINUOUS DRAIN CURRENT vs
CASE TEMPERATURE
175
0.5
0.2
0.1
0.1
, NORMALIZED
JC
θ
Z
THERMAL IMPEDANCE
0.05
0.02
0.01 SINGLE PULSE
0.01
-5
10
500
100
10
, DRAIN CURRENT (A)
D
I
OPERATION IN THIS AREA MAY BE LIMITED BY r
1
1
VDS, DRAIN TO SOURCE VOLTAGE (V)
DS(ON)
NOTES: DUTY FACTOR: D = t PEAK TJ = PDM x Z
-4
10
-3
10
, RECTANGULAR PULSE DURATION (s)
t
1
-2
10
-1
10
FIGURE 3. NORMALIZED MAXIMUM TRANSIENT THERMAL IMPEDANCE
500
VGS = 10V
100
TRANSCONDUCTANCE MAY LIMIT CURRENT IN THIS REGION
, PEAK CURRENT CAPABILITY (A)
DM
I
10
-5
10
10
VGS = 5V
-4
-3
10
t, PULSE WIDTH (s)
V
DSS
MAX = 30V
10
TC = 25oC
T
= MAX RATED
J
100µs
1ms
10ms 100ms
DC
50
P
DM
t
1
t
2
1/t2
x R
JC
JC
θ
θ
0
10
FOR TEMPERATURES ABOVE 25
o
C DERATE PEAK
CURRENT AS FOLLOWS:
I = I
175 - T
25
150
TC = 25oC
-2
10
-1
10
+ T
C
1
10
C
0
10
1
10
FIGURE 4. FORWARD BIAS SAFE OPERATING AREA FIGURE 5. PEAK CURRENT CAPABILITY
6-158
Page 4
RFD16N03L, RFD16N03LSM
Typical Performance Curves
200
100
STARTING TJ = 150oC
10
If R = 0
, AVALANCHE CURRENT (A)
tAV = (L)(IAS)/(1.3*RATED BV
AS
I
If R 0 t
=(L/R)ln[(IAS*R)/(1.3*RATED BV
AV
1
0.001
0.01 tAV, TIME IN AVALANCHE (ms)
DSS
0.1
Unless Otherwise Specified (Continued)
STARTING TJ = 25oC
- VDD) ) +1]
DSS-VDD
1
10
100
100
V
= 10V
GS
75
50
, DRAIN CURRENT (A)
25
D
I
0
0
PULSE DURATION = 250µs, TC = 25oC
1.0 VDS, DRAIN TO SOURCE VOLTAGE (V)
2.0 3.0 5.0
NOTE: Refer to Intersil Application Notes AN9321 and AN9322.
FIGURE 6. UNCLAMPED INDUCTIVE SWITCHING FIGURE 7. SATURATION CHARACTERISTICS
100
PULSE DURATION = 80µs DUTY CYCLE = 0.5% MAX VDD= 15V
75
50
25
, DRAIN TO SOURCE CURRENT (A)
DS(ON)
I
0
0
VGS, GATE TO SOURCE VOLTAGE (V)
175oC
-55oC
25oC
3.0 4.5 6.0 7.51.5
100
75
50
, DRAIN TO SOURCE
ON RESISTANCE (m)
25
TJ = 25oC
DS(ON)
r
PULSE DURATION = 80µs DUTY CYCLE = 0.5% MAX
0
2.5 3.0 3.5 VGS, GATE TO SOURCE VOLTAGE (V)
4.0
4.0
ID = 32A
ID = 16A
ID = 8A
ID = 2A
4.5
VGS = 5V
VGS = 4.5V
V
= 4V
GS
VGS = 3.5V
VGS = 3V
5.0
FIGURE 8. TRANSFER CHARACTERISTICS FIGURE 9. DRAIN TOSOURCE ON RESISTANCEvs GATE
VOLTAGE AND DRAIN CURRENT
250
VDD = 15V, IDD = 16A, RL = 0.93
200
150
100
SWITCHING TIME (ns)
50
0
010203040
RGS, GATE TO SOURCE RESISTANCE ()
t
r
t
f
t
d(ON)
t
d(OFF)
50
2.0 V
= 5V,
ID = 16A
GS
PULSE DURATION = 80µs DUTY CYCLE = 0.5% MAX.
1.5
1.0
ON RESISTANCE
0.5
NORMALIZED DRAIN TO SOURCE
0
-80 -40 0 40 80 120 160 TJ, JUNCTION TEMPERATURE (oC)
FIGURE 10. SWITCHING TIME vs GATE RESISTANCE FIGURE 11. NORMALIZED DRAIN TO SOURCE ON
RESISTANCE vs JUNCTION TEMPERATURE
6-159
200
Page 5
RFD16N03L, RFD16N03LSM
Typical Performance Curves
2.0 VGS = VDS,
1.5
1.0
NORMALIZED GATE
0.5
THRESHOLD VOLTAGE
0
-80 -40 0 40 80 120 160
= 250µA
I
D
TJ, JUNCTION TEMPERATURE (oC)
Unless Otherwise Specified (Continued)
FIGURE 12. NORMALIZED GATE THRESHOLD VOLTAGE vs
JUNCTION TEMPERATURE
2500
VGS= 0V, f = 1MHz
2000
1500
1000
C, CAPACITANCE (pF)
500
0
0 5 10 15 20
V
, DRAIN TO SOURCE VOLTAGE (V)
DS
C C C
ISS RSS OSS
= CGS + C
= C
CDS + C
GD
GD
GD
C
C
C
ISS
OSS
RSS
FIGURE 14. CAPACITANCE vs DRAIN TO SOURCE VOLTAGE
200
2.0 ID = 250µA
1.5
1.0
0.5
BREAKDOWN VOLTAGE
NORMALIZED DRAIN TO SOURCE
0
-80 -40 0 40 80 120 160 , JUNCTION TEMPERATURE (oC)
T
J
200
FIGURE 13. NORMALIZED DRAIN TO SOURCE BREAKDOWN
VOLTAGE vs JUNCTION TEMPERATURE
30
= BV
V
DD
DSS
24
18
12
6
, DRAIN TO SOURCE VOLTAGE (V)
DS
V
0
25
I
G(REF)
20
I
G(ACT)
0.75 BV
0.50 BV
0.25 BV
RL = 1.875 I
G(REF)
V
= 5V
GS
t, TIME (s)
DSS
DSS DSS
= 0.6mA
VDD = BV
I
G(REF)
80
I
G(ACT)
DSS
5
4
3
2
1
, GATE TO SOURCE VOLTAGE (V)
GS
V
0
NOTE: Refer to Intersil Application Notes AN7254 and AN7260.
FIGURE 15. NORMALIZED SWITCHING WAVEFORMS FOR
CONSTANT GATE CURRENT
Test Circuits and Waveforms
V
DS
BV
DSS
L
VARY t
TO OBTAIN
P
REQUIRED PEAK I
V
GS
t
0V
P
AS
R
G
DUT
I
AS
0.01
+
V
DD
-
0
FIGURE 16. UNCLAMPED ENERGY TEST CIRCUIT FIGURE 17. UNCLAMPED ENERGY WAVEFORMS
6-160
t
P
I
AS
t
AV
V
DS
V
DD
Page 6
RFD16N03L, RFD16N03LSM
Test Circuits and Waveforms
V
GS
R
GS
V
GS
(Continued)
V
DS
R
DUT
t
ON
t
d(ON)
t
V
DS
L
+
V
DD
-
V
90%
GS
10%
r
10%
50%
PULSE WIDTH
FIGURE 18. RESISTIVE SWITCHING TEST CIRCUIT FIGURE 19. RESISTIVE SWITCHING WAVEFORMS
V
I
G(REF)
DS
R
L
V
GS
+
V
DD
-
DUT
V
DD
VGS= 1V
0
Q
g(TOT)
V
DS
Q
g(5)
V
GS
Q
g(TH)
VGS= 5V
t
d(OFF)
90%
t
OFF
50%
t
f
10%
VGS= 10V
90%
I
G(REF)
0
FIGURE 20. GATE CHARGE TEST CIRCUIT FIGURE 21. GATE CHARGE WAVEFORMS
6-161
Page 7
PSPICE Electrical Model
.SUBCKT RFD16N03L 2 1 3; rev 12/12/94
CA 12 8 2.55e-9 CB 15 14 2.64e-9 CIN 6 8 1.45e-9
DBODY 7 5 DBDMOD DBREAK 5 11 DBKMOD DPLCAP 10 5 DPLCAPMOD
EBREAK 11 7 17 18 33.3 EDS 14 8 5 8 1
EGS 13 8 6 8 1 ESG 6 10 6 8 1 EVTO 20 6 18 8 1
IT 8 17 1 LDRAIN 2 5 1e-9
LGATE 1 9 3.4e-9 LSOURCE 3 7 3.4e-9
MOS1 16 6 8 8 MOSMOD M = 0.99 MOS2 16 21 8 8 MOSMOD M = 0.01
RBREAK 17 18 RBKMOD 1 RDRAIN 50 16 RDSMOD 0.14e-3 RGATE 9 20 0.89 RIN 6 8 1e9 RSCL1 5 51 RSCLMOD 1e-6 RSCL2 5 50 1e3 RSOURCE 8 7 RDSMOD 10.31e-3 RVTO 18 19 RVTOMOD 1
S1A 6 12 13 8 S1AMOD S1B 13 12 13 8 S1BMOD S2A 6 15 14 13 S2AMOD S2B 13 15 14 13 S2BMOD
1
RFD16N03L, RFD16N03LSM
10
DPLCAP
-
6
ESG
8
+
RGATEGATE LGATE
EVTO
+
-
18
8
209
RIN CIN
S1A S2A
12 15
13
8
13
CA
+
-
RSCL2
-
14 13
S2BS1B
6 8
VTO
EDSEGS
6
CB
5
51
16 +
+
5 8
-
5
RSCL1
ESCL
RDRAIN
21
MOS1
14
8
DBREAK
EBREAK
MOS2
RSOURCE
11
17 18
RBREAK
+
-
7
IT
LDRAIN
DBODY
LSOURCE
1817
RVTO
19
-
VBAT
+
2
DRAIN
3
SOURCE
VBAT 8 19 DC 1 VTO 21 6 0.583
ESCL 51 50 VALUE = {(V(5,51)/ABS(V(5,51)))*(PWR(V(5,51)*1e6/176,6))} .MODEL DBDMOD D (IS = 3.61e-13 RS = 5.06e-3 TRS1 = 3.05e-3 TRS2 = 7.57e-6 CJO = 2.16e-9 TT = 2.18e-8)
.MODEL DBKMOD D (RS = 1.66e-1 TRS1 = -2.97e-3 TRS2 = 7.57e-6) .MODEL DPLCAPMOD D (CJO = 0.96e-9 IS = 1e-30 N = 10) .MODEL MOSMOD NMOS (VTO = 2.313 KP = 53.82 IS = 1e-30 N = 10 TOX = 1 L = 1u W = 1u) .MODEL RBKMOD RES (TC1 = 8.95e-4 TC2 = -1e-7) .MODEL RDSMOD RES (TC1 = 3.92e-3 TC2 = 1.29e-5) .MODEL RSCLMOD RES (TC1 = 2.03e-3 TC2 = 0.45e-5) .MODEL RVTOMOD RES (TC1 = -2.27e-3 TC2 = -5.75e-7) .MODEL S1AMOD VSWITCH (RON = 1e-5 ROFF = 0.1 VON = -4.82 VOFF= -2.82) .MODEL S1BMOD VSWITCH (RON = 1e-5 ROFF = 0.1 VON = -2.82 VOFF= -4.82) .MODEL S2AMOD VSWITCH (RON = 1e-5 ROFF = 0.1 VON = -2.67 VOFF= 2.33) .MODEL S2BMOD VSWITCH (RON = 1e-5 ROFF = 0.1 VON = 2.33 VOFF= -2.67)
.ENDS
NOTE: For further discussion of the PSPICE model, consult A New PSPICE Sub-Circuit for the Power MOSFET Featuring Global Temperature Options; written by William J. Hepp and C. Frank Wheatley.
6-162
Page 8
RFD16N03L, RFD16N03LSM
All Intersil semiconductor products are manufactured, assembled and tested under ISO9000 quality systems certification.
Intersil semiconductor products are sold by description only.Intersil Corporation reserves the right to make changes in circuit design and/or specifications at any time with­out notice. Accordingly, the reader is cautioned to verify that data sheets are current before placing orders. Information furnished by Intersil is believed to be accurate and reliable. However, no responsibility is assumed by Intersil or its subsidiaries for its use; nor for any infringements of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Intersil or its subsidiaries.
For information regarding Intersil Corporation and its products, see web site http://www.intersil.com
Sales Office Headquarters
NORTH AMERICA
Intersil Corporation P. O. Box 883, Mail Stop 53-204 Melbourne, FL 32902 TEL: (407) 724-7000 FAX: (407) 724-7240
6-163
EUROPE
Intersil SA Mercure Center 100, Rue de la Fusee 1130 Brussels, Belgium TEL: (32) 2.724.2111 FAX: (32) 2.724.22.05
ASIA
Intersil (Taiwan) Ltd. 7F-6, No. 101 Fu Hsing North Road Taipei, Taiwan Republic of China TEL: (886) 2 2716 9310 FAX: (886) 2 2715 3029
Loading...