Datasheet KA3031 Datasheet (Fairchild Semiconductor)

Page 1
KA3031
6-Channel Motor Drive IC
www.fairchildsemi.com
Features
• 4-CH balanced transformerless (BTL) driver
• 2-CH (forward-reverse) control DC motor driver
• Built-in thermal shut down circuit (TSD)
• Built-in under voltage lockout circuit (UVLO)
• Built-in over voltage protection circuit (OVP)
• Built-in mute circuit (CH1, CH2, CH3 and CH4)
• Built-in normal op-amp
• Built-in 5V regulator with reset
Description
The KA3031 is a monolithic integrated circuit suitable for a 6-ch motor driver which drives the tracking actuator, focus actuator, sled motor, tray motor, change motor and spindle motor of the CDP/CAR-CD systems.
48-QFPH-1414
Typical Applications
• Compact disk player (CDP) with tray and changer
• Compact disk player (VCD) with tray and changer
• Automotive compact disk player (CDP) with tray and changer
• Mixing with compact disk player (CDP) and mini disk player (MD) with tray and changer
• Other compact disk media
©2000 Fairchild Semiconductor International
Ordering Information
Device Package Operating Temp.
KA3031 48-QFPH-1414 35°C ~ +85°C
Rev. 1.0.1
February. 2000.
1
Page 2
KA3031
Pin Assignments
IN1.1 REG50 REG050 REF SVCC RES50 OPIN(+)OPIN()OPOUTPVCC2 DO1.1 DO1.2
48 47 46 45 44 43 42 41 40 39 38 37
IN1.2
OUT1
IN2.1
IN2.2
OUT2
IN3.1
IN3.2
OUT3
IN4.1
IN4.2
OUT4
CTL1
1
2
3
4
5
6
DO2.1
36
35
DO2.2
PGND3
34
DO3.1
32
DO3.2
32
PGND2
31
KA3031
7
8
9
10
11
12
30
PGND1
DO4.1
29
DO4.2
28
DO5.1
27
26
DO5.2
DO6.1
25
13 14 15 16 17 18 19 20 21 22 23 24
FWD1 REV1 CTL FWD2 REV2 SGND MUTE1MUTE2 MUTE3 MUTE4 PVCC1DO6.2
2
Page 3
Pin Definitions
Pin Number Pin Name I/O Pin Function Description
1 IN1.2 I CH 1 op-amp input (−) 2 OUT1 O CH 1 op-amp output 3 IN2.1 I CH 2 op-amp input (+) 4 IN2.2 I CH 2 op-amp input (−) 5 OUT2 O CH 2 op-amp output 6 IN3.1 I CH 3 op-amp input (+) 7 IN3.2 I CH 3 op-amp input (−) 8 OUT3 O CH 3 op-amp output
9 IN4.1 I CH 4 op-amp input (+) 10 IN4.2 I CH 4 op-amp input (−) 11 OUT4 O CH 4 op-amp output 12 CTL1 I CH 5 motor speed control 13 FWD1 I CH 5 forward input 14 REW1 I CH 5 reverse input 15 CTL2 I CH 6 motor speed control 16 FWD2 I CH 6 forward input 17 REW2 I CH 6 reverse input 18 SGND - Signal ground 19 MUTE1 I CH 1 mute 20 MUTE2 I CH 2 mute 21 MUTE3 I CH 3 mute 22 MUTE4 I CH 4 mute 23 PVCC1 - Power supply voltage (For CH 5, CH 6) 24 DO6.2 O CH 6 drive output 25 DO6.1 O CH 6 drive output 26 DO5.2 O CH 5 drive output 27 DO5.1 O CH 5 drive output 28 DO4.2 O CH 4 drive output 29 DO4.1 O CH 4 drive output 30 PGND - Power ground 31 PGND - Power ground 32 DO3.2 O CH 3 drive output 33 DO3.1 O CH 3 drive output 34 PGND - Power ground 35 DO2.2 O CH 2 drive output 36 DO2.1 O CH 2 drive output 37 DO1.2 O CH 1 drive output 38 DO1.1 O CH 1 drive output 39 PVCC2 - Power supply voltage (For CH 1, CH 2, CH 3, CH 4)
KA3031
3
Page 4
KA3031
Pin Definitions (Continued)
Pin Number Pin Name I/O Pin Function Description
40 OPOUT O Opamp output 41 OPIN() I Opamp input (−) 42 OPIN(+) I Opamp input (+) 43 RES50 I Regulator 5V reset 44 SVCC - Signal supply voltage 45 REF I Bias voltage input 46 REG050 O Regulator 5V output 47 REG50 O Regulator output 48 IN1.1 I CH 1 opamp input (+)
4
Page 5
Internal Block Diagram
1
IN1.2
2
OUT1
2.5V
KA3031
DO1.2DO1.1PVCC2OPOUTOPIN(−)OPIN(+)RES50SVCCREFREG050REG50IN1.1
373839404142434445464748
T.S.D
O.V.P
+
DO2.1
36
DO2.2
35
SW
+
ALL MUTE
IN2.1
IN2.2
OUT2
IN3.1
IN3.2
OUT3
IN4.1
IN4.2
OUT4
CTL1
3
4
5
6
7
8
9
10
11
12
+
+
+
+
+
+
+
+
MUTE4 MUTE3 MUTE2 MUTE1
S
W
S
W
+
+
+
+
M S C
M S C
+
+
+
+
+
+
+
+
+
D
D
+
D
D
2P
2P
2P
2P
2P
2P
2P
2P
2P
2P
2P
2P
PGND3
34
33
DO3.1
DO3.2
32
PGND2
31
PGND1
30
DO4.1
29
28
DO4.2
DO5.1
27
DO5.2
26
25
DO6.1
13 14 15 16 17 18 19 20 21 22 23 24
FWD1 REV1 CTL FWD2 REV2 SGND MUTE1 MUTE2 MUTE3 MUTE4 PVCC1 DO6.2
Notes:
1. SW = Logic switch
2. MSC = Motor speed control
3. D = Output driver
5
Page 6
KA3031
Equivalent Circuits
Description Pin No. Internal circuit
Input OPIN (+) OPIN (−)
48, 3, 6, 9 1, 4, 7. 10
VCC VCC
48 3
6 9
10k
1 4 7 10
10k
4k
Input
2, 5, 8, 11
opout
CTL 12, 15
2 5 8 11
VCC
12 15
VCC
VCC
10k
0.1k
Vr
25k
100k
6
Page 7
Equivalent Circuits (Continued)
Description Pin No. Internal circuit
Logic drive FWD input
REV input
13, 16 14, 17
VCC
KA3031
CH mute 19, 20
21, 22
Logic
drive
24, 25 26, 27
output
13 6 14 17
19 20 21 22
24 25 26 27
VCC
30k
30k
VCC
10k
30k
2k
1k
4-CH
drive
output
28, 29 32, 33 35, 36 37, 38
28 29 32 33 35 37 38
20k
36
1k
Vr
VCC
10k
10k
1k
7
Page 8
KA3031
Equivalent Circuits (Continued )
Description Pin No. Internal circuit
Normal
opout
40
VCC
VCC
Normal OPIN(+) OPIN(−)
Ref 45
42 41
40
VCC VCC
41
50
50
42
5k
VCC
45
0.1k
2k
8
Page 9
Equivalent Circuits (Continued )
Description Pin No. Internal circuit
RES50 43
VCC
KA3031
REG050 46
REG50 47
10k
50k
VCC
50k
2k 2k
10k
VCC
43
VCC
41
53k
47
10k
9
Page 10
KA3031
Absolute Maximum Ratings (Ta = 25°°°°C)
Parameter Symbol Value Unit
Maximum supply voltage V Power dissipation P Operating temperature T Storage temperature T Maximum output current I
NOTE:
1. When mounted on 70mm × 70mm × 1.6mm PCB.
2. Power dissipation reduces 16mW / °C for using above Ta=25°C.
3. Do not exceed Pd and SOA.
CC
D OPR STG
OMAX
18 V
note
3
35 ~ +85 °C
55 ~ +150 °C
1A
Power Dissipation Curve
Pd (mW)
3,500
2,500
W
1,500
0
0 25 50 75 100 125 150 175
Recommended Operating Conditions (Ta = 25°°°°C)
Parameter Symbol Min. Typ. Max. Unit
Operating supply voltage V
CC
4.5 - 16 V
Ambient temperature, Ta [°C]
10
Page 11
Electrical Characteristics
(SVCC=PV
Quiescent circuit current I All mute on current I All mute on voltage V All mute off voltage V CH mute on voltage V CH mute off voltage V
DRIVER PART (R
Input offset voltage V Output offset voltage V Maximum output voltage 1 V Maximum output voltage 2 V Closed-loop voltage gain A Ripple rejection ratio RR V Slew rate SR Square, Vout=2Vp-p, f=120kHz - 0.8 - V/µs
NORMAL OPAMP PART
Input offset voltage V Input bias current I High level output voltage V Low level output voltage V Output sink current I Output source current I Open loop voltage gain GV Ripple rejection ratio RR1 V Slew rate SR1 - - 1 - V/µs Common mode rejection ratio CMRR1 - - 80 - dB
CC1
=PV
=8V, Ta=25°C, unless otherwise specified)
CC2
Parameter Symbol Conditions Min. Typ. Max. Units
under no-load 9 12 16 mA Pin 45=GND - 6 10 mA Pin 45=Variation - - 0.5 V Pin 45=Variation 2 - - V Pin 19, 20, 21, 22=Variation 2 - - V Pin 19, 20, 21, 22=Variation - - 0.5 V
- 20 - +20 mV VIN=2.5V 50 - +50 mV VCC=8V, RL=8 4.0 5.5 - V VCC=13V, RL=24 79-V VIN=0.1V
=0.1V
IN
RMS
, f=120kHz - 50 - dB
RMS
9 10.5 12 dB
- 10 - +10 mV
- - - 300 nA RL=50 66.8- V RL=50 -1.01.8V VIN=75dB, f=1kHz 10 40 - mA
=20dB, f=120kHz 10 40 - mA
Square, Vout=2Vp-p, f=120kHz - 75 - dB
=20dB, f=1kHz - 65 - dB
IN
=8ΩΩΩ)
L
CC
MUTE ALL
MON ALL
MOFF ALL
MON CH
MOFF CH
IO
OO OM1 OM2
VF
OF1
B1 OH1
OL1
SINK1
SOURCE1VIN
O1
KA3031
11
Page 12
KA3031
Electrical Characteristics (Continued)
(SVCC=PV
INPUT OPAMP PART
Input offset voltage V Input bias current I High level output voltage V Low level output voltage V Output sink current I Output source current I Open loop voltage gain GV Slew rate SR2 Square, Vout=2Vp-p, f=120kHz - 1 - V/µs Common mode rejection ratio CMRR2 V
5V REGULATOR PART
Regulator output voltage Vreg I Load regulation ∆V Line regulation ∆V Reset on voltage Reson - - - 0.5 V Reset off voltage Resoff - 2 - - V
TRAY, CHANGER DRIVER PART (R
Input high level voltage V Input low level voltage V Output voltage 1 V Output voltage 2 V Output load regulation ∆V Output offset voltage 1 V Output offset voltage 2 V
CC1
=PV
=8V, Ta=25°C, unless otherwise specified)
CC2
Parameter Symbol Conditions Min. Typ. Max. Units
OF2
B2 OH2 OL2
SINK2
SOURCE2
O2
R1
CC
=45ΩΩΩ)
L
IH
IH O1 O2
R1 OO1 OO2
VIN=75dB, f=1kHz - 80 - dB
=20dB, f=1kHz - 80 - dB
IN
=100mA 4.75 5 5.25 V
L
IL=0200mA 40 0 +10 mV IL=200mA, VCC=6V9V 20 0 +30 mV
VCC=8V, V VCC=13V, V
VIN=5V, 5V −10 - +10 mV VIN=0V, 0V −10 - +10 mV
- 10 - +10 mV
- - - 400 nA
-77.7-V
--0.20.5V
- 500 800 - µA
- 500 800 - µA
-2--V
---0.5V =3.5V 5.2 6.0 6.8 V
CTL
=4.5V 7.5 8.5 9.5 V
CTL
- - 300 700 mV
12
Page 13
KA3031
Application Information
1. REFERENCE INPUT & ALL MUTE FUNCTION
Pin 45 (REF) can use the reference Input pin or the all mute signal input pin.
• Reference input In the case of the reference input pin, you must keep the applied voltage range between 2[V] and 6.5[V] at V
= 8[V].
CC
• All mute input When using the all mute function pin, applied voltage condition is as follows.
All mute on voltage Below 0.5[V] Mute function operation All mute off voltage Above 2[V] Normal operation
2. SEPARATED CHANNEL MUTE FUNCTION
These pins are used for individual channel mute operation.
• When the mute pins (pin19, 20, 21 and 22) are high level, the mute circuits are activated so that the output circuit is muted.
• When the voltage of the mute pins (pin19, 20, 21 and 22) are low level, the mute circuit is stopped and output circuits operate normally.
• If the chip temperature rises above 175°C, then the thermal shutdown (TSD) circuit is activated and the output circuits are muted.
- Mute 1 (pin 19)-CH1 mute control input pin.
- Mute 2 (pin 20)-CH2 mute control input pin.
- Mute 3 (pin 21)-CH3 mute control input pin.
- Mute 4 (pin 22)-CH4 mute control input pin.
3. PROTECTION FUNCTION
• Thermal shutdown (TSD) If the chip temperature rises above 175°C, then the thermal shutdown (TSD) circuit is activated and the output circuit is will be mute. The TSD circuit is temperature hysteresis 25°C.
• Under voltage lockout (UVLO) and over voltage protection (OVP) It is designed to mute-operate the internal bias by the function of UVLO and OVP, when the power supply voltage falls below 3.5[V] or above 20[V].
13
Page 14
KA3031
4. REGULATOR & RESET FUNCTION
The regulator and reset circuits are as illustrated in Figure 1. where R1=R2.
• The external circuit is composed of the transistor, KSB772 and a capacitor, about 33[µF]. The capacitor is used as a ripple eliminator and should have good temperature characteristics.
• The regulator output voltage (pin 46) is decided as follows. Vout = 2 × 2.5 = 5[V] (where R1 = R2)
• When the voltage of pin 43 (Vreset) is at 5[V], the regulator output voltage (pin 46) because 5[V]. If the voltage of pin 43 is 0[V], the output voltage of pin 46 because 0[V].
V
CC
KSB772
2.5V
REG OUT
+
33µF
+
R1
R2
Figure 1. Regulator circuit
Vreset
3943444647
KA3031
14
Page 15
5. FOCUS, TRACKING ACTUATOR, SPINDLE, SLED MOTOR DRIVE PART
M
KA3031
Rfeed2 Rfeed2
AP2 AP3
-
IC
Rref2
LEVEL
+
45
Vref
+
36948
Vr
AP1
+
Vin
SHIFT
BF +
+
+
Rref1
Rref2
Rfeed1
25811
14710
• The voltage, Vref is the reference voltage given by the external bias voltage of the pin 45.
• The input signal (Vin) through pins 3, 6, 9 and 48 is amplified one times (Rref1 = Rfeed1) by the AP1 and then fed to the level shift.
• The level shift produces the current due to the difference between the input signal and the arbitrary reference signal. The current produced as +I and −∆I are fed into the output amplifier, where output amplifier (AP2, 3) gain is two times (all Rref2 = Rfeed2).
• If you desire to change the gain, the input buffer amplifier (BF) can be used.
• The output stage is the balanced transformerless (BTL) driver.
• The bias voltage Vr is expressed as below;
V
CCVBE
--------------------------- -
Vr
V[]=
2
15
Page 16
KA3031
6. TRAY, CHANGE MOTOR DRIVE PART
out 1 out 2
24 26 25 27
CTL1, 2
12 15
FWD REV
13 16 14 17
D
LEVEL SHIFT
M.S.C
S.W
IN
M
D
IN
• Rotational direction control The forward and r everse rotation al direc tion is controll ed by FWD (pi n 13, 16) a nd REV (pin 14, 17 ) input conditi ons are as follows.
INPUT OUTPUT
FWD REV OUT 1 OUT 2 State
H H Vr Vr Brake HLHLForward
LHLHReverse L L Vr Vr Brake
• where Vr is (Vcc - Vbe) / 2 = 3.65V (at Vcc=8V)
• where Out1 p ins are pins 24 a nd 26, and out2 pins aer pins 25 and 27
• Motor speed control
- The almost maximum torque is obtained when it is used with the pins 12 and 15 (CTL1, 2) open.
- If the torque of the motor is too low, then the applied voltage at pins 12 and 15 (CTL1, 2) are 0[V].
- When motor speed controlled, the applied voltage of the pins 12 and 15 ( CTL1, 2) is between 0 and 4V.
Also, if the s peed control is constant, the applied voltage of the p ins 12 and 15 (CTL1, 2) is betwe en 4 and 5V.
- This IC's applied maximum voltage is 6V when V
- You must not use the applied CTL1, 2 voltage above 5.8V when V
CC
is 8V.
is 8V, and 3V when VCC is 5V.
CC
16
Page 17
Typical Performance Characteristics
Total circuit
KA3031
Icc(mA) Icc(mA)
14
13.5
13
12.5
12
11.5
<Vcc vs Icc>
Vcc=Var. Temp=25 °C
11
5 6 7 8 9 10 11 12 13 14
Vcc(V)
Focus, Tracking, Spindle, Sled drive part
Vom(V)
10.0
9.0
8.0
7.0
6.0
5.0
4.0
3.0
2.0
1.0
0.0 4 5 6 7 8 9 10 11 12 13
Vout(V)
5.0
4.5
4.0
3.5
3.0
2.5
2.0
1.5
1.0
0.5
0.0
0.2 0.4 0.6 0.8 1 12 14
<Vcc vs Vom>
Vcc=Vari. Temp=25 °C RL=8
Vcc(V)
<Vin vs Vout>
Vcc=8V Temp=25 °C RL=8 Vin= Var.
VIN (V)
13.4
13.2
13.0
12.8
12.6
12.4
12.2
12.0
11.8
11.6
11.4
-30 -10 0 10 30 40 50 60 70 80
<Temp vs Icc>
Vcc=8V Temp= Var.
Avf(dB)
12.0
10.0
8.0
6.0
<Vcc vs Avf>
Vcc=Var.
4.0
Temp=25 °C RL=8
2.0
Vin=0.1Vrms f=1KHz
0.0 4 5 6 7 8 9 10 11 12 13
Avf(dB)
10.9
10.8
10.7
10.6
<Temp vs Avf>
Vcc=8V
10.5
temp= Va r . RL=8
10.4
Vin=0.1Vrms f=1KHz
10.3
-30 -10 0 10 30 40 50 60 70 80
Temp(°C)
Vcc(V)
Temp(°C)
17
Page 18
KA3031
Typical Performance Characteristics (Continued)
Vom(V)
5.52
5.50
5.48
5.46
5.44
5.42
5.40
5.38
5.36
5.34
5.32
-30 -10 0 10 30 40 50 60 70 80
Tray, Change drive part
Vo (V)
9.0
8.0
7.0
6.0
5.0
4.0
3.0
2.0
1.0
0.0 4 5 6 7 8 9 10 11 12 13
<Temp vs Vom>
<Vcc vs Vo>
Vcc=8V temp= Var.
RL=8
Temp (°C)
Vcc=Var. Temp=25 °C RL=45 Vin=5V/0V Vctl=3.5V
Vo (V)
6.1
6.0
5.9
5.8
5.7
5.6
5.5
5.4
-30 -10 0 10 30 40 50 60 70 80
Vcc(V)
<Temp vs Vo>
Vcc=8V temp= Var.
RL=45 Vin=5V/0V Vctl=3.5V
Temp (°C)
Vo (V)
7.0
6.0
5.0
4.0
3.0
2.0
1.0
0.0
0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
<Vctl vs Vo>
Vcc=8V Temp=25 °C RL=45 Vin= 5V/0V Vctl= Var.
Vctl(V)
Vo (V)
7.0
6.0
5.0
4.0
3.0
2.0
1.0
0.0
0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
<Vctl vs Vo>
18
Vcc=8V Temp=25 °C
RL=8 Vin= 5V/0V Vctl= Var.
Vctl(V)
Page 19
Typical Performance Characteristics (Continued)
Regulator part
Vreg (V) Vreg (V)
6.0
5.0
4.0
3.0
2.0
1.0
<Vcc vs Vreg> <Temp vs Vreg>
Vcc=Var. Temp=25 °C IL=100mA
5.08
5.06
5.04
5.02
5.00
4.98
4.96
KA3031
Vcc=8V Temp=Var. IL=100mA
0.0 4 5 6 7 8 9 10 11 12 13
Normal Op Amp part
Isou1(mA)
70.0
60.0
50.0
40.0
30.0
20.0
10.0
0.0
4 5 6 7 8 9 10 11 12 13
GVo1(dB)
86.0
84.0
82.0
80.0
78.0
76.0
74.0
72.0
70.0
68.0 4 5 6 7 8 9 10 11 12 13
<Vcc vs Isource>
Vcc=Var. Temp=25 °C RL=1K Vin=100uVp_p f=1KHz
Vcc=Var. Temp=25 °C RL=50
Vcc(V)
Vcc(V)
Vcc(V)
4.94
- 30 - 10 0 10 30 40
50 60 70 80
Isink1(mA)
70.0
60.0
50.0
40.0
30.0
20.0
10.0
0.0 4 5 6 7 8 9 10 11 12 13
<Vcc vs Isink>
Vcc=Var. Temp=25 °C RL=50
Isou1(mA)
59.0
58.0
57.0
56.0
55.0
54.0
53.0
52.0
51.0
-30 -10 0 10 30 40 50 60 70 80
<Temp vs Isource><Vcc vs Open loop voltage gain>
Vcc=8V Temp=Var. RL=50
Temp (°C)
Vcc(V)
Temp (°C)
19
Page 20
KA3031
Typical Performance Characteristics (Continued)
Isink1(mA)
60.0
50.0
40.0
30.0
20.0
10.0
0.0
-30 -10 0 10 30 40 50 60 70 80
Input Op Amp part
Isou2(uA) Isink2(uA)
2500
2000
1500
1000
500
0
4 5 6 7 8 9 10 11 12 13
GVo2(uA)
83 82 81 80 79 78 77 76 75 74 73
4 5 6 7 8 9 10 11 12 13
<Vcc vs Open loop voltage gain>
<Temp vs Isink>
Vcc=8V temp=VAR RL=50
Temp (°C)
<Vcc vs Isource> <Vcc vs Isink>
Vcc=Var. Temp=25 °C RL=1K
1600 1400 1200 1000
800 600 400 200
0
4 5 6 7 8 9 10 11 12 13
Vcc(V)
Vcc=Var. Temp=25 °C RL=1K
Vcc(V)
Vcc=Var. Temp=25 °C RL=1K
Vcc(V)
20
Page 21
Test Circuits
KA3031
OPIN (+) OPIN (−)
OPOUT
OPIN (+) OPIN (−)
OPOUT
OPIN (+) OPIN (−)
OPOUT
OPIN (+) OPIN (−)
OPOUT
KSB772
REG OUT
IL
IN1.2
10
11
CTL1
12
CTL1
IN1A IN1B CTL2IN2A IN2B
+
1
IN1.1
2
OUT1
3
IN2.1
4
IN2.2
5
OUT2 IN3.1
6
IN3.2
7
OUT3
8 9
IN4.1
IN4.2 OUT4
FWD1
13 14 15 16 17 18 19 20 21 22 23 24
33µF
REG50
REV1
REG050
CTL
SW1
REF
FWD2
Vref
2.5V
1
All mute
2
SVCC
REV2
Ripple
1000µF
Vreset
RES50
KA3031
SGND
V
CC
+
O
O
OPIN(−)
MUTE2
O
P
P
I
I
N
N
(+)
(
−−
−)
OPOUT
MUTE3
P O U T
PVCC2
MTUE4
RL
373839404142434445464748
DO1.1
DO2.2
PGND3
DO3.1 DO3.2
PGND2
PGND1
DO4.1
DO4.2 DO5.1 DO5.2
PVCC1
DO1.2
DO6.2
DO2.1
36 35
34
33 32
31
30 29
28 27
26
DO6.1
25
RL
IL IL
RL
RL
RL
RL
IL
IL
~
+
100µF
1
2
20
OPIN(+)
MUTE1
opamp part
1M
A
OPIN(+)
1
~
SW3 2
OPIN(−)
1
2
SW7
B
10µF
4
3
1M
1
OPOUT
1k
SW5
1
D
50
SW6
1
CC
2
V
CC
2
V
21
Page 22
KA3031
Application Circuits
Voltage Mode Control
REG OUT
IN1.2
33µF
1
2 3 4
5 6
KSB772
+
IN1.1
OUT1
IN2.1 IN2.2 OUT2 IN3.1
REG50
REF
REG050
Vreset
SVCC
RES50
VCC
FOCUS
373839404142434445464748
DO2.1
36
DO1.1 DO2.2
PGND3
DO3.1 DO3.2
PGND2
DO1.2
35 34
33 32 31
PVCC2
OPOUT
OPIN(−)
OPIN(+)
TRACKING
SPINDLE
M
REF &
ALL
MUTE
7
IN3.2 OUT3
8 9
IN4.1
10
IN4.2
11
OUT4
CTL1
12
FWD1
REV1
TRAT
CTL
CONTROL
TY CG
13 14 15 16 17 18 19 20 21 22 23 24
FOCUS
TRACKING
INPUT
[SERVO PRE AMP] [CONTROLLER]
INPUT
SPINDLE
INPUT
SLED
INPUT
INPUT
FWD2
REV2
CHANGE
INPUT
KA3031
SGND
Where TY is tray motor .
MUTE1
MUTE2
MUTE3
CG is change motor
PGND1
DO4.1
DO4.2 DO5.1 DO5.2
MTUE4
PVCC1
30 29
28 27
26
DO6.1
25
DO6.2
SLED MUTE SPINDLE MUTE TRACKING MUTE FOCUS MUTE
M
M
M
SLED
TRAY
CHANGE
Notes:
Radiation pin is connected to the internal GND of the package. Connect the pin to the external GND.
22
Page 23
Application Circuits
Differential Mode Control
KA3031
VCC
REF &
ALL
MUTE
REG OUT
IN1.2
CTL1
KSB772
33µF
1
2 3 4
5 6
IN1.1
OUT1
IN2.1 IN2.2 OUT2 IN3.1
+
REG50
REG050
REF
Vreset
SVCC
RES50
OPIN(+)
OPOUT
OPIN(−)
KA3031
IN3.2
7
OUT3
8
IN4.1
9
IN4.2
10
OUT4
11 12
FWD1
REV1
CTL
FWD2
REV2
13 14 15 16 17 18 19 20 21 22 23 24
SGND
MUTE1
MUTE2
MUTE3
FOCUS
PVCC2
PGND3
PGND2
PGND1
MTUE4
373839404142434445464748
DO1.1 DO2.2
DO3.1 DO3.2
DO4.1
DO4.2 DO5.1 DO5.2
PVCC1
DO2.1
36
DO1.2
35 34
33 32 31
30 29
28 27
26 25
DO6.2
DO6.1
TRACKING
SPINDLE
M
M
SLED
TRAY
M
M
CHANGE
PWM1 PWM2 PWM3 PWM4 PWM5 PWM6 PWM7 PWM8
FOCUS TRACKING SPINDLE SLED
[SERVO PRE AMP] [CONTROLLER]
TRAT
INPUT
CONTROL
TY CG
CHANGE
INPUT
23
Where TY is tray motor.
CG is change motor
SLED MUTE SPINDLE MUTE TRACKING MUTE FOCUS MUTE
Page 24
KA3031
DISCLAIMER
FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURT HER NOTICE TO ANY PRODUCTS HEREI N TO IMPROVE RELIABILITY, FUNCTIO N OR DESIGN. FAIRCH IL D DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER IT S PATENT RIGHTS, NOR THE RIGHTS OF OTHE RS.
LIFE SUPPORT POL I CY
FAIRCHILD’S PR ODUCTS ARE NOT AUTH ORIZED FOR USE AS C RITICAL COMPONENT S IN LIFE SUPPORT DE VICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF FAIRCHILD SEMICONDUCTOR INTERNATIONAL. As used herein:
1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with
2. A critical component in any component of a life support device or sy stem whose fai lure to perform can be reasonably expec ted to cause the failur e of the life support device or system, or to affect its safety or effec t iv ene ss .
instructions for use provided in the labeling, can be reasonably expected to result in a significant injury of the user.
www.fairchildsemi.com
12/1/00 0.0m 001
2000 Fairchild Semiconductor International
Stock#DSxxxxxxxx
Loading...