Datasheet HSDL-5420, HSDL-4400, HSDL-4420, HSDL-5400 Datasheet (HP)

Page 1
High-Performance IR Emitter and IR PIN Photodiode in Subminiature SMT Package
H
Technical Data

Features

• Subminiature Flat Top and Dome Package
Size – 2x2 mm
• IR Emitter
875 nm TS AlGaAs Intensity – 17 mW/sr Speed – 40 ns
• Wide Range of Drive Currents
500 µA to 500 mA
• IR Detector
PIN Photodiode High Sensitivity Speed – 7.5 ns
• Flexible Lead Configurations
Surface Mount or Through Hole

Applications

• Short Distance IR Links
• IrDA Compatible
• Small Handheld Devices
Pagers Industrial Handhelds
• Diffuse LANs
• Wireless Audio

Description

Flat Top Package

The HSDL-4400 Series of flat top IR emitters use an untinted, nondiffused, truncated lens to provide a wide radiation pattern that is useful for short distance communication where alignment of the emitter and detector is not critical. The HSDL-5400 Series of flat top IR detectors uses the same truncated lens design as the HSDL-4400 Series of IR emitters with the added feature of a black tint that acts as an optical filter to reduce the effects of ambient light, such as sun, incandescent and fluorescent light from interfering with the IR signal.
The HSDL-4420 Series of dome IR emitters uses an untinted, nondiffused lens to provide a 24 degree viewing angle with high on-axis intensity. The HSDL-5420 Series of IR detectors uses the same lens design as the HSDL­4420 IR emitter and optical filter used in the HSDL-5400 IR detector.
HSDL-44XX IR Emitter
Series
HSDL-54XX IR Detector
Series

Lead Configuration

All of these devices are made by encapsulating LED and PIN photodiode chips on axial lead frames to form molded epoxy subminiature packages. A variety of lead configurations is available and includes: surface mount gull wing, yoke lead, or Z-bend and through hole lead bends at 2.54 mm (0.100 inch) center spacing.

Technology

The subminiature solid state emitters utilize a highly optimized LED material, transparent sub­strate aluminum gallium arsenide, TS AlGaAs. This material has a very high radiant efficiency, capable of producing high light output over a wide range of drive currents and temperature.
4-68
5964-9018E
Page 2

Device Selection Guide

IR Emitters

Part Number Device Description
[1]
Device Outline Drawing
HSDL-4400 LED, Flat Top, 110 deg A HSDL-4420 LED, Dome, 24 deg B

IR Detectors

Part Number Device Description
[1]
Device Outline Drawing
HSDL-5400 PIN Photodiode, Flat Top, 110 deg C HSDL-5420 PIN Photodiode, Dome, 28 deg D

Package Configuration Options

Package Outline
Option Code Package Configuration Description Drawing
011 Gull Wing Lead, Tape and Reel 021 Yoke Lead, Tape and Reel 031 Z-Bend, Tape and Reel
[2]
1L1 2.54 mm (0.100 in) Long Leads; Thru Hole H
Center Lead Spacing 10.4 mm (0.410 in) Lead
1S1 Short Leads; I
No Option Straight Leads
[3]
[2]
[2]
3.7 mm (0.145 in)
E, J, M
Surface
Mount Lead
F, K, M G, L, M
Prototyping A, B, C, D
Notes:
1. IR Emitters have untinted, nondiffused lenses and IR Detectors have black tinted, nondiffused lenses.
2. Emitters and detectors are supplied in 12 mm embossed tape on 178 mm (7 inch) diameter reels, with 1500 units per reel. Minimum order quantity and order increment are in quantity of reels only.
3. Emitters and detectors are supplied in bulk form in bags of 50 units.
4-69
Page 3

Package Dimensions

(A) Flat Top Emitters

1.91
(0.075)
2.41
(0.095)
1.14
1.40
(0.045) (0.055)
0.58
0.43
(0.023) (0.017)
0.50 (0.020) REF.
1.40
1.65
(0.460)
11.68 (0.420)
10.67
BOTH SIDES
(0.055) (0.065)
NOTE 3 ANODE
CATHODE
STRIPE
2.08
2.34
(0.082) (0.092)
NOTE 3

(B) Dome Emitters

0.76
(0.030) (0.035)
R.
2.08
2.34
11.68
10.67 BOTH SIDES
(0.082) (0.092)
(0.460) (0.420)
0.94
1.24
0.89
0.50 (0.020) REF.
0.18
0.23
(0.037) (0.049)
2.92 (0.115) MAX.
CATHODE
STRIPE NOTE 3
0.76 (0.030) MAX.
(0.007) (0.009)
0.18
0.23
NOTE 3 ANODE
1.91
2.16
(0.007) (0.009)
2.03 (0.080)
1.78 (0.070)
(0.075) (0.085)
0.79 (0.031)
0.53 (0.021)
1.91
2.16
(0.075) (0.085)
0.20 (0.008) MAX.
0.63
(0.025)
0.38
(0.015)
CATHODE
1.65
(0.065)
1.91
(0.075)
DIA.
0.46
0.56
0.25 (0.010) MAX.* NOTE 2
(0.018) (0.022)
0.46
CATHODE
1.65
(0.065) (0.075)
DIA.
0.25 (0.010) MAX.* NOTE 2
1.91
0.20 (0.008) MAX.
NOTES:
1. ALL DIMENSIONS ARE IN MILLIMETRES (INCHES).
2. PROTRUDING SUPPORT TAB IS CONNECTED TO ANODE LEAD.
3. LEAD POLARITY FOR THESE TS AlGaAs SUBMINIATURE LAMPS IS OPPOSITE TO THE LEAD POLARITY OF SUBMINIATURE LAMPS USING OTHER LED TECHNOLOGIES. CATHODE STRIPE MARKING IS BLACK.
0.56
(0.018) (0.022)
4-70
Page 4

(C) Flat Top Detectors

1.91
(0.075)
2.41
(0.095)
CATHODE
STRIPE
2.08
2.34
(0.082) (0.092)
NOTE 3

(D) Dome Detectors

0.76
(0.030) (0.035)
R.
0.94
1.24
(0.037) (0.049)
2.92 (0.115) MAX.
0.89
1.14
1.40
0.76 (0.030) MAX.
0.18
(0.007)
0.23
(0.009)
(0.045) (0.055)
0.18
0.23
1.91
2.16
(0.007) (0.009)
2.03 (0.080)
1.78 (0.070)
(0.075) (0.085)
0.58
0.43
(0.023) (0.017)
0.50 (0.020) REF.
11.68
10.67 BOTH SIDES
ANODE
1.65
(0.065)
1.91
(0.075)
0.20 (0.008) MAX.
1.40
1.65
(0.460) (0.420)
DIA.
(0.055) (0.065)
CATHODE
0.46
0.56
0.25 (0.010) MAX.* NOTE 2
(0.018) (0.022)
(0.018) (0.022)
0.79 (0.031)
0.53 (0.021)
CATHODE
STRIPE
2.08
(0.082)
2.34
(0.092)
0.50 (0.020) REF.
(0.460)
11.68 (0.420)
10.67
BOTH SIDES
ANODE
1.65
(0.065) (0.075)
DIA.
1.91
0.20 (0.008) MAX.
NOTES:
1. ALL DIMENSIONS ARE IN MILLIMETERS (INCHES).
2. PROTRUDING SUPPORT TAB IS CONNECTED TO CATHODE LEAD.
3. CATHODE STRIPE MARKING IS SILVER.
NOTE 3
CATHODE
0.46
0.56
0.25 (0.010) MAX.* NOTE 2
1.91
2.16
(0.075) (0.085)
0.63
0.38
(0.025) (0.015)
4-71
Page 5

Package Dimensions

The following notes affect the package outline drawings E through I.
1. The pinout represents the HSDL-54XX IR detectors where the protruding support tab is closest to the anode lead. While the pinout is reversed for the HSDL-44XX

(E) Gull Wing Lead, Option 011

0.76 (0.030) MAX.
IR emitters where the pro­truding support tab is closest to the cathode lead.
2. The protruding support tab of the HSDL-54XX is connected to the cathode lead. While the protruding support tab of the HSDL-44XX is connected to the anode lead.

(F) “Yoke” Lead, Options 021

0.76 (0.030) MAX.
4-72
ALL DIMENSIONS ARE IN MILLIMETRES (INCHES)
Page 6

(G) Z-Bend Lead, Options 031

(H) Thru Hole Lead Option 1L1

0.76 (0.030) MAX.

(I) Thru Hole Lead Option 1S1

4-73
Page 7

Package Dimensions: Surface Mount Tape and Reel Options

(J) 12 mm Tape and Reel, Gull Wing Lead, Option 011

NOTES:
1. EMPTY COMPONENT POCKETS SEALED WITH TOP COVER TAPE.
GULL WING LEAD
SUBMINIATURE PACKAGE
2. 7 INCH REEL – 1500 PIECES PER REEL.
3. MINIMUM LEADER LENGTH AT EITHER END OF THE TAPE IS 500 mm.
4. THE MAXIMUM NUMBER OF CONSECUTIVE MISSING DEVICES IS TWO.
5. IN ACCORDANCE WITH ANSI/EIA RS-481 SPECIFICATIONS, THE CATHODE IS ORIENTED TOWARDS THE TAPE SPROCKETS HOLE.
At the time of this publication XX/96, Light Emitting Diodes (LEDs) that are contained in this product are regulated for eye safety in Europe by the Commission for European Electrotechnical Standardization (CENELEC) EN60825-1. Please refer to Application Brief I-008 for more information.
4-74
Page 8

(K) 12 mm Tape and Reel, “Yoke” Lead, Option 021

“YOKE” LEAD SUBMINIATURE PACKAGE
4-75
Page 9

(L) 12 mm Tape and Reel, Z-Bend Lead, Option 031

Z-BEND LEAD
SUBMINIATURE PACKAGE
4-76
Page 10

(M) 12 mm Tape and Reel

4-77
Page 11

HSDL-44XX Absolute Maximum Ratings

Parameter Symbol Min. Max. Unit Ref.
Peak Forward Current (Duty Factor = 20%, I
FPK
Pulse Width = 100 µs) DC Forward Current I Power Dissipation P Reverse Voltage (IR = 100 µA) V Transient Forward Current (10 µs Pulse) I Operating Temperature T Storage Temperature T Junction Temperature T
FDC
DISS
R
FTR
O
S
J
5V
-40 85 °C
-55 100 °C
Lead Solder Temperature 260/5 s °C [1.6 mm (0.063 in.) from body]
Reflow Soldering Temperatures
Convection IR 235/90 s °C Vapor Phase 215/180 s °C
Notes:
1. The transient peak current in the maximum nonrecurring peak current the device can withstand without damaging the LED die and the wire bonds.
500 mA Fig. 7, 8
100 mA Fig. 6 180 mW
1.0 A [1]
110 °C
HSDL-44XX Electrical Characteristics at T
= 25°C
A
Parameter Symbol Min. Typ. Max. Unit Condition Ref.
Forward Voltage V
F
Forward Voltage VF/T -2.1 mV/°CI Temperature Coefficient -2.1 I
Series Resistance R Diode Capacitance C Reverse Voltage V Thermal Resistance, Rθ
S
O
R
jp
1.30 1.50 1.70 V I
1.40 1.67 1.85 I
2.15 I
2.8 I
= 50 mA Fig. 2
FDC
= 100 mA
FDC
= 250 mA
FPK
= 50 mA Fig. 3
FDC
= 100 mA
FDC
= 100 mA
FDC
40 pF 0 V, 1 MHz
520 VI
= 100 µA
R
170 °C/W
Junction to Pin
4-78
Page 12
HSDL-44XX Optical Characteristics at T
Parameter Symbol Min. Typ. Max. Unit Condition Ref.
Radiant Optical Power
= 25°C
A
HSDL-4400 P
HSDL-4420 P
O
O
16 mW I 30 I
16 mW I 30 I
FDC FDC
FDC FDC
Radiant On-Axis Intensity
HSDL-4400 I
HSDL-4420 I
E
E
Radiant On-Axis Intensity IE/T -0.35 %/°CI Temperature Coefficient -0.35 I
1 3 8 mW/sr I
6I
15 I
9 17 30 mW/sr I
32 I 85 I
FDC FDC FPK
FDC FDC FPK
FDC FDC
Viewing Angle
HSDL-4400 2θ HSDL-4420 2θ
Peak Wavelength λ
PK
1/2
1/2
860 875 895 nm I
Peak Wavelength ∆λ/T 0.25 nm/°CI
110 deg I
24 deg I
FDC
FDC
FDC
FDC
Temperature Coefficient Spectral Width at FWHM ∆λ 37 nm I Optical Rise and Fall tr/t
f
40 ns I
FDC
FPK
Times, 10%-90% Bandwidth f
c
9 MHz I
FDC
± 10 mA
= 50 mA = 100 mA
= 50 mA = 100 mA
= 50 mA Fig. 4, 5 = 100 mA
= 250 mA
= 50 mA Fig. 4, 5 = 100 mA
= 250 mA
= 50 mA = 100 mA
= 50 mA Fig. 9 = 50 mA Fig. 10
= 50 mA Fig. 1 = 50 mA
= 50 mA Fig. 1
= 50 mA
= 50 mA Fig. 11
4-79
Page 13

HSDL-54XX Absolute Maximum Ratings

Parameter Symbol Min. Max. Unit
Power Dissipation P Reverse Voltage (IR = 100 µA) V Operating Temperature T Storage Temperature T Junction Temperature T
DISS
R
O
S
J
-40 85 °C
-55 100 °C
Lead Solder Temperature [1.6 mm (0.063 in.) from body] 260/5 s °C Reflow Soldering Temperatures
Convection IR 235/90 s °C Vapor Phase 215/180 s °C
150 mW
40 V
110 °C
HSDL-54XX Electrical Characteristics at T
= 25°C
A
Parameter Symbol Min. Typ. Max. Unit Condition Ref.
Forward Voltage V Breakdown Voltage V
BR
F
40 V IR = 100 µA,
1.80 V I
= 50 mA
FDC
Ee = 0 mW/cm
Reverse Dark Current I
D
15nAV
= 5 V, Fig. 12
R
Ee = 0 mW/cm
Series Resistance R
S
2000 VR = 5 V,
Ee = 0 mW/cm
Diode Capacitance C
O
5pFV
= 0 V, Fig. 16
R
Ee = 0 mW/cm f = 1 MHz
Open Circuit Voltage V
OC
375 mV Ee = 1 mW/cm
λPK = 875 nm
Temperature Coefficient of VOC∆VOC/T -2.2 mV/K Ee = 1 mW/cm
λPK = 875 nm
Short Circuit Current I
SC
HSDL-5400 1.6 µA
Ee = 1 mW/cm
λPK = 875 nm
HSDL-5420 4.3 µA
Temperature Coefficient of I
ISC/T 0.16 %/K Ee = 1 mW/cm
SC
λPK = 875 nm
Thermal Resistance, Rθ
jp
170 °C/W
Junction to Pin
2
2
2
2
2
2
2
2
4-80
Page 14
HSDL-54XX Optical Characteristics at T
= 25°C
A
Parameter Symbol Min. Typ. Max. Unit Condition Ref.
Photocurrent
HSDL-5400 I
PH
0.8 1.6 µA
HSDL-5420 3.0 6.0
Ee = 1 mW/cm
λPK = 875 nm
VR = 5 V
Temperature Coefficient IPH/T 0.1 %/K Ee = 1 mW/cm of I
PH
λPK = 875 nm
VR = 5 V
Radiant Sensitive Area A 0.15 mm
2
Absolute Spectral Sensitivity S 0.5 A/W Ee = 1 mW/cm
λPK = 875 nm
VR = 5 V
Viewing Angle
HSDL-5400 2θ
1/2
110 deg Fig. 18
HSDL-5420 28 Fig. 19
Wavelength of Peak λ
PK
875 nm Ee = 1 mW/cm
Sensitivity VR = 5 V Spectral Bandwidth ∆λ 770- nm Ee = 1 mW/cm
1000 VR = 5 V
Quantum Efficiency η 70 % Ee = 1 mW/cm
λPK = 875 nm,
VR = 5 V
Noise Equivalent Power NEP 6.2 x W/Hz
-15
10
1/2
VR = 5 V
λPK = 875 nm
Detectivity D 6.3 x cm* VR = 5 V
Optical Rise and Fall Times, tr/t
12
10
f
7.5 ns VR = 5 V
1/2
Hz
/W λPK = 875 nm
10%-90% RL = 1 k
λPK = 875 nm
Bandwidth f
c
50 MHz VR = 5 V
RL = 1 k
λPK = 875 nm
2
2
2
2
2
2
Fig. 14,
15
Fig. 13
Fig. 17
Fig. 17
4-81
Page 15
1.5
1.0
TA = 25 °C I
= 50 mA
FDC
1,000
100
TA = 25 °C
2.0
1.8
1.6
I
FDC
I
FDC
= 100 mA
= 50 mA
0.5
RELATIVE RADIANT INTENSITY
0
850 950
λ – WAVELENGTH – nm
900800
Figure 1. Relative Radiant Intensity vs. Wavelength.
5.00
4.50 PULSE WIDTHS < 100 µs
4.00 TA = 25°C
3.50
3.00
2.50
2.00
1.50
1.00
0.50
NORMALIZED RADIANT INTENSITY
0
0 500
I
– PEAK FORWARD CURRENT – mA
FPK
100
200 300
400
10
– PEAK FORWARD CURRENT – mA
1
FPK
I
1.0
1.5 2.0 2.5 3.00.50
VF – FORWARD VOLTAGE – V
Figure 2. Peak Forward Current vs. Forward Voltage.
1.00
TA = 25°C
0.10
NORMALIZED RADIANT INTENSITY
0.01
0.1 10 I
– FORWARD CURRENT – mA
FPK
1
1.4
1.2
– FORWARD VOLTAGE – V
F
V
1.0
-20 TA – AMBIENT TEMPERATURE – °C
I
= 1 mA
FDC
0 20406080
Figure 3. Forward Voltage vs Ambient Temperature.
120
100
80
60
40
20
– MAXIMUM DC FORWARD CURRENT – mA
FDC
I
Rθja = 220 °C/W Rθja = 270 °C/W Rθja = 370 °C/W
0
-20
-40 100
0 20406080
TA – AMBIENT TEMPERATURE – °C
Figure 4. Normalized Radiant Intensity vs. Peak Forward Current.
500
400
300
200
100
– PEAK FORWARD CURRENT – mA
0
FPK
I
0.01 10
0.1 1
tPW – PULSE WIDTH – ms
DUTY FACTOR
7 % 10 % 20 % 50 %
Figure 7. Maximum Peak Forward Current vs. Duty Factor.
4-82
Figure 5. Normalized Radiant Intensity vs. Peak Forward Current (0 to 10 mA).
600
500
DUTY FACTOR
400
300
200
100
– PEAK FORWARD CURRENT – mA
0
FPK
I
-40 100
10 % 20 % 50 %
PULSE WIDTHS < 100 µs
-20
TA – AMBIENT TEMPERATURE – °C
10 %
20 %
50 %
0 20406080
Figure 8. Maximum Peak Forward Current vs. Ambient Temperature. Derated Based on T
JMAX
= 110°C.
Figure 6. Maximum DC Forward Current vs. Ambient Temperature. Derated Based on T
JMAX
= 110°C.
Page 16
1.0
0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1
RELATIVE RADIANT INTENSITY
0
-100°
-80° -60° -40° -20° 20° 40° 60° 80° 100°
θ – ANGLE FROM OPTICAL CENTERLINE – DEGREES (CONE HALF ANGLE)
IF = 50 mA
T
= 25°C
A
Figure 9. Relative Radiant Intensity vs. Angular Displacement HSDL-4400.
1.0
0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1
RELATIVE RADIANT INTENSITY
0
-50°
-40° -30° -20° -10° 10° 20° 30° 40° 50°
θ – ANGLE FROM OPTICAL CENTERLINE – DEGREES (CONE HALF ANGLE)
IF = 50 mA
T
= 25°C
A
Figure 10. Relative Radiant Intensity vs. Angular Displacement HSDL-4420.
2 1 0
-1
-2
-3
-4
-5
-6
-7
-8
RELATIVE RADIANT INTENSITY
-9
-10 1E+5 1E+8
1E+6 1E+7
f – FREQUENCY – Hz
T
= 25°C
A
9 MHz
Figure 11. Relative Radiant Intensity vs. Frequency.
10.000
1.000
0.100
0.010
– REVERSE DARK CURRENT – nA
D
I
0.001 0 100
T
VR = 5 V
20 40 60
– AMBIENT TEMPERATURE – °C
A
Figure 12. Reverse Dark Current vs. Ambient Temperature.
1.40
1.30
1.20
1.10
1.00
0.90
0.80
0.70
NORMALIZED PHOTOCURRENT
80
0.60
-40 100 – AMBIENT TEMPERATURE – °C
T
A
V
= 5 V
R
060
80-20 20 40
Figure 13. Relative Reverse Light Current vs. Ambient Temperature.
4-83
Page 17
10
VR = 5 V
TA = 25°C
1
0.1
NORMALIZED PHOTOCURRENT
0.01
0.01 10
0.1
– IRRADIANCE – mW/cm
E
e
1
1.40
1.30
1.20
1.10
1.00
0.90
0.80
0.70
NORMALIZED PHOTOCURRENT
0.60 040
2
V
TA = 25°C
10 30
15
– REVERSE VOLTAGE – V
R
3552025
5
Ee = 0 mW/cm
4
3
2
1
– DIODE CAPACITANCE – pF
O
C
0
0.1 100 – REVERSE VOLTAGE – V
V
R
f = 1 MHz TA = 25°C
101
2
Figure 14. Reverse Light Current vs. Irradiance
1.2
1.0
0.8
0.6
0.4
0.2
NORMALIZED PHOTOCURRENT
0
700 1100
850
800 1000
λ – WAVELENGTH – nm
VR = 5 V
TA = 25°C
1050750 900 950
Figure 15. Reverse Light Current vs. Reverse Voltage.
Figure 17. Relative Spectral Sensitivity vs. Wavelength.
1.0
0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1
NORMALIZED PHOTOCURRENT
0
-40° -30° -20° -10° 10° 20° 30° 40° 50°
-50°
θ – ANGLE FROM OPTICAL CENTERLINE – DEGREES (CONE HALF ANGLE)
Figure 16. Diode Capacitance vs. Reverse Voltage.
1.0
0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1
NORMALIZED PHOTOCURRENT
0
-100°
-80° -60° -40° -20° 20° 40° 60° 80° 100°
θ – ANGLE FROM OPTICAL CENTERLINE – DEGREES (CONE HALF ANGLE)
VR = 5 V
TA = 25°C
Figure 18. Relative Radiant Intensity vs. Angular Displacement. HSDL-5400.
Figure 19. Relative Radiant Intensity vs. Angular Displacement. HSDL-5420.
Note: At the time of this publication, Light Emitting Diodes (LEDs) that are contained in this product are regulated for eye safety in
Europe by the Commission for European Electrotechnical Standardization (CENELEC) EN60825-1. Please refer to Application Briefs I-008, I-009, I-015 for more information.
4-84
Loading...