Datasheet FDP7030L, FDB7030L Datasheet (Fairchild Semiconductor)

Page 1
FDP7030L / FDB7030L N-Channel Logic Level Enhancement Mode Field Effect Transistor
General Description Features
April 1998
These N-Channel logic level enhancement mode power field effect transistors are produced using Fairchild's proprietary, high cell density, DMOS technology. This very high density process is especially tailored to minimize on-state resistance. These devices are particularly suited for low voltage applications such as DC/DC converters and high efficiency switching circuits where fast switching, low in-line power loss, and resistance to transients are needed.
100 A, 30 V. R R
Critical DC electrical parameters specified at elevated temperature.
Rugged internal source-drain diode can eliminate the need for an external Zener diode transient suppressor.
High density cell design for extremely low R
= 0.007 @ VGS=10 V
DS(ON)
= 0.010 @ VGS=5 V.
DS(ON)
.
DS(ON)
175°C maximum junction temperature rating.
_________________________________________________________________________________
D
G
S
Absolute Maximum Ratings T
C
Symbol Parameter FDP7030L FDB7030L Units
V
DSS
V
GSS
I
D
Drain-Source Voltage 30 V Gate-Source Voltage - Continuous ±20 V Drain Current - Continuous (Note 1) 100 A 75
- Pulsed (Note 1) 300
P
D
Total Power Dissipation @ TC = 25°C 125 W
Derate above 25°C 0.83 W/°C TJ,T T
L
Operating and Storage Temperature Range -65 to 175 °C
STG
Maximum lead temperature for soldering purposes,
275 °C
1/8" from case for 5 seconds
THERMAL CHARACTERISTICS
R
JC
θ
R
JA
θ
© 1998 Fairchild Semiconductor Corporation
Thermal Resistance, Junction-to-Case 1.2 °C/W
Thermal Resistance, Junction-to-Ambient 62.5 °C/W
FDP7030L Rev.D1
Page 2
Electrical Characteristics (T
= 25°C unless otherwise noted)
C
Symbol Parameter Conditions Min Typ Max Unit DRAIN-SOURCE AVALANCHE RATINGS (Note 1)
W
DSS
I
AR
Single Pulse Drain-Source Avalanche Energy VDD = 15 V, ID = 38 A 200 mJ Maximum Drain-Source Avalanche Current 38 A
OFF CHARACTERISTICS
BV
BV
I
DSS
DSS
DSS
Drain-Source Breakdown Voltage Breakdown Voltage Temp. Coefficient
/T
J
Zero Gate Voltage Drain Current
VGS = 0 V, ID = 250 µA ID = 250 µA, Referenced to 25 oC VDS = 24 V, V
GS
= 0 V
30 V
36
mV/oC
10 µA
TJ =125 °C 1 mA
I
GSSF
I
GSSR
Gate - Body Leakage, Forward
VGS = 20 V, VDS = 0 V
Gate - Body Leakage, Reverse VGS = -20 V, VDS = 0 V -100 nA
100 nA
ON CHARACTERISTICS (Note 2)
V
V
R
GS(th)
GS(th)
DS(ON)
Gate Threshold Voltage Gate Threshold Voltage Temp.Coefficient ID = 250 µA, Referenced to 25 oC -5 mV/oC
/T
J
VDS = VGS, ID = 250 µA
Static Drain-Source On-Resistance VGS = 10 V, ID = 50 A 0.006 0.007
1 1.5 2 V
TJ = 125°C 0.009 0.011
0.009 0.01
50 S
I g
D(on)
VGS = 5 V, ID = 40 A
On-State Drain Current VGS = 10 V, VDS = 10 V 60 A
FS
Forward Transconductance
VDS = 10 V, ID = 50 A
DYNAMIC CHARACTERISTICS
C
iss
C
oss
C
rss
Input Capacitance VDS = 15 V, VGS = 0 V, Output Capacitance 1290 pF
f = 1.0 MHz
Reverse Transfer Capacitance 420 pF
2150 pF
SWITCHING CHARACTERISTICS (Note 2)
t t
t t
Q Q Q
D(on)
r
D(off)
f
Turn - On Delay Time Turn - On Rise Time 160 225 nS
Turn - Off Delay Time 70 95 nS
VDD = 15 V, ID = 75 A, VGS = 10 V, R R
= 10
GS
GEN
= 6
Turn - Off Fall Time 140 195 nS
g
gs
gd
Total Gate Charge V Gate-Source Charge 12 nC Gate-Drain Charge 18 nC
= 12 V
DS
ID = 50 A, VGS= 4.5 V
10 20 nS
35 50 nC
DRAIN-SOURCE DIODE CHARACTERISTICS
I
S
ISM V
SD
Notes
1. Calculated continuous current based on maximum allowable junction temperature. Actual maximum continuous current limited by package constraints to 75A.
2. Pulse Test: Pulse Width < 300 µs, Duty Cycle < 2.0%.
Maximum Continuos Drain-Source Diode Forward Current (Note 1) 100 A Maximum Pulsed Drain-Source Diode Forward Current (Note 2) 300 A Drain-Source Diode Forward Voltage
VGS = 0 V, IS = 50 A (Note 2)
TJ = 125°C
1 1.3 V
0.85 1.1
FDP7030L Rev.D1
Page 3
Typical Electrical Characteristics
100
V = 10V
GS
8.0
80
6.0
60
40
20
D
I , DRAIN-SOURCE CURRENT (A)
0
0 0.5 1 1.5 2 2.5
5.0
4.5
V , DRAIN-SOURCE VOLTAGE (V)
DS
Figure 1. On-Region Characteristics.
1.6
I = 50A
D
V = 10V
GS
1.4
1.2
1
DS(ON)
R , NORMALIZED
0.8
DRAIN-SOURCE ON-RESISTANCE
0.6
-50 -25 0 25 50 75 100 125 150 175 T , JUNCTION TEMPERATURE (°C)
J
4.0
3.5
3.0
3
V =3.5V
2.5
2
GS
4.0
4.5
1.5
DS(ON)
1
R , NORMALIZED
DRAIN-SOURCE ON-RESISTANCE
0.5 0 20 40 60 80 100
I , DRAIN CURRENT (A)
D
5.0
6.0
Figure 2. On-Resistance Variation with
Drain Current and Gate Voltage.
0.025
0.02
0.015
125°C
0.01
0.005
DS(ON)
R , ON-RESISTANCE (OHM)
0
2 4 6 8 10
25°C
V , GATE TO SOURCE VOLTAGE (V)
GS
8.0
10.0
I =50A
D
Figure 3. On-Resistance Variation
with Temperature.
60
V = 10V
DS
50
40
30
20
D
I , DRAIN CURRENT (A)
10
0
1 1.5 2 2.5 3 3.5 4 4.5 5
T = -55°C
A
25
125°C
V , GATE TO SOURCE VOLTAGE (V)
GS
Figure 5. Transfer Characteristics.
Figure 4. On-Resistance Variation with
Gate-to-Source Voltage.
60
V =0V
GS
10
T = 125°C
1
0.1
0.01
0.001
S
I , REVERSE DRAIN CURRENT (A)
0.0001
0 0.2 0.4 0.6 0.8 1 1.2 1.4
A
25°C
-55°C
V , BODY DIODE FORWARD VOLTAGE (V)
SD
Figure 6. Body Diode Forward Voltage
Variation with Source Current and Temperature.
FDP7030L Rev.D1
Page 4
Typical Electrical Characteristics (continued)
10
I = 50A
D
8
6
4
2
GS
V , GATE-SOURCE VOLTAGE (V)
0
0 20 40 60 80
Q , GATE CHARGE (nC)
g
V = 6.0V
DS
12V
24V
Figure 7. Gate Charge Characteristics.
500 300
100
50
20 10
D
I , DRAIN CURRENT (A)
DS(ON)
R Limit
V = 10V
GS
SINGLE PULSE
5
2 1
0.1 0.5 1 5 10 30 50
o
R = 1.2 C/W
JC
θ
T = 25 °C
C
V , DRAIN-SOURCE VOLTAGE (V))
DS
100ms
DC
100µs
1ms
10ms
10µs
5000
3000
C C
iss
oss
2000
1000
500
CAPACITANCE (pF)
C
rss f = 1 MHz V = 0V
GS
200
1 2 5 10 20 30
V , DRAIN TO SOURCE VOLTAGE (V)
DS
Figure 8. Capacitance Characteristics.
8000
SINGLE PULSE R =1.2° C/W
JC
6000
4000
POWER (W)
2000
0
0.01 0.1 1 10 100 1000 SINGLE PULSE TIME (ms)
θ
T = 25°C
C
Figure 9. Maximum Safe Operating Area.
Figure 10. Single Pulse Maximum Power
Dissipation.
1
0.5
0.3
0.2
0.1
0.05
0.03
0.02
r(t), NORMALIZED EFFECTIVE
TRANSIENT THERMAL RESISTANCE
0.01
0.01 0.05 0.1 0.5 1 5 10 50 100 500 1000
D = 0.5
0.2
0.1
0.05
0.02
0.01
Single Pulse
t ,TIME (ms)
1
R (t) = r(t) * R
JC
θ
R = 1.2 °C/W
JC
θ
P(pk)
t
1
t
2
T - T = P * R (t)
J
C
Duty Cycle, D = t /t
Figure 11. Transient Thermal Response Curve.
JC
θ
JC
θ
1 2
FDP7030L Rev.D1
Loading...