Datasheet FAN8423D3 Datasheet (Fairchild Semiconductor)

Page 1
FAN8423D3
3-Phase BLDC Motor Driver
www.fairchildsemi.com
Features
• 3-phase, full-wave, linear BLDC motor driver
• Power save at stop mode
• Built-in current limiter
• Built-in 3X and 1X hall FG output
• Built-in hall bias circuit
• Built-in rotational direction detector
• Built-in reverse rotation preventer
• Built-in short braker
• Corresponds to 5 V DSP
Description
The FAN8423D3 is a monolithic IC, suitable for a 3-phase spindle motor driver of a CD-media system.
28-SSOPH-375SG2
Typical Applications
• Compact disk ROM (CD-ROM) spindle motor
• Compact disk RW (CD-RW) spindle motor
• Digital video disk ROM (DVD-ROM) spindle motor
• Digital video disk RAM (DVD-RAM) spindle motor
• Digital video disk Player (DVDP) spindle motor
• Other compact disk media spindle motor
• Other 3-phase BLDC motor
©2000 Fairchild Semiconductor International
Ordering Information
Device Package Operating Temp.
FAN8423D3
FAN8423D3TF 28-SSOPH-375SG2
28-SSOPH-375SG2
25°C ~ +75°C
25°C ~ +75°C
Rev. 1.0.1
Oct. 2000.
Page 2
FAN8423D3
Pin Assignments
CS1
VM
NC
VCC
S/S
FG1X
EC
FIN(GND)
ECR
DIR
FG3X
SB
PC1
FAN8423D3
1 2 3 4 5 6 7 8 9 10 11 12 13 14
NC
A3
NC
A2
NC
NC
A1
FIN(GND)
GND
H1+
H1-
H2+
H2-
Pin Definitions
Pine Number Pin Name I/O Pin Function Description
1 NC - No connection 2 A3 O Output (A3) 3 NC - No connection 4 A2 O Output (A2) 5 NC - No connection 6 NC - No connection 7 A1 O Output (A1) 8 GND - Ground
9 H1+ I Hall signal (H1+) 10 H1- I Hall signal (H1-) 11 H2+ I Hall signal (H2+) 12 H2- I Hall signal (H2-) 13 H3+ I Hall signal (H3+) 14 H3- I Hall signal (H3-) 15 VH I Hall bias 16 NC - No connection 17 PC1 - Phase compensation capacitor 18 SB I Short brake 19 FG3X O FG waveform (3X) 20 DIR O Rotational direction output 21 ECR I Output current control reference 22 EC I Output current control voltage 23 S/S I Power save (Start/Stop switch) 24 FG1X O FG waveform (1X) 25 VCC - Supply voltage (Signal) 26 NC - No connection 27 VM - Supply voltage (Motor) 28 CS1 - Output current detection
NC
H3+
VH
1516171819202122232425262728
H3-
2
Rev. 1.0.1 Oct. 2000.
Page 3
Internal Block Diagram
CS1
VM
NC
28 27 26 25 24 23 22 21 20 19 18 17 16 15
VCC
FG1X
FG1X
Generator
S/S
Stop
Start
EC
Current Sense Amp
GND
-
+
Output Current Limit
Absolute Values
Upper
Lower
Distribu-
Distribu-
FAN8423D3
ECR
DIR
FG3X
SB
PC1
NC
VH
Short
FG3X
tion
Logic
Brake
Generator
Reverse Rota-
tor
tion
Direc-
Detec-
Selector
Commutation
Hall Amp
Hall
TSD
1234567
NC
A3
NC
A2
NC
NC
A1
GND
8
91011121314
GND
H1-
H1+
H2-
H2+
H3-
H3+
Rev. 1.0.1 Oct. 2000.
3
Page 4
FAN8423D3
Equivalent Circuits
Hall Input Driver Output
28
9
50
11 13
1K
1K
50
10 12 14
2274 7
Torque Control Input Hall Bias Input
50
21
50
22
+
-
15
100K
Start/stop Input Short Brake Input
50
23
40K
30K
50
18
1K
20K
Fg Output Dir Output
Vcc
10K
50
4
19
24
Rev. 1.0.1 Oct. 2000.
30K
Vcc
50
20
Page 5
Absolute Maximum Ratings (Ta = 25°°°°C)
Parameter Symbol Value Unit
Maximum supply voltage (Signal) V Maximum supply voltage (Motor) V Power dissipation P Maximum output current I Operating temperature range T Storage temperature range T
NOTE:
1. When mounted on a 76 .2mm × 114mm × 1.57mm PCB (Phenolic resin material).
2. Power dissipation reduces 16.6mW/°C for using above Ta = 25°C
3. Do not exceed P
and SOA (Safe operating area).
D
CCmax
Mmax
D
Omax
OPR STG
7V
15 V
note
2.5
1.3 A
-25 ~ +75 °C
-55 ~ +150 °C
Power Dissipation Curve
Pd (mW)
3,000
2,000
FAN8423D3
W
1,000
SOA
0
0 25 50 75 100 125 150 175
Recommended Operating Conditions (Ta = 25°°°°C)
Parameter Symbol Min. Typ. Max. Unit
Supply Voltage V Motor Supply Voltage V
cc M
4.5 5 5.5 V
3.5 12 14 V
Ambient temperature, Ta [°C]
Rev. 1.0.1 Oct. 2000.
5
Page 6
FAN8423D3
Electrical Characteristics
(Unless otherwise specified, Ta = 25 °C, Vcc=5 V, VM=12 V)
Parameter Symbol Condition Min. Typ. Max. Unit
Quiescent circuit current 1 I Quiescent circuit current 2 I
cc1 cc2
START/STOP
On voltage range V Off voltage range V
SSon SSoff
HALL BIAS Hall bias voltage V
HB
HALL AMP
Hall bias current I Common-mode input range V Minimum input level V H1 hysteresis level V
HA HAR
INH
HYS
TORQUE CONTROL
Ecr Input voltage range E Ec Input voltage range E Offset voltage (-) E Offset voltage (+) E Ec Input current E Ecr Input current E Input/output gain G
CR
C
Coff-
Coff+
Cin
CRin
EC
FG
FG output voltage (H) V FG output voltage (L) V
FGh
FGl
Duty (reference value) - - - 50 - %
OUTPUT BLOCK
Saturation voltage (upper TR) V Saturation voltage (lower TR) V
Torque limit current I
OH OL
TL
DIRECTION DETECTOR
DIR output voltage (H) V DIR output voltage (L) V
DIRh DIRl
SHORT BRAKE
ON voltage range V OFF voltage range V
SBon SBoff
At stop mode - - 0.2 mA At start mode - 5 10 mA
Output driver ON 2.5 - Vcc V Output driver OFF 0.0 - 1.0 V
IHB=20 mA 0.4 1.0 1.8 V
--0.52µA
- 1.0 - 4.0 V
-60--mVpp
- 5 20 40 mVpp
- 1.0 - 4.0 V
- 1.0 - 4.0 V Ec=2.5 V -80 -50 -20 mV Ec=2.5 V 20 50 80 mV Ec=2.5 V - 0.3 3 µA Ecr=2.5 V - 0.3 3 µA Ec=2.5 V, Rcs=0.5 0.41 0.51 0.61 A / V
Ifg=-10 µA4.54.9-V Ifg=10 µA--0.5V
Io=-300 mA - 0.9 1.4 V Io=300 mA - 0.4 0.7 V
RCS=0.5 560 700 840 mA
IFG=-10 µA4.54.7-V IFG=10 µA--0.5V
-2.5-VccV
-0-1.0V
6
Rev. 1.0.1 Oct. 2000.
Page 7
Electrical Characteristics (Continued)
Calculation of Gain & Torque Limit Current
FAN8423D3
Current / Voltage Convertor
EC
ECR
+
Gm
Absolute Values
0.255 is GM times R1, is a fixed value within IC.
Vmax (see above block diagram) is set at350mV.
Itl mA[]
VM VM
Negative
+ +
Vmax
AV[]=
S
Feedback loop
Driver
350 mV[]
----------------------- -==
R
S
Vin
R1
+
VM
Max. output current limiting
0.255
Gain
-------------- -
Vmax
--------------- -
R
+
R
S
I
O
R
CS1 (Pin 28)
Power Transistors
Commutation Distributor
H1
S
H2
Output
V
S
Current sense
+
H3
I
O
U V W
Rev. 1.0.1 Oct. 2000.
7
Page 8
FAN8423D3
Application Information
1. To rque Control & Output Current Control
V
M
+
Rcs
V
M
Current Sense AMP
-
+
TSD
Gain
Controller
Ecr
Torque AMP
+
-
Ec
ECR-EC
1) By amplifying the voltage difference between Ec and Ecr from Servo IC, the Torque Sense AMP produces the input (V
) for the Current Sense AMP.
AMP
Vcs
-
Driver
Io
M
2) The output current (I
) is converted into the voltage (VCS) through the sense resistor (RCS) and compared with the V
O
By the negative feedback loop, the sensed output voltage, VCS is equal to the input V (I
) is linearly controlled by the input V
O
3) As a result, the signals, E
and ECR can control the velocity of the Motor by controlling the output current (IO) of the
C
AMP
.
Driver.
4) The range of the torque voltage is as shown below.
Current
[mA]
Reverse
Forward
E
700 500
6
The input range of E
-50mV
Ecoff-
Ecoff+
0.51[A/V]
0
CR
50mV
and EC is 1.0 V ~ 4 V ( RNF = 0.5[Ω] )
E
CR
. Therefore, the output current
AMP
Rotation
> Ec Forward rotation
CR
< Ec
Stop after detecting re­verse rotation
AMP
.
8
Rev. 1.0.1 Oct. 2000.
Page 9
2. Short Brake
FAN8423D3
MOTOR
ON
OFF
Vcc
OFF
18
1K
ON
20K
2
4
7
Pin # 18 Short Brake
High ON
Low OFF
When the pick-up mechanism moves from the inner to the outer spindle of the CD, the Brake function of the reverse voltage is commonly employed to decrease the rotating velocity of the Spindle Motor.
However, if the Spindle Motor rotates rapidly, th e Brake function of the reverse v oltag e may produce more heat at the Drive IC.
To remove this shortcoming and to enhance the braking efficiency, the Short Brake function is added to FAN8423D3. When the Short Brake function is active, all upper Power TRs turn off and all lower Power TRs turn on. This slows down the motor.
3. Start/stop (Power Save)
Vcc
Start
Stop
Pin # 23 Start/Stop
High Operate
Low Stop
When Start/Stop function is active, all Power TRs turn off.
23
40K
30K
OFF
MOTOR
2
4
7
OFF
Rev. 1.0.1 Oct. 2000.
9
Page 10
FAN8423D3
4. Ts d (Thermal Shutdown)
Gain
Controller
BIAS
Q2
When the chip temperature rises up to about 175°C, the Q2 turns on so that the output driver shuts down. When the chip tem­perature falls off to about 150°C, then the Q2 turns off so that the driver is to operate normally. TSD has the temperature hys­teresis of about 25°C.
5. Rotational Direction Detection
Vcc
H2+
H2-
H3+
H3-
+
­D
+
-
Q
CK
D-F/F
DIR
20
Rotation DIR Forward Low Reverse High
20
1) The forward and the reverse rotations of the CD are detected by using the D-F/F and the truth table as shown above.
2) The rotational direction of the CD can be explained by the ou tput waveform of the Ha ll sensors. Let the three o utputs of Hall sensors be H1, H2 and H3 respectively. When the spindle rotates in reverse direction, the Hall sensor output waveform are shown in Fig.(a). Thus the phases are in order H1→H2→H3 with a 120° phase difference.
H1
H2
H3
(a) Reverse rotation
On the other hand, if the spindle rotates in forward rotation, the phase relationship is H3→H2→H1 as show n in Fig.(b)
10
Rev. 1.0.1 Oct. 2000.
Page 11
H1
H2
FAN8423D3
H3
(b) Forward rotation
Therefore, the output of the rotational direction detector is Low, when the spindle rotates forward, while HIGH as in the case of the reverse rotation.
6. Reverse Rotation Pr evention
EC
ECR
H2+
H2-
H3+
H3-
+
-
+
-
+
-
DQ
CK
D-F/F
Low Active
A
Current Sense Amp
Gain
Controller
Driver
M
1) When the output of the OR Gate, A is LOW, it steers all the output current of the current sense Amp to the Gain Controller zero. The output current of the Driver becomes zero and the motor stops.
2) As in the state of the forward rotation, the D-F/F output, Q is HIGH and the motor rotates normally. At this state, if the control input is changed such that EC>ECR, then the motor rotates slowly by the reverse commutation in the Driver. When the motor rotates in reverse direction, the D-F/F output becomes Low and the OR Gate output, b ecomes LOW. This pre­vents the motor from rotating in reverse direction. The operation principle is shown in the table and the flow chart.
Rotation H2 H3
D-F/F
(Q)
Reverse Rotation Preventer
E
C<ECR
EC>E
CR
Forward H HLH Forward ­Reverse L HL L - Brake and Stop
Rev. 1.0.1 Oct. 2000.
11
Page 12
FAN8423D3
Forward rotation at EC < ECR
Rotating speed is decreased due to reverse torque at EC >ECR. (Motor still rotates forward)
At the moment that the motor rotates in reverse, the reverse rotation preventer makes the output power transistor open.
Rotating reverse at short time due to motor inertia
Stop within 1/6 turn reverse rotating
7. Fg Output
H1-
H1+
24
FG1X
H2-
19
H2+
FG3X
H3-
H3+
8. Hall Sensor Connection
HALL 1 HALL 2
Vcc
Vcc
HALL 1
HALL 3
15
VH
HALL 2
HALL 3
15
VH
12
Rev. 1.0.1 Oct. 2000.
Page 13
9. Connect A By-pass Capacitor, 0.1µµµµf Between The Supply Voltage Source
25
Vcc
0.1uF
(1) The heat radiation fin is connected to the internal Gnd of the package.
Connect that fin to the external Gnd.
FAN8423D3
Rev. 1.0.1 Oct. 2000.
13
Page 14
FAN8423D3
10. Input-output Timing Chart
H1 +
H2 +
H3 +
A1 output current
(H1 -)+(H2 +)
A1 output voltage
A2 output current
(H2 -)+(H3 +)
A2 output voltage
A3 output current
(H3 -)+(H1 +)
A3 output voltage
14
Rev. 1.0.1 Oct. 2000.
Page 15
Test Circuits
FAN8423D3
VM
10uA
14 VM5
5V
12V
A A
IM3
Rcs
V
0.5
CS1 VM NC VCC SS ECFG1X ECR DIR FG3X SB PS1 NC VH
IM2
10uA
15
VM6
VR1
VR2
IM1
A A
VR3
IM2
V
VR5
10uA
15
VM6
0.1uF
FAN8423D3
A3 A2 A1 GND H1+ H1- H2+ H2- H3+ H3-
1234567 891011121314
IM4
IM5 IM6 IM7 IM8 IM9
SW3
c
VVV
a
A A A A A A
VR9
VR8
VR10 VR11 VR12 VR13
VM8
SW1
c
a
SW2
c
a
13
V
20mA
VM4
V
VM3
1516171819202122232425262728
b
SW13
a
V
VM1
12V
b
300mA
b
300mA
b
RL=5RL=5RL=5
V
VM2
Rev. 1.0.1 Oct. 2000.
15
Page 16
FAN8423D3
Typical Application circuits
HALL 1
HALL 2
1
NC
2
A3
NC
3
4
A2
5
NC
6
NC
7
A1
FAN8423D3
8
GND
9
H1+
10
H1
11
H2+
12
H2
CS1
VM
NC
VCC
FG1X
SS
EC
ECR
DIR
FG3X
SB
PC1
28
27
26
25
24
23
22
21
20
19
18
17
0.5
Servo Signal
2.1V
ST
SP
R2
(12V)
V
M
V
(5V)
CC
HALL 3
13
H3+
14
H3
NC
VH
16
15
R1
0.1µF
16
Rev. 1.0.1 Oct. 2000.
Page 17
FAN8423D3
Rev. 1.0.1 Oct. 2000.
17
Page 18
FAN8423D3
DISCLAIMER
FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURT HER NOTICE TO ANY PRODUCTS HEREI N TO IMPROVE RELIABILITY, FUNCTIO N OR DESIGN. FAIRCH IL D DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER IT S PATENT RIGHTS, NOR THE RIGHTS OF OTHE RS.
LIFE SUPPORT POL I CY
FAIRCHILD’S PR ODUCTS ARE NOT AUTH ORIZED FOR USE AS C RITICAL COMPONENT S IN LIFE SUPPORT DE VICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF FAIRCHILD SEMICONDUCTOR INTERNATIONAL. As used herein:
1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with
2. A critical component in any component of a life support device or sy stem whose fai lure to perform can be reasonably expec ted to cause the failur e of the life support device or system, or to affect its safety or effec t iv ene ss .
instructions for use provided in the labeling, can be reasonably expected to result in a significant injury of the user.
www.fairchildsemi.com
12/1/00 0.0m 001
2000 Fairchild Semiconductor International
Stock#DSxxxxxxxx
Loading...