Datasheet CPC5604ATR, CPC5604A Datasheet (CPCLA)

Page 1
1
www.clare.com
CPC5604
ANDS-CPC5604-XXX
The CPC5604 is a single package optical Data Access Arrangement (DAA) device in a low profile surface mount PCMCIA compatible package. With a few exter­nal components, the CPC5604 provides a full featured International 56K capable solution. This device is well suited for all 56K modems, voice mail systems, fax machines, computer telephony applications, remote data access, medical, and security systems. For International compliance, external passive component values can be changed or, the CPC5604 can be used in conjunction with the CPC5601 Programmable Driver for a host programmable International DAA.
56K Modems/Fax including PCMCIA
Computer Telephony
Voice Mail Systems
Security/alarm systems
Utility Meters
Vending machines
Voice Over IP
Network routers
PBX systems
Home Medical Devices
Plant monitoring equipment
PC Mother Boards
Set Top Boxes (Cable TV Modems)
UL1950/UL1459
EN60950
56K Compatible
Transformerless Optical Design
Complete Ring Detector Circuit
Caller ID Signal Detection
Snoop Circuitry
Integrated Hybrid
Small 32-Pin Plastic Package
PCMCIA Compatible
PCB Space and Cost Savings
compatible with all modem speeds including V.90
FCC compliant
Compatible with U.S. and International dial up
Phone lines
CTR-21 Compliant
Applications
Features
Description
Approvals
Optical Data Access Arrangement I.C.
Ordering Information
Part # Description
CPC5604A Data Access Arrangement,
Tape and Reel
CPC5604ATR Data Access Arrangement,
Tape and Reel
Block Diagram
Transconductance
Stage
2-4 Wire Hybrid
AC/DC Termination
Hookswitch
Isolation Barrier
Vref
AGC
Vref
AGC
Snoop Amplifier
Receive Isolation Amplifier
Transmit Isolation Amplifier
TIP+
RING-
Transmit
Diff.
Amplifier
Receive
Diff.
Amplifier
CID/
RING
MUX
Tx+
Tx-
OH
RING
CID
Rx+
Rx-
Current Limit Control
AC Impedance Control
VI Slope Control
C
S
C
S
R
SNOOP
R
SNOOP
Page 2
www.clare.com
2
CPC5604
XXX
Table of Contents
Table 1 - Performance Specifications ........................................................................................................................3
Table 1 - Performance Specifications (Continued) ....................................................................................................4
Table 2 - Package Pinout ..........................................................................................................................................5
Applications ................................................................................................................................................................6
North American Reference Design Schematic ....................................................................................................6
Table 3 - North American Reference Design Bill of Materials....................................................................................7
International Reference Design Schematic................................................................................................................8
Table 4 - International Reference Design Bill of Materials ........................................................................................9
CTR-21 Reference Design Schematic ....................................................................................................................10
Table 5 - Reference Design Schematic Bill of Materials ..........................................................................................11
CTR-21 with Exceptions Reference Design Schematic ..........................................................................................12
Table 6 - CTR-21 with Exceptions Reference Design Bill of Materials ..................................................................13
Introduction ..............................................................................................................................................................14
Ring Detection via Snoop Circuit........................................................................................................................14
Caller ID (CID) Detection via Snoop Circuit ......................................................................................................14
Hook Switch Control ..........................................................................................................................................14
Transmit Signal ..................................................................................................................................................14
Receive Signal Path ................................................................................................................................................15
Transmit Signal Path ................................................................................................................................................15
Ring Signal Detection ..............................................................................................................................................16
Figure 3 - Caller ID Protocol ....................................................................................................................................17
DC Charcteristics......................................................................................................................................................17
Figure 4 - Outlook DC Resistance Tip/Ring Setup ..................................................................................................18
On-Hook Resistance ................................................................................................................................................18
Current Limiting ........................................................................................................................................................18
CTR-21 Compliance ................................................................................................................................................18
AC Characteristics ....................................................................................................................................................18
Differential and Single Ended Mode ........................................................................................................................19
Receive and Transmit Frequency Response ..........................................................................................................19
Figure 4C - Transmit Frequency Response Setup ..................................................................................................20
Figure 4D - Transmit Frequency Response Tx±......................................................................................................20
Distortion ..................................................................................................................................................................21
Figure 5C - Transmit Distortion Text Tx± to Tip/Ring Setup ....................................................................................22
Figure 5D - Transmit Distortion on Tip/Ring ............................................................................................................22
Trans-Hybrid Loss ....................................................................................................................................................23
Page 3
CPC5604
www.clare.com
3
XXX
Table of Contents (Continued)
Return Loss ..............................................................................................................................................................24
Snoop Mode Frequency Response..........................................................................................................................25
Snoop Mode Distortion ............................................................................................................................................26
Snoop Mode Common Mode Rejection Ratio (CMRR) ..........................................................................................27
Country Specific Component Values........................................................................................................................28
Interconnection to Rockwell 56K Chipset ................................................................................................................29
Interconnection to Lucent 56K Chipset ....................................................................................................................30
Mechanical Dimensions............................................................................................................................................31
Page 4
www.clare.com
CPC5604
XXX
Electrical Characteristics
Absolute Maximum Ratings are stress ratings. Stresses in excess of these ratings can cause permanent damage to the device. Functional operation of the device at these or any other conditions beyond those indicated in the operational sections of this data sheet is not implied. Exposure of the device to the absolute maximum ratings for an extended period may degrade the device and effect its reliability.
4
PARAMETER MIN TYP MAX UNIT CONDITION
DC Characteristics
Operating Voltage V
CC
4.75 5 5.25 V Modem Side
Operating Current I
CC
- - 15 mA Modem Side
Operating Voltage V
DD
3.5 - 5.25 V From Tip and Ring
Operating Current I
DD
- - 5 mA Drawn from Tip and Ring
On-Hook Characteristics
DC Resistance (metallic) 10 - - M Tip to Ring, 100VDC Applied DC Resistance (longitudinal) 10 - - M 150VDC Applied from Tip and Ring
to Earth GND Ring Signal Detection at 68 Hz* 5 - - V Ring Signal Applied to Tip and Ring Ring Signal Detection at 15 Hz* 28 - - V Ring Signal Applied to Tip and Ring Snoop Circuit Frequency Response* 600 - 4000 Hz 3dB Corner Frequency Snoop Circuit CMRR - -40 - dB 120V
RMS
60Hz Common
Mode Signal on Tip/Ring
Ringer Equivalence - 0.1B - REN -
Longitudinal Balance 60 - - dB Per FCC Part 68.3
Off-Hook Characteristics
AC Impedance* - 600 - Tip to Ring Longitudinal Balance 40 - - dB Tip and Ring to Ground, per FCC part
68.3
Return Loss - 26 - dB Against 600, 1800Hz
Page 5
CPC5604
www.clare.com
XXX
3
Table 1 -Performance Specifications (continued)
PARAMETER MIN TYP MAX UNIT CONDITION
Transmit/Receive Characteristics
Frequency Response* 30 - 4000 Hz 3dB corner frequency Trans-Hybrid Loss* - 30 - dB Against 600resistive, 1800Hz Transmit Insertion Loss* -1 0 1 dB ­Receive Insertion Loss* -1 0 1 dB ­Average In-band Noise - -100 - dB 4kHz Flat bandwidth Harmonic Distortion - - -80 dB -3dBm, 600Hz, 2nd Harmonic Transmit Level* - - 0 dBm Single Tone Sine Wave Receive Level* - - 0 dBm Single Tone Sine Wave Rx+/Rx- Output Drive Current - - 0.5 mA Sink and Source Tx+/Tx- Input Impedance 60 90 120 k -
Isolation Characteristics
Isolation Surge Voltage 1500 - - V
SURGE
Line Side to Modem Side
Surge Rise Time 2000 - - V/µs No Damage via T/R
Control Logic (OH, CID, RING)
Input Threshold Voltage 0.8 - 2.0 V High Level Input Current - - -20 µA Low Level Input Current -100 - - µA Output High Voltage V
CC
-0.4 - - V 1Mto Ground Output Low Voltage - - 0.4 V 1Mto VCC Isolation Voltage - 1500 V
RMS
Tip/Ring Current (continuous) 10 - 120 mA Total Package Dissipation - 1 W Operational Temperature -20 - +85 °C Storage Temperature -40 - +125 °C Soldering Temperature
(10 seconds Max) - +220 °C
Unless Otherwise Noted all Specifications @ 25oC. * Refer to Typical Application Circuit.
Page 6
www.clare.com
6
CPC5604
XXX
Pin # Name Function
1VCCHost power supply, +5 Volts +/-5%.
2 TXF1 TX isolation amplifier output.
3 TX - NEG differential transmit signal into DAA.
4 TX+ POS differential transmit signal into DAA.
5 TX TX differential amplifier input.
6 NC Not Connected.
7 GND Connect to host analog ground.
8 OH Driving this signal low asserts the off-hook condition.
9 RING Active low indicates an incoming half waved ring signal
pulsed High to Low at the ring frequency-typically 20Hz.
10 CID Driving this signal low places the Caller ID information
on the RX pins when the DAA is on hook (OH is deasserted).
11 RX- NEG differential analog receive signal from the tele-
phone line and must be AC coupled with a 0.1 uF capacitor.
12 RX+ POS differential analog receive signal from the tele-
phone line and must be AC coupled with a 0.1 uF capacitor.
13 SNP+ One of two differential snoop inputs.
14 SNP- One of two differential snoop inputs.
15 RXF Receive photodiode amplifier output.
16 RX Receive photoamplifier summing junction.
17 V
DD
Power supply for line side portion of CPC5604.
18 RXS Receive photodiode servo input.
19 RPB Sets receive LED prebias current.
20 BR- Return to bridge rectifier negative output.
21 ZDC Sets electronic inductor DCR/Current Limit.
22 DCF DC Filter Point.
23 DCS VI slope control via external resistor.
24 REF 1.25V internal voltage reference.
25 GAT Depletion MOSFET gate control.
26 NTS Receive signal input path via Tip and Ring.
27 BR- Return to bridge rectifier negative output.
28 TXS Receive photodiode amplifier input.
29 ZNT Sets DAA impedance via external passive network.
30 ZTX Transmit Transconductance gain setting pin.
31 TXF2 Receive photodiode amplifier output.
32 BR- Return to bridge rectifier negative output.
1 2 3 4 5 6 7 8
9 10 11 12 13 14 15 16
32
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17
VCC
TXF1
TX-
TX+
TX
NC
GND
OH
RING
CID
RX-
RX+
SNP+
SNP-
RXF
RX
BR-
TXF2
ZTX ZNT TXS
BR­NTS GAT REF
DCS DCF ZDC
BR-
RPB RXS VDD
Table 2 -Package Pinout
Page 7
CPC5604
www.clare.com 7
XXX
C6
220pF
2000V
8
9
10111213141516
VCC
TXF1
TX-
TX+TXNC
GNDOHRING
CID
RX-
RX+
SNP+
SNP-
RXF
RX
BR-
TXF2
ZTX
ZNT
TXS
BR-
NTS
GAT
REF
DCS
DCF
ZDC
BR-
RPB
RXS
VDD
U1
CPC5604
1234567
191817
232221
20
25
24
32313029282726
C7
220pF
2000V
R5
1.5M
R6
1.5M
C8
R10
10M
0.1uF
R11
10K
C10
0.001uF
500V
R20
1.6M
R14
R7
150K
C2
0.1uF
R2
200K
C3
0.1uF
Q1
MOSFET
CPC5602C
806K
TX-
TX+
OH
RING
CID
RX+
RX-
R3
150K
C4
0.1uF
R1
604K
G
2
3
D
S
R19
12M
0.250W
TIP
RING
D1
~
~
-
+
SP1
P3100SB
4
1
3
2
R15
100
R16
8.2
R13
806K
R17
300
ALL RESISTORS ARE .100W
UNLESS OTHERWISE NOTED
R4
1M
.063W
.063W
1
C5
0.1uF
C11
0.47uF
Tant
R18
604
C1
0.1uF
R12
402K
Drawn: Date:
Company:
Title:
Rev:
JC/MG
10/27/99
B
CP Clare Corp.
U.S. Reference Design
VCC
C24
0.01uF
R36
4.7
Applications
North American Reference Design Schematic
Page 8
www.clare.com
8
CPC5604
XXX
Table 3 - North American Reference Design Bill of Materials
QTY. Designation Description Manufacturer Package Type
1 U1 CPC5604A Clare 32 Lead SOIC
1 Q1 CPC5602C Clare SOT-223
1 R1 604k 1% Res. Meritek ‘0603
1 R18 604 ohm 1% Res. Meritek ‘0603
1 R2 200k 5% Res. Meritek ‘0603
1 R4 1M 5% Res Meritek 0603
2 R3, R7 150k 5% Res. Meritek ‘0603
2 R5, R6 1.5M 5% Res. Meritek ‘1206
1 R11 10 K 5% Res. Meritek ‘0603
1 R12 402k 1% Res. Meritek ‘0603
1 R15 100 ohm 5% Res. Meritek ‘0603
2 R13, R14 806K 1% Res. 0.063W Meritek ‘0603
1 R16 8.2 5% Res. 1/8W Meritek ‘0603
1 R17 300 ohm 5% Res. Meritek ‘0603
1 R10 10M 5% Res. Meritek ‘0603
1 R19 12M 5% Res. 0.25W Meritek ‘1206
1 R20 1.6M 5% Res. Meritek ‘0805
1 R36 4.7 ohm 5% Res 1/8W Meritek ‘0603
5 C1, C2, C3, C4, C5 0.1 uf 50V 10% X7R Tecate ‘0805
2 C6, C7 220 pf 2000V NPO 5% Tecate 1808
1 C8 0.1uf 50V 10% X7R Tecate ‘0805
1 C10 0.001uf 500V10% X7R Tecate 1206
1 C11 0.47uf 25V Tant 10% Panasonic SMD
1 C24 .010 uf 50V 10% X7R Tecate 0805
1 D1 Bridge Rectifier Shindengen N/A
1 SP1 Surge Protection Teccor D0-214AA
32 TOTAL
Page 9
CPC5604
www.clare.com 9
XXX
International Reference Design Schematic
C6
220pF
2000V
8
9
10111213141516
VCC
TXF1
TX-
TX+TXNC
GNDOHRING
CID
RX-
RX+
SNP+
SNP-
RXF
RX
BR-
TXF2
ZTX
ZNT
TXS
BR-
NTS
GAT
REF
DCS
DCF
ZDC
BR-
RPB
RXS
VDD
U1
CPC5604
1234567
191817
232221
20
25
24
32313029282726
C7
220pF
2000V
R5
1.5M
R6
1.5M
C8
R10
10M
0.1uF
R11
10K
C10
0.001uF
500V
R20
1.6M
R14
R7
150K
C1
0.1uF
C2
0.1uF
R2
200K
C3
0.1uF
Q1
MOSFET
CPC5602C
806K
TX-
TX+
OH
RING
CID
RX+
RX-
R3
150K
C4
0.1uF
R1
604K
G
2
3
D
S
R19
12M
0.250W
TIP
RING
D1
~
~
-
+
SP1
P3100SB
4
1
3
2
OPTIONAL:
SOFTWARE PROGRAMMABLE
CIRCUIT
R15
100
R16
22.1
R12
402K
R13
806K
R17
300
8.2K
0.250W
0.47uF
300V
R24*
C14*
Z1*
Z2*
2
3
3
2
D2 *
2
3
16
15
14
12
11
10
9
13
R25
590
R28 Open
R30
C16 Open
R27
0 ohm
R29
R31
R32
R33
12.1
BIT1
BIT2
BIT3
BIT4
BIT5
BIT6
BR-
8
7
3
1
2
U4
DATA_IN
R23
470
R21*
R22*
0 Ohm
10K
CPC5601
B
A
ALL RESISTORS ARE .100W
UNLESS OTHERWISE NOTED
C17
N/C
6
R4
1M
.063W
.063W
1
/
8
W
R18
604
1
C5
0.1uF
C11
0.47uF
Tant
Drawn: Date:
Company:
Title:
Rev:
JC/MG
10/2799
B
CP Clare Corp.
International Reference Design
VCC
VCC
R34
0 ohm
Open
OPEN
Open
Open
Open
Open
C15 Open
R26 0 ohm
C24
0.01uF
* Required for external ring detect only.
R36
4.7
Page 10
www.clare.com
10
CPC5604
XXX
Table 4 - International Reference Design Bill of Materials
QTY. Designation Description Manufacturer Package Type
1 U1 CPC5604A Clare 32 Lead SOIC 1 U4 CPC5601D Clare SO16 1 Q1 CPC5602C Clare SOT-223 1 R1 604k 1% Res. Meritek ‘0603 1 R18 604 ohm 1% Res. Meritek ‘0603 1 R2 200k 5% Res. Meritek ‘0603 1 R4 1M 5% Res. Meritek 0603 2 R3, R7 150k 5% Res. Meritek ‘0603 2 R5, R6 1.5M 5% Res. Meritek ‘1206 2 R11, R21 10 K 5% Res. Meritek ‘0603 1 R12 402k 1% Res. Meritek ‘0603 1 R15 100 ohm 5% Res. Meritek ‘0603 2 R13, R14 806K 1% Res. 0.063W Meritek ‘0603 1 R16 22.1 1% Res. 1/8W Meritek ‘0603 1 R17 300 ohm 5% Res. Meritek ‘0603 1 R10 10M 5% Res. Meritek ‘0603 1 R19 12M 5% Res. 0.25W Meritek ‘1206 1 R20 1.6M 5% Res. Meritek ‘0805 1 R23 470 ohm 5% Res. Meritek ‘0603 1 R24 8.2k 5% Res. 0.25W Meritek ‘0603 5 R22, R29, R30, R31, R32 Open - ‘0603 1 R25 590 ohm 5% Res. Meritek ‘0603 1 R26 0 ohm Res. Meritek ‘0603 1 R27 0 ohm Res. Meritek ‘0603 1 R28 Open - ‘0603 1 R33 12.1 ohm 1% Res. Meritek ‘0603 1 R34 0 ohm 5% Res. Meritek ‘0603 1 R36 4.7 ohm 5% Res 1/8W Meritek ‘0603 5 C1, C2, C3, C4, C5 0.1 uf 50V 10% X7R Tecate ‘0805 2 C6, C7 220 pf 2000V NPO 5% Tecate 1808 1 C8 0.1uf 50V 10% X7R Tecate ‘0805 1 C10 0.001uf 500V10% X7R Tecate 1206 1 C11 0.47uf 25V Tant 10% Panasonic SMD 1 C14 .47uf 300V Tecate 1812 1 C15 Open - ‘0805 1 C16 0.0047uf 50V 10% X7R Tecate ‘0805 1 C17 Open for future use - ‘0805 1 C24 0.01uf 50V 10% X7R Tecate 0805 1 SP1 Surge Protection Teccor D0-214AA 2 Z1, Z2 Zener 20V Rohm SOT-23 1 D1 Bridge Rectifier Shindengen N/A 1 D2 Diode BAS16 Rohm SOT-23 53 TOTAL
Page 11
CPC5604
www.clare.com
11
XXX
CTR-21 Reference Design Schematic
C6
220pF
2000V
8
9
10111213141516
VCC
TXF1
TX-
TX+TXNC
GNDOHRING
CID
RX-
RX+
SNP+
SNP-
RXF
RX
BR-
TXF2
ZTX
ZNT
TXS
BR-
NTS
GAT
REF
DCS
DCF
ZDC
BR-
RPB
RXS
VDD
U1
CPC5604
1234567
191817
232221
20
25
24
32313029282726
C7
220pF
2000V
R5
1.5M
R6
1.5M
C8
R10
10M
0.1uF
R11
10K
C10
0.001uF
500V
R20
1.6M
R14
R7
150K
C2
0.1uF
R2
200K
C3
0.1uF
Q1
MOSFET
CPC5602C
806K
TX-
TX+
OH
RING
CID
RX+
RX-
R3
150K
C4
0.1uF
R1
604K
G
2
3
D
S
R19
12M
0.250W
TIP
RING
D1
~
~
-
+
SP1
P3100SB
4
1
3
2
R15
100
R16
22.1
R13
806K
R17
300
ALL RESISTORS ARE .100W
UNLESS OTHERWISE NOTED
R4
1M
.063W
.063W
1
C5
0.1uF
C11
0.47uF
Tant
R18
604
C1
0.1uF
1
2
3
6
5
4
CTRL
R12
402K
U2
Drawn: Date:
Company:
Title:
Rev:
JC/MG
10/27/99
B
CP Clare Corp.
CTR21 Reference Design
VCC
R21
12.1
C24
0.01uF
R36
4.7
C25
Page 12
www.clare.com
12
CPC5604
XXX
Table 5 - CTR-21 Reference Design Bill of Materials
QTY. Designation Description Manufacturer Package Type
1 U1 CPC5604A Clare 32 Lead SOIC 1 Q1 CPC5602C Clare SOT-223 1 R1 604k 1% Res. Meritek ‘0603 1 R4 1M 5% Res. Meritek 0603 1 R18 604 ohms 1% Res. Meritek ‘0603 1 R2 200k 5% Res. Meritek ‘0603 2 R3, R7 150k 5% Res. Meritek ‘0603 2 R5, R6 1.5M 5% Res. Meritek ‘1206 1 R11 10 K 5% Res. Meritek ‘0603 1 R12 402k 1% Res. Meritek ‘0603 1 R15 100 ohm 5% Res. Meritek ‘0603 2 R13, R14 806K 1% Res. 0.063W Meritek ‘0603 1 R16 22.1 5% Res. 1/8W Meritek ‘0603 1 R17 300 ohm 5% Res. Meritek ‘0603 1 R10 10M 5% Res. Meritek ‘0603 1 R19 12M 5% Res. .25W Meritek ‘1206 1 R20 1.6M 5% Res. Meritek ‘0805 1 R21 12.1 5% Res. 0.063W Meritek ‘0603 1 R36 4.7 ohm 5% Res 1/8 W Meritek ‘0603 5 C1, C2, C3, C4, C5 0.1 uf 50V 10% X7R Tecate ‘0805 2 C6, C7 220 pf 2000V NPO 5% Tecate 1808 1 C8 0.1uf 50V 10% X7R Tecate ‘0805 1 C10 0.001uf 500V10% X7R Tecate 1206 1 C11 0.47uf 25V Tant 10% Panasonic SMD 1 C24 0.01uf 50V 10% X7R Tecate ‘0805 1 D1 Bridge Rectifier Shindengen N/A 1 SP1 Surge Protection Teccor D0-214AA 1U2 4N35 34 TOTAL
Page 13
CPC5604
www.clare.com
13
XXX
CTR-21 with Exceptions Reference Design Schematic
C6
220pF
2000V
8
9
10111213141516
VCC
TXF1
TX-
TX+TXNC
GNDOHRING
CID
RX-
RX+
SNP+
SNP-
RXF
RX
BR-
TXF2
ZTX
ZNT
TXS
BR-
NTS
GAT
REF
DCS
DCF
ZDC
BR-
RPB
RXS
VDD
U1
CPC5604
1234567
191817
232221
20
25
24
32313029282726
C7
220pF
2000V
R5
1.5M
R6
1.5M
C8
R10
10M
0.1uF
R11
10K
C10
0.001uF
500V
R20
1.6M
R14
R7
150K
C2
0.1uF
R2
200K
C3
0.1uF
Q1
MOSFET
CPC5602C
806K
TX-
TX+
OH
RING
CID
RX+
RX-
R3
150K
C4
0.1uF
R1
604K
G
2
3
D
S
R19
12M
0.250W
TIP
RING
D1
~
~
-
+
SP1
P3100SB
4
1
3
2
R15
100
R16
22.1
R13
806K
R17
300
ALL RESISTORS ARE .100W
UNLESS OTHERWISE NOTED
R4
1M
.063W
.063W
1
C5
0.1uF
C11
0.47uF
Tant
C1
0.1uF
1
2
3
6
5
4
CTRL
1
2
3
6
5
4
CTRL
R12
402K
R22
0 ohm
U3
U2
Drawn: Date:
Company:
Title:
Rev:
JC/MG
10/27/99
B
CP Clare Corp.
CTR21 with Exceptions Reference Design
VCC
R21
12.1
1
2
3
6
5
4
CTRL
U5
R35
Open
C18
0.0047uF
R18
604
C24
0.01uF
R36
4.7
Page 14
www.clare.com
14
CPC5604
XXX
QTY. Designation Description Manufacturer Package Type
1 U1 CPC5604A Clare 32 Lead SOIC 1 Q1 CPC5602C Clare SOT-223 1 R1 604k 1% Res. Meritek ‘0603 1 R18 604 ohm 1% Res. Meritek ‘0603 1 R2 200k 5% Res. Meritek ‘0603 1 R4 1M 5% Res Meritek 0603 2 R3, R7 150k 5% Res. Meritek ‘0603 2 R5, R6 1.5M 5% Res. Meritek ‘1206 1 R11 10 K 5% Res. Meritek ‘0603 1 R12 402k 1% Res. Meritek ‘0603 1 R15 100 ohm 5% Res. Meritek ‘0603 2 R13, R14 806K 1% Res. 0.063W Meritek ‘0603 1 R16 22.1 1% Res. 1/8W Meritek ‘0603 1 R17 300 ohm 5% Res. Meritek ‘0603 1 R10 10M 5% Res. Meritek ‘0603 1 R19 12M 5% Res. 0.25W Meritek ‘1206 1 R20 1.6M 5% Res. Meritek ‘0805 1 R21 12.1 1% Res. 0.063W Meritek ‘0603 1 R22 0 ohm Meritek ‘0603 1 R35 Open - ‘0603 1 R36 4.7 ohm 5% Res 1/8 W Meritek ‘0603 5 C1, C2, C3, C4, C5 0.1 uf 50V 10% X7R Tecate ‘0805 2 C6, C7 220 pf 2000V NPO 5% Tecate 1808 1 C8 0.1uf 50V 10% X7R Tecate ‘0805 1 C10 0.001uf 500V10% X7R Tecate 1206 1 C11 0.47uf 25V Tant 10% Panasonic SMD 1 C24 0.01uf 50V 10% X7R Tecate 0805 1 D1 Bridge Rectifier Shindengen N/A 1 SP1 Surge Protection Teccor D0-214AA 1 U2 4N35 1 U3 4N35 1 U5 4N35 38 TOTAL
Table 6 - CTR-21 with Exceptions Reference Design Bill of Materials
Page 15
CPC5604
www.clare.com
15
XXX
Introduction
The LITELINKTM(CPC5604) is a single package International Data Access Arrangement solution that is designed to be used in a variety of telephone applica­tions including high performance 56kbps (V.90) modems. The LITELINKTMuses advanced optical signal coupling techniques to provide the required electrical isolation between the telephone and the Customer Premises Equipment (CPE). The LITELINKTMdiffers from other solutions using optical or capacitive isolation techniques by including the barrier inside the IC pack­age, thus eliminating the need for external optocouplers or high-voltage capacitors in the data path resulting in overall reduced board space. The LITELINKTMhas been designed to meet or exceed the requirements of international regulatory agencies.
For international PTT compliance external passive com­ponents can be changed to meet different country requirements.
For added flexibility, a second device, the CPC5601, can be used in conjunction with the CPC5604 to offer a host programmable solution. The CPC5601 is pro­grammed serially through the host’s microcontroller. Using the CPC5601 along with the CPC5604 eliminates the need to change external passive components allow­ing for a flexible, fully international DAA.
Ring Detection via Snoop Circuit
While in the on-hook state (OH deasserted), an internal multiplexer turns on a “snoop” circuit that actively moni­tors the phone line for two conditions: incoming ring sig­nal and Caller ID (CID) information. The snoop circuit “snoops” the line continuously while drawing a low 2uA max. current from the telephone line thus meeting regu­latory requirements. When the central office (CO) places a ring signal on the telephone line, 90V
RMS
max, the RING output is pulsed from High to Low for 2 seconds at the same frequency as the AC signal, typically 20Hz, and restored to High during the 4 second delay. The ring detection circuitry is designed to reject false signaling from pulse dialing circuits or noise on the line.
Caller ID (CID) Detection via Snoop Circuit
CID is a service offered by the telephone company to provide caller information (i.e. the caller’s telephone number) to the called party. The CID signal is present on the telephone line after the first ring burst is sent from the CO. After this first ring burst is detected by the host,
the host asserts the CID line which automatically cou­ples the snoop circuit to the RX outputs on the LITELINK
TM
. After the CID signal is processed by the host, the host will deactivate the CID signal. At this point the host can answer the call by asserting the OH signal. Note that when the LITELINKTMgoes off-hook it auto­matically disconnects the snoop path from both RX and RING outputs. Signals appearing on the telephone line are now coupled through the optical isolation barrier in the LITELINKTMand not via the snoop path.
Hook Switch Control
The OH or off-hook input is used to place the DAA on or off-hook. When the input is High, the DAA is on-hook or ready to receive calls from the CO. In this mode the snoop circuitry is enabled as described above. Driving OH Low places the DAA off-hook allowing the CO sup­plied loop current to flow (120mA max.), indicating the DAA is answering or preparing to place a call.
Transmit Signal
Outgoing analog signals to be transmitted to the tele­phone lines are placed differentially on the TX+ and TX­inputs of the CPC5604. Transmit level from the user device is limited to 0dBm or 2.1Vp-p. The differential transmit signal is converted to a single ended signal by the CPC5604. The transmit signal is transferred across an optical barrier by an electrical-optical-electrical amplifier, which is transparent to the user. Variations in gain due to electrical-optical-electrical efficiency are vir­tually eliminated by an on-chip automatic gain control circuit which sets the input to output gain of the photo­diode amplifier to 1. This results in a TX insertion loss of +/- 1dB.
Page 16
www.clare.com
16
CPC5604
XXX
Signals to and from the telephone line to the LiteLink
TM
appear on Tip and Ring connections. The receive signal is extracted from the transmit signal via the 2-4 wire hybrid block. The receive signal is then converted to infrared light by the receive photodiode amplifier and LED front end. The intensity of the infrared light is modulated by the receive signal and this light is transferred across the electrical isolation barrier via reflective dome to a pho­todiode where the light is converted to a photocurrent. This photocurrent is a highly linear representation of the receive signal and is amplified and converted to a volt­age. This single ended voltage is converted to a differen­tial voltage signal where it is presented as RX+ and RX­and connects to the receive inputs of the host data pump.
Variations in gain due to quantum efficiency of the optics are virtually eliminated by an on chip AGC circuit which automatically sets the input to output gain of the pho­toamplifier to unity. This means that the receive signal on the telephone line is faithfully reproduced at the RX out­puts in terms of amplitude to within 2dB of the received signal. Distortion at the RX outputs is -80dB maximum at a receive level of -3dB over the band of 30Hz-4kHz.
Single supply operation requires that the RX outputs be biased at 2.5V DC, therefore, it is necessary to use 0.1uf blocking capacitors for coupling the receive signal to the host. Figures 2.4.A and 2.4.B. illustrate connection to the host differentially and single ended respectively.
Receive Signal Path (Refer to Block Diagram)
Figure 2A Connection To Host Differential (Receive)
Figure 2B Connection To Host Single Ended (Receive)
RX+
RX-
RX+
RX-
0.1uF
CPC5604A LITELINK
TM
HOST DATA PUMP/CODEC
SINGLE ENDED CONNECTION TO CPC5604A
RX+
RX-
RX+
RX-
0.1uF
0.1uF
CPC5604A LITELINK
TM
HOST DATA PUMP/CODEC
DIFFERENTIAL CONNECTION TO CPC5604A
Transmit Signal Path (Refer to Block Diagram)
Signals that are to be sent from the host to the tele­phone line are placed differentially on TX+ and TX-. The maximum value of the transmit signal should not exceed 0dBm or 2.18Vpp. The differential transmit sig­nal is converted to a single ended signal by the LiteLinkTM. This signal is coupled to the transmit photo­diode amplifier in a similar manner to the receive path.
At the output of this amplifier the voltage signal is cou­pled to a voltage to current converter via a transcon­ductance stage where the transmit signal modulates the telephone line loop current. As in the receive stage, the gain of the transmit photodiode amplifier is set to unity automatically thereby limiting insertion loss to 0±1dB. Figures 2C and 2D illustrate connection to the host dif­ferentially and single ended respectively.
TXA1
TXA2
-
+
0.1uf
0.1uf
HOST DATA PUMP/CODEC
SINGLE ENDED CONNECTION TO CPC5604A
CPC5604A LITELINKTM
TX-
TX+
Figure 2C Connection To Host Differential (Transmit)
Page 17
CPC5604
www.clare.com
17
XXX
Ring Signal Detection
The snoop circuit actively monitors the telephone line for 2 conditions:
1. Incoming ring signal
2. Caller ID information
The Snoop circuit “snoops” the line continuously while the LiteLinkTMis in the on-hook mode. Current taken from the telephone line in the on-hook condition by the LITELINKTMis maintained at a low 2uA maximum thus meeting regulatory requirements for minimum on-hook impedance limitation. When the central office places the ring signal on the telephone line, that signal is cou­pled through a pair of RC circuits to a differential ampli­fier in the LiteLinkTM.
Referring to Block Diagram, snoop capacitors connect­ed to the SNP1/SNP2 pins provide a high voltage isola­tion barrier between the host and the telephone line while coupling the AC signals to the snoop amplifier. The ring signal is digitized and brought out to the RING pin where the host can qualify it as a valid ring signal.
The ring detection threshold is dependent on the values of 3 external components: RRXF (R3), RSNOOP (R5 or R6), and CS (C6 or C7). The default values in the typi­cal bill of materials reflects the parameters in the data sheet for typical operation. If it is desired to change the threshold, the values can be selected by using the equation:
Where f = ring frequency typically 20Hz.
= 330E-3
(R
SNOOP)
2
+ 1
5R
RXF
(2πf CS)
2
V
RING(PEAK)
Figure 2D Connection To Host Single Ended (Transmit)
Care should be taken when using this equation since RRXF (R3), CS (C6 or C7), and RSNOOP (R5 or R6) affect receive gain and Caller ID gain. It is recom­mended that RRXF (R3) be set to the typical value and then after adjusting the ring detect threshold, check that CID gain is acceptable.
Caller ID Detection
Caller ID (CID) is a service offered by the telephone company to provide caller information (i.e. caller’s tele­phone number) to the called party. CID service is optional and signals only appear on the telephone lines of subscribers that pay for this feature. The CID infor­mation appears on the telephone line after the first ring burst is sent from the central office (CO).
Some of the characteristics of the CID signal are sum­marized below:
Parameter Value
Signal Level -13dBm Link Type Simplex, 2W Transmission Scheme Phase-coherent, FSK Logical 1 (mark) 1200±12Hz Logical 0 (Space) 2200± 22Hz Transmission Rate 1200bps Data serial binary async BER < 10E -5 Bit Duration 833±50uS (same for start/stop as
well)
Full details about the CID signal can be found in Bellcore document TR-TSY-000030, issue 1/1988.
Figure 2.7.A shows the CID timing diagram. Waveform #1 represents the Analog signals on the telephone line (amplitude not drawn to scale), waveform #2 is the dig­ital RING detect output from the LiteLinkTM, waveform #3 is the CID input to the LiteLinkTMfrom the Host. After the first ring burst is detected by the host, the host enables the CID line which automatically couples the snoop circuit to the RX outputs on the LiteLinkTM.
HOST DATA PUMP/CODEC
TXA1
TXA2
SINGLE ENDED CONNECTION TO CPC5604A
CPC5604A LITELINKTM
0.1uf TX-
TX+
0.1uf
-
+
Page 18
www.clare.com
18
CPC5604
XXX
2 s
500ms
3 s
475ms
1ST RING
RING
CID
2ND RING
SINE WAVE
CALLER ID MESSAGE
2 s
Figure 3 Caller ID Protocol
This CID signal is then processed by the host and, after processing, the host will deactivate the CID signal. At this point the host can answer the call if desired by asserting the OH pin on the LiteLinkTM. It’s important to note that when the LiteLinkTMgoes off-hook, it auto­matically disconnects the snoop path from both the RX and Ring outputs. Signals appearing on the telephone line are now coupled through the optical isolation barri­er in the LiteLinkTMand not via the capacitors in the snoop path.
CID gain from Tip and Ring to Rx+ and Rx- is deter­mined by:
Where f = CID signal frequency
For example, with RRXF = 75KW, RSNOOP = 1.4MW, CS = 220pF, and f = 600Hz calculated GAIN = 0.707 or a loss of -3dB at Rx+ and Rx-. This implies that the snoop frequency response is 600Hz. Gain is expressed in decibels by:
GAIN =
10 R
RXF
(R
SNOOP
)2+ 1
(2πf CS)
2
DC characteristics
The LiteLinkTMis designed to meet various country DC characteristics including the CTR-21 standard. The pins that control the VI characteristics and current limiting are designated ZDC and DCS. Meeting DC requirements are achieved by selecting the appropriate resistors R
ZDC
(R16) and R
DCS
(R20) respectively. Resistor values can also be switched in and out with the CPC5601device or optocouplers which enables international compliance under software control. Suggested resistor values for various countries are listed in table 1. The VI profile on Tip and Ring is described by the following equation:
V
LINE
= V
BRIDGE
+
R
DCS
+12M
(R
DCS
)
0.5V+ (I
LINE
- 8mA)R
ZDC
Example: I
LINE
= 20mA, V
BRIDGE
= 1.2V, R
DCS
=
1.69MW, R
ZDC
= 8W, V
LINE
= 6.0V.
Page 19
CPC5604
www.clare.com
19
XXX
Figure 4 On-Hook DC Resistance Tip/Ring Setup
LITELINKTM DAA Circuit
TIP
RING
100VDC
+
-
A
On-Hook Resistance
Figure 4 shows the test setup for on-hook DC resist­ance. The battery is set to 100VDC and an ammeter is placed in series with the battery connection. When the DAA is in the on-hook state, the leakage current is obtained and then the battery voltage is divided by this current yielding the on-hook resistance. The LiteLink
TM
is guaranteed to have a leakage current < 10uA at 100V which is equivalent to an on-hook resistance > 10M thus meeting regulatory approvals.
Current Limiting
The LiteLinkTMincludes a current limiting feature that is selectable via resistor R
ZDC
(R16). The current limit
value is set by the equation:
10 12
For US/Canada/Japan the recommended value for R
ZDC
(R16) is 8which yields a current limit value of 133mA. The current limiting feature is especially useful in the case where the host system is inadvertently con­nected to a digital PBX telephone port which usually has a very high current limit value. The current limiting capa­bility will prevent damage to the LiteLinkTMin this sce­nario.
1V
RZDC
1V
RZDC
CTR-21 Compliance
CTR-21 is the standard for connection of data commu­nications equipment to the European telephone net­work. The maximum current limit requirement in CTR-21 (Section 4.7.1) is 60mA and can be selected by the following equation:
ILM = + 8mA
Clare recommends current limit be set to 53mA using an R
ZDC
value of 22. Since VDDis regulated to +3.5V, excess power is dissipated in the external MOSFET package. Since the maximum off-hook line voltage and current in CTR-21 is 40V and 53mA respectively, the maximum power dissipated by the MOSFET is approxi­mately 2.1W.
AC Characteristics
In a similar manner to the DC characteristics, AC termi­nation impedance is set via R
ZNT
(R18). For all applica-
tions, a 604W resistor for R
ZNT
(R18) is required to
reflect 600W to the CO.
Page 20
www.clare.com
20
CPC5604
XXX
Differential and Single Ended Mode
The LiteLinkTMis designed to support either differential or single ended signals on Tx and/or Rx pins. The deci­sion of which topology to use is based on the particular chipset being used to drive the LiteLinkTM. For example, most Lucent modem chips require both differential
Receive and Transmit Frequency Response
Figures 4A and 4C show the test circuits for receive and transmit frequency response respectively. Figures
+3
+2.5
+2
+1.5
+1
+0.5
-0
-0.5
-1
-1.5
-2
-2.5
-3
-3.5
-4
-4.5
-5
Gain
(dBm)
20 50 100 200 500 1K 2K 4K
Frequency (Hz)
Figure 4A Receive Frequency Response Setup
LITELINKTM DAA Circuit
TIP
RING
500
10H
500 10H
48V
+
-
40mA Loop Current
IN1
IN2
AP1
Audio
Precision
Generator
-3dBm/
20Hz-4kHz
RX+
RX-
Audio
Precision
System One
Analyzer
100K
600
V
V
RX
T/R
INSERTION LOSS (dB) = 20 log (V / V )
RX T/R
OH
470
uF
receive and transmit ability, while most Rockwell devices require differential transmit and single ended receive. The LiteLinkTMsupports a full 0dBm differential signal on its Tx inputs.
4B and 4D show the graphs for receive and transmit fre­quency response respectively.
Figure 4B Receive Frequency Response Rx+
Page 21
CPC5604
www.clare.com
21
XXX
Figure 4C Transmit Frequency Response Setup
+3
+2.5
+2
+1.5
+1
+0.5
-0
-0.5
-1
-1.5
-2
-2.5
-3
-3.5
-4
-4.5
-5
Gain
(dBm)
20 50 100 200 500 1K 2K 4K
Frequency (Hz)
Figure 4D Transmit Frequency Response Tx±
TIP
RING
500 10H
500 10H
600
48V
+
-
40mA Loop Current
IN1
IN2
AP1
Audio
Precision
Generator
50
-3dBm/20Hz-4kHz
TX+
TX-
Audio
Precision
System
One
Analyzer
V
LITELINK
TM
DAA Circuit
INSERTION LOSS (dB) = 20 log (V / V )
TX
T/R
V
TX
T/R
OH
Page 22
www.clare.com
22
CPC5604
XXX
dB
Distortion
Figures 5A and 5C show the test setup for receive and transmit distortion. Figures 5B and 5.D show the THD at
Figure 5A Receive Distortion Test Tip/Ring to Rx± Setup
Figure 5B Receive Distortion on Rx±
TIP
RING
500 10H
500 10H
48V
+
-
40mA Loop Current
IN1
IN2
AP1
Audio
Precision
Generator
-9dBm/ 600Hz
RX+
RX-
Audio
Precision
System One
Analyzer
100K
600
LITELINK
TM
DAA Circuit
OH
470
uF
600Hz graphs for receive and transmit respectively. Transmit signal for this test is set to -9dBm.
Page 23
CPC5604
www.clare.com
23
XXX
Frequency (Hz)
dB
Figure 5C Transmit Distortion Test Tx± to Tip/Ring Setup
TIP
RING
500 10H
500 10H
600
48V
+
-
40mA Loop Current
IN1
IN2
AP1
Audio
Precision
Generator
50
-3dBm/600Hz
TX+
TX-
Audio
Precision
System
One
Analyzer
LITELINKTM DAA Circuit
OH
Figure 5D Transmit Distortion on Tip/Ring
Page 24
www.clare.com
24
CPC5604
XXX
+0
-2
-4
-6
-8
-10
-12
-14
-16
-18
-20
-22
-24
-26
-28
-30
-32
-34
-36
-38
-40
THL
(dBm)
500 1K 1.5K 2K
Frequency (Hz)
2.5K 3K 3.5K 4K
Trans-Hybrid Loss
As shown in Figure 6A, the Audio Precision, AP1 injects a signal into the Tx inputs and measures the energy at Rx with Tip and Ring terminated by a 600nominal
Audio
Precision
Generator
RX-
RX+
TIP
RING
500 10H
500 10H
500uf
600
48V
+
-
40mA Loop Current
Audio Precision
System One
Analyzer
100K
V
IN1
IN2
AP1
50
V
-3dBm/30Hz-4kHz
TX+
TX-
LITELINK
TM
DAA Circuit
THL = 20 log (V /V )
RX
TX
RX
TX
OH
Figure 6A Trans-Hybrid Loss (THL) Test Setup
Figure 6B Trans-Hybrid Loss at Rx± with -3dBm Signal on Tx± Matched to 600Impedance on T/R
impedance. The Tx input frequency is swept from 30Hz­4000Hz and the amplitude of the signal is measured on the Rx inputs and graphed in Figure 6B.
Page 25
CPC5604
www.clare.com
25
XXX
Return Loss
The return loss is a measure of impedance mismatch between a terminating impedance (DAA) and a source impedance (reference impedance). The AP measures the return loss vs. frequency with the addition of the bridge circuit show in Figure 7A. For this test, the refer-
Figure 7A Return Loss Test Setup
Figure 7B Return Loss
-10
-12
-14
-16
-18
-20
-22
-24
-26
-28
-30
-32
-34
-36
-38
-40
-42
-44
-46
-48
-50 500 1K 1.5K 2K 2.5K 3K 3.5K 4K
Frequency (Hz)
RL
(dBm)
+
-
Audio Precision System
One Analyzer
50
A
Audio Precision Generator
600
600
V
Z
LITELINK DAA Circuit
TIP
RING
500 10H
500 10H
48V
+
-
40mA Loop Current
0.1% Component tolerances should be used for accurate measurements
*Note:
TM
X
REF
RL (dB) = 20 log
V
X
V
GEN
-A+
+B-
GEN
V
OH
ence impedance is set by the 600nominal imped­ance, Z
REF
. The impedance that this is to be compared to is across Tip and Ring connections. The AP sweeps frequency and graphs frequency vs. return loss as shown in Figure 7B.
Page 26
www.clare.com
26
CPC5604
XXX
Snoop Mode Frequency Response
Figure 8A can be used as a reference test setup for this test with the difference being that the DAA is now in the on-hook mode. In the on-hook mode, the snoop circuit
Figure 8A Snoop Mode Frequency Response Setup
Figure 8B Snoop Mode Frequency Response At Rx±
+1
+0.8
+0.6
+0.4
+0.2
+0
-0.2
-0.4
-0.6
-0.8
-1
-1.2
-1.4
-1.6
-1.8
-2
-2.2
-2.4
-2.6
-2.8
-3
Gain
(dBm)
500 1K 1.5K 2K
Frequency (Hz)
2.5K 3K 3.5K 4K
LITELINKTM DAA Circuit
TIP
RING
IN1
IN2
AP1
Audio Precision Generator
RX+
RX-
Audio
Precision
System One
Analyzer
100K
600
V
V
RX
T/R
CID
path is the signal path from Tip and Ring to Rx through the capacitive barrier CS instead of the optical path. Snoop frequency response graph is shown in Figure 8B.
Page 27
CPC5604
www.clare.com
27
XXX
dBm
500 1K 1.5K 2K
2.5K 3K 3.5K 4K
Figure 9B Snoop Mode THD + N
Figure 9A Snoop Mode Distortion Setup
LITELINKTM DAA Circuit
TIP
RING
IN1
IN2
AP1
Audio
Precision
Generator
-13dbm 1800Hz
RX+
RX-
Audio
Precision
System One
Analyzer
100K
600
V
V
T/R
RX
CID
Snoop Mode Distortion
Figure 9A can be used for the snoop mode distortion test. Snoop mode operation requires that the DAA be in the on-hook state and the CID pin asserted (driven Low). Distortion in the snoop mode is not critical since
signals coupled through the snoop circuit are either 20Hz ring signals or FSK CID signals. A graph of THD+N for the snoop mode is shown in Figure 9B.
Page 28
www.clare.com
28
CPC5604
XXX
As a practical matter, CMRR is dependent on how well the external snoop network CS and RSNOOP are matched. It is recommended that capacitors CS (C6 or C7) be ceramic NPO (COG) type for excellent tempera­ture stability and have a tolerance of 5% or less. Resistor tolerance for RSNOOP (R5 or R6) should also be at least 5% or better.
Careful consideration should be taken related to PCB layout of the snoop network. Traces should be as short
+0
-2.5
-5
-7.5
-10
-12.5
-15
-17. 5
-20
-22.5
-25
-27.5
-30
-32.5
-35
-37.5
-40
-42.5
-45
-47.5
-50
-52.5
-55
-57.5
-60
CMRR (dBm)
5020 100 200 500 1K 2K 4K
Frequency (Hz)
Figure 10A Snoop Mode Common Mode Rejection Ratio Setup
RX-
RX+
TIP
RING
500 10H
500
10H
2.16uf
600
48V
+
-
40mA Loop Current
Audio Precision
System One
Analyzer
100K
V
IN1
IN2
AP1
LITELINK
TM
DAA Circuit
0dbm
Audio Precision Generator
RX
V
T/R
500uf
1%
matched
CID
Figure 10B Common Mode Rejection
as possible and kept equidistant from one another. Spacing of 0.1 should be maintained between traces on the phone line side. If possible, traces should be routed away from large 60Hz fields to prevent noise inducement into the snoop circuit.
Figure 10A shows the test setup for CMRR through the snoop signal path. For this test the LITELINKTMis on­hook and the frequency is swept from 20Hz to 4kHz. Figure 10B is a graph of CMRR vs. frequency.
Snoop Mode Common Mode Rejection Ratio (CMRR)
Page 29
CPC5604
www.clare.com
29
XXX
CTR-21 Countries:
UK
France
Germany
Spain
Switzerland
Italy
Luxembourg
Holland
Belgium
Netherlands
Australia
Country Specific Component Values
RZDC ZZNT
US/Far East 8.2W 600W
CTR-21 22.1W 600W
Page 30
www.clare.com
30
CPC5604
XXX
Interconnection to Rockwell 56k Chipset
C6 220pF 2000V
8
9 10 11 12 13 14 15 16
VCC TXF1 TX­TX+ TX NC GND OH RING CID RX­RX+ SNP+ SNP­RXF RX
BR-
TXF2
ZTX ZNT TXS
BR­NTS GAT REF
DCS DCF ZDC
BR-
RPB RXS VDD
U1
CPC5604
1 2 3 4 5 6 7
19 18 17
23 22 21 20
25 24
32 31 30 29 28 27 26
C7 220pF 2000V
R8
1.5M
R9
1.5M
C2
0.1uF
R5
200K
C3
0.1uF
R3
150K
R4
604K
ALL RESISTORS ARE .100W
UNLESS OTHERWISE NOTED
R4
1M
C5
0.1uF
C1
0.1uF
Drawn: Date:
Company:
Title:
Rev:
SM
6/24/99
A
CP Clare Corp.
Interconnection to Conexant(Rockwell) (CPC5600A1X)
VCC
Conexant MCU L2800
~Rly1(~OH)
~RLY4(~CALLID)
RINGD
70
32
6
Conexant MDP R6764
TXA1
TXA2
RiN
R1
10K
.063W
R2
10K
.063W
R3
20K
.063W
30
31
35
Interconnection diagram is based on the Conexant(Rockwell) RC56D Chip solution.
1. Conexant Chipsets rely on a 6dB loss between MDP and tip and ring. This is solved by placing the R1, R2, R3, resistor circuit in the Transmit Path and the use of a single end of the differential receive.
-6dB
1
-6dB
1
Refer to LITELINK reference schematics for typical line side circuit details.
Page 31
CPC5604
www.clare.com
31
XXX
Interconnection to Lucent 56k Chipset
C6 220pF 2000V
8
9 10 11 12 13 14 15 16
VCC TXF1 TX­TX+ TX NC GND OH RING CID RX­RX+ SNP+ SNP­RXF RX
BR-
TXF2
ZTX ZNT TXS
BR­NTS GAT REF
DCS DCF ZDC
BR-
RPB RXS VDD
U1
CPC5604
1 2 3 4 5 6 7
19 18 17
23 22 21 20
25 24
32 31 30 29 28 27 26
C7 220pF 2000V
R5
1.5M
R6
1.5M
C2
0.1uF
R2
200K
C3
0.1uF
R3
150K
C4
0.1uF
R1
604K
ALL RESISTORS ARE .100W
UNLESS OTHERWISE NOTED
R4
1M
C5
0.1uF
C1
0.1uF
Drawn: Date:
Company:
Title:
Rev:
SM
6/24/99
A
CP Clare Corp.
Interconnection To Lucent (CPC5600A1X)
VCC
Lucent Technologies Ven us DSP1670_160_MQFP
RIDETN
OHRCN
CIDN
AOUTP
AOUTN
AINP
AINN
43
61
62
8
7
11
10
Lucent Technologies CSP1034_MFQP
0dB
0dB
1
1
1. Lucent chips expect a zero dB drop between the codec and Tip and Ring.
Refer to LITELINK reference schematics for typical line side circuit details
Page 32
www.clare.com
32
CPC5604
XXX
Dimensions
mm
(inches)
Mechanical Dimensions
10.287 + .254
(0.405 + 0.010)
7.493 + 0.076
(0.295 + 0.003)
10.363 + 0.127 (0.408 + 0.005)
0.635 + 0.076
(0.025 + 0.003)
0.330 + 0.051
(0.013 + 0.002)
9.525 + 0.076
(0.375 + 0.003)
2.032 Typ.
(0.080 Typ.)
1.981 + 0.051
(0.078 + 0.002)
0.051 + 0.051
(0.002 + 0.002)
Coplaner to A 0.08/(0.003) 32 PL.
A
7.239 + 0.051
(0.285 + 0.002)
0.203
(0.008)
1.016 Typ.
(0.040 Typ.)
0.635 x 45
o
(0.025 x 45o)
11.380 (0.448)
1.650
(0.065)
9.730
(0.383)
0.330
(0.013)
0.635
(0.025)
Recommended Pad Layout
32 Pin SOIC
Page 33
Specification: ANDS-CPC5604-XX ©Copyright 2001, Clare, Inc. All rights reserved. Printed in USA. 6/26/01
CLARE LOCATIONS
Clare Headquarters 78 Cherry Hill Drive Beverly, MA 01915 Tel: 1-978-524-6700 Fax: 1-978-524-4900 Toll Free: 1-800-27-CLARE
Clare Micronix Division 145 Columbia Aliso Viejo, CA 92656-1490 Tel: 1-949-831-4622 Fax: 1-949-831-4628
Clare Switch Division 4315 N. Earth City Expressway Earth City, MO 63045 Tel: 1-314-770-1832 Fax: 1-314-770-1812
SALES OFFICES
AMERICAS
Americas Headquarters
Clare 78 Cherry Hill Drive Beverly, MA 01915 Tel: 1-978-524-6700 Fax: 1-978-524-4900 Toll Free: 1-800-27-CLARE
Eastern Region
Clare 603 Apache Court Mahwah, NJ 07430 Tel: 1-201-236-0101 Fax: 1-201-236-8685 Toll Free: 1-800-27-CLARE
Central Region
Clare Canada Ltd. 3425 Harvester Road, Suite 202 Burlington, Ontario L7N 3N1 Tel: 1-905-333-9066 Fax: 1-905-333-1824
Western Region
Clare 1852 West 11th Street, #348 Tracy, CA 95376 Tel: 1-209-832-4367 Fax: 1-209-832-4732 Toll Free: 1-800-27-CLARE
Canada
Clare Canada Ltd. 3425 Harvester Road, Suite 202 Burlington, Ontario L7N 3N1 Tel: 1-905-333-9066 Fax: 1-905-333-1824
EUROPE
European Headquarters
CP Clare nv Bampslaan 17 B-3500 Hasselt (Belgium) Tel: 32-11-300868 Fax: 32-11-300890
France
Clare France Sales Lead Rep 99 route de Versailles 91160 Champlan France Tel: 33 1 69 79 93 50 Fax: 33 1 69 79 93 59
Germany
Clare Germany Sales ActiveComp Electronic GmbH Mitterstrasse 12 85077 Manching Germany Tel: 49 8459 3214 10 Fax: 49 8459 3214 29
Italy
C.L.A.R.E.s.a.s. Via C. Colombo 10/A I-20066 Melzo (Milano) Tel: 39-02-95737160 Fax: 39-02-95738829
Sweden
Clare Sales Comptronic AB Box 167 S-16329 Spånga Tel: 46-862-10370 Fax: 46-862-10371
United Kingdom
Clare UK Sales Marco Polo House Cook Way Bindon Road Taunton UK-Somerset TA2 6BG Tel: 44-1-823 352541 Fax: 44-1-823 352797
ASIA/PACIFIC
Asian Headquarters
Clare Room N1016, Chia-Hsin, Bldg II, 10F, No. 96, Sec. 2 Chung Shan North Road Taipei, Taiwan R.O.C. Tel: 886-2-2523-6368 Fax: 886-2-2523-6369
http://www.clare.com
Worldwide Sales Offices
Clare, Inc. makes no representations or warranties with respect to the accuracy or completeness of the contents of this publication and reserves the right to make changes to specifications and product descriptions at any time without notice. Neither circuit patent licenses nor indemnity are expressed or implied. Except as set forth in Clare’s Standard Terms and Conditions of Sale, Clare, Inc. assumes no liability whatsoever, and disclaims any express or implied warranty, relating to its products including, but not limit­ed to, the implied warranty of merchantability, fitness for a partic­ular purpose, or infringement of any intellectual property right.
The products described in this document are not designed, intended, authorized or warranted for use as components in sys­tems intended for surgical implant into the body, or in other appli­cations intended to support or sustain life, or where malfunction of Clare’s product may result in direct physical harm, injury, or death to a person or severe property or environmental damage. Clare, Inc. reserves the right to discontinue or make changes to its products at any time without notice.
Loading...