Danfoss TT350, TT300, TT400, TG310, TG390 Installation Manual

...
Applications and Installation Manual - Revision N
®
Danfoss Turbocor® Twin-Turbine Centrifugal Compressors
TT & TG Series Compressors
http://turbocor.danfoss.com
THIS PAGE INTENTIONALLY LEFT BLANK
M-AP-001-EN Rev. N
Content
1 Introduction ........................................................................................................................................9
1.1 Scope ........................................................................................................................................................................................................9
1.2 Organization of this Manual ..............................................................................................................................................................9
1.3 Document Symbols ........................................................................................................................................................................... 10
1.4 Denitions ............................................................................................................................................................................................. 11
2 Overview of the TT/TG Compressor ................................................................................................15
2.1 TT/TG Compressor Nomenclature ................................................................................................................................................ 15
2.2 Refrigerant Type .................................................................................................................................................................................. 15
2.2.1 TG Series ..................................................................................................................................................................................... 15
2.3 Environment ........................................................................................................................................................................................ 16
2.4 Congurations of the TT/TG Compressor Models .................................................................................................................. 16
2.5 Compressor Module .......................................................................................................................................................................... 17
3 Functional Description ....................................................................................................................19
3.1 Main Fluid Path ...................................................................................................................................................................................19
3.2 Motor Cooling ..................................................................................................................................................................................... 20
3.3 Inlet Guide Vanes ............................................................................................................................................................................... 22
3.4 Compressor Control Overview ..................................................................................................................................................... 22
3.4.1 Motor Drive System ................................................................................................................................................................ 23
3.4.2 Soft-Start Board ....................................................................................................................................................................... 23
3.4.3 Bearing Motor Compressor Controller ............................................................................................................................ 23
3.4.4 Compressor Control ................................................................................................................................................................ 23
3.4.5 Capacity Control ....................................................................................................................................................................... 23
3.4.6 Expansion Valve Control ........................................................................................................................................................ 24
3.4.7 Motor/Bearing Control ........................................................................................................................................................... 24
3.4.8 Monitoring Functions ............................................................................................................................................................. 24
3.4.9 Abnormal Conditions ............................................................................................................................................................ 24
3.4.10 Bearing PWM Amplier ...................................................................................................................................................... 25
3.4.11 Serial Driver ............................................................................................................................................................................. 25
3.4.12 Backplane ................................................................................................................................................................................ 25
3.4.13 High-Voltage DC-DC Converter ....................................................................................................................................... 26
3.5 Magnetic Bearing System ............................................................................................................................................................... 26
3.5.1 Overview .................................................................................................................................................................................... 26
3.5.2 Bearing Control System ........................................................................................................................................................ 26
4 Control Interface Wiring ...................................................................................................................28
4.1 Control Wiring Connection Guidelines ...................................................................................................................................... 29
4.2 Interface Cable ................................................................................................................................................................................... 30
4.3 Compressor I/O Board Mounting Details .................................................................................................................................. 31
4.3.1 Compressor I/O Board - Mounting Instructions ........................................................................................................... 31
5 General Specications ......................................................................................................................33
5.1 Construction ........................................................................................................................................................................................ 33
5.2 Maximum Pressure ............................................................................................................................................................................ 33
5.3 Maximum Discharge Temperature ............................................................................................................................................... 34
5.4 Suction Pressure Limits ................................................................................................................................................................... 35
5.5 Codes and Standards Compliance .............................................................................................................................................. 35
6 Electrical Specications ...................................................................................................................37
6.1 Supply Voltage and Frequency..................................................................................................................................................... 37
6.2 Compressor Current Limit and Operating Range Settings.................................................................................................37
6.3 Disconnects ......................................................................................................................................................................................... 38
6.4 Motor Insulation Class ..................................................................................................................................................................... 39
6.5 AC Input Line/Power Electronic Component Protection .................................................................................................... 39
6.6 Power Line Contactor.......................................................................................................................................................................39
6.7 CE Compliance and EMI/EMC Filtering ...................................................................................................................................... 39
6.8 Surge Protection ................................................................................................................................................................................ 40
6.9 Harmonic Filtering (IEEE 519) ........................................................................................................................................................ 40
6.10 Grounding (Earth) Connection Guidelines ............................................................................................................................ 40
6.11 Equipment Panel ............................................................................................................................................................................. 41
6.12 Mains Input Cable Specication ................................................................................................................................................ 42
6.13 Idle Power Consumption .............................................................................................................................................................. 42
7 Compressor Performance ................................................................................................................43
7.1 Performance Ratings ......................................................................................................................................................................... 43
7.2 Tolerance of Performance Ratings ................................................................................................................................................ 43
M-AP-001-EN Rev. N
Content
8 Operating Envelopes ........................................................................................................................45
9 Minimum Unloading Capacity .........................................................................................................51
10 Control Logic Guidelines for Multiple Compressors ....................................................................53
11 Product Certication ......................................................................................................................55
12 Guide Specications .......................................................................................................................57
12.1 General................................................................................................................................................................................................ 57
12.2 Refrigerant ......................................................................................................................................................................................... 57
12.3 Compressor Bearings ..................................................................................................................................................................... 57
12.4 Capacity Control .............................................................................................................................................................................. 57
12.5 Compressor Motor .......................................................................................................................................................................... 57
12.6 Compressor Electronics ................................................................................................................................................................ 57
12.6.1 Ancillary Devices ................................................................................................................................................................... 57
13 System Design Guidelines .............................................................................................................59
13.1 General Requirements .................................................................................................................................................................. 59
13.2 Economizer Option ........................................................................................................................................................................ 60
13.3 Motor/Electronics Cooling Requirements ............................................................................................................................. 60
13.4 Electrical Requirements ................................................................................................................................................................ 61
13.5 Application-Specic Requirements .......................................................................................................................................... 61
13.5.1 Medium Evaporating Temperature Application (TT300) ....................................................................................... 61
13.5.2 Low Lift Application ............................................................................................................................................................. 61
13.5.3 Limited Capacity at Low pressure Ratios ..................................................................................................................... 62
14 Sample Refrigeration Circuits .......................................................................................................63
15 Sound and Power Specications ...................................................................................................71
15.1 TT300 and TT400 Sound Power Measurements ................................................................................................................... 71
15.1.1 Results ....................................................................................................................................................................................... 71
16 Physical Data ...................................................................................................................................75
16.1 Clearance ........................................................................................................................................................................................... 75
16.2 Center of Gravity ............................................................................................................................................................................. 77
16.3 Torque Specications..................................................................................................................................................................... 86
17 Piping Considerations ....................................................................................................................87
18 Environmental Considerations ......................................................................................................89
18.1 Humidity ............................................................................................................................................................................................ 89
18.2 Vibration ............................................................................................................................................................................................. 89
19 Shipping Considerations ...............................................................................................................91
19.1 Vibration ............................................................................................................................................................................................. 91
20 Installation ......................................................................................................................................93
20.1 Unpacking and Inspection .......................................................................................................................................................... 93
20.2 Rigging Requirements .................................................................................................................................................................. 93
20.3 Unit Placement ................................................................................................................................................................................ 93
20.4 Mounting Base ................................................................................................................................................................................. 94
20.5 Piping Connections ........................................................................................................................................................................ 95
20.6 Control Wiring ..................................................................................................................................................................................96
20.6.1 Control Wiring Connections ............................................................................................................................................. 96
20.6.2 Circuit Grounding ................................................................................................................................................................. 98
20.6.3 Voltage-Free Contacts ......................................................................................................................................................... 99
20.7 Power Wiring...................................................................................................................................................................................100
Appendix A: Power Line Accessories Installation .......................................................................... 103
A.1 Line Reactor Installation Instructions ....................................................................................................................................... 103
A.1.1 AC Line Cable Connection (From External Disconnect) ..........................................................................................103
A.1.2 AC Line Cable Connection (to Compressor Terminal) ..............................................................................................103
Appendix B: Power Line Accessories Installation .......................................................................... 105
B.1 EMI/EMC Filter Installation Instructions ...................................................................................................................................105
B.1.1 Line Side Connection ............................................................................................................................................................105
B.1.2 Load Side Connection ..........................................................................................................................................................105
B.1.3 Harmonic Filter........................................................................................................................................................................105
M-AP-001-EN Rev. N
List of Tables
Table 1-1 - Application Manual Applicability .....................................................................................................................................9
Table 1-2 - Denitions .............................................................................................................................................................................. 11
Table 2-1 - Refrigerant Used with Turbocor Compressors .......................................................................................................... 15
Table 3-1 - Backplane LEDs .................................................................................................................................................................... 25
Table 4-1 - Control Wiring Details ........................................................................................................................................................ 29
Table 5-1 - Discharge Pressure Alarm and Trip Settings ..............................................................................................................33
Table 5-2 - Discharge Temperature Trip Settings ........................................................................................................................... 34
Table 5-3 - Maximum Pressure Ratio Limits ..................................................................................................................................... 34
Table 5-4 - Maximum Allowable Pressure [PS] ................................................................................................................................ 34
Table 5-5 - Suction Pressure Alarm and Trip Settings ...................................................................................................................35
Table 6-1 - Acceptable AC Voltage Range .........................................................................................................................................37
Table 6-2 - Acceptable Frequency Range ......................................................................................................................................... 37
Table 6-3 - FLA and LRA Value Range ................................................................................................................................................. 38
Table 6-4 - Main Cable Connector Plate Hole Sizes ....................................................................................................................... 42
Table 13-1 - Recommended Minimum Copper Tube Size .......................................................................................................... 60
Table 13-2 - Low Lift Pump Sizing........................................................................................................................................................ 61
Table 15-1 - Sound Power Measurements for TT300 .................................................................................................................... 71
Table 15-2 - Sound Pressure Calculation for TT300 ....................................................................................................................... 71
Table 15-3 - Sound Power at Third Octave Band, TT300 Compressor ..................................................................................... 72
Table 15-4 - Sound Power Measurements ........................................................................................................................................ 72
Table 15-5 - Sound Pressure Calculation ........................................................................................................................................... 72
Table 15-6 - Sound Power at Third Octave Band of TT400 Compressor ................................................................................73
Table 16-1 - Physical Dimensions ......................................................................................................................................................... 75
Table 16-2 - Center of Gravity X-Y Coordinates ............................................................................................................................... 78
Table 16-3 - Screw Hole Specications ..............................................................................................................................................85
Table 16-4 - Torque Specications ....................................................................................................................................................... 86
M-AP-001-EN Rev. N
List of Figures
Figure 2-1 - Compressor Nomenclature ............................................................................................................................................15
Figure 2-2 - Major Components ........................................................................................................................................................... 16
Figure 3-1 - Compressor Fluid Path TG230 / TT300 ....................................................................................................................... 19
Figure 3-2 - Compressor Fluid Path ( TG310, TT350, TG390, TT400, TG520, and TT700) ................................................... 20
Figure 3-3 - Compressor Cooling Circuit (TG230 / TT300) .......................................................................................................... 21
Figure 3-4 - Compressor Cooling Circuit (TT300 Split-Cooling, TG310, TT350, TG390, TT400, and TG520) .............. 21
Figure 3-5 - Compressor Control System Functional Block Diagram ...................................................................................... 22
Figure 3-6 - Magnetic Bearing Conguration .................................................................................................................................. 26
Figure 3-7 - Magnetic Bearing Control System ...............................................................................................................................27
Figure 4-1 - Typical Control Wiring ...................................................................................................................................................... 28
Figure 4-2 - ModBus Grounding Diagram ........................................................................................................................................ 28
Figure 4-3 - I/O Wiring Specications ................................................................................................................................................. 30
Figure 4-4 - Compressor I/O Board ...................................................................................................................................................... 31
Figure 4-5 - Compressor I/O Board Installation .............................................................................................................................. 31
Figure 6-1 - Typical Ground Connections ......................................................................................................................................... 41
Figure 8-1 - Operating Envelope, TT300 and TG230 ..................................................................................................................... 45
Figure 8-2 - Operating Envelope, TT300 and TG230 (Medium Temperature Compressor) ............................................. 46
Figure 8-3 - Operating Envelope, TT350 and TG310 ..................................................................................................................... 47
Figure 8-4 - Operating Envelope, TT400 and TG390 .....................................................................................................................48
Figure 8-5 - Operating Envelope, TT700 and TG520 .....................................................................................................................49
Figure 13-1 - Centrifugal Performance Dynamics..........................................................................................................................62
Figure 14-1 - Typical Refrigeration Piping Schematic ................................................................................................................... 63
Figure 14-2 - Typical Refrigeration Piping Schematic With Staging and Load Balancing Valve .................................... 64
Figure 14-3 - Typical Refrigeration Piping Schematic With Flash Tank Economizer .......................................................... 65
Figure 14-4 - Typical Refrigeration Piping Schematic With Sub-Cooler Circuit Economizer .......................................... 66
Figure 14-5 - Typical Refrigeration Piping Schematic Using Motor-Cooling Pressure Regulating Valve
(Medium Temperature Compressors Only) ............................................................................................................ 67
Figure 14-6 - Typical Refrigeration Piping Schematic With Multiple DX Evaporators ....................................................... 68
Figure 14-7 - Typical Refrigeration Piping Schematic Using Multiple Compressors on a Common Circuit
With a Flooded Evaporator ........................................................................................................................................... 69
Figure 16-1 - Suction/Front View All Models ................................................................................................................................... 75
Figure 16-2 - Service Side View All Models ....................................................................................................................................... 76
Figure 16-3 - Discharge Side View ....................................................................................................................................................... 76
Figure 16-4a - Center of Gravity ........................................................................................................................................................... 77
Figure 16-4b - Center of Gravity ........................................................................................................................................................... 78
Figure 16-5 - Discharge Port Details (TT300 and TG230) ............................................................................................................ 79
Figure 16-6 - Discharge Port Details (TT350 and TG310) ............................................................................................................ 80
Figure 16-7 - Discharge Port Detail (TT400 and TG390) .............................................................................................................. 80
Figure 16-8 - Discharge Port Detail (TT700 and TG520) .............................................................................................................. 81
Figure 16-9 - Suction Port (All Models) .............................................................................................................................................. 82
Figure 16-10 - Suction Port Detail DD (All Models) ....................................................................................................................... 83
Figure 16-11 - Suction Port Detail DD (TT700 and TG520) ......................................................................................................... 83
Figure 16-12 - TT300 Flange Footprint Details ................................................................................................................................ 84
Figure 16-13 - TT350, TG310, TG390, and TT400 Flange Footprint Details ........................................................................... 84
Figure 16-14 - TT700 and TG520 Flange Footprint Details ......................................................................................................... 85
Figure 16-15 - Motor Cooling Fitting ..................................................................................................................................................86
Figure 19-1 - Anti-Vibration Bracket ................................................................................................................................................... 91
Figure 20-1 - Rigging Set-up .................................................................................................................................................................. 93
Figure 20-2 - Mounting Base (TT and TG series) ............................................................................................................................. 94
Figure 20-3 - Incorrect Compressor Mounting Pad Installation ............................................................................................... 94
Figure 20-4 - Correct Compressor Mounting Pad Installation ................................................................................................... 95
Figure 20-5 - Motor-Cooling Connection and Access Port ......................................................................................................... 96
Figure 20-6 - Compressor I/O Board Connections ......................................................................................................................... 97
Figure 20-7 - Interlock and Motor Speed Connections ................................................................................................................ 98
Figure 20-8 - Interlock Circuit Tests .....................................................................................................................................................99
Figure 20-9 - Typical Electrical Connections .................................................................................................................................. 100
Figure 20-10 - Ground Post Nuts ........................................................................................................................................................101
Figure 20-11 - Compressor AC Input Terminals ............................................................................................................................101
Figure A-1 - Line Reactor Connections ............................................................................................................................................104
Figure B-1 - Interconnection Layout .................................................................................................................................................106
Figure B-2 - Grounding Diagram ........................................................................................................................................................106
M-AP-001-EN Rev. N
Proprietary Notice
Copyright, Limitations of Liability and Revision Rights.
This publication contains proprietary information to Danfoss Turbocor Compressors (DTC). By accepting and using this manual, the user agrees that the information contained herein is utilized solely for operating DTC equipment or third party vendor equipment intended for communication with DTC equipment over a serial communication link. This publication is protected under the Copyright laws of the United States of America (USA) and most other countries. The publication of this Guide is owned by DTC and is published as the most recent revision as indicated on the Title page of this document. This document is for use by DTC customers only; any use beyond the intended usage of this document is prohibited. Tests have demonstrated that equipment will function as designed if the installation if performed in accordance with the guidelines provided in this guide. However, DTC does not guarantee the equipment performance will work in every physical, hardware or software environment.
The guidelines provided in this manual are “AS-IS”, with no warranty of any kind, either express or implied including; without limitation, any implied warranties of condition, uninterrupted use, merchantability or tness for a particular purpose. In no event shall DTC be liable for direct, indirect, special, incidental or consequential damages arising out of the manufacture, use, or the inability to manufacture or use information contained in this manual, even if advised of the possibility of such damages. In particular, DTC is not responsible for any costs, including but not limited to those incurred as a result of lost prots or revenue, loss of damage or equipment, loss of computer programs, loss of data, the costs to substitute these, or any claims by third parties. In any event, DTC’s total aggregate liability for all damages of any kind and type (regardless of whether based in contract or tort) shall not exceed the purchase price of this product. DTC reserves the right to revise this publication at any time and to make changes to its contents without prior notice or any obligation to notify former or present users of such revisions or changes.
Danfoss Turbocor Compressors Inc. 1769 East Paul Dirac Drive Tallahassee, Florida 32310 USA Phone 1-850-504-4800 Fax 1-850-575-2126 http://turbocor.danfoss.com
M-AP-001-EN Rev. N
THIS PAGE INTENTIONALLY LEFT BLANK
M-AP-001-EN Rev. N
Introduction
1 Introduction
1.1 Scope
Table 1-1 - Application Manual Applicability
This Applications and Installation Manual is intended to be a guide for application data/ installation procedures specic to Danfoss Turbocor compressors. It is not intended to inform on fundamental safety, refrigeration and electrical design skills. It is assumed and presumed that persons using this manual are appropriately certied and have detailed knowledge, experience and skills in respect to designing for and working with high pressure refrigerants and medium voltage electrical components (to 1 KV high power AC & DC) as well as complex control systems.
Some potential safety situations may not be foreseen or covered in this guide. Danfoss Turbocor Compressors (DTC) assumes personnel using this manual and working on DTC compressors are familiar with, and carry out all safe work practices necessary to ensure safety for personnel and equipment.
This manual is designed for use with BMCC software, Version 4.0.0 and later.
Manual Release Date BMCC Firmware Versions
M-AP-001-XX Rev E September 2013 CC 2.3.1213
M-AP-001-XX Rev L October 2016 CC 3.1.4
M-AP-001-XX Rev M November 2017 CC 4.0 and later
M-AP-001-XX Rev M.1 November 2017 CC 4.1 and later
M-AP-001-XX Rev N May 2018 CC 4.1 and later
1.2 Organization of this Manual
This Applications and Installation Manual is divided into the following sections:
1. Overview of the TT/TG series compressors - provides an overview of the Twin-Turbo
and Total-Green (TT and TG) series compressors, including an introduction to the compressor.
2. Compressor Module - provides details on the Compressor Module of the compressor,
including product capacity and application range, maximum pressure alarm and fault limits.
3. System Design Guidelines - provides basic guidelines and requirements for the design
and manufacture of R134a, R513a, and R1234ze(E) systems equipped with DTC TT/TG series compressors.
4. Installation Guidelines - describes application/installation procedures specic to
Danfoss Turbocor TT/TG compressors.
M-AP-001-EN Rev. N
Introduction
1.3 Document Symbols
The following symbols are used in this document.
NOTE: Indicates something to be noted by the reader.
NOTE
DANGER: Indicates an essential operating or maintenance procedure, practice, or
condition, which, if not strictly observed, could result in serious injury to or death of personnel or long-term health hazards.
• • • DANGER • • •
WARNING: Indicates an essential operating or maintenance procedure, practice, or
condition which, if not strictly observed, could result in serious damage or destruction of equipment.
• • • WARNING • • •
CAUTION: Indicates an essential operating or maintenance procedure, practice, or
condition which, if not strictly observed, could result in damage to equipment or potential problems in the outcome of the procedure being performed.
• • • CAUTION • • •
Page 10 of 108
M-AP-001-EN Rev. N
Introduction
1.4 Denitions
Table 1-2 - Denitions
Acronym / Term Denition
Alarms
AHRI Air-Conditioning, Heating, and Refrigeration Institute (www.ari.org; www.ahrinet.org)
ASHRAE
ASIC Application-Specic Integrated Circuit
ASTM American Society for Testing and Materials (www.astm.org)
Axial Bearing Bearing that controls the horizontal movement (Z axis) of the motor shaft
Backplane
Balance Piston
BMCC
Bus Bars Heavy-gauge metal conductors used to transfer large electrical currents
Capacitor A passive component that stores energy in the form of an electrostatic eld
Cavity Sensor
CE
Choke
Compression Ratio
CSA Canadian Standards Association (www.csa.ca)
DC Bus
DC Capacitor Assembly
DC-DC Converter
Dielectric
Diuser
Diode A two-terminal device between which current may ow in one direction only
Down-Trip Voltage
D-Sub
DTC Danfoss Turbocor compressors Inc.
EEPROM
EER Energy Eciency Ratio
Alarms indicate a condition at the limit of the normal operating envelope. compressor alarms will still allow the compressor to run, but speed is reduced to bring the alarm condition under the alarm limit.
American Society of Heating Refrigeration and Air-Conditioning Engineers (www.ashrae. org)
A PCB for the purpose of power and control signal transmission. Many other components connect to this board.
Component within the compressor that provides primary counter to impeller thrust. Impeller thrust is trimmed by the axial bearing.
Bearing Motor compressor Controller. The BMCC is the central processor board of the compressor. Based on its sensor inputs, it controls the bearing and motor system and maintains compressor control within the operating limits.
NTC temperature sensor located behind the Backplane for the purpose of sensing motor­cooling vapor temperature. Provides overheat protection to motor windings.
Conformance European. The CE marking (also known as CE mark) is a mandatory conformity mark on many products placed on the single market in the European Economic Area. The CE marking certies that a product has met EU health, safety, and environmental requirements, which ensure consumer safety.
Denitive point on compressor map where mass ow rate is at maximum for compressor speed and lift conditions.
The absolute discharge pressure divided by the absolute suction pressure
High DC voltage simultaneously connected to multiple compressor components via metallic bus bars, including the capacitors
An assembly of four DC capacitors, four bleeder resistors, and positive and negative bus bars
DC-DC converters supply and electrically isolate the high and low DC voltages that are required by the control circuits. When the compressor is switched on, the High-Voltage (HV) DC-DC Converter receives its 15VAC supply from the Soft-Start Board. Once the DC bus voltage has risen to a pre-determined level, the HV DC-DC Converter’s onboard circuits are powered by the DC bus (460-900VDC). The HV DC-DC Converter delivers +24VDC (with respect to 0V) to the Backplane, and HV+ (+250VDC with respect to HV-) to the magnetic Bearing Pulse Width Modulation (PWM) Amplier via the Backplane.
A dielectric is a nonconducting substance. Although “dielectric” and “insulator” are generally considered synonymous, the term “dielectric” is more often used when considering the eect of alternating electric elds on the substance while “insulator” is more often used when the material is being used to withstand a high electric eld.
Part of a centrifugal compressor in the uid module that transforms the high-velocity, low­pressure gas exiting the impeller into higher-pressure, low-velocity gas discharged into the condenser.
A voltage threshold where, if the incoming AC voltage drops below it, the SCRs will shut down
A type of connector/plug (male and female) for control wiring. The RS-232 and large connectors on either side of the I/O cable are both types of D-Sub connectors.
Electrically Erasable Programmable Read Only Memory. A small chip holds bits of data code that can be rewritten and erased by an electrical charge, one byte at a time. EEPROM data cannot be selectively rewritten; the entire chip must be erased and rewritten to update its contents.
M-AP-001-EN Rev. N
Page 11 of 108
Introduction
Acronym / Term Denition
EMC Electromagnetic Compatibility
EMF Electromotive Force
EMI Electromagnetic Interference
EMI Filter A circuit or device that provides electromagnetic noise suppression for an electronic device
EPC Extended Performance Compressor
ETL ETL Testing Laboratories, now a mark of Intertek Testing Services
EXV
Event Log
Faults (Critical)
Faults (Non-Critical)
Feedthrough
FIE Fully Integrated Electronics version of the compressor.
FLA Full Load Amps
Generator Mode
Genlanolin
Harmonics
HFC Hydrouorocarbon
HFC-134a A positive-pressure, chlorine-free refrigerant having zero ozone depletion potential.
Hermetic Motor A motor that is sealed within the refrigerant atmosphere inside the compressor.
ICD Integrated compressor Design
IEEE Institute of Electrical and Electronic Engineers (www.ieee.org)
IGBT Insulated Gate Bipolar Transistor. See Inverter.
IGV
Impeller
I/O Board
Inverter
IPLV Integrated Part Load Value
LBV
Electronic Expansion Valve. Pressure-independent refrigerant metering device driven by electrical input
A record of events occurring during the compressor’s lifecycle, indicating when events and faults occur and in what order. The event log is held in the BMCC.
Critical faults indicate an intolerable or unsafe condition that will result in equipment failure if unchecked. They will cause the compressor controller to reduce speed and shut down the system within 60 seconds. This type of fault requires a manual reset. Critical faults include: Discharge Pressure Fault, 3-Phase Over-Current Fault, and Lock Out Fault. If any of the following faults occur three times within a 30-minute period, they also will require a manual reset: Inverter Temperature Fault, Cavity Temperature, SCR Temperature Fault, Motor High Current Fault, and Motor back EMF is low.
Faults indicate an intolerable or unsafe condition that will result in equipment failure if unchecked. They will cause the compressor controller to reduce speed and shut down the system within 60 seconds. This type of fault has an automatic reset.
An insulated conductor connecting two circuits on opposite sides of a barrier such as a compressor housing or PCB.
A function of the compressor where the stator becomes a generator, creating sucient power to allow for the shaft to graduate slowly and drop onto the touchdown bearings safely. This occurs when the inverter has insucient power to sustain safe and normal operation and is typically due to a loss of power.
A type of grease. In certain climates where the dew point falls below the operating temperature of some of the electronic components, it is necessary to apply Genlanolin to certain parts of the compressor to prevent moisture accumulation.
Harmonics are multiples of the fundamental frequency distortions found in electrical power, subjected to continuous disturbances.
Inlet Guide Vanes. The IGV assembly is a variable-angle guiding device that pre-rotates refrigerant ow at the compressor intake and is also used for capacity control. The IGV assembly consists of movable vanes and a motor. The vane angle, and hence, the degree of pre-rotation to the refrigerant ow, is determined by the BMCC and controlled by the Serial Driver. The IGV position can vary between approximately 0-percent and 110-percent open.
Rotating part of a centrifugal compressor that increases the pressure of refrigerant vapor from the lower evaporator pressure to the higher condenser pressure.
Input/Output Board facilitating a connection between the compressor controller and/ or PC and the compressor. It allows the user to control the compressor and allows the compressor to return status and sensor information to the user. Also known as the Compressor Interface Module (CIM).
The Inverter converts the DC bus voltage into an adjustable frequency and adjustable amplitude, three-phase simulated AC voltage.
Load Balance Valve. A modulating valve that can be installed to bypass discharge gas to the inlet of the evaporator to provide gas ow at certain conditions such as startup, surge, and further unloading of the compressor.
Page 12 of 108
M-AP-001-EN Rev. N
Introduction
Acronym / Term Denition
LED Light-Emitting Diode
Levitation
Line Reactor
LLSV Liquid Line Solenoid Valve
LR Line Reactor
LRA Locked Rotor Amps
Mid Bus
Modbus
Monitor Program
MOP Maximum Operating Pressure
Motor Back EMF
NEC National Electric Code (www.necplus.org)
Nm Newton meter. A unit of torque. 1 Nm = 0.738 pound-force foot (lbf/f).
NTC
OEM Original Equipment Manufacturer
Open Impeller A compressor impeller with exposed vanes similar to a boat propeller or turbocharger.
PCB Printed Circuit Board
Permanent Magnet Motor
PLC Programmable Logic Controller
Pressure Ratio See “Compression Ratio”
Proximity Sensor
PWM Pulse Width Modulation
Radial Bearing Bearings that control the position of the shaft on the X and Y axis.
Rectier A rectier is an electrical device that converts AC current to pulsating DC current.
Resistor
RMA Return Material Authorization
SCR
Serial Driver
SDT Saturated Discharge Temperature
SEER Seasonal Energy Eciency Ratio
The elevation or suspension of the compressor shaft by the magnetic eld created by the magnetic bearings.
A transformer-like device designed to introduce a specic amount of inductive reactance into a circuit. When this occurs, it limits the change in current in the line, which in turn lters the waveform and attenuates electrical noise and harmonics associated with an inverter/drive output.
A connection between the capacitors allowing them to be connected in series and in parallel simultaneously. Two capacitors in a series make up the DC- and two in a series make up the DC+, and those two sets of two are connected in parallel.
A serial communications protocol published by Modicon in 1979 for use with its programmable logic controllers (PLCs). It has become a de facto standard communications protocol in industry, and is now the most commonly available means of connecting industrial electronic devices. Modbus allows for communication between many devices connected to the same network, for example a system that measures temperature and humidity and communicates the results to a computer.
A software program provided by DTC that can be downloaded to a PC or laptop computer to monitor, regulate, control or verify the operation of a compressor.
Back electromotive force is a voltage that occurs in electric motors where there is relative motion between the armature of the motor and the external magnetic eld and is also a parameter used to evaluate the strength of the permanent magnets of the shaft. One practical application is to use this phenomenon to indirectly measure motor speed as well as estimate position.
Negative Temperature Coecient. Refers to thermistor characteristic. Decrease in temperature results in a rise in resistance (ohms).
A motor that has permanent magnetism as opposed to electromagnetism
Sensors that are able to detect the presence of nearby objects without any physical contact. A proximity sensor often emits an electromagnetic or electrostatic eld, or a beam of electromagnetic radiation (infrared, for instance), and looks for changes in the eld or return signal.
A resistor is an electrical component that limits or regulates the ow of electrical current in an electronic circuit.
Silicon-Controlled Rectier. The SCR is a four-layer, solid-state device that controls current and converts AC to DC.
A PCB plug-in responsible for the operation of the IGV stepper motor and optional expansion valves. It contains four relays for the solenoid valves, compressor status and compressor run status respectively.
M-AP-001-EN Rev. N
Page 13 of 108
Introduction
Acronym / Term Denition
Shaft Orbit The path travelled by the compressor shaft relative to the bearing magnetic centers
Shrouded Impeller An impeller with boxed in, or “shrouded,” impeller blades, as opposed to an open impeller.
SIE Semi-Integrated Electronics version of the compressor.
Single-Stage Centrifugal compressor
Snubbers
Soft-Start Board / Soft­Starter
SST Saturated Suction Temperature
Surge
Thrust Bearing
Ton The basic unit for measuring the rate of heat transfer (12,000 BTU/H; 3.516 kw/H)
Touchdown Bearings
TT Twin Turbine
Two-Stage Centrifugal compressor
TXV
UL Underwriters Laboratories (www.ul.com)
Up-Trip Voltage When the DC- bus reaches the up-trip voltage, the SCRs will be gated open continuously
VAC Volts Alternating Current
Vaned Diuser
Vaneless Diuser Similar to a Vaned Diuser, except that it does not possess any de-swirl vanes
VDC Volts Direct Current
VFD Variable Frequency Drive
Type of centrifugal compressor having one impeller.
Capacitors responsible for eliminating electrical noise/harmonics from the DC Bus before it reaches the IGBT
The Soft-Start Board limits in-rush current by progressively increasing the conduction angle of the SCRs. This technique is used at compressor startup while the DC capacitors are charging up. The Soft-Start Board takes as input a 3-phase voltage source at 50/60Hz from the input terminal and a DC voltage signal from the SCR output. In turn, it outputs pulses to the SCR and provides power to the High-Voltage (HV) DC-DC Converter. All voltages from the Soft-Start Board are with respect to the positive DC bus and not the compressor ground.
The condition at which the compressor cannot sustain the discharge pressure, allowing refrigerant to temporarily and rapidly re-enter the compressor uid path, creating a cavitating eect. This is an undesirable situation that should be avoided.
A bearing that absorbs the axial forces produced in a centrifugal compressor by the refrigerant pressure dierential across the impeller.
Carbon races or ball bearing for the purpose of preventing mechanical interference between the shaft and the magnetic bearings should they lose power or fail.
Type of centrifugal compressor having two impellers. The rst-stage impeller raises the pressure of the refrigerant vapor approximately halfway from the cooler pressure to the condenser pressure, and the second-stage impeller raises the pressure the rest of the way. With a two-stage compressor, an interstage economizer may be used to improve the refrigeration cycle eciency
Thermal Expansion Valve. A pressure-dependent refrigerant metering device that operates independently and is controlled by temperature.
An assembly of plates with curved vanes that serve to slow, compress, and reduce refrigerant rotation as it enters the second-stage impeller
* Danfoss Turbocor’s commitment to excellence ensures continuous product improvements. * Subject to change without notice.
Page 14 of 108
M-AP-001-EN Rev. N
Overview of the TT/TG Compressor
2 Overview of the TT/TG Compressor
2.1 TT/TG Compressor Nomenclature
Figure 2-1 - Compressor Nomenclature
The TT/TG Centrifugal series of compressors is a group of compressors that covers the nominal capacity range from 90 to 200 Tons (TT) and 70 to 150 Tons (TG) tons. The TT/TG series of compressors are an oil free centrifugal design based on magnetic bearing technology.
TT300 - G - 1 - ST - E - CE
Series
TT300 TT350 TT400 TT700 TG230 TG310 TG390 TG520
Voltage**
D: 380V / 3Ph / 60Hz E: 380V / 3Ph / 50Hz F: 575V / 3Ph / 60Hz G: 460V / 3Ph / 60Hz H: 400V / 3Ph / 50Hz J: 400V / 3Ph / 60Hz
Options
ST: Standard MT: Medium Temp HL: High Lift
Refrigerant
1: R-134a 2: R-22 3: R-1234ze (E) 4: R513A
Unit Classication
CE: With CE Mark NC: Non-conductive Coating CH: China
Major Revision
N, P, C, A, D, E, F, G...etc.
2.2 Refrigerant Type
2.2.1 TG Series
Table 2-1 - Refrigerant Used with Turbocor Compressors
The TT series compressors are totally oil-free and optimized for use with refrigerant R134a.
The TG series compressor is for use with R1234ze(E) refrigerant only. ASHRAE standard 34 has classied this refrigerant as “R1234ze(E) with safety classication of A2L”. ASHRAE Standard 34, 2010 Addendum 1 contains the change to the standard. ASHRAE Standard 15 (Safety Standard) has sent out an initial public review document outlining proposed changes to this standard to address 2L refrigerants.
Compressor Refrigerant
TT series R134a/R513A
TG series R1234ze(E)
NOTE
Do not use recycled refrigerant as it may contain oil, which can aect system reliability. The refrigerant should be pure and stored in virgin containers.
NOTE
To ensure a reliable chiller system, all system components, most notably expansion valves, solenoid valves, and sensors, be appropriate for application in oil free systems as determined by the component manufacturer. In addition, all chiller system components exposed to refrigerant should be approved by their manufacturer for use with that refrigerant.
M-AP-001-EN Rev. N
Page 15 of 108
Overview of the TT/TG Compressor
2.3 Environment
TT/TG Compressor Models
Figure 2-2 - Major Components
The compressor should not be operated at an altitude higher than 3000m.
The compressor should be stored and operated within the following ambient temperature ranges:
• Storage: -30°C to 70°C (-22°F to 158°F)
• Operation: -1°C to 52°C (30°F to 125°F).
• Mains Power Applied Non Operating Limit: -25°C (-13°F)
• Humidity: 0-95% Non Condensing
NOTE
• Contact Danfoss Turbocor for lower ambient temperature operations. Refer to “Operating Envelopes,” for details of the operating conditions. These conditions are in line with the AHRI 540 Standard.
• All compressors/components should be protected from environments that could cause corrosion to exposed metals. For outdoor installations, a weather-proof enclosure with vents is recommended to house the compressor.
• TT/TG compressors can operate below -1°C ambient if refrigerant circuit is maintained at a minimum of -1°C Saturated temperature.
The TT/TG compressor, motor and power assemblies are packaged in design. 2.4 Configurations of the
Soft Start Board
SCRs
Inverter
DC-DC Converter
Backplane
Serial Driver
Bearing Motor Compressor Controller (BMCC)
PWM Amplifier
Page 16 of 108
M-AP-001-EN Rev. N
Overview of the TT/TG Compressor
2.5 Compressor Module
This section provides a brief overview of the Compressor Module.
The Compressor Module is comprised of three (3) portions:
• Aerodynamics - The aerodynamics portion manages the compression of refrigerant
through the compressor from suction to discharge comprising centrifugal and IGV technologies.
Motor - The motor portion contains a direct-drive, high-efficiency, permanent-magnet
synchronous motor powered by pulse-width-modulating (PWM) voltage supply. The high-speed variable-frequency operation that affords high-speed efficiency, compactness and soft start capability. Motor cooling is by liquid refrigerant injection.
• Electronics - The electronics is divided into two (2) sections: Power electronics located on the top of the compressor including soft-start, DC-DC, SCR, capacitors and inverter. Control electronics located on the side of the compressor including:
backplane, BMCC, serial driver and PWM.
M-AP-001-EN Rev. N
Page 17 of 108
THIS PAGE INTENTIONALLY LEFT BLANK
Page 18 of 108
M-AP-001-EN Rev. N
Functional Description
3 Functional Description
3.1 Main Fluid Path
Figure 3-1 - Compressor Fluid Path TG230 / TT300
Compressor operation begins with a call for cooling from a chiller controller. The compressor controller then begins compressor ramp-up.
The following paragraphs describe the ow of refrigerant from the intake to the discharge port of the compressor (see Figure 3-1 and Figure 3-2).
The refrigerant enters the suction side of the compressor as a low-pressure, low­temperature, super-heated gas. The refrigerant gas passes through a set of adjustable Inlet Guide Vanes (IGVs) that are used to control the compressor capacity at low-load conditions. The rst compression element the gas encounters is the rst-stage impeller. The centrifugal force produced by the rotating impeller results in an increase in both gas velocity and pressure. The high-velocity gas discharging from the impeller is directed to the second­stage impeller through de-swirl vanes. The gas is further compressed by the second-stage impeller and then discharged through a volute via a diuser (a volute is a curved funnel increasing in area to the discharge port. As the area of the cross-section increases, the volute reduces the speed of the gas and increases its pressure). From there, the high-pressure/ high-temperature gas exits the compressor at the discharge port.
1st Stage Impeller
Volute
Assembly
Discharge Port
Low - Pressure / Low ­Temperature Gas
Inlet Guide Vanes (IGV)
High - Pressure / High ­Temperature Gas
2nd Stage Impeller
Vaned Diffuser
M-AP-001-EN Rev. N
Page 19 of 108
Figure 3-2 - Compressor Fluid Path (TG310, TT350, TG390, TT400, TG520, and TT700)
Low - Pressure / Low ­Temperature Gas
Functional Description
Volute
Assembly
Discharge Port
High - Pressure / High - Temperature Gas
2nd Stage Impeller
Inlet Guide Vanes (IGV)
1st Stage Impeller
De-swirl Vanes
Vaneless Diffuser
3.2 Motor Cooling Liquid refrigerant is channelled at full condenser pressure from the main liquid line to the compressor to cool the electronic, mechanical, and electromechanical components (see Figure 3-3 and Figure 3-4).
• • • CAUTION • • •
A minimum operating pressure ratio of 1.5 is required to maintain adequate cooling of the compressor.
The sub-cooled refrigerant enters the compressor through two solenoid valves and associated xed orices located behind the service access cover. The orices cause the refrigerant to expand, thereby lowering its temperature. Both valves operate relative to the temperature at the sensors that are located at the Insulated Gate Bipolar Transistor (IGBT) Inverter and motor cavity. When the temperature at either sensor reaches a pre-determined threshold, one solenoid valve opens. If the temperature increases to the point where it equals a higher temperature threshold, the second solenoid valve opens.
From the outlet of the orices, the refrigerant is directed to the heatsink plate of the inverter and then to the underside of the SCR heatsink. From there, the refrigerant passes through grooves surrounding the motor stator. As the refrigerant ows through the grooves, it vaporizes into a gas. At the coil outlet, the refrigerant gas is channeled back to the suction inlet via the motor cavity, thereby cooling the rotor. All models with the exception of the TT300 and TG230 use a split-cooling method where the motor and electronics portions are cooled separately by refrigerant liquid.
Page 20 of 108
M-AP-001-EN Rev. N
Functional Description
Figure 3-3 - Compressor Cooling Circuit (TG230 / TT300)
From Motor
Winding Temp.
Sensor
BMCC
Solenoid
A
From Motor
Cavity Tem p.
Sensor
Liquid
Refrigerant
Inlet
ORIFICEORIFICE
Cooling path redirects outside of the compressor
MT Only
Solenoid
B
IGBT
BMCC
From IGBT
Temp. Sensor
Pressure
Regula�ng
Valve
From SCR
Temp. Sensor
SCR
Motor/Rot or
cooling gas and
leakage
Cooling path re-enters
at the suc�on line of
the chiller
Figure 3-4 - Compressor Cooling Circuit (TT300 Split-Cooling, TG310, TT350, TG390, TT400, and TG520)
From Motor
Win ding T emp.
Senso r
BMCC
Solen oid
A
From Motor
Ca vit y Temp .
Senso r
OR IFI CE
Li quid
Refri gerant
Inl et
Solen oid
B
OR IFI CE
Fr om IG BT
Te mp. Sen sor
BMCC
IGB T
From SCR
Te mp. Sen sor
SCR
Motor/Rotor
coo li ng g as a nd
leak age
M-AP-001-EN Rev. N
Page 21 of 108
Functional Description
3.3 Inlet Guide Vanes The Inlet Guide Vane (IGV) assembly is a variable-angle guiding device that is used for
capacity control. The IGV assembly consists of movable vanes and a motor. The vane opening is determined by the BMCC and controlled by the Serial Driver. The IGV position can vary between 0-110% where 0% is fully closed and 110% is fully open with the vanes at a 90° angle.
3.4 Compressor Control
Overview
Figure 3-5 - Compressor Control System Functional Block Diagram
External Power Components
3-Phas e
380-57 5VAC
50/ 60 Hz
EMI/EMC
Fil ter
To Motor Cooling Solenoids
To IGV St eppe r Motor
RS-485 Comm s
to Chil ler or Buildi ng
Manag ement System
Int erne t
Com pres sor
Com pres sor
Figure 3-5 shows a functional block diagram of the compressor control and monitoring system. Figure 3-7 displays the component locations. The major components include:
• Motor Drive
• Soft-Start Board
• Bearing Motor Compressor Controller (BMCC)
• Bearing PWM Amplifier
• Backplane
• Serial Driver
• HV DC-DC Converter
Su rge
Lin e
Rea ctor
Inputs
Outputs
Suppresso r
Ha rmoni c
Fil ter
Ex tern al Expa nsi on V al ves
+24V DC
+15V DC
0-10V DC
0-10V DC
Use r I nte rf ace
Cus tome r
Chiller Control
Com mun icati ons
Int erfa ce
Diagnostic
Te rmin al
3-Pha se
380-57 5VAC
50/60 Hz
+15V DC
Seria l
Dri ver
Modu le
Com pres sor
I/O
Boa rd
Half -Controlled
Rec tifie r
0-12 VD C
next (+ ) DC bus
Soft-S tart
Con tro ller
Bear ing
Motor
Com pres sor
Controller
(BMCC)
+15V DC
+24V DC
Con tro l
Fee dbac k
+5 VDC
+15V DC
Con tro l
Fee dbac k
Motor Drive
1.3 5*V
in
0 VDC
460-85 3 VDC
15 V AC
+24V DC
+5 VDC
+15V DC
-15V DC
Con tro l
No te:
All vo ltage leve ls shown have t he foll owin g e rror tol erance:
460-85 3 VDC
DC Li nk
Ca pacit ors
0 VDC
DC/DC
Con ver ter
+
(+250 VDC)
HV
not HV
Backplane
DC (e xce pt the DC bu s): ±5%
AC : ±10 %
Con tro l
Fee dbac k
-
Con tro l
Fee dbac k
3-Phas e
Inv ert er
IGB T
+24V DC
Gat ing
Sign als
Sh aft Posi tion Out puts
2-3A
(Calibration)
Fr ont
Rad ial
Bear ing
V
Freq uency
a
(0-750H z)
V
b
AC Vo ltage
V
c
To Stator
+
HV
not HV
Bea rin g P WM
Varia ble
-
+17V DC
not HV
Amplifier
-
+5 VDC
Rear
Radial
Bear ing
(Calibration)
2-3A
(Calibration)
2-3A
Axial
Bear ing
Page 22 of 108
M-AP-001-EN Rev. N
Functional Description
3.4.1 Motor Drive System Normally, AC power to the compressor remains on even when the compressor is in the idle
state. The compressor motor requires a variable-frequency three-phase source for variable­speed operation. The AC line voltage is converted into a DC voltage by Silicon-Controlled Rectiers (SCRs). DC capacitors at the SCR output serve as energy storage and lter out the voltage ripple to provide a smooth DC voltage. The Insulated Gate Bipolar Transistor (IGBT) is an inverter that converts the DC voltage into an adjustable three-phase AC voltage. Pulse Width Modulation (PWM) signals from the Bearing Motor compressor Controller (BMCC) control the inverter output frequency and voltage. By modulating the on and o times of the inverter power switches, three-phase variable sinusoidal waveforms are obtained. If the power should fail while the compressor is running, the motor switches into generator mode, thereby sustaining the capacitor charge. The rotor can then spin down safely in a controlled sequence preventing damage to components.
3.4.2 Soft-Start Board The Soft-Start Board limits inrush current by progressively increasing the conduction angle of the SCRs. This technique is used at compressor start-up while the DC capacitors are charging up.
The soft-start function and the variable-speed drive combined limit the inrush current at startup.
3.4.3 Bearing Motor
Compressor Controller
The hardware and software for the compressor controller and the bearing/motor controller physically reside in the BMCC. The BMCC is the central processor of the compressor.
3.4.4 Compressor Control The Compressor Controller is continuously updated with critical data from external sensors that indicate the compressor’s operating status. Under program control, the compressor controller can respond to changing conditions and requirements to ensure optimum system performance.
Figures 3-5 to Figure 3-7 shows how the controller responds to chiller demands.
3.4.5 Capacity Control One of the Compressor Controller’s primary functions is to control the compressor’s motor speed and IGV position in order to satisfy load requirements and to avoid surge and choke conditions. However, the majority of capacity control can be achieved via motor speed.
M-AP-001-EN Rev. N
Page 23 of 108
Functional Description
3.4.6 Expansion Valve Control
3.4.7 Motor/Bearing Control
3.4.8 Monitoring Functions
The on-board Electronic Expansion Valve (EXV) driver uses manual control only. Depending on the application, a load balancing (hot gas bypass) valve can be manually driven by the auxiliary EXV output. Load balancing allows the compressor to obtain lower capacities at higher pressure ratios. The valve opens to lower the overall pressure ratio and thereby reduces the lift, enabling the compressor to reduce speed/unload.
The magnetic bearing system physically supports a rotating shaft while enabling non­contact between the shaft and surrounding stationary surfaces. A digital bearing controller and motor controller provide the PWM command signals to the Bearing PWM Amplier and IGBT Inverter, respectively. The bearing controller also collects shaft position inputs from sensors and uses the feedback to calculate and maintain the desired shaft position.
The compressor controller monitors more than 60 parameters, including:
• Gas pressure and temperature monitoring
• Line voltage monitoring and phase failure detection
• Motor temperature
• Line currents
3.4.9 Abnormal Conditions
• External interlock
The compressor controller responds to abnormal conditions by monitoring:
• Surge RPMs
• Choke RPMs
• Power failure/phase unbalance
• Low/high ambient temperature
• High discharge pressure
• Low suction pressure
• Motor-cooling circuit failure (over temperature)
• Refrigerant loss
• Power supply
• Overcurrent
Page 24 of 108
M-AP-001-EN Rev. N
Functional Description
3.4.10 Bearing PWM
Amplier
3.4.11 Serial Driver
3.4.12 Backplane
The Bearing PWM Amplier supplies current to the radial and axial magnetic bearing actuators.
The PWM Amplier consists of high-voltage switches that are turned on and o at a high frequency, as commanded by the PWM signal from the BMCC.
The Serial Driver module performs serial-to-parallel conversion on the stepper motor drive signals from the BMCC. The module also contains four normally open relays under BMCC control. Two of the relays drive the motor-cooling solenoids, and the other two are used to indicate compressor fault status and running status. The status relays can be wired to external control circuits.
The Backplane physically interconnects the on-board plug-in modules with the power electronics, IGV stepper motor, motor-cooling solenoids, rotor position sensors, and pressure/temperature sensors. The Backplane also features on-board, low-voltage DC­DC converters for generating +15V, -15V, +5V, and +17V from an input of +24VDC. The Backplane receives its +24VDC power input from the High-Voltage (HV) DC-DC Converter mounted on the topside of the compressor.
The Backplane is also equipped with status-indicating LEDs. All LEDs are yellow except for the alarm LED, which is green/red. Table 3-1 Backplane LEDs describes the LEDs functions.
Table 3-1 - Backplane LEDs
LED Function
+5V, +15V, +17HV, +24V
Cool -H, Cool -L LEDs are lighted when their respective coil is energized.
Run LED is lighted when the shaft is spinning.
Alarm LED is green when in normal status, red when in alarm status.
D13, D14, D15, D16 LEDs indicate IGV status and ash when IGV is moving.
LEDs are lighted when DC power is available.
M-AP-001-EN Rev. N
Page 25 of 108
Functional Description
3.4.13 High-Voltage DC­DC Converter
3.5 Magnetic Bearing System
3.5.1 Overview
Figure 3-6 - Magnetic Bearing Conguration
DC-DC converters supply and electrically isolate the high and low DC voltages that are required by the control circuits. The HV DC-DC Converter delivers 24VDC and 250VDC from an input of 460-900VDC. The 24VDC and 250VDC are used to power the Backplane and magnetic bearing PWM Amplier, respectively.
A rotating shaft, under changing load conditions, will experience forces in both radial and axial directions. In order to compensate for these forces, a ve-axis bearing system is used, incorporating two radial bearings of two axes each, and one thrust (axial) bearing (see Figure 3-6).
3.5.2 Bearing Control System
The Bearing Control System uses rotor position feedback to close the loop and maintain the rotor in the correct running position (see Figure 3-7). The Bearing Controller issues position commands to the Bearing PWM Amplier. The position commands consist of ve channels with each channel allocated to one of the ve bearing actuator coils (one coil for each axis). The amplier uses IGBT technology to convert the low-voltage position commands to the 250VDC PWM signals that are applied to each bearing actuator coil.
Rotor position sensors are located on rings attached to the front and rear radial bearing assemblies. The front sensor ring contains sensors that read the rotor position along the X, Y, and Z axes. The rotor position along the Z (or axial) axis is read by measuring the distance between the sensor and a target sleeve mounted on the rotor. The rear sensor ring contains sensors that read the position along the X and Y axes. Information from the position sensors is continuously fed back to the bearing controller.
Page 26 of 108
M-AP-001-EN Rev. N
Figure 3-7 - Magnetic
Axi s Be ari ng Channel
X Front Radi al Fx
Y Front Radial Fy
X Rear Radial Rx
Y Rear Radial Ry
Z Axi al Axi
Channel Assignment s
Bearing Control System
Functional Description
Y
Y
Shaft
X
X
Shaft
Z
Z
Shaft axes monitored
by position sensors
Touc hdown
Bearings
Impellers
Target
Sleev e
Y-axis
Po siti on
S ensor
Z-axis
Po siti on
S ensor
S ensor Ring
Posi tion Comm and
250 VDC
Channels
Fx, Fy
X-ax is
Po siti on
S ensor
Front
Radia l
Bearing
Bearing-Mo tor-
Co mpr essor
Controlle r (BMCC)
Signals
Bearing
PWM
Amplifier
Motor
X-axis
Po siti on
S ensor
Position FeedbackPosition Feedback
Y-axis
Po siti on
S ensor
S ensor Ring
Channels
Rx, Ry
Touc hdown
Bearings
R ear
Radia l
Bearing
Channel Axi
Axial
Bearing
M-AP-001-EN Rev. N
Page 27 of 108
Control Interface Wiring
4 Control Interface Wiring
Figure 4-1 - Typical Control Wiring
EXV #1 (Evaporator or load balancing valve)
EXV #2 (Economizer or load balancing valve)
Level Sensor #1 (Evaporator)
Level Sensor #2 (Economizer)
Temperature Sensor Signal, 1-5Volts
Pressure Sensor Signal, 1-5Volts
EXV Phase 1A
EXV Phase 1B
EXV Phase 2A EXV Phase 2B
EXV Phase 1A
EXV Phase 1B
EXV Phase 2A
EXV Phase 2B
Level Sensor +15V
Sensor Signal , 1-5Volts
Level Sensor 0V
Level Sensor +15V
Sensor Signal , 1-5Volts
Level Sensor 0V
The Compressor I/O Board is the entry point for control wiring from the chiller/plant to the compressor. Refer to Figures 4-1 and 4-2 for the proper Compressor I/O Board connectivity.
RS232 Monitoring Connector (DB9)
1A 1B 2A 2B 1A 1B 2A 2B
EXV1
EXV2
J4 J5
J6
Float
Float
SPARE T SPARE P
DEMAND
J7
STATUSI/LOCK
SPEED
LIQDT
RUN
ANALOG
ENTRY LEAVE
J8
COM
NETB
NETA
J1
OUT
I/O
I/O
IN IN
IN IN
OUT
OUT
OUT
OUT
IN
J2
IN
OUT OUT
OUT
OUT
IN IN
IN
J3
IN
ModBus Common (Shield)
ModBus RS-485 NetB
ModBus RS-485 NetA
Demand + 0-10V Demand -
Interlock Contact - Safety N/C Interlock Contact - Safety N/C
Compressor Status - N/O Contact
Compressor Status - N/O Contact
No function No function
Liquid Temperature + Liquid Temperature -
Compressor Running - N/O Contact Compressor Running - N/O Contact *Universal Analog Output +
*Universal Analog Output -
Entering Chilled Water Temp. Sensor
Leaving Chilled Water Temp. Sensor
Sensor 0V
Sensor +5V
OUT
OUT
OUT OUT
OUT
OUT
OUT OUT
OUT
IN
OUT
OUT
IN
OUT
IN OUT
OUT
IN
**Level sensor circuit can be congured for two types of sensors using jumpers JP5 and JP6. Refer to the Installation and Operations Manual for details.
Figure 4-2 - ModBus Grounding Diagram
Page 28 of 108
Retain Termination Jumper in Last Board
REF
+
-
RS485-1
Shield
I-Lock
CIM Board
M-AP-001-EN Rev. N
REF
+
RS485-1
Shield
I-Lock
CIM Board
-
Remove Termination Jumper in All Intermediate Boards
REF
+
RS485-1
Shield
I-Lock
CIM Board
* Universal output can be used for : output manual control 0-5VDC or 0-10VDC
COM NETB NETA
MODBUS
REF
-
-
+
120Ω
PLC
Termination Resistor should only be included
if one is not included in the PLC. If the PLC
has a resistor installed, do not add an addi-
tional one. If the PLC does not have a resistor
installed, then one should be installed.
Control Interface Wiring
Table 4-1 - Control Wiring Details
I/O Description
COM (shield) Shield for RS-485 communication
Modbus RS-485 NetB/NetA Modbus over RS-485 communication port
Stepper Motor 1 Phase 1A, 1B, 2A, 2B and Stepper Motor Phase 1A, 1B, 2A, 2B
Level Sensor +15V (Evaporator) Power supply for level sensor #1
Sensor Signal (Evaporator) Input from a level sensor to control the main expansion valve (evaporator)
Level Sensor +15V (Economizer) Power supply for level sensor #2
Sensor Signal (Economizer)
Demand 0 - 10V
Interlock
Status
Liquid Temperature
Run
Analog
Entering Chilled Water Temp
Leaving Chilled Water Temp
Spare T +/-
Spare P +/- Can be connected to a 0-5V type pressure sensor
Optional output connections for controlling the main electronic expansion valve (evaporator) or auxillary electronic expansion valve (economizer or load balancing valve). 200ma Maximum output on each driver. Valve frequency will eect operational characteristics.
Input from a level sensor to control the auxiliary expansion valve (economizer)
Analog input from customer-supplied controller to drive the compressor, i.e., 0 - max. kW input with a deadband of 2VDC for the respective compressor model. Only available in 3.1.4; removed in 4.x forward.
Connects to a set of external normally closed contacts that typically open in the event of loss of chilled water or air ow. Typically a 1.5VDC Output signal. NOTE: This is not a safety certied interlock.
An internal normally open contact that is closed during normal operation and opens in the event of a compressor fault. With the circuit open, the compressor will not restart until the demand signal has been reset to 0 (via chiller/unit controller). Circuit rated at 1A @ 30VDC/24VAC or .03A @ 120VAC.
Optional input for monitoring temperature. The temperature sensor must be an NTC type 10K @ 25°C thermistor.
An internal N/O contact that is closed while the compressor is running. The speed at which the contact closes is user-congurable via the monitor program. Circuit rated at 1A @ 30VDC/24VAC or 0.3A @ 120VAC.
Universal analog output manually controlled as a percentage of total voltage written through Modbus. This can be congured for 0-5V or 0-10V via on board jumpers.
Analog input indicating water temperature. The temperature sensor must be an NTC type 10K @ 25°C thermistor. Refer to Application Manual for thermistor specication.
Analog input indicating water temperature. The temperature sensor must be an NTC type 10K @ 25°C thermistor. Refer to Application Manual for thermistor specication.
Optional input for monitoring temperature. The temperature sensor must be an NTC type 10K @ 25°C thermistor.
4.1 Control Wiring
To ensure proper control wiring techniques, follow these guidelines:
Connection Guidelines
1. The ground reference of the external circuit connected to the Compressor I/O Board
2. The Interlock circuit should be voltage-free. For instance, all external contractors/
3. Analog outputs (such as Motor Speed) must be received by the external circuit without
4. All interlock and analog output cables should be shielded with one end of the shield
must be at the same potential as the ground reference on the Compressor I/O Board.
switches must not introduce current into the circuit.
sending current back to the Compressor I/O Board.
connected to the common analog or digital ground bus. The other end of the shield must not be grounded as this would create a ground loop. Refer to Figure 4-2.
M-AP-001-EN Rev. N
Page 29 of 108
Control Interface Wiring
4.2 Interface Cable
Figure 4-3 - I/O Wiring Specications
The cable that carries the I/O communication to the compressor is 5 meters (16.4 feet) in length and is equipped with high-density 44-pin connectors (female at one end and male at the other end). An extension cable is available from your local supplier. An optional 10 meter (32.8 ft) cable is also available in the Spare Parts Selection Guide.
NOTE
If an I/O extension cable is used, heat-shrink tubing should be applied to the mating cable connectors to maintain good conductivity and protect the connection from heat and humidity.
For RS-485 communication, the maximum cable length should not exceed 100 meters (328 feet). If using RS-232 communication, the cable length should not exceed 15 meters (50 feet) between the PC and the compressor (refer to Figure 4-3).
Page 30 of 108
M-AP-001-EN Rev. N
Loading...
+ 78 hidden pages