Cirrus Logic CS485xx User Manual

CS485xx Family Data Sheet
32-bit
DSP
D M A
P X Y
Serial
Control 1
12 Ch PCM
Audio Out
GPIO Debug
Watchdog
TMR1 TMR2
PLL
S/PDIF
12 Ch. Audio In /
6 Ch. SACD In
CS485xx
Features
Cost-effective, High-performance 32-bit DSP
enhancement feature sets
8-channel internal DMAInternal watch-dog DSP lock-up prevention
DSP Tool Set w/ Private Keys for Protecting Customer IPConfigurable Serial Audio Inputs/Output s
Configurable for all input/output typesMaximum 32-bit @ 192 kHzSupports 32-bit audio sample I/O between DSP chipsTDM input modes (multiple channels on same line)192 kHz SPDIF transmitterMulti-channel DSD direct stream digital SACD input
Supports Two Different Input Fs Sample Rates
Output can be master or slaveDual processing path capabilityInput supports dual domain slave clockingHardware assist time sampling for sample rate conversion
Integrated Clock Manager/PLL
Can operate from external crystal, external oscillator
Input Fs Auto DetectionHost & Boot via Serial InterfaceConfigurable GPIOs and External Interrupt Input1.8V Core and a 3.3V I/O that is tolerant to 5V input
Differentiating from the legacy Cirrus multi-standard, multi-channel decoders, this new CS485xx family is still based on the same high-performance 32-bit fixed point Digital Si gnal Processor core but instead is equipped with much less memory, t ai lo ring it f or more cost-effective applications associat ed with multi-channel and virtual-channel sound enhancements. Target applications are:
Digital TelevisionsMultimedia Peripherals
®
iPod
Docking Stations
Automotive Head UnitsAutomotive Outboard AmplifiersHD-DVD
and Blu-ray Disc® DVD Receivers
PC Speakers
There are also a wide variety of licensable DSP codes available today as seen by the following examples:
Cirrus also has developed, or is developing their own royalty-free versions of popular features sets like Cirrus Bass Manager, Cirrus Dynamic Volume Leveler, Cirrus Original Multichannel Surround, Cirrus Virtual Speaker & Cirrus 3D-Audio.
The CS485xx family is programmed using the Cirrus proprietary DSP Composer designed using a drag-and-drop interface to place/utilize functional macro audio DSP primitives. The end result is a software image that is down-loaded to the DSP via serial host or serial boot modes.
See Section 6 for ordering information.
GUI development tool. Processing chains may be
Low-power Mode
“Energy Star
http://www.cirrus.com
®
Ready” in low-power mode, 268 µW in standby
CS485xx Block Diagram
Copyright Cirrus Logic, Inc. 2011
(All Rights Reserved)
DS734F5
OCT '11
Contacting Cirrus Logic Support
For all product questions and inquiries, contact a Cirrus Logic Sales Representative. To find the one nearest you, go to www.cirrus.com.
IMPORTANT NOTICE
Cirrus Logic, Inc. and its subsidiaries (“Cirrus”) believe that the information contained in this document is accurate and reliable. However, the information is subject to change without notice and is pr ov i de d “A S I S” wi t hou t war r an ty of a ny k i nd ( ex p res s o r impl i ed ). Cus to mer s ar e adv ise d to obtain the lat est version of relevant information to verify, before placing orders, that informatio n being relied on is current and complet e. All products are s old subject to the terms and conditions of s al e suppl i ed at the ti me of or de r acknowledgment, including those pertaining to warranty, indemnification, and limitation of liability. No responsibility is assumed by Cirrus for the use of this in formation, including use of this information as the b asis fo r manufacture or sale of any items, or for infring ement of patents or other rights of third parties. This document is the property of Cirrus and by furnishi ng thi s i nformation, Cirrus grant s n o license, express or implied under any patents, mask work rights, copyrights, trademarks, t r a de se cre t s o r o t her intellectual proper ty rig hts. Cirr us owns t he co pyri ght s ass ociat ed with the i nf ormati on c onta ine d here in a nd giv es c onse nt f or copies to be made of the information only for use within your organiz ation with respect to Cirrus integrated circuits or other products of Cirrus. Th is consent does not ext end to other copying such as copying for general distribution, advertising or promotional pu rp oses, or for creating any work for resale.
CERTAIN APPLICATIONS USING SEMICONDUCTOR PR ODUCTS MAY INVOLVE POTENTIAL RISKS OF DEATH, PERSONAL INJURY, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE (“CRITICAL APPLICATI ONS”). CIRRUS PRODUCTS ARE NOT DESIGNED, AUTHORIZED OR WARRANTED FOR USE IN PRODUCTS SURGICALLY IMPLANTED INTO THE BODY, AUTOMOTIVE SAFETY OR SECURITY DEVICES, LIFE SUPPORT PRODUCTS OR OTHER CRITICAL APPLICATIONS. INCLUSION OF CIRRUS PRODUCTS IN SUCH APPLICATIONS IS UNDERSTOOD TO BE FULLY AT THE CUSTOMER’S RISK AND CIRRUS DISCLAIMS AND MAKES NO WARRANTY, EXPRESS, STATUTORY OR IMPLIED, INCLUDING THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR PARTICULAR PURPOSE, WITH REGARD TO ANY CIRRUS PRODUCT THAT IS USED IN SUCH A MANNER. IF THE CUSTOMER OR CUSTOMER’S CUSTOMER USES OR PER MITS THE USE OF CIRRUS PRODUCTS IN CRITICAL APPLICATION S, CUSTOMER AGRE ES, BY SUCH USE, TO FULLY INDEMNIFY CIRRUS, ITS OFFICERS, DIRECTORS, EMPLOYEES, DISTRIBUTORS AND OTHER AGENTS FROM ANY AND ALL LIABILITY, INCLUDING ATTORNEYS’ FEES AND COSTS, THAT MAY RESULT FROM OR ARISE IN CONNECTION WITH THESE USES.
Cirrus Logic, Cirrus, and the Cirrus Logic logo designs, DSP Com poser, and Cirru s Framework ar e tradema rks of Cirrus Logic, Inc. All other brand and product names in this document may be trademarks or service marks of their respective owners.
Dolby, Dolby Digitaol, Dolby Headphone, Virtual Speaker, and Pro Logic are registered trademarks of Dolby Laboratories, Inc. Supply of an implementation of Dolby Technology does not convey a license no r imply a right under any pate nt, or any other industrial or Intelle ctual Property Right of Dolby Laboratories, to use the Implementation in any finished end-user or ready-to-use final pro d uct. It is hereby no tified that a li cen s e for such u se is required from Dolby Laboratories.
DTS and DTS Neo:6 are regist ered trademarks of Dig i tal Theater Systems, Inc. It is hereby notified that a third-party license from DTS is necessary to distribute software of DTS in any finished end-user or ready-to-use final pro du ct.
SRS, Circle Surround and Trusurround XT are registered trademarks of SRS Labs, Inc. Circl e Surround II is a trademark of SRS Labs, Inc. The Circle Surround technology is incorporated under li cense from SRS Labs, Inc. The Circle Surround tec hnology rights incor porated in the CS485xx are owned by SRS Labs, a U.S. Cor poration and licensed to Cirrus Logic, Inc. Purchaser of CS485xx must sign a license for use of the chip and display of the SRS Labs trademarks. Any products incorporating the CS485xx must be sent to SRS Labs for review. The Circle Surround technology is protected under US and foreign patents issued and/or pending. Circle Surround, SRS and (O) symbol are trademarks of SRS Labs, Inc. in the United States and selected foreign countrie s. Neither the purchase of the CS485xx, nor the corresponding sale of audio enhancement equipment conveys the r ight to sell commerci alized recordings made wi th any SRS technology/sol ution. SRS Labs requires all set makers to comply with all rules and regulations as outlined in the SRS Trademar k U sag e M a nual.
SPI is a trademark of Motorola, Inc. I²C is a trademark of Philips Semiconductor. iPod is a registered trademark of Apple Comput er, Inc. HD DVD is a trademark of DVD Format/Logo Licensin g Corporation. Blu-Ray Disc is a registered trademark of SONY KABUSHIKI KAISHA CORPORATION. Energy Star is a registered trademark of the Environmental Protection Agency, a federal agency of the United States government.
DS734F5 2
TABLE OF CONTENTS
1 Documentation Strategy ........................................................................................................................................... 1-5
2 Overview ..................................................................................................................................................................... 2-5
2.1 Licensing ............................................................................................................................................................ 2-5
3 Code Overlays ............................................................................................................................................................ 3-6
4 Hardware Functional Description ............................................................................................................................ 4-7
4.1 DSP Core ........................................................................................................................................................... 4-7
4.1.1 DSP Memory ............................................................................................................................................. 4-7
4.1.2 DMA Controller .......................................................................................................................................... 4-7
4.2 On-chip DSP Peripherals ................................................................................................................................... 4-7
4.2.1 Digital Audio Input Port (DAI) ............. ... ... ... ... .......................................... .... ............................................. 4-7
4.2.2 Digital Audio Output Port (DAO) ................................................................................................................ 4-8
4.2.3 Serial Control Port (I
4.2.4 GPIO ......................................................................................................................................................... 4-8
4.2.5 PLL-based Clock Generator ...................................................................................................................... 4-8
4.2.6 Hardware Watchdog Timer ....................................................................................................................... 4-8
4.3 DSP I/O Description ........................................................................................................................................... 4-8
4.3.1 Multiplexed Pins ........................................................................................................................................4-8
4.3.2 Termination Requirements ........................................................................................................................ 4-8
4.3.3 Pads .......................................................................................................................................................... 4-9
4.4 Application Code Security .................................................................................................................................. 4-9
5 Characteristics and Specifications .......................................................................................................................... 5-9
5.1 Absolute Maximum Ratings ................................................................................................................................ 5-9
5.2 Recommended Operations Conditions ..................................... ............. ............ ............. ............. .......................5-9
5.3 Digital DC Characteristics ................................................................................................................................... 5-9
5.4 Power Supply Characteristics ......................... ................ ................ ................ ................ .................................. 5-10
5.5 Thermal Data (48-pin LQFP) ............................................................................................................................ 5-10
5.6 Switching Characteristics—RESET .................................................................................................................. 5-11
5.7 Switching Characteristics—XTI ........................................................................................................................ 5-11
5.8 Switching Characteristics—Internal Clock ........................................................................................................5-11
5.9 Switching Characteristics—Serial Control Port–SPI Slave Mode ..................................................................... 5-12
5.10 Switching Characteristics—Serial Control Port–SPI Master Mode ................................................................. 5-13
5.11 Switching Characteristics—Serial Control Port–I
5.12 Switching Characteristics—Serial Control Port–I
5.13 Switching Characteristics—Digital Audio Slave Input Port .................................. ... ........................................ 5-15
5.14 Switching Characteristics—DSD Slave Input Port ..... ... .......................................... ........................................ 5-15
5.15 Switching Characteristics—Digital Audio Output (DAO) Port ....................... ... .... ... ........................................ 5-16
6 Ordering Information ............................................................................................................................................... 6-18
7 Environmental, Manufacturing, and Handling Information .................................................................................7-18
8 Device Pinout Diagrams .......................................................................................................................................... 8-19
8.1 CS48520, 48-pin LQFP Pinout Diagram .......................................................................................................... 8-19
8.2 CS48540, 48-pin LQFP Pinout Diagram .......................................................................................................... 8-20
8.3 CS48560, 48-pin LQFP Pinout Diagram .......................................................................................................... 8-21
9 Package Mechanical Drawings ............................................................................................................................... 9-22
9.1 48-pin LQFP Package Drawing ........................................................................................................................ 9-22
10 Revision History .............................. .... ... ... ... .... ... ... ... ... .... ... ... ... .... ... ................................................................... 10-23
2C™
or SPI™) ..................................... ............. ............. ............. ............ ............. ....... 4-8
2
C Slave Mode ................................................................... 5-13
2
C Master Mode ................................................................. 5-14
3 DS734F5
LIST OF FIGURES
Figure 5-1. RESET Timing ...................................................................................................................................... 5-11
Figure 5-2. XTI Timing............................................................................................................................................. 5-11
Figure 5-3. Serial Control Port–SPI Slave Mode Timing .........................................................................................5-12
Figure 5-4. Serial Control Port–SPI Master Mode Timing .......................................................................................5-13
Figure 5-5. Serial Control Port–I Figure 5-6. Serial Control Port–I
Figure 5-7. Digital Audio Input (DAI) Port Timing Diagram....... ... .... ... ... ... .... ... ... ... ... .... ... ... ... .................................. 5-15
Figure 5-8. Direct Stream Digital–Serial Audio Input Timing........................................ ... ... ... .... ... ... ... ... .................. 5-15
Figure 5-9. Digital Audio Output Port Timing, Master Mode.................................................................................... 5-17
Figure 5-10. Digital Audio Output Timing, Slave Mode (Relationship LRCLK to SCLK)......................................... 5-17
Figure 8-1. CS48520, 48-pin LQFP Pinout.............................................................................................................. 8-19
Figure 8-2. CS48540, 48-pin LQFP Pinout.............................................................................................................. 8-20
Figure 8-3. CS48560, 48-pin LQFP......................................................................................................................... 8-21
Figure 9-1. 48-pin LQFP Package Drawing............................................................................................................. 8-22
2
C Slave Mode Timing.......................................................................................... 5-14
2
C Master Mode Timing........................................................................................ 5-15
LIST OF TABLES
Table 1-1. CS485xx Family Related Documentation....................................... ... ... ... .... ... .......................................... 1-5
Table 3-1. Device and Firmware Selection Guide................................. ... .... ... .......................................................... 3-6
Table 5-1. Master Mode (Output A1 Mode)............................................................................................................. 5-16
Table 5-2. Slave Mode (Output A0 Mode)............................................................................................................... 5-17
Table 6-1. Ordering Information .............................................................................................................................. 6-18
Table 7-1. Environmental, Manufacturing, and Handling Information .....................................................................7-18
4 DS734F5

1 Documentation Strategy

1 Documentation Strategy
The CS485xx Family Data Sheet describes the CS485xx family of multichannel audio proce ssors. This document should be used in conjunction with the following documents when evaluating or designing a system around the CS485xx family of processors.
Table 1-1. CS485xx Family Related Documentation
Document Name Description
CS485xx Family Data Sheet This document
CS485xx Family Hardware User’s Manual Includes detailed system design information including Typical Connection Diagrams,
AN298–CS485xx Family Firmware User’s Manual Includes detailed firmware design information including signal processing flow
DSP Composer User’s Manual Includes detailed configuration and usage information for the GUI development tool.
The scope of the CS485xx Family Data Sheet is primarily the hardware specifications of the CS485xx family of devices. This includes hardware functionality, characteristic data, pinout, and packaging information.
The intended audience for the CS485xx Family Data Sheet is the system PCB designer, MCU programmer, and the quality control engineer.
Boot-Procedures, Pin Descriptions, etc.
diagrams and control API information

2 Overview

The CS485xx DSP Family is designed to provide high-performance post-processing and mixing of digital audio. The dual clock domain provided on the PCM inputs allows for the mixing of audio streams with different sampling frequencies. The low-power standby preserves battery life for applications which are always on, but not necessarily processing audio, such as automotive audio systems.
There are three devices comprising the CS485xx family. The CS48520, CS485 40 and CS48560 are differentiated by the number of inputs and outputs available. All DSPs support dual input clock domains and dual audio processing paths. All DSPs are available in a 48-pin QFP package. Refer to Table3-1 for the input, output, firmware features of each device.

2.1 Licensing

Licenses are required for all of the third party audio processing algorithms listed in Section 3. Contact your local Cirrus Logic Sales representative for more information.
5 DS734F5

3 Code Overlays

3 Code Overlays
The suite of software available for the CS485xx family consists o f an operating system (OS) and a librar y of overlays. The overlays have been divided into three main groups called Matrix-processors, Virtualizer-processors, and Post-processors. All software components are defined below:
1. OS/Kernel—Encompasses all non-audio processing tasks, including loading data from external memory, processing host messages, calling audio-processing subroutines, error concealment, etc.
2. Matrix-processor—Any Module that performs a matrix decode on PCM data to produce more output channels than input channels (2n channels). Examples are Dolby ProLogic IIx and DTS Neo :6. Ge nerally speaking , these modules increase the number of valid channe ls in the au dio I/O bu ffer.
3. Virtualizer-processor—Any module that encodes PCM data into fewer output channels than inpu t channels (n2 channels) with the effect of providing “phantom” speakers to represent the physical audio channels that were eliminated. Examples are Dolby Headphone reduce the number of valid channels in the audio I/O buffer.
4. Post-processors—Any module that processes audio I/O buffer PCM data in-place after the matrix- or virtualizer-processors. Examples are bass management, audio manager, tone control, EQ, delay, customer-specific effects, etc.
The bulk of each overlay is stored in ROM within the CS485xx, but a small imag e is required to configure the overlays and boot the DSP. This small image can either be stored in an external serial FLASH/EEPROM, or downloaded via a host controller through the SPI
/I2C™ serial port.
®
and Dolby Virtual Speaker®. Generally speaking, these modules
The overlay structure reduces the time required to reconfigure the DSP when a processing change is requested. Each overlay can be reloaded independently without disturbing the other overlays. Fo r example, when a new matrix-processor is selected, the OS, virtualizer-, and post-processors do not need to be reloaded — only the new matrix-processor (the same is true for the other overlays).
Table 3-1 lists the firmware available based on device selection. Refer AN298, CS485xx Firmware User’s
Manual for the latest listing of application codes and Cirrus Framework
Table 3-1. Device and Firmware Selection Guide
Device Suggested Application Channel Count Input/Output Package
CS48520-CQZ Digital TV, portable audio docking station, portable DVD, DVD mini/
CS48540-CQZ CS48540-DQZ CS48560-CQZ CS48560-DQZ
receiver, multimedia PC speakers CS48520 features plus 8-channel car audio, DVD receiver Up to 8-channel in/8-channel out 48-pin QFP
CS48540 features plus 12-channel car audio, high-end digi tal TV , dual source/dual zone SACD
modules available.
Up to 4-channel in/4-channel out 48-pin QFP
Up to 12-channel in/12-channel out 48-pin QFP
6 DS734F5

4 Hardware Functional Description

4 Hardware Functional Description

4.1 DSP Core

The CS485xx family DSPs are single-core DSP with separate X and Y data and P code memory spaces. The DSP core is a high-performance, 32-bit, user-programmable, fixed-point DSP that is capable of performing two multiply-and-accumulate (MAC) operations per clock cycle. The DSP core has eight 72-bit accumulators, four X- and four Y-data registers, and 12 index registers.
The DSP core is coupled to a flexible DMA engine. The DMA engine can move data between peripherals such as the serial control port (SCP), digital audio input (DAI) and digital audio output (DAO), or any DSP core memory, all without the intervention of the DSP. The DMA engine off loads data move instructions from the DSP core, leaving more MIPS available for signal processing instructions.
CS485xx family functionality is controlled by application codes that are stored in on-board ROM or downloaded to the CS485xx from a host controller or external serial FLASH/EEPROM.
Users can develop their applications using DSP Composer to crea te the processing chain and then compile the image into a series of commands that are sent to the CS485xx through the SCP. The processing application can either load modules (matrix-processors, virtualizers, post-processors) from the DSPs on-board ROM, or custom firmware can be downloaded through the SCP.
The CS485xx is suitable for a variety of audio post-processing applications such as automotive hea d-ends, automotive amplifiers, and boom boxes.

4.1.1 DSP Memory

The DSP core has its own on-chip data and program RAM and ROM and does not require external memory for post-processing applications.
The Y-RAM and P-RAM share a single block of memory that can be configured to make Y and P equal in size, or more memory can be allocated for Y-RAM in 2kword blocks.

4.1.2 DMA Controller

The powerful 8-channel DMA controller can move data between 8 on-chip resources. Each resource has its own arbiter: X, Y, and P RAMs/ROMs and the peripheral bus. Modulo and linear addressing modes are supported, with flexible start address and increment controls. The service intervals for each DMA channel, as well as up to 6 interrupt events, are programmable.

4.2 On-chip DSP Peripherals

4.2.1 Digital Audio Input Port (DAI)

Each version of the CS485xx supports a different number of input channels. Refer to Table 3-1 for more details. The DAI port supports a wide variety of data input formats at sa mple rates (Fs) as hig h as 192 kHz. The por t is capable of
accepting PCM or DSD formats. Up to 32-bit word lengths are supported. DSD is supported and internally converted to PCM before processing. The DAI also supports a time division multiplexed (TDM) one-line data mode, that packs PCM audio on a single data line (the total number possible depe nds on the ratio of SCLK to LRCLK and the ver sion of chip. For example on the CS48520 only 4 ch of PCM are supported in one line mode and on the CS48560 up to 8 channels are supported.).
The port has two independent slave-only clock domains. Each data input can be independently assigned to a clock domain. The sample rate of the input clock domains can be determined au tomatically by the DSP, off- loading the task of monitoring the SPDIF receiver from the host. A time-stamping feature allows the input data to be sample-rate converted via software.
7 DS734F5

4.3 DSP I/O Description

4.2.2 Digital Audio Output Port (DAO)

Each version of the CS485xx supports a different number of output channels. Refer to Table 3-1 for more details. DAO port supports PCM resolutions of up to 32-bits. The port supports sample rates (Fs) as high as 192 kHz. The port
can be configured as an independent clock domain mastere d by the DSP, or as a clock slave if an external MCLK or SCLK/ LRCLK source is available. One of the serial audio pins can be re-configured as a S/PDIF transmitter th at drives a biphase encoded S/PDIF signal (data with embedded clock on a single line).
The DAO also supports a time division multiplexed (TDM) o ne-line data mode, th at packs multiple channels of PCM audio on a single data line.

4.2.3 Serial Control Port (I2C™ or SPI™)

2
The on-chip serial control port is capable of operating as master or slave in either SPI or I
C
modes. Master/ Slave operation is chosen by mode select pins when the CS485xx comes out of Reset. The serial clock pin can support frequencies as high as 25 MHz in SPI mode (SPI clock speed must always be ≤ (F serial control port also includes a pin for flow control of the communications inte rface (SCP_BSY indicate when the DSP has a message for the host (SCP_IRQ
).
/2)). The CS485xx
dclk
) and a pin to

4.2.4 GPIO

Many of the CS485xx peripheral pins are multiplexe d with GPIO. Each GPIO ca n be configure d as an output, an input, or an input with interrupt. Each input-pin interrupt can be configured as rising edge, falling edge, active-low, or active-high.

4.2.5 PLL-based Clock Generator

The low-jitter PLL generates integer or fractional multiples of a reference frequency which are used to clock the DSP core and peripherals. Through a second PLL divider chain, a dependent clock domain ca n be output on the DAO port for driving audio converters. The CS485xx defaults to running fro m the external reference freq uency and is switched to use th e PLL output after overlays have been loaded and configured, either through master boot from an external FLASH or through host control. A built-in crystal oscillator circuit with a buffered output is provided. The buffered output frequency ratio is selectable between 1:1 (default) or 2:1.

4.2.6 Hardware Watchdog Timer

The CS485xx has an integrated watchdog timer that acts as a “health” monitor for the DSP. The watchdog timer must be reset by the DSP before the counter expires, or the entire chip is reset. This peripheral ensures that the CS485xx will reset itself in the event of a temporary system failure. In stand-alone mode (that is, no host MCU), the DSP will reboot from external FLASH. In slave mode (that is, host MCU present) a GPIO will be used to signal the host that the watchdog has expired and the DSP should be rebooted and re-configured.
4.3 DSP I/O Description

4.3.1 Multiplexed Pins

Many of the CS485xx family pins are multi-functional. For details on pin functionality, refer to the CS485xx Hardware User’s Manual.

4.3.2 Termination Requirements

Open-drain pins on the CS485xx must be pulled high for proper opera tion. Refer to the CS485xx Hardware User’s Manual to identify which pins are open-drain and what value of pull-up resistor is required fo r proper operation.
Mode select pins in the CS485xx family are used to select the boot mode upon the rising edge from reset. A detailed explanation of termination requirements for each communication mode select pin ca n be found in the CS485xx Hardware User’s Manual.
8 DS734F5

4.4 Application Code Security

4.3.3 Pads

The CS485xx I/Os operate from the 3.3 V supply and are 5 V tolerant.
4.4 Application Code Security
The external program code may be encrypted by the programmer to protect any intellectual property it may contain. A secret, customer-specific key is used to encrypt the program code that is to be stor ed external to the device. Contact your local Cirrus representative for details.

5 Characteristics and Specifications

Note: All data sheet minimum and maximum timing parameters are guaranteed over the rated voltage and temperature.
All data sheet typical parameters are measured under the following conditions: T = 25° C, C VDD = VDDA = 1.8 V, VDDIO = 3.3 V, GNDD = GNDIO = GNDA = 0 V.

5.1 Absolute Maximum Ratings

(GNDD = GNDIO = GNDA = 0 V; all voltages with respect to 0 V)
Parameter Symbol Min Max Unit
DC power supplies: Core supply VDD –0.3 2.0 V
PLL supply VDDA –0.3 3.6 V I/O supply VDDIO –0.3 3.6 V
|VDDA–VDDIO| 0.3 V Input pin current, any pin except supplies I Input voltage on PLL_REF_RES V Input voltage on I/O pins V Storage temperature T
in
filt inio stg
WARNING: Operation at or beyond these limits may result in permanent damage to the device. Normal operation is not
guaranteed at these extremes.
—±10mA –0.3 3.6 V –0.3 5.0 V
–65 150 °C
= 20 pF,
L

5.2 Recommended Operations Conditions

(GNDD = GNDIO = GNDA = 0 V; all voltages with respect to 0 V)
Parameter Symbol Min Typ Max Unit
DC power supplies: Core supply VDD 1.71 1.8 1.89 V
PLL supply VDDA 3.13 3.3 3.46 V
I/O supply VDDIO 3.13 3.3 3.46 V
|VDDA–VDDIO| 0 V
Ambient operating temperature T
–CQZ 0 +70 — –DQZ –40 +85
A
——— °C
Note: It is recommended that the 3.3 V IO supply come up ahead of or simultaneously with the 1.8 V core supply.

5.3 Digital DC Characteristics

(Measurements performed under static conditions.)
9 DS734F5

5.4 Power Supply Characteristics

Parameter Symbol Min Typ Max Unit
High-level input voltage V Low-level input voltage, except XTI V Low-level input voltage, XTI V Input hysteresis V High-level output voltage (I Low-level output voltage (I
= –2 mA), except XTI V
O
= 2 mA), except XTI V
O
Input leakage XTI I Input leakage current (all digital pins wit h internal pull-up resistors enabled) I
LEAK
IH IL
ILXTI
hys OH
OL
LXTI
2.0 V ——0.8V ——0.6V —0.4— V
VDDIO*0.9 V
——VDDIO*0.1V —— 5 µA ——7A
5.4 Power Supply Characteristics
(Measurements performed under operating conditions)
Parameter Min Typ Max Unit
Operational Power Supply Current:
VDD: Core and I/O operating VDDA: PLL operating —8—mA VDDIO: With most ports operating —27—mA Total Operational Power Dissipation: 480 mW
1
203 mA
Standby Power Supply Current:
VDD: Core and I/O not clocked 100 µA VDDA: PLL halted —1—µA VDDIO: All connected I/O pins 3-stated by other ICs in system 50 µA Total Standby Power Dissipation 348 µW
1.Dependent on application firmware and DSP clock speed.

5.5 Thermal Data (48-pin LQFP)

Parameter Symbol Min Typ Max Unit
Junction Temperature T
j
Thermal Resistance (Junction to Ambient)
Two-layer board
Four-layer board
1 2
θ
ja
Thermal Resistance (Junction to Top of Package)
Two-layer board
Four-layer board
1.Two-layer board is specified as a 76 mm X 114 mm, 1.6 mm thick FR-4 material with 1 oz. copper covering 20% of the top and bottom layers.
2.Four-layer board is specified as a 76 mm X 114 mm, 1.6 mm thick FR-4 material with 1 oz. copper covering 20% of the top and bottom layers and 0.5 oz. copper covering 90 % of the internal power plane and ground plane layers.
3.To calculate the die temperature for a given power dissipation
T
= Ambient Temperature + [(Power Dissipation in Watts)*θja]
j
4.To calculate the case temperature for a given power dissipation
T
= T
– [(Power Dissipation in Watts)*ψjt]
c
j
3 4
ψ
jt
——125 °C
63.5 °C/Watt —54 —
0.70 °C/Watt —0.64—
10 DS734F5
RESET#
T
rst2z
T
rstl
T
rstsu
T
rsthld
HS[3:0]
All Bidirectional
Pins
t
clkih
t
clkil
T
clki
XTI
5.6 Switching Characteristics—RESET
5.6 Switching Characteristics—RESET
Parameter Symbol Min Max Unit
RESET# minimum pulse width low T All bidirectional pins high-Z after RESET# low T Configuration pins setup before RESET# high T Configuration pins hold after RESET# high T
rstl rst2z rstsu
rsthld
1—ms — 100 ns 50 ns 20 ns
Figure 5-1. RESET Timing
5.7 Switching Characteristics—XTI
Parameter Symbol Min Max Unit
External Crystal operating frequency XTI period T XTI high time T XTI low time T External Crystal Load Capacitance (parallel resonant) External Crystal Equivalent Series Resistance ESR 50
1.Part characterized with the following crystal frequency values: 11.2896, 12.288, 18.432, 24.576, & 27 MH.z
2.CL refers to the total load capacitance as specified by the crystal manufacturer. Crystals that require a CL outside this range should be avoided. The crystal oscillator circuit design should follow the crystal manufacturer’s recommendation for load capacitor selection.
1
2
F
xtal
clki clkih clkil
C
11.2896 27 MHz
33.3 100 ns
13.3 ns
13.3 ns
L
10 18 pF
Ω
Figure 5-2. XTI Timing
5.8 Switching Characteristics—Internal Clock
Parameter Symbol Min Max Unit
Internal DCLK frequency
11 DS734F5
1
CS4852x-CQZ CS4854x-CQZ CS4856x-CQZ CS4854x-DQZ CS4856x-DQZ
F
dclk
——MHz
F
xtal
F
xtal
F
xtal
F
xtal
F
xtal
150 150 150 150 150
SCP_BSY#
SCP_CS#
SCP_CLK
SCP_MOSI
SCP_MISO
SCP_IRQ#
0
12670
56
7
t
spicss
t
spickl
t
spickh
t
spidsu
t
spidh
t
spidov
A6 A5 A0 R/W MSB LSB
MSB
LSB
t
spicsh
t
spibsyl
t
spiirql
t
spiirqh
f
spisck
t
spicsdz
5.9 Switching Characteristics—Serial Control Port–SPI Slave Mode
Parameter Symbol Min Max Unit
Internal DCLK period
1.After initial power-on reset, F reset.
1
CS4852x-CQZ CS4854x-CQZ CS4856x-CQZ CS4854x-DQZ CS4856x-DQZ
= F
dclk
. After initial kick-start commands, the PLL is locked to max F
xtal
DCLKP ns
6.7
6.7
6.7
6.7
6.7
and remains locked until the next power-on
dclk
1/F 1/F 1/F 1/F 1/F
xtal xtal xtal xtal xtal
5.9 Switching Characteristics—Serial Control Port–SPI Slave Mode
Parameter Symbol Min Typical Max Units
SCP_CLK frequency SCP_CS# falling to SCP_CLK rising t SCP_CLK low time t SCP_CLK high time t Setup time SCP_MOSI input t Hold time SCP_MOSI input t SCP_CLK low to SCP_MISO output valid t SCP_CLK falling to SCP_IRQ# rising t SCP_CS# rising to SCP_IRQ# falling t SCP_CLK low to SCP_CS# rising t SCP_CS# rising to SCP_MISO output high-Z t SCP_CLK rising to SCP_BSY# falling t
1.The specification f communication port may be limited by the firmware application. Flow control using the SCP_BSY# pin should be implemented to prevent overflow of
the input data buffer. At boot the maximum speed is F
1
indicates the maximum speed of the hardware. The system designer should be aware that the act ual maximum speed of the
spisck
xtal
/3.
f
spisck spicss
spickl spickh spidsu
spidh spidov spiirqh
spiirql
spicsh
spicsdz
spicbsyl
——25MHz 24 ns 20 ns 20 ns
5——ns
5——ns ——11ns — 20 ns
0——ns 24 ns —20—ns —3*DCLKP+20— ns
12 DS734F5
Figure 5-3. Serial Control Port–SPI Slave Mode Timing
EE_CS#
SCP_CLK
SCP_MISO
SCP_MOSI
0
12670
56
7
t
spicss
t
spickl
t
spickh
t
spidsu
t
spidh
t
spidov
A6 A5 A0 R/W MSB LSB
MSB
LSB
t
spicsh
t
spicsx
f
spisck
t
spidz
t
spicsl
5.10 Switching Characteristics—Serial Control Port–SPI Master Mode
5.10 Switching Characteristics—Serial Control Port–SPI Master Mode
Parameter Symbol Min Typical Max Units
SCP_CLK frequency SCP_CS# falling to SCP_CLK rising SCP_CLK low time t SCP_CLK high time t Setup time SCP_MISO input t Hold time SCP_MISO input t SCP_CLK low to SCP_MOSI output valid t SCP_CLK low to SCP_CS# falli ng t SCP_CLK low to SCP_CS# rising t Bus free time between active SCP_CS# t SCP_CLK falling to SCP_MOSI output high-Z t
1.The specification f communication port may be limited by the firmware application.
2.See Section 5.7.
3.SCP_CLK PERIOD refers to the period of SCP_CLK as being used in a given application. It does not refer to a tested parameter.
1
3
indicates the maximum speed of the hardware. The system designer should be aware that the act ual maximum speed of the
spisck
f
spisck
t
spicss
spickl spickh spidsu
spidh spidov
spicsl spicsh spicsx
spidz
——F — 11*DCLKP + (SCP_CLK PERIOD)/2 ns 20 ns 20 ns 13 ns
5— —ns
—— 8ns
7— —ns — 11*DCLKP + (SCP_CLK PERIOD)/2 ns — 3*DCLKP ns — 20 ns
xtal
2
/2
MHz
5.11 Switching Characteristics—Serial Control Port–I2C Slave Mode
SCP_CLK frequency SCP_CLK low time t SCP_CLK high time t SCP_SCK rising to SCP_SDA rising or falling for START or STOP condition t START condition to SCP_CLK falling t SCP_CLK falling to STOP condition t Bus free time between STOP and START conditions t Setup time SCP_SDA input valid to SCP_CLK rising t Hold time SCP_SDA input after SCP_CLK falling t
13 DS734F5
Figure 5-4. Serial Control Port–SPI Master Mode Timing
Parameter Symbol Min Typical Max Units
1
f
iicck
iicckl
iicckh
iicckcmd
iicstscl
iicstp
iicbft iicsu
iich
—— 400kHz
1.25 µs
1.25 µs
1.25 µs
1.25 µs
2.5 µs 3— —µs
100 ns
20 ns
SCP_BSY#
SCP_CLK
SCP_SDA
SCP_IRQ#
01 67801 7
t
iicckl
t
iicckh
t
iicsutiich
A6 A0 R/W ACK
LSB
t
iicirqh
t
iicirql
8
ACK
MSB
t
iicstp
6
t
iiccbsyl
t
iicdov
t
iicbft
t
iicstscl
t
iicckcmd
f
iicck
t
iicckcmd
t
iicf
t
iicr
5.12 Switching Characteristics—Serial Control Port–I2C Master Mode
Parameter Symbol Min Typical Max Units
SCP_CLK low to SCP_SDA out valid t SCP_CLK falling to SCP_IRQ# rising t NAK condition to SCP_IRQ# low t SCP_CLK rising to SCB_BSY# low t
1.The specification f communication port may be limited by the firmware application. Flow control using the SCP_BSY# pin should be implemented to prevent overflow of
the input data buffer.
indicates the maximum speed of the hardware. The system designer should be aware that the actual maximum speed of the
iicck
iicdov iicirqh
iicirql
iicbsyl
18 ns — 3*DCLKP + 40 ns — 3*DCLKP + 20 ns — 3*DCLKP + 20 ns
5.12 Switching Characteristics—Serial Control Port–I2C Master Mode
SCP_CLK frequency SCP_CLK low time t SCP_CLK high time t SCP_SCK rising to SCP_SDA rising or falling for START or STOP condition t START condition to SCP_CLK falling t SCP_CLK falling to STOP condition t Bus free time between STOP and START conditions t Setup time SCP_SDA input valid to SCP_CLK rising t Hold time SCP_SDA input after SCP_CLK falling t SCP_CLK low to SCP_SDA out valid t
1.The specification f communication port may be limited by the firmware application.
Figure 5-5. Serial Control Port–I2C Slave Mode Timing
Parameter Symbol Min Max Units
1
indicates the maximum speed of the hardware. The system designer should be aware that the actual maximum speed of the
iicck
f
iicck
iicckl
iicckh
iicckcmd
iicstscl
iicstp iicbft iicsu
iicdov
iich
—400kHz
1.25 µs
1.25 µs
1.25 µs
1.25 µs
2.5 µs 3— µs
100 ns
20 ns —18 ns
14 DS734F5
SCP_CLK
SCP_SDA
01 67801 7
t
iicckl
t
iicckh
t
iicsutiich
A6 A0 R/W ACK
LSB
8
ACK
MSB
t
iicstp
6
t
iicdov
t
iicbft
t
iicstscl
t
iicckcmd
f
iicck
t
iicckcmd
t
iicf
t
iicr
DAI_SCLK
DAI_DATAn
t
daidh
t
daidsu
5.13 Switching Characteristics—Digital Audio Slave Input Port
Figure 5-6. Serial Control Port–I2C Master Mode Timing
5.13 Switching Characteristics—Digital Audio Slave Input Port
Parameter Symbol Min Max Unit
DAI_SCLK period T DAI_SCLK duty cycle 45 55 % Setup time DAI_DATAn t Hold time DAI_DATAn t
daiclkp
daidsu
daidh
40 ns
10 ns
5—ns
5.14 Switching Characteristics—DSD Slave Input Port
DSD_SCLK Pulse Width Low t DSD_SCLK Pulse Width High t DSD_SCLK Frequency (64x Oversampled) 1.024 3.2 MHz DSD_A/B valid to DSD_SCLK rising setup time t DSD_SCLK rising to DSD_A or DSD_B hold time t
15 DS734F5
Figure 5-7. Digital Audio Input (DAI) Port Timing Diagram
Parameter Symbol Min Typ Max Unit
sclkl
sclkh
sdlrs
sdh
Figure 5-8. Direct Stream Digital–Serial Audio Input Timing
78 ns 78 ns
20 ns 20 ns
DAO_MCLK
DAO_SCLK
DAO_LRCLK
DAOn_DATAn
t
daomclk
t
daomsck
t
daomstlr
Note: In these diagrams, Falling edge is the inactive edge of DAO_SCLK.
5.15 Switching Characteristics—Digital Audio Output (DAO) Port
5.15 Switching Characteristics—Digital Audio Output (DAO) Port
Parameter Symbol Min Max Unit
DAO_MCLK period T
daomclk
DAO_MCLK duty cycle 45 55 % DAO_SCLK period for Master or Slave mode DAO_SCLK duty cycle for Master or Slave mode
1.Master mode timing specifications are characterized, not production tested.
1
1
T
daosclk
—4060%
40 ns
40 ns
Table 5-1. Master Mode (Output A1 Mode)1,
2
Parameter Symbol Min Max Unit
DAO_SCLK delay from DAO_MCLK rising edge, DAO_MCLK as an input t DAO_LRCLK delay from DAO_SCLK transition, respectively DAO_SCLK delay from DAO_LRCLK transition, respectively DAO1_DATA[3:0], DAO2_DATA[1:0] delay from DAO_SCLK transition
1.Master mode timing specifications are characterized, not production tested.
2.Master mode is defined as the CS48xx driving both DAO_SCLK, DAO_LRCLK. When MCLK is an input, it is divided to produce DAO_SCLK, DAO_ LRCLK.
3.This timing parameter is defined from the non-active edge of DAO_SCLK. The active edge of DAO_SCLK is the point at which the data is valid.
3 3
3
daomsck
t
daomstlr
t
daomlrts
t
daomdv
—19ns —8ns —8ns —10ns
16 DS734F5
Figure 5-9. Digital Audio Output Port Timing, Master Mode
DAO_SCLK
DAO_LRCLK
DAOn_DATAn
t
daosstlr
t
daosclk
DAO_SCLK
DAO_LRCLK
t
daoslrts
t
daosdv
t
daosclk
Note: In these diagrams, Falling edge is the inactive edge of DAO_SCLK.
5.15 Switching Characteristics—Digital Audio Output (DAO) Port
Table 5-2. Slave Mode (Output A0 Mode)
Parameter Symbol Min Max Unit
DAO_SCLK active edge to DAO_LRCLK transition t DAO_LRCLK transition to DAO_SCLK active edge t DAO_Dx delay from DAO_SCLK inactive edge t
1.Slave mode is defined as DAO_SCLK, DAO_LRCLK driven by an external source.
1
Figure 5-10. Digital Audio Output Timing, Slave Mode (Relationship LRCLK to SCLK)
daosstlr daoslrts
daosdv
10 ns 10 ns —11ns
17 DS734F5
6 Ordering Information
The CS485xx family part number is CS485NI-XYZR where:
N–Product Number Variant
I–ROM ID Number
X–Product Grade
Y–Package Type
Z–Lead (Pb) Free
R–Tape and Reel Packaging
Table 6-1. Ordering Information
Part No. Grade Temp. Range Package
CS48520-CQZ Commercial 0 to +70° C 48-pin LQFP CS48540-CQZ Commercial 0 to +70° C CS48540-DQZ Automotive –40 to +85° C CS48560-CQZ Commercial 0 to +70° C CS48560-DQZ Automotive –40 to +85° C
Note: Contact the factory for availability of the automotive grade package.

6 Ordering Information

7 Environmental, Manufacturing, and Handling Information

Table 7-1. Environmental, Manufacturing, and Handling Information
Model Number Peak Reflow Temp
CS48520-CQZ 260° C 3 7 days CS48540-CQZ CS48540-DQZ CS48560-CQZ CS48560-DQZ
1.MSL (Moisture Sensitivity Level) as specified by IPC/JEDEC J-STD-020.
MSL Rating
1
Max Floor Life
18 DS734F5
8 Device Pinout Diagrams
XTO
XTI
GNDA
PLL_REF_RES
VDDA (3.3V)
GPIO1
GPIO2
GPIO16, DAI1_DATA0
GPIO0
38
40
41
42
43
45
46
GPIO13, SCP_BSY#, EE_CS#
GPOI12, SCP_IRQ#
GPIO10, SCP__MISO / SDA
GPIO9, SCP_MOSI
GPIO11, SCP_CLK
35
33
31
30
28
26
25
GND4
GNDIO4
VDD3
GND3
VDDIO3
GNDIO3
23
22
21
19
17
15
1
GPIO5, XMTA
GPIO3, HS1
DAO1_DATA0, HS0
DAO_LRCLK
DAI1_LRCLK
GPIO18, DAO_MCLK
DAI1_SCLK
VDD1
GND1
DAO_SCLK
GPIO4, HS2
RESET#
VDDIO1
GNDIO1
GPIO6, DAO2 _DATA0, HS3
GPIO7, HS4
VDD2
GND2
VDDIO2
GNDIO2
2
3
4
5
6
7
9
10
11
12
GPIO8, SCP_CS#
TEST
DBDA
DBCK
XTAL_OUT GPIO15, DAI2_SCLK
GPIO14, DAI2_LRCLK
GPIO17, DAI2_DATA0
CS48520
48-Pin LQFP
8
13
14
16
18
20
24
27
29
32
34
36
37
39
44
47
48

8.1 CS48520, 48-pin LQFP Pinout Diagram

8 Device Pinout Diagrams

Figure 8-1. CS48520, 48-pin LQFP Pinout
19 DS734F5

8.2 CS48540, 48-pin LQFP Pinout Diagram

XTO
XTI
GNDA
PLL_REF_RES
VDDA (3.3V)
GPIO1, DAI1_DATA2
GPIO2
GPIO16, DAI1_DATA0
GPIO0, DAI1_DATA1
38
40
41
42
43
45
46
GPIO13, SCP_BSY#, EE_CS#
GPOI12, SCP_IRQ#
GPIO10, SCP__MISO / SDA
GPIO9, SCP_MOSI
GPIO11, SCP_CLK
35
33
31
30
28
26
25
GND4
GNDIO4
VDD3
GND3
VDDIO3
GNDIO3
23
22
21
19
17
15
1
GPIO5, XMTA
GPIO3, DAO1_ DATA1, HS1
DAO1_DATA0, HS0
DAO_LRCLK
DAI1_LRCLK
GPIO18, DAO_MCLK
DAI1_SCLK
VDD1
GND1
DAO_SCLK
GPIO4, DAO1_ DATA2, HS2
RESET#
VDDIO1
GNDIO1
GPIO6, DAO2_DATA0, HS3
GPIO7, HS4
VDD2GND2
VDDIO2
GNDIO2
2
3
4
5
6
7
9
10
11
12
GPIO8, SCP_CS#
TEST
DBDA
DBCK
XTAL_OUT GPIO15, DAI2_SCLK
GPIO14, DAI2_LRCLK
GPIO17,
D
AI2_DATA0
CS48540
48-Pin LQFP
8
13
14
16
18
20
24
27
29
32
34
36
37
39
44
47
48
8.2 CS48540, 48-pin LQFP Pinout Diagram
Figure 8-2. CS48540, 48-pin LQFP Pinout
20 DS734F5

8.3 CS48560, 48-pin LQFP Pinout Diagram

XTO
XTI
GNDA
PLL_REF_RES
VDDA (3.3V)
GPIO1, DAI1_DATA2, TM2, DSD2
GPIO2, DAI1_DATA3, TM3, DSD3
GPIO16, DAI1_DATA0, TM0, DSD0
GPIO0, DAI1_DATA1, TM1, DSD1
38
40
41
42
43
45
46
GPIO13, SCP_BSY#, EE_CS#
GPOI12, SCP_IRQ#
GPIO10, SCP__MISO / SDA
GPIO9, SCP_MOSI
GPIO11, SCP_CLK
35
33
31
30
28
26
25
GND4
GNDIO4
VDD3
GND3
VDDIO3
GNDIO3
23
22
21
19
17
15
1
GPIO5, DAO1_DATA3, X MTA
GPIO3, DAO1_ DATA1, HS1
DAO1_DATA0, HS0
DAO_LRCLK
DAI1_LRCLK, DAI1_DATA4, DSD5
GPIO18, DAO_MCLK
DAI1_SCLK, DSD-CLK
VDD1
GND1
DAO_SCLK
GPIO4, DAO1_ DATA2, HS2
RESET#
VDDIO1
GNDIO1
GPIO6, DAO2 _DATA0, HS3
GPIO7, DAO2_D ATA1, HS4
VDD2GND2
VDDIO2
GNDIO2
2
3
4
5
6
7
9
10
11
12
GPIO8, SCP_CS#
TEST
DBDA
DBCK
XTAL_OUT GPIO15, DAI2_SCLK
GPIO14, DAI2_LRCLK
GPIO17, DAI2_DATA0, DSD4
CS48560
48-Pin LQFP
8
13
14
16
18
20
24
27
29
32
34
36
37
39
44
47
48
8.3 CS48560, 48-pin LQFP Pinout Diagram
Figure 8-3. CS48560, 48-pin LQFP
21 DS734F5
9 Package Mechanical Drawings
48 LD LQFP (7 x 7 x 1.4 mm body)
Number of Leads
48
MIN NOM MAX
A1.60 A1 0.05 0.15 A2 1.35 1.40 1.45
b 0.17 0.22 0.27
D9.00BSC
D1 7.00 BSC
e0.50BSC
E9.00BSC E1 7.00 BSC
theta 0 7
L 0.45 0.60 0.75
L1 1.00 REF
NOTES:
1) Reference document: JEDEC MS-026
2) All dimensions are in millimeters and controlling dimension is in millimeters.
3) D1 and E1 do not include mold flash which is 0.25 mm max. per side.A1
4) Dimension b does not include a total allowable dambar protrusion of 0.08 mm max.

9.1 48-pin LQFP Package Drawing

9 Package Mechanical Drawings

22 DS734F5
Figure 9-1. 48-pin LQFP Package Drawing

10 Revision History

10Revision History
Revision Date Changes
A1 July, 2006 Advance release. A2 July, 2006 Updated pinout definition for pins 26 and 27. Updated typical power numbers. A3 December 5, 2006 Updated sections 2.0, 4.21, 5.8, Table 3, Table 4, to show new device numbering scheme. Updated
PP1 March 12, 2007 Preliminary Release PP2 December 18, 2007 Changed title of data sheet from CS48500 Da ta Sheet to CS485xx Family Data Sheet to cover all CS48 5xx
F1 April 21, 2007 Removed DSD Phase Modulation Mode from Section 5.14. Removed reference to MCLK in Section 5.14.
F2 July 14, 2008 Added reference to support for time division multiplexed (TDM) one-line data mode for DAO port in
F3 February 16, 2009 Updated Section5.5, adding Junction Temperature specification. F4 June 29, 2011 Updated Section 5.10; changed T F5 October, 2011 Updated Section 5.15 DAO output slave mode specifications.
sections 8.1, 8.2, 8.3.
family products. Updated Standby Power specif ica ti on in Section5.4. Updated DAO timing specifications and timing diagrams in Section 5.15.
Redefined Master mode clock speed for SCP_CLK in Section 5.10. Redefined DC leakage characterization data in Section 5.3. Added typical crystal frequency values in Table Footnote 1 under
Section 5.7. Modified Footnote 1 under Section 5.9. Modified power supply characteristics in Section 5.4,
Section 4.2.2.
value to 13 ns.
spidsu
23 DS734F5
Loading...