Cirrus Logic CS4365 User Manual

CS4365
114 dB, 192 kHz 6-Channel D/A Converter
Features
Advanced Multi-bit Delta Sigma Architecture24-bit ConversionAutomatic Detection of Sample Rates up to
114 dB Dynamic Range-100 dB THD+NDirect Stream Digital Mode
Non-Decimating Volume Control – On-Chip 50 kHz Filter – Matched PCM and DSD Analog Output
Levels
Selectable Digital FiltersVolume Control with 1/2-dB Step Size and Soft
Ramp
Description
The CS4365 is a complete 6-channel digital-to-analog system. This D/A system includes digital de-emphasis, half-dB step size volume control, ATAPI channel mix­ing, selectable fast and slow digital interpolation filters followed by an oversampled, multi-bit delta sigma mod­ulator which includes mismatch-shaping technology that eliminates distortion due to capacitor mismatch. Following this stage is a multi-element switched capac­itor stage and low-pass filter with differential analog outputs.
The CS4365 also has a proprietary DSD processor which allows for volume control and 50 kHz on-chip fil­tering without an intermediate decimation stage. It also offers an optional path for direct DSD co nver sion by di­rectly using the multi-element switched capacitor array.
The CS4365 is available in a 48-pin LQFP package in both Commercial (-40°C to +85°C) and Automotive (-40°C to +105°C) grades. The CDB4365 Customer Demonstration board is also available for device evalu­ation and implementation suggestions. Please see
“Ordering Information” on page 5 1 for complete details.
Low Clock-Jitter Sensitivity+5 V Analog Supply, +2.5 V Digital SupplySeparate 1.8 to 5 V Logic Supplies for the
Control and Serial Ports
Control Port Supply = 1 .8 V to 5 V
Hardw are Mo d e or
2
C/SPI Software Mode
I
Contro l D a ta
Reset
Serial Audio Port Supply = 1.8 V to 5 V
PCM Serial Audio Input
DSD Audio
Inpu t
Level Translator
Level Translator
Serial Interface
Digital Supply = 2.5 V
Register/Hardware
Configuration
Volume
Contro ls
6
DSD Processor
-Volum e c ontrol
-50 kH z filter
Digital Filters
The CS4365 accepts PCM data at sample rates from 4 kHz to 216 kHz, DSD audio data, and delivers excel­lent sound quality. These fe atures are ideal for multi­channel audio systems, including SACD players, A/V receivers, digital TV’s, mixing console s, e ffe ct s pr oc es ­sors, sound cards, and automotive audio systems.
Analog Supply = 5 V
Internal Voltage
Refere n c e
Multi-bit ΔΣ Modulators
Switch-Cap
DAC and
Analog Filters
Externa l Mute
Contro l
6
6
6
Six Channels of Differen tia l Outputs
Mute Signals
http://www.cirrus.com
Copyright © Cirrus Logic, Inc. 2008
(All Rights Reserved)
FEB '08
DS670F2
TABLE OF CONTENTS
1. PIN DESCRIPTION ................................................................................................................................ 6
2. CHARACTERISTICS AND SPECIFICATIONS ...................................................................................... 8
RECOMMENDED OPERATING CONDITIONS ..................................................................................... 8
ABSOLUTE MAXIMUM RATINGS ......................................................................................................... 8
DAC ANALOG CHARACTERISTICS - COMMERCIAL (-CQZ) ............................................................. 9
DAC ANALOG CHARACTERISTICS - AUTOMOTIVE (-DQZ) ............................................................ 10
POWER AND THERMAL CHARACTERISTICS .................................................................................. 11
COMBINED INTERPOLATION & ON-CHIP ANALOG FILTER RESPONSE ...................................... 12
COMBINED INTERPOLATION & ON-CHIP ANALOG FILTER RESPONSE (CONTINUED) .............. 13
DSD COMBINED DIGITAL & ON-CHIP ANALOG FILTER RESPONSE ............................................. 13
DIGITAL CHARACTERISTICS ............................................................................................................. 14
SWITCHING CHARACTERISTICS - PCM ........................................................................................... 15
SWITCHING CHARACTERISTICS - DSD ........................................................................................... 16
SWITCHING CHARACTERISTICS - CONTROL PORT - I²C FORMAT ........... ... .... ... ... ... ....... ... ... ... ... 17
SWITCHING CHARACTERISTICS - CONTROL PORT - SPI FORMAT ............................................. 18
3. TYPICAL CONNECTION DIAGRAM .................................................................................................. 19
4. APPLICATIONS ................................................................................................................................... 21
4.1 Master Clock ................................................................................................................................... 21
4.2 Mode Select .................................................................................................................................... 22
4.3 Digital Interface Formats ................................................................................................................ 23
4.3.1 OLM #1 .................................. ....................................... ... ... ................................................... 24
4.3.2 OLM #2 .................................. ....................................... ... ... ................................................... 24
4.4 Oversampling Modes ...................................................................................................................... 24
4.5 Interpolation Filter ........................................................................................................................... 25
4.6 De-Emphasis .................................................................................................................................. 25
4.7 ATAPI Specification ........................................................................................................................ 26
4.8 Direct Stream Digital (DSD) Mode .................................................................................................. 26
4.9 Grounding and Power Supply Arrangements ................................................................. .... ... ......... 27
4.9.1 Capacitor Placement ... .......................................................................................................... 27
4.10 Analog Output and Filtering .......................................................................................................... 28
4.11 The MUTEC Outputs .................................................................................................................... 29
4.12 Recommended Power-Up Sequence ........................................................................................... 29
4.12.1 Hardware Mode ................................................................................................................... 29
4.12.2 Software Mode .................................................................................................................... 30
4.13 Recommended Procedure for Switching Operational Modes ....................................................... 30
4.14 Control Port Interface ................................................................................................................... 30
4.14.1 MAP Auto Increment ........................................................................................................... 30
4.14.2 I²C Mode ................................. ... ....................................... ... ... .... ......................................... 30
4.14.2.1 I²C Write ................................ ... ....................................... ... ... ... ................................ 31
4.14.2.2 I²C Read ..................... ....................................... ... ... ....................................... ... ...... 31
4.14.3 SPI Mode ............................................................................................................................. 32
4.14.3.1 SPI Write ............................... ... ....................................... ... ... ... ................................ 32
4.15 Memory Address Pointer (MAP) ..................... .......................................... ................................... 32
4.15.1 INCR (Auto Map Increment Enable) ....................... .... ...... ...... ....... ...... ....... ...... ....... ...... ... ... 32
4.15.2 MAP4-0 (Memory Address Pointer) .............. ... ....................................... ... ... ...................... 32
5. REGISTER QUICK REFERENCE ....................................................................................................... 33
6. REGISTER DESCRIPTION .................................................................................................................. 34
6.1 Chip Revision (address 01h) ......................................................................................................... 34
6.1.1 Part Number ID (PART) [Read Only] .................................................................................... 34
6.2 Mode Control 1 (address 02h) ........................................................................................................ 34
6.2.1 Control Port Enable (CPEN) ........................ .... ... ... ... .... ... ...................................... .... ... .........34
6.2.2 Freeze Controls (FREEZE) ................................................................................................
CS4365
... 34
2 DS670F2
CS4365
6.2.3 PCM/DSD Selection (DSD/PCM) .......................................................................................... 35
6.2.4 DAC Pair Disable (DACx_DIS) ..............................................................................................35
6.2.5 Power Down (PDN) ..... ... .... ... ....................................... ... ... ... ....................................... ......... 35
6.3 PCM Control (address 03h) ............................................................................................................ 35
6.3.1 Digital Interface Format (DIF) ................................................................................................ 35
6.3.2 Functional Mode (FM) ........................................................................................................... 36
6.4 DSD Control (address 04h) ............................................................................................................ 36
6.4.1 DSD Mode Digital Interface Format (DSD_DIF) ........... ......... .......... .......... ......... .......... ......... 36
6.4.2 Direct DSD Conversion (DIR_DSD) ...................................................................................... 37
6.4.3 Static DSD Detect (STATIC_DSD) ........................................................................................ 37
6.4.4 Invalid DSD Detect (INVALID_DSD) ..................................................................................... 37
6.4.5 DSD Phase Modulation Mode Select (DSD_PM_MODE) .................................. ... .... ... ... ... ... 37
6.4.6 DSD Phase Modulation Mode Enable (DSD_PM_EN) ................... ... ... .... ... ... ... ... .... ... ...... ... 37
6.5 Filter Control (address 05h) ............................................................................................................ 38
6.5.1 Interpolation Filter Select (FILT_SEL) ...................................................................................38
6.6 Invert Control (address 06h) ........................................................................................................... 38
6.6.1 Invert Signal Polarity (Inv_xx) ................................................................................................ 38
6.7 Group Control (address 07h) .......................................................................................................... 38
6.7.1 Mute Pin Control (MUTEC1, MUTEC0) ................................................................................. 38
6.7.2 Channel A Volume = Channel B Volume (Px_A=B) .............................................................. 39
6.7.3 Single Volume Control (SNGLVOL) ...................................................................................... 39
6.8 Ramp and Mute (address 08h) .... ... ... ... ... .... ... ... ... .... ... ... ... .... ... ...... ... .... ... ... ... .... ... ... ... ... .... ... . ........ 39
6.8.1 Soft Ramp and Zero Cross CONTROL (SZC) ...................................................................... 39
6.8.2 Soft Volume Ramp-Up after Error (RMP_UP) ....................................................................... 40
6.8.3 Soft Ramp-Down before Filter Mode Change (RMP_DN) ..................................... .... ... ... ... ... 40
6.8.4 PCM Auto-Mute (PAMUTE) .................................................................................................. 40
6.8.5 DSD Auto-Mute (DAMUTE) ...................................................................................................41
6.8.6 MUTE Polarity and DETECT (MUTEP1:0) ............................................................................ 41
6.9 Mute Control (address 09h) ............................................................................................................ 41
6.9.1 Mute (MUTE_xx) ................................................................................................................... 41
6.10 Mixing Control (address 0Ah, 0Dh, 10h, 13h) ..................... ... ... ... ....... ... ... ... .... ... ... ... ... .... ... ... ... ... 42
6.10.1 De-Emphasis Control (PX_DEM1:0) .......................... ......................................................... 42
6.10.2 ATAPI Channel Mixing and Muting (ATAPI) ........................................................................ 42
6.11 Volume Control (address 0Bh, 0Ch, 0Eh, 0Fh, 11h, 12h) ............................................................ 43
6.11.1 Digital Volume Control (xx_VOL7:0) ................................................................................... 43
6.12 PCM Clock Mode (address 16h) .................................................................................................. 44
6.12.1 Master Clock DIVIDE by 2 ENABLE (MCLKDIV) .......... ...................................................... 44
7. FILTER PLOTS ..................................................................................................................................... 45
8. PARAMETER DEFINITIONS ................................................................................................................ 49
9. PACKAGE DIMENSIONS ................................................................................................................... 50
10. ORDERING INFORMATION . ... ....................................... ... ... .... ...................................... ... .... ............ 51
11. REFERENCES ....................... ... ... .... ... ... ... ....................................... ... ... ............................................. 51
12. REVISION HISTORY ................................................................... ... ... ... .... ... ... ................................... 51
DS670F2 3
LIST OF FIGURES
Figure 1.Serial Audio Interface Timing ... ... ... ... ... .... ... ... ... .... ...... ... .... ... ... ... ... .... ... ... ... .... ... ... ... ... ................ 15
Figure 2.Direct Stream Digital - Serial Audio Input Timing ........................................................................ 16
Figure 3.Direct Stream Digital - Serial Audio Input Timing for Phase Modulation Mode ........................... 16
Figure 4.Control Port Timing - I²C Format ....................... .... ...................................... .... ... ... ...................... 17
Figure 5.Control Port Timing - SPI Format ................................ ... .... ... ... ... ... .... ... ... ... .... ... ... ... ....... ............ 18
Figure 6.Typical Connection Diagram, Software Mode ................ ............. ............. ............. ............. .........19
Figure 7.Typical Connection Diagram, Hardware Mode ........................................................................... 20
Figure 8.Format 0 - Left-Justified up to 24-bit Data .................................................................................. 23
Figure 9.Format 1 - I²S up to 24-bit Data .................................................................................................. 23
Figure 10.Format 2 - Right-Justified 16-bit Data ....................................................................................... 23
Figure 11.Format 3 - Right-Justified 24-bit Data ....................................................................................... 23
Figure 12.Format 4 - Right-Justified 20-bit Data ....................................................................................... 23
Figure 13.Format 5 - Right-Justified 18-bit Data ....................................................................................... 24
Figure 14.Format 8 - One-Line Mode 1 ..................................................................................................... 24
Figure 15.Format 9 - One-Line Mode 2 ..................................................................................................... 24
Figure 16.De-Emphasis Curve .................................. ... ... ....................................... ... .... ............................ 25
Figure 17.ATAPI Block Diagram (x = channel pair 1, 2, or 3) ................................................ ................... 26
Figure 18.DSD Phase Modulation Mode Diagram .................................................................... .... ... ... ......27
Figure 19.Full-Scale Output ............................................................. ... ... ... ... .... ... ... ....... ... ... ...................... 28
Figure 20.Recommended Output Filter ..................................................................................................... 28
Figure 21.Recommended Mute Circuitry .................. ... ... .... ...... ... .... ... ... ... ... .... ... ... ... .... ... ... ... ... .... ............ 29
Figure 22.Control Port Timing, I²C Mode .................................................................................................. 31
Figure 23.Control Port Timing, SPI Mode ................................................................................................. 32
Figure 24.Single-Speed (fast) Stopband Rejection ................................................................................... 45
Figure 25.Single-Speed (fast) Transition Band ......................................................................................... 45
Figure 26.Single-Speed (fast) Transition Band (detail) ............................................................................. 45
Figure 27.Single-Speed (fast) Passband Ripple ....................................................................................... 45
Figure 28.Single-Speed (slow) Stopband Rejection ................................................................................. 45
Figure 29.Single-Speed (slow) Transition Band ........................................................................................ 45
Figure 30.Single-Speed (slow) Transition Band (detail) ............................................................................ 46
Figure 31.Single-Speed (slow) Passband Ripple ...................................................................................... 46
Figure 32.Double-Speed (fast) Stopband Rejection ................................................................................. 46
Figure 33.Double-Speed (fast) Transition Band ........................................................................................ 46
Figure 34.Double-Speed (fast) Transition Band (detail) ............................................................................ 46
Figure 35.Double-Speed (fast) Passband Ripple ...................................................................................... 46
Figure 36.Double-Speed (slow) Stopband Rejection ...... .... ... ... ... .... ... ...................................... .... ... ... ......47
Figure 37.Double-Speed (slow) Transition Band ................................................ ...................................... 47
Figure 38.Double-Speed (slow) Transition Band (detail) ........................................................................
Figure 39.Double-Speed (slow) Passband Ripple .............................................. ... ... ................................ 47
Figure 40.Quad-Speed (fast) Stopband Rejection .... ... ... .... ... ... ... .... ... ... ... ... .... ...... ... .... ... ... ... ... .... ... ... .. . ... 47
Figure 41.Quad-Speed (fast) Transition Band ............................................. .... ... ... ... .... ... ... ... ... .... ............ 47
Figure 42.Quad-Speed (fast) Transition Band (detail) ................................. .... ... ... ... .... ............................ 48
Figure 43.Quad-Speed (fast) Passband Ripple ........................................................................................ 48
Figure 44.Quad-Speed (slow) Stopband Rejection ................................................................................... 48
Figure 45.Quad-Speed (slow) Transition Band ......................................................................................... 48
Figure 46.Quad-Speed (slow) Transition Band (detail) ............................................................................. 48
Figure 47.Quad-Speed (slow) Passband Ripple ....................................................................................... 48
CS4365
.. 47
4 DS670F2
LIST OF TABLES
Table 1. Single-Speed Mode Standard Frequencies ................................................................................21
Table 2. Double-Speed Mode Standard Frequencies ............................................................................... 21
Table 3. Quad-Speed Mode Standard Frequencies .............. ... ... .... ... ... ....................................... ... ... ......21
Table 4. PCM Digital Interface Format, Hardware Mode Options ............................................................. 22
Table 5. Mode Selection, Hardware Mode Options .................................................................................. 22
Table 6. Direct Stream Digital (DSD), Hardware Mode Options ............................................................... 22
Table 7. Digital Interface Formats - PCM Mode ........................................................................................ 36
Table 8. Digital Interface Formats - DSD Mode ........................................................................................ 36
Table 9. ATAPI Decode Table ..................... ... ... .... ... ... ... .... ...................................... .... ... ......................... 42
Table 10. Example Digital Volume Settings .............................................................................................. 43
CS4365
DS670F2 5

1. PIN DESCRIPTION

DSDA2
DSDB1 DSDA1
VD
GND
MCLK
LRCK
SDIN1
SCLK
M4(TST)
SDIN2
M3(TST)
TST
DSDB3
DSDA3
DSDB2
48 47 46 45 44 43 42 4140 39 38 37
1 2 3 4 5 6 7 8 9 10 11
2
1
13 14 15 16 17 18 19 20 21 22
CS4365
MUTEC1
AOUTA1-
VLS
DSD_SCLK
TST
AOUTA1+
23 2 4
CS4365
AOUTB1+
AOUTB1-
36
AOUTA2-
35
AOUTA2+ AOUTB2+
34
AOUTB2-
33 32
VA GND
31 30
AOUTA3-
29
AOUTA3+ AOUTB3+
28 27
AOUTB3-
26
MUTEC2
25
MUTEC3
TST
SDIN3
M0(AD0/CS)
M1(SDA/CDIN)
M2(SCL/CCLK)
VQ
VLC
RST
FILT+
MUTEC5
MUTEC6
MUTEC4
Pin Name # Pin Description
VD 4 GND 5, 31 Ground (Input) - Ground reference. Should be connected to analog ground.
MCLK 6
LRCK 7 SDIN1
SDIN2 SDIN3
SCLK 9 Serial Clock (Input) - Serial clocks for the serial audio interface.
TST
RST
VA 32
VLS 43
VLC 18
Digital Power (Input) - Positive power supply for the digital section. Refer to the Recom­mended Operating Conditions for appropriate voltages.
Master Clock (Input) - Clock source for the delta-sigma modulator and digital filters. Tables 1 through 3 illustrate several standard audio sample rates and the required master clock fre ­quencies.
Left Right Clock (Input) - Determines which channel, Left or Right, is currently active on the serial audio data line. The frequency of the left/right clock must be at the audio sample rate, Fs.
8
1113Serial Data Input (Input) - Input for two’s complement serial audio data.
14 4445Test - These pins need to be tied to analog ground.
Reset (Input) - The device enters a low power mode and all internal registers are reset to their
19
default settings when low. Analog Power (Input) - Positive power supply for the analog section. Refer to the Recom-
mended Operating Conditions for appropriate voltages. Serial Audio Interface Power (Input) - Determines the required signal level for the serial audio
interface. Refer to the Recommended Operating Conditions for appropriate voltages. Control Port Power (Input) - Determines the required signal level for the control port and
Hardware Mode configuration pins. Refer to the Recommended Operating Conditions for appropriate voltages.
6 DS670F2
CS4365
Pin Name # Pin Description
Quiescent Volt age (Output) - Filter connection for internal quiescent voltage. VQ must be
capacitively coupled to analog ground, as shown in the Typical Connection Diagram. The nom­inal voltage level is specified in the Analog Characteristics and Specifications section. VQ pre-
VQ 21
FILT+ 20
AOUTA1 +,­AOUTB1 +,­AOUTA2 +,­AOUTB2 +,­AOUTA3 +,­AOUTB3 +,-
MUTEC1 MUTEC2 MUTEC3 MUTEC4 MUTEC5 MUTEC6
39,40 37,38 35,36 33,34 29,30 27,28
Hardware Mode Definitions
M0 M1 M2 M3 M4
Software Mode Definitions
SCL/CCLK 15
SDA/CDIN 16
AD0/CS TST 10, 12 Test - These pins need to be tied to analog ground.
DSD Definitions
DSDA1 DSDB1 DSDA2 DSDB2 DSDA3 DSDB3
DSD_SCLK 42 DSD Serial Clock (Input) - Serial clock for the Direct Stream Digital serial audio interface.
sents an appreciable source impedance and any current drawn from this pin will alter device performance. However, VQ can be used to bias the analog circuitry assuming there is no AC signal component and the DC current is less then the maximum specified in the Analog Char­acteristics and Specifications section.
Positive Voltage Reference (Output) - Positive reference voltage for the internal sampling cir­cuits. Requires the capacitive decoupling to analog ground as shown in the Typical Connection Diagram.
Differential Analog Output (Output) - The full-scale differential analog output level is specified in the Analog Characteristics specification table.
41
Mute Control (Output) - The Mute Control pins go high during power-up initialization, reset,
26
muting, power-down or if the master clock to left/right clock frequency ratio is incorrect. These
25
pins are intended to be used as a control for external mute circuits on the line outputs to pre-
24
vent the clicks and pops that can occur in any single supply system. Use of Mute Control is not
23
mandatory but recommended for designs requiring the absolute minimum in extraneous clicks
22
and pops.
17 16
Mode Selection (Input) - Determines the operational mode of the device as detailed in Table 6
15
and Table 7.
12 10
Serial Control Port Clock (Input) - Serial clock for the serial control port. Requires an external pull-up resistor to the logic interface voltage in I²C
Diagram. Serial Control Port Data (Input/Output) - SDA is a data I/O line in I²C Mode and is open drain,
requiring an external pull-up resistor to the logic interface voltage, as shown in the Typical Con­nection Diagram; CDIN is the input data line for the control port interface in SPI Address Bit 0 (I²C) / Control Port Chip Select (SPI) (Input) - AD0 is a chip address pin in I²C
17
Mode; CS
3 2 1
Direct Stream Digital Input (Input) - Input for Direct Stream Digital serial audio data. GND if
48
unused. 47 46
is the chip-select signal for SPI Mode.
®
Mode as shown in the Typical Connection
Mode.
DS670F2 7
CS4365

2. CHARACTERISTICS AND SPECIFICATIONS

RECOMMENDED OPERATING CONDITIONS

GND = 0 V; all voltages with respect to ground.
Parameters Symbol Min Typ Max Units
DC Power Supply Analog power
Digital internal power
Serial data port interface power
Control port interface powe r
Ambient Operating Temperature (Power Applied)
Commercial Grade (-CQZ)
Automotive Grade (-DQZ)
VA
VD VLS VLC
T
A
4.75
2.37
1.71
1.71
-40
-40
5.0
2.5
5.0
5.0
5.25
2.63
5.25
5.25
-
-
+ 85
+105
V V V V
°C °C

ABSOLUTE MAXIMUM RATINGS

GND = 0 V; all voltages with respect to ground.
Parameters Symbol Min Max Units
DC Power Supply Analog power
Digital internal power
Serial data port interface power
Control port interface powe r Input Current Any Pin Except Supplies I Digital Input Voltage Serial data port interface
Control port interface Ambient Operating Temperature (Power Applied) T Storage Temperature T
WARNING:Operation at or beyond these limits may result in permanent damage to the device. Normal operation
is not guaranteed at these extremes.
VLS VLC
V V
VA
VD
in
IND-S IND-C
op
stg
-0.3
-0.3
-0.3
-0.3
10mA
-0.3
-0.3
-55 125 °C
-65 150 °C
6.0
3.2
6.0
6.0
VLS+ 0.4 VLC+ 0.4
V V V V
V V
8 DS670F2
CS4365

DAC ANALOG CHARACTERISTICS - COMMERCIAL (-CQZ)

Test Conditions (unless otherwise specified): VA = VLS = VLC = 5 V; VD = 2.5 V; TA = 25°C; Full-scale 997 Hz input sine wave
“Typical Connection Diagram” on page 19; Measurement Bandwidth 10 Hz to 20 kHz.
Fs = 48 kHz, 96 kHz, 192 kHz and DSD
Dynamic Range 24-bit A-weighted
Total Harmonic Distortion + Noise 24-bit
Idle Channel Noise / Signal-to-noise ratio A-weighted - 114 - dB Interchannel Isolation (1 kHz) - 110 - dB
DC Accuracy
Interchannel Gain Mismatch - 0.1 - dB Gain Drift - 100 - ppm/°
Analog Output
Full-Scale Differential- PCM, DSD processor Output Voltage (Note 3) Direct DSD Mode
Output Impedance Z Max DC Current draw from an AOUT pin I Min AC-Load Resistance R Max Load Capacitance C Quiescent Voltage VQ - 50% V Max Current draw from VQ I
(Note 1); Tested under max ac-load resistance; Valid with FILT + and VQ capacitors as shown in
Parameters Symbol Min Typ Max Unit
unweighted
16-bit A-weighted
(Note 2) unweighted
0 dB
-20 dB
-60 dB
(Note 2) 16-bit 0 dB
-20 dB
-60 dB
THD+N
V
FS
OUT
OUTmax
L L
QMAX
108 105
-
-
-
-
-
-
-
-
1.28•V
A
0.90•V
A
- 130 - Ω
-1.0-mA
-3-kΩ
- 100 - pF
-10-μA
114 111
97 94
-100
-91
-51
-94
-74
-34
1.32•V
0.94•V
-
-
-
-
-94
-
-45
-
-
-
dB dB dB dB
dB dB dB dB dB dB
C
A A
A
1.36•V
0.98•V
-VDC
Vpp
A
Vpp
A
Notes:
1. One-half LSB of triangular PDF dither is added to data.
2. Performance limited by 16-bit quantization noise.
3. V
is tested under load RL and includes attenuation due to Z
FS
OUT
.
DS670F2 9
CS4365

DAC ANALOG CHARACTERISTICS - AUTOMOTIVE (-DQZ)

Test Conditions (unless otherwise specified): VA = 4.75 to 5.25 V; VLS = 1.71 to 5.25 V; VLC = 1.71 to 5.25 V; VD = 2.37 to 2.63 V; T
resistance
; Valid with FILT+ and VQ capacitors as shown in “Typical Connection Diagram” on page 19; Measure-
ment Bandwidth 10 Hz to 20 kHz.
Fs = 48 kHz, 96 kHz, 192 kHz and DSD
Dynamic Range (Note 1) 24-bit A-weighted
Total Harmonic Distortion + Noise (Note 1)
Idle Channel Noise / Signal-to-noise ratio A-weighted - 114 - dB Interchannel Isolation (1 kHz) - 110 - dB
DC Accuracy
Interchannel Gain Mismatch - 0.1 - dB Gain Drift - 100 - ppm/°C
Analog Output
Full-Scale Differential- PCM, DSD processor Output Voltage (Note 3) Direct DSD Mode
Output Impedance Z Max DC Current draw from an AOUT pin I Min AC-Load Resistance R Max Load Capacitance C Quiescent Voltage VQ - 50% V Max Current draw from VQ I
= -40°C to 85°C; Full-scale 997 Hz input sine wave (Note 1); Tested under max ac-load
A
Parameters Symbol Min Typ Max Units
unweighted
16-bit A-weighted
(Note 2) unweighted
24-bit 0 dB
-20 dB
-60 dB
(Note 2) 16-bit 0 dB
-20 dB
-60 dB
THD+N
V
FS
OUT
OUTmax
L L
QMAX
105 102
-
-
-
-
-
-
-
-
1.28•V
A
0.90•V
A
-130-Ω
-1.0-mA
-3-kΩ
-100-pF
-10-μA
114 111
97 94
-100
-91
-51
-94
-74
-34
1.32•V
0.94•V
-
-
-
-
-91
-
-42
-
-
-
1.36•V
A A
A
A
0.98•V
A
-VDC
dB dB dB dB
dB dB dB dB dB dB
Vpp Vpp
10 DS670F2

POWER AND THERMAL CHARACTERISTICS

Parameters Symbol Min Typ Max Units
Power Supplies
Power Supply Current normal operation, VA= 5 V
(Note 4) VD= 2.5 V
(Note 5) Interface current, VLC=5 V
VLS=5 V
(Note 6) power-down state (all supplies)
Power Dissipation (Note 4) VA = 5V, VD = 2.5V
normal operation
(Note 6) power-down
Package Thermal Resistance multi-layer
dual-layer
Power Supply Rejection Ratio (Note 7) (1 kHz) (60 Hz)
Notes:
4. Current consumption increases with increasing Fs within a given speed mode and is signal depend ent. Max values are based on highest Fs and highest MCLK.
5. I
6. Power-Down Mode is defined as RST
7. Valid with the recommended capacitor values on FILT+ and VQ as shown in Figures 6 and 7.
measured with no external loading on the SDA pin.
LC
pin = Low with all clock and data lines held static.
I
A
I
D
I
LC
I
LS
I
pd
θ
JA
θ
JA
θ
JC
PSRR
CS4365
-
-
-
-
-
-
-
-
-
-
-
-
60 16
2
84
200
340
1
48 65 15
60 40
65 22
-
-
-
390
-
-
-
-
-
-
mA mA
μA μA μA
mW mW
°C/Watt °C/Watt °C/Watt
dB dB
DS670F2 11
CS4365

COMBINED INTERPOLATION & ON-CHIP ANALOG FILTER RESPONSE

The filter characteristics have been norma lized to th e sample rate (Fs) and can be referenced to the desired sam­ple rate by multiplying the given characteristic by Fs.
Parameter
Combined Digital and On-chip Analog Filter Response - Single -Speed Mode - 48 kHz
Passband (Note 9) to -0.01 dB corner
Frequency Response 10 Hz to 20 kHz -0.01 - +0.01 dB StopBand 0.547 - - Fs StopBand Attenuation (Note 10) 102 - - dB Group Delay - 10.4/Fs - s De-emphasis Error (Note 11) Fs = 32 kHz
(Relative to 1 kHz) Fs = 44.1 kHz
Combined Digital and On-chip Analog Filter Response - Double- Speed Mode - 96 kHz
Passband (Note 9) to -0.01 dB corner
Frequency Response 10 Hz to 20 kHz -0.01 - +0.01 dB StopBand .583 - - Fs StopBand Attenuation (Note 10) 80 - - dB Group Delay - 6.15/Fs - s
Combined Digital and On-chip Analog Filter Response - Quad-Sp eed Mode - 192 kHz
Passband (Note 9) to -0.01 dB corner
Frequency Response 10 Hz to 20 kHz -0.01 - +0.01 dB StopBand .635 - - Fs StopBand Attenuation (Note 10) 90 - - dB Group Delay - 7.1/Fs - s
See Note 12.
to -3 dB corner
Fs = 48 kHz
to -3 dB corner
to -3 dB corner
Fast Roll-Off
Min Typ Max
0 0
-
-
-
0 0
0 0
-
-
-
-
-
-
-
-
-
.454 .499
±0.36 ±0.21 ±0.14
.430 .499
.105 .490
Unit
Fs Fs
dB dB dB
Fs Fs
Fs Fs
Notes:
8. Slow roll-off interpolation filter is only available in Software Mode.
9. Response is clock-dependent and will scale with Fs.
10. For Single-Speed Mode, the Measurement Bandwidth is from stopband to 3 Fs. For Double-Speed Mode, the Measurement Bandwidth is from stopband to 3 Fs. For Quad-Speed Mode, the Measurement Bandwidth is from stopband to 1.34 Fs.
11. De-emphasis is available only in Single-Speed Mode; only 44.1 kHz De-emphasis is available in Hard­ware Mode.
12. Amplitude vs. Frequency plots of this data are available in Section 7. “Filter Plots” on page 45.
12 DS670F2
CS4365

COMBINED INTERPOLATION & ON-CHIP ANALOG FILTER RESPONSE (CONTINUED)

Parameter
Single-Speed Mode - 48 kHz
Passband (Note 9) to -0.01 dB corner
to -3 dB corner Frequency Response 10 Hz to 20 kHz -0.01 - +0.01 dB StopBand .583 - - Fs StopBand Attenuation (Note 10) 64 - - dB Group Delay - 7.8/Fs - s De-emphasis Error (Note 11) Fs = 32 kHz
(Relative to 1 kHz) Fs = 44.1 kHz
Fs = 48 kHz
Double-Speed Mode - 96 kHz
Passband (Note 9) to -0.01 dB corner
to -3 dB corner Frequency Response 10 Hz to 20 kHz -0.01 - +0.01 dB StopBand .792 - - Fs StopBand Attenuation (Note 10) 70 - - dB Group Delay - 5.4/Fs - s
Quad-Speed Mode - 192 kHz
Passband (Note 9) to -0.01 dB corner
to -3 dB corner Frequency Response 10 Hz to 20 kHz -0.01 - +0.01 dB StopBand .868 - - Fs StopBand Attenuation (Note 10) 75 - - dB Group Delay - 6.6/Fs - s
Slow Roll-Off (Note 8)
Min Typ Max
0 0
-
-
-
0 0
0 0
-
-
-
-
-
-
-
-
-
0.417
0.499
±0.36 ±0.21 ±0.14
.296 .499
.104 .481
Unit
Fs Fs
dB dB dB
Fs Fs
Fs Fs

DSD COMBINED DIGITAL & ON-CHIP ANALOG FILTER RESPONSE

Parameter Min Typ Max Unit
DSD Processor Mode
Passband (Note 9) to -3 dB corner 0 - 50 kHz Frequency Response 10 Hz to 20 kHz -0.05 - +0.05 dB Roll-off 27 - - dB/Oct
Direct DSD Mode
Passband (Note 9) to -0.1 dB corner
to -3 dB corner Frequency Response 10 Hz to 20 kHz -0.1 - 0 dB
DS670F2 13
0 0
-
-
26.9
176.4
kHz kHz
CS4365

DIGITAL CHARACTERISTICS

Parameters Symbol Min Typ Max Units
Input Leakage Current (Note 13) I
in
Input Capacitance - 8 - pF High-Level Input Voltage Serial I/O
Control I/O
Low-Level Input Voltage Serial I/O
Control I/O
Low-Level Output Voltage (I Low-Level Output Voltage (I
= -1.2 mA) Control I/O = 3.3 V, 5 V V
OL
= -1.2 mA) Control I/O = 1.8 V, 2.5 V V
OL
MUTEC auto detect input high voltage V MUTEC auto detect input low voltage V Maximum MUTEC Drive Current I MUTEC High-Level Output Voltage V MUTEC Low-Level Output Voltage V
V V
V V
OL OL
max
OH OL
IH IH
IL IL
IH
IL
Notes:
13. Any pin except supplies. Transient currents of up to ±100 mA on the input pins will not cause SCR latch­up.
--±10μA
0.70•V
LS
0.70•V
LC
-
-
- - 0.20•V
- - 0.25•V
0.70•V
A
- - 0.30•V
-
-
-
-
-
-
0.30•V
0.30•V
LS LC
LC LC
--V
A
-3-mA
-VA-V
-0-V
V V
V V
V V
V
14 DS670F2
CS4365

SWITCHING CHARACTERISTICS - PCM

Inputs: Logic 0 = GND, Logic 1 = VLS, CL = 20 pF.
Parameters Symbol Min Max Units
RST pin Low Pulse Width (Note 14) 1-ms MCLK Frequency 1.024 55.2 MHz
MCLK Duty Cycle (Note 15) 45 55 % Input Sample Rate - LRCK (Manual selection) Single-Speed Mode
Double-Speed Mode
Quad-Speed Mode
Input Sample Rate - LRCK (Auto detect) Single-Speed Mode
Double-Speed Mode
Quad-Speed Mode LRCK Duty Cycle 45 55 % SCLK Duty Cycle 45 55 % SCLK High Time t SCLK Low Time t LRCK Edge to SCLK Rising Edge t SCLK Rising Edge to LRCK Falling Edge t SDIN Setup Time Before SCLK Rising Edge t SDIN Hold Time After SCLK Rising Edge t
F F F
Fs Fs Fs
sckh
sckl lcks lckd
ds dh
s s s
4
50
100
4
84
170
54 108 216
54 108 216
kHz kHz kHz
kHz kHz kHz
8-ns 8-ns 5-ns 5-ns 3-ns 5-ns
Notes:
14. After powering up, RST
should be held low until after the power supplies and clocks are settled.
15. See Tables 1 - 3 for suggested MCLK frequencies.
16. MSB of CH1 is always the second SCLK rising edge following LRCK rising edge.
LRCK
t
sckh
t
t
ds
dh
MSB
SCLK
SDINx
t
lcks

Figure 1. Serial Audio Interface Timing

t
sckl
MSB-1
DS670F2 15
CS4365

SWITCHING CHARACTERISTICS - DSD

Logic 0 = GND; Logic 1 = VLS; CL=20pF.
Parameter Symbol Min Typ Max Unit
MCLK Duty Cycle 40 - 60 % DSD_SCLK Pulse Width Low t DSD_SCLK Pulse Width High t DSD_SCLK Frequency (64x Oversampled)
(128x Oversampled) DSD_A / _B valid to DSD_SCLK rising setup time t DSD_SCLK rising to DSD_A or DSD_B hold time t DSD clock to data transition (Phase Modulation Mode) t
DSD_SCLK
sclkl
sclkh
sdlrs
sdh
dpm
t
160 - - ns 160 - - ns
1.024
2.048 20 - - ns 20 - - ns
-20 - 20 ns
t
sclkh
-
-
sclkl
3.2
6.4
MHz MHz
sdlrstsdh
t
DSDxx

Figure 2. Direct Stream Digital - Serial Audio Input Timing

t
dpm
DSD_SCLK
(128Fs)
DSD_SCLK
(64Fs)
DSDxx

Figure 3. Direct Stream Digital - Serial Audio Input Timing for Phase Modulation Mode

t
dpm
16 DS670F2
SWITCHING CHARACTERISTICS - CONTROL PORT - I²C FORMAT
Inputs: Logic 0 = GND, Logic 1 = VLC, CL=20pF.
Parameter Symbol Min Max Unit
SCL Clock Frequency f
Rising Edge to Start t
RST Bus Free Time Between Transmissions t Start Condition Hold Time (prior to first clock pulse) t Clock Low time t Clock High Time t Setup Time for Repeated Start Condition t SDA Hold Time from SCL Falling (Note 17) t SDA Setup time to SCL Rising t Rise Time of SCL and SDA t Fall Time SCL and SDA t Setup Time for Stop Condition t Acknowledge Delay from SCL Falling t
Notes:
17. Data must be held for sufficient time to bridge the transition time, t
buf
hdst
low high sust
hdd
sud
rc
fc
susp
ack
scl irs
, t , t
rc fc
- 100 kHz
500 - ns
4.7 - µs
4.0 - µs
4.7 - µs
4.0 - µs
4.7 - µs 0-µs
250 - ns
-1µs
-300ns
4.7 - µs
300 1000 ns
, of SCL.
fc
CS4365
RST
SDA
SCL
t
irs
Stop Start
t
buf
t
hdst
t
t
high
low
t
hdd
Figure 4. Control Port Timing - I²C Format
t
sud
Repeated
Start
t
t
sust
hdst
Stop
t
f
t
r
t
susp
DS670F2 17

SWITCHING CHARACTERISTICS - CONTROL PORT - SPI FORMAT

Inputs: Logic 0 = GND, Logic 1 = VLC, CL=20pF.
Parameter Symbol Min Max Unit
CCLK Clock Frequency f
Rising Edge to CS Falling t
RST CCLK Edge to CS
High Time Between Transmissions t
CS
Falling to CCLK Edge t
CS CCLK Low Time t CCLK High Time t CDIN to CCLK Rising Setup Time t CCLK Rising to DATA Hold Time (Note 19) t Rise Time of CCLK and CDIN (Note 20) t Fall Time of CCLK and CDIN (Note 20) t
Falling (Note 18) t
Notes:
18. t
is only needed before first falling edge of CS after RST rising edge. t
spi
19. Data must be held for sufficient time to bridge the transition time of CCLK.
20. For F
< 1 MHz.
SCK
sclk
srs
spi
csh
css
scl sch dsu
dh
r2 f2
-6MHz 500 - ns 500 - ns
1.0 - µs 20 - ns 66 - ns 66 - ns 40 - ns 15 - ns
- 100 ns
- 100 ns
= 0 at all other times.
spi
CS4365
RST
CS
CCLK
CDIN
t
srs
t
t
css
spi
t
r2

Figure 5. Control Port Timing - SPI Format

t
scl
t
f2
t
dsu
t
sch
t
dh
t
csh
18 DS670F2

3. TYPICAL CONNECTION DIAGRAM

CS4365
+1.8 V to +5 V
+2.5 V
PCM Digital Audio
Source
DSD
Audio
Source
Micro-
Controller
1 µF
220 Ω
470 Ω
470 Ω
+
0.1 µF
0.1 µF
6 7 9 8
11
13
43
3 2 1
48 47 46
42
19 15
16 17
VD
MCLK LRCK SCLK
SDIN1 SDIN2 SDIN3
VLS
DSDA1 DSDB1 DSDA2
DSDB2 DSDA3 DSDB3
DSD_SCLK
RST
SCL/CCLK
SDA/CDIN
ADO/CS
4
CS4365
32
VA
AOUTA1+
AOUTA1-
AOUTB1+
AOUTB1-
AOUTA2+
AOUTA2-
AOUTB2+
AOUTB2-
AOUTA3+
AOUTA3-
AOUTB3+
AOUTB3-
MUTEC1
MUTEC2
MUTEC3 MUTEC4 MUTEC5
MUTEC6
0.1 µF
39 40
38 37
35 36
34 33
29 30
28 27
41 26
25
24
23
22
+
1 µF
Analog Conditioning
and Muting
Analog Conditioning
and Muting
Analog Conditioning
and Muting
Analog Conditioning
and Muting
Analog Conditioning
and Muting
Analog Conditioning
and Muting
Mute Drive
+5 V
Ω
Ω
2 K
2 K
+1.8 V to +5 V
Note*
0.1 µF
Note*: Necessary for I2C control port operation
18
VLC
GND
5
GND
31
FILT+
CMOUT
TST
10, 12, 14, 44, 45
20
0.1 µ
+
47 µF
F
21
F
0.1 µ
1 µF
+

Figure 6. Typical Connection Diagram, Software Mode

DS670F2 19
CS4365
+1.8 V to + 5 V
+1.8 V to +5 V
+2.5 V
PCM
Digital
Audio
Source
DSD
Audio
Source
Stand-Alone
Mode
Configuration
220 Ω
470 Ω
470 Ω
1 µF
Optional
47 K
+
0.1 µF
Ω
0.1 µF
6 7
9 8
11
13
43
3 2
1
48
47
46
42
10
12
15 16
17
19
18
0.1 µF
MCLK
LRCK SCLK
SDIN1
SDIN2 SDIN3
VLS
DSDA1 DSDB1 DSDA2
DSDB2
DSDA3 DSDB3
DSD_SCLK
M4
M3
M2 M1
M0
RST
VLC
4
VD
CS4365
32
VA
AOUTA1+
AOUTA1-
MUTEC1
AOUTB1+
AOUTB1-
MUTEC2
AOUTA2+
AOUTA2-
MUTEC3
AOUTB2+
AOUTB2-
MUTEC4
AOUTA3+
AOUTA3-
MUTEC5
AOUTB3+
AOUTB3-
MUTEC6
CMOUT
FILT+
0.1 µF
39 40
41
38 37
26
35 36
25
34 33
24
29 30
23
28 27
22
20
21
+
1 µF
Analog Conditioning
and Muting
Analog Conditioning
and Muting
Analog Conditioning
and Muting
Analog Conditioning
and Muting
Analog Conditioning
and Muting
Analog Conditioning
and Muting
F
0.1 µ
1 µF
+
0.1 µ
+5 V
F
+
47 µF
GND
5
GND
TST
14, 44, 45
31

Figure 7. Typical Connection Diagram, Hardware Mode

20 DS670F2
CS4365

4. APPLICATIONS

The CS4365 serially accepts two’s complement formatted PCM data at standard audio sample rates including 48,
44.1 and 32 kHz in SSM, 96, 88.2 and 64 kHz in DSM, and 192, 176.4 and 128 kHz in QSM. Audio data is input via the serial data input pins (SDINx). The Left/Right Clock (LRCK) determines which channel is currently being input on SDINx, and the Serial Clock (SCLK) clocks audio data into the input data buffer. For more information on serial audio interfaces, see Cirrus Application Note AN282, “The 2-Channel Serial Audio Interface: A Tutorial.”
The CS4365 can be configured in Hardware Mode by the M0, M1, M2, M3 and M4 pins and in Software Mode through I²C or SPI.

4.1 Master Clock

MCLK/LRCK must be an integer ratio as shown in Tables 1 - 3. The LRCK frequency is equal to Fs, the frequency at which words for each channel are input to the device. The MCLK-to-LRCK frequency ratio and speed mode is detected automatically during the initialization sequence by counting the number of MCL K transitions during a single LRCK period and by detecting the absolute speed of MCLK. Internal dividers are then set to generate the proper internal clocks. Tables 1 - 3 illustrate several standard audio sample rates and the required MCLK and LRCK frequencies. Please note there is no required phase relationship, but MCLK, LRCK and SCLK must be synchronous.
Sample Rate
(kHz)
32 8.1920 12.2880 16.3840 24.5760 32.7680 36.8640
44.1 11.2896 16.9344 22.5792 33.8688 45.1584 48 12.2880 18.4320 24.5760 36.8640 49.1520
256x 384x 512x 768x 1024x 1152x
= Denotes clock ratio and sample rate combinations which are NOT supported under auto speed­mode detection. Please see “Switching Characteristics - PCM” on page 15.

T able 1. Single-Speed Mode Standard Frequencies

Sample Rate
(kHz)
64 8.1920 12.2880 16.3840 24.5760 32.7680
88.2 11.2896 16.9344 22.5792 33.8688 45.1584 96 12.2880 18.4320 24.5760 36.8640 49.1520
128x 192x 256x 384x 512x
= Denotes clock ratio and sample rate combinations which are NOT supported under auto speed­mode detection. Please see “Switching Characteristics - PCM” on page 15.

Table 2. Double-Speed Mode Standard Frequencies

Sample Rate
(kHz)
176.4 11.2896 16.9344 22.5792 33.8688 45.1584 192
64x 96x 128x 192x 256x
12.2880 18.4320 24.5760 36.8640 49.1520
MCLK (MHz)
MCLK (MHz)
MCLK (MHz)
= Denotes clock ratio and sample rate combinations which are NOT supported under auto speed­mode detection. Please see “Switching Characteristics - PCM” on page 15.

Table 3. Quad-Speed Mode Standard Frequencies

DS670F2 21

4.2 Mode Select

In Hardware Mode, operation is determin ed by the Mode Select pins. The states of these pins a re continu­ally scanned for any changes; however, the mode should only be changed while the device is in reset (RST
pin low) to ensure proper switching fr om one mode to another. These p ins require con nection to sup­ply or ground as outlined in Figure 7. For M0, M1, and M2, supply is VLC. For M3 and M4, supply is VLS.
Tables 4 - 6 show the decode of these pins.
In Software Mode, the operational mode and data format are set in the FM and DIF registers. See “PCM
Control (address 03h)” on page 35.
CS4365
M1
(DIF1)
0 0 Left-Justified, up to 24-bit data 0 8 0 1 I²S, up to 24-bit data 1 9 1 0 Right-Justified, 16-bit Data 2 10 1 1 Right-Justified, 24-bit Data 3 11
M4 M3
0 0 0 Single-Speed without De-Emphasis (4 to 50 kHz sample rates) 0 0 1 Single-Speed with 44.1 kHz De-Emphasis; see Figure 16 0 1 0 Double-Speed (50 to 100 kHz sample rates) 0 1 1 Quad-Speed (100 to 200 kHz sample rates) 1 0 0 Auto Speed-Mode Detect (32 kHz to 200 kHz sample rates) 1 0 1 Auto Speed-Mode Detect with 44.1 kHz De-Emphasis; see Figure 16 1 1 X DSD Processor Mode (see Table 6 for details)
M0
(DIF0)

Ta bl e 4 . PCM Digital Interface Format, Hardware Mode Option s

M2
(DEM)

Table 5. Mode Selection, Hardware Mode Options

DESCRIPTION FORMAT FIGURE
DESCRIPTION
M2 M1 M0 DESCRIPTION
000 001 010 011 100 101 110 111

Table 6. Direct Stream Digital (DSD), Hardware Mode Options

64x oversampled DSD data with a 4x MCLK to DSD data rate 64x oversampled DSD data with a 6x MCLK to DSD data rate 64x oversampled DSD data with a 8x MCLK to DSD data rate 64x oversampled DSD data with a 12x MCLK to DSD data rate 128x oversampled DSD data with a 2x MCLK to DSD data rate 128x oversampled DSD data with a 3x MCLK to DSD data rate 128x oversampled DSD data with a 4x MCLK to DSD data rate 128x oversampled DSD data with a 6x MCLK to DSD data rate
22 DS670F2

4.3 Digital Interface Formats

The serial port operates as a slave and supports the I²S, Left-Justified, Right-Ju stified, and One-Line Mode (OLM) digital interface formats with varying bit depths from 16 to 32, as shown in Figures 8-15. Data is clocked into the DAC on the rising edge. OLM configuration is only supported in Software Mode.
CS4365
LRCK
SCLK
SDINx +3 +2 +1+5 +4
MSB LSB MSB LSB
-1 -2 -3 -4 -5

Figure 8. Format 0 - Left-Justified up to 24-bit Data

LRCK
SCLK
SDINx +3 +2 +1+5 +4
LRCK
SCLK
SDINx
MSB
-2 -3 -4 -5
-1
15 14 13 12 11 10
Left Channel
32 clocks

Figure 10. Format 2 - Right-Justified 16-bit Data

Left Channel
-1
Left Channel
LSB LSB
MSB
-1
Figure 9. Format 1 - I²S up to 24-bit Data
6543210987
-2 -3 -4
-2 -3 -4
15 14 13 12 11 10
Right Channel
+3 +2 +1+5 +4
Right Channel
+3 +2 +1+5 +4
Right Chann el
6543210987
LRCK
SCLK
SDINx
Left Channel
0
23 22 21 20 19 18
32 clocks
65432107
23 22 21 20 19 18
Right Chann el
65432107

Figure 11. Format 3 - Right-Justified 24-bit Data

LRCK
SCLK
SDINx
10
Left Channel
17 16 17 16
19 18 19 18
15 14 13 12 11 10
32 clocks
6543210987
15 14 13 12 11 10
Right Channel
6543210987

Figure 12. Format 4 - Right-Justified 20-bit Data

DS670F2 23
CS4365
LRCK
SCLK
SDINx
10

4.3.1 OLM #1

OLM #1 serial audio interface format operates in Single-, Double-, or Quad-Speed Mode and will slave to SCLK at 128 Fs. Six channels of MSB first 20-bit PCM data are input on SDIN1.
LRCK
SCLK
SDIN1
DAC_A1 20 clks

4.3.2 OLM #2

Left Channel
17 16 17 16
15 14 13 12 11 10
32 clocks
6543210987

Figure 13. Format 5 - Right-Justified 18-bit Data

64 clks 64 clks
Left Channel Right Channel
LSBMSB
LSBMSB LSBMSB LSBMSB LSBMSB LSBMSB MSB
DAC_A2 DAC_A3 DAC_B1 DAC_B2 DAC_B3
20 clks 20 clks 20 clks 20 clks 20 clks
Figure 14. Format 8 - One-Line Mode 1
Right Channel
15 14 13 12 11 10
6543210987
OLM #2 serial audio interface format operates in Single-, Double-, or Quad-Speed Mode and will slave to SCLK at 256 Fs. Six channels of MSB first 24-bit PCM data are input on SDIN1.
128 clks
LRCK
SCLK SDIN1
LSBMSB
DAC_A1
24 clks
Left Channel Right Channel
DAC_A2 DAC_A3 DAC_B1 DAC_B2 DAC_B3
24 clks 24 clks 24 clks 24 clks 24 clks

4.4 Oversampling Modes

The CS4365 operates in one of three oversampling modes ba sed on the in put sample rate. Mode selection is determined by the M4, M3 and M2 pins in Hardware Mode or the FM bits in Software M ode. Single-Speed mode supports input sample rates up to 50 kHz and uses a 128x oversampling ratio. Double-Speed Mode supports input sample rates up to 100 kHz and uses an oversampling ratio of 64x. Quad-Speed Mode sup­ports input sample rates up to 200 kHz and uses an oversampling ratio of 32x.
The auto-speed mode detect feature allows for the automatic selection of speed mode based off of the in­coming sample rate. This allows the CS4365 to accept a wide range of sampl e rate s with no exte rnal inter­vention necessary. The auto-speed mode detect feature is availab le in both hardwa re and Software Mo de.
128 clks
LSBMSB LS BMSB LSBMSB LSBMSB LSBMSB MSB
Figure 15. Format 9 - One-Line Mode 2
24 DS670F2

4.5 Interpolation Filter

To accommodate the increasingly complex requirements of digital audio systems, the CS4365 incorpor ates selectable interpolation filters for each mode of operation. A “fast” and a “slow” roll-off filter is available in each of Single, Double, and Quad-Speed modes. These filte rs have be en design ed to accommoda te a va­riety of musical tastes and styles. The FILT_SEL bit is used to select which filter is used (see the “Filter
Plots” on page 45 for more details).
When in Hardware Mode, only the “fast” roll-off filter is available. Filter specifications can be found in Section , and filter response plots can be found in Figures 24 to 47.

4.6 De-Emphasis

The CS4365 includes on-chip digital de-emphasis filters. The de-emphasis fe ature is included to accommo­date older audio recordings that utilize pre-emphasis equalization as a means of noise reduction. Figure 16 shows the de-emphasis curve. The frequency response of the de-emphasis curve will scale proportionally with changes in sample rate, Fs if the input sample rate does not match the coefficient which has been se­lected.
In Software Mode the required de- em p ha sis f ilter co ef ficient s for 32 kHz, 44.1 kHz, or 48 kHz are selected via the de-emphasis control bits.
In Hardware Mode only the 44.1 kHz coefficient is available (enabled through the M2 pin). If the input sam­ple rate is not 44.1 kHz and de-emphasis has been selecte d then the corner frequencies of the de-emphasis filter will be scaled by a factor of the actual Fs over 44,100.
CS4365
Gain
dB
0dB
-10dB
T1=50 µs
T2 = 15 µs
F1 F2
3.183 kHz 10.61 kHz

Figure 16. De-Emphasis Curve

Frequency
DS670F2 25

4.7 ATAPI Specification

The CS4365 implements the channel-mixing functions of the ATAPI CD-ROM specification. The ATAPI functions are applied per A-B pair. Refer to Table 9 on page 42 and Figure 17 for additional informa­tion.
CS4365
Left Chan
SDINx
Right Channel
nel
Audio Data
ΣΣ
Audio Data

Figure 17. ATAPI Block Diagram (x = channel pair 1, 2, or 3)

4.8 Direct Stream Digital (DSD) Mode

In Software Mode, the DSD/PCM bits (Reg. 02h) are used to configure the device for DSD Mode. The DSD_DIF bits (Reg 04h) then control the expected DSD rate and MCLK ratio.
The DIR_DSD bit (Reg 04h) selects between two proprietary methods for DSD-to-analog conversion. The first method uses a decimation-fre e D SD pr ocessing technique which allows for featu r es s uch as matched PCM-level output, DSD volume control, and 50kHz on-chip filter. The second method sends the DSD data directly to the on-chip switched-capacitor filter for conversion (without the above-mentioned features).
A Channel
Volume Control
BChannel
Volume Control
MUTE
MUTE
AoutAx
AoutBx
The DSD_PM_EN bit (Reg. 04h) selects Pha se Modulation (data plus data inver ted) as the style of data input. In this mode, the DSD_PM_mode bit selects whether a 128Fs or 64x clock is used for phase modu­lated 64x data (see Figure 18). Use of Phase Modulation Mode may not directly affect the performance of the CS4365, but may lower the sensitivity to board-level routing of the DSD data signals.
The CS4365 can detect errors in the DSD data which does not comply with the SACD specification. The STATIC_DSD and INVALID_DSD bits (Reg. 04h) allow the CS4365 to alter the incoming in valid DSD data. Depending on the error, the data may either be attenuated or replaced with a muted DSD signal (the MUTEC pins would be set according to the DAMUTE bit (Reg. 08h)).
More information for any of these register bits can be found in Section 7. “Filter Plots” on page 45. The DSD input structure and analog outputs are designed to handle a nominal 0 dB-SACD (50% modulation
index) at full rated performance. Signals of +3 dB-SACD may be applied for brief periods of time, however; performance at these levels is not guaranteed. If sustained +3 dB-SACD levels are required, the digital vol­ume control should be set to -3.0 dB. This same volume control register affects PCM output levels. There is no need to change the volume control setting between PCM and DSD in order to have the 0dB output levels match (both 0 dBFS and 0 dB-SACD will output at -3 dB in this case).
26 DS670F2
CS4365
DSD Normal Mode
Not Used
BCKA
(64Fs)
DSD_SCLK
Not Used
DSDAx,
DSDBx
D1
D1D0 D2

Figure 18. DSD Phase Modulation Mode Diagram

4.9 Grounding and Power Supply Arrangements

As with any high-resolution converter, the CS4365 requires careful attention to power supply and grounding arrangements if its potential performance is to be realized. The Typical Connection Diagram shows the rec­ommended power arrangements, with VA, VD, VLC, and VLS connected to clean supplies. If the ground planes are split between digital ground and analo g ground, the GND pins of the CS4365 should be connect­ed to the analog ground plane.
D1
D2D0
DSD Phase
Modulation Mode
DSD_SCLK
DSD_SCLK
DSDAx,
DSDBx
Not Used
BCKA
(128Fs)
BCKD
(64Fs)
All signals, especially clocks, should be kept away from the FILT+ and VQ pins in order to avoid unwanted coupling into the DAC.

4.9.1 Capacitor Placement

Decoupling capacitors should be placed as close to the DAC as possible, with the low value ceramic ca­pacitor being the closest. To further minimize impedance, these capacitors should be located on the same layer as the DAC. If desired, all supply pins with similar voltage ratings may be connected to the same supply, but a decoupling capacitor should still be placed on each supply pin.
Notes: All decoupling capacitors should be referenced to ground. The CDB4365 evaluation board demonstrates the optimum layout and powe r supply arrangements.
DS670F2 27

4.10 Analog Output and Filtering

The application note “Design Notes for a 2-Pole Filter with Differential Input” discusses the second-order Butterworth filter and differential to single-ended converter which was implemented on the CS4365 evalua­tion board, CDB4365, as seen in Figure 20. The CS4365 does not include phase or amplitude compensa­tion for an external filter. Therefore, the DAC system phase and amplitude response will be dependent on the external analog circuitry. The off-chip filter has been designed to attenuate the typical full-scale output level to below 2 Vrms.
Figure 19 shows how the full-scale differential analog output level specification is derived.
AOUT+
CS4365
4.15 V
2.5 V
0.85 V
4.15 V
AOUT-
Full-Scale Output Level= (AOUT+) - (AOUT-)= 6.6 Vpp

Figure 19. Full-Scale Output

2.5 V
0.85 V

Figure 20. Recommended Output Filter

28 DS670F2

4.11 The MUTEC Outputs

The MUTEC1-6 pins have an auto-polarity detect feature. The MUTEC output pins are high impedance at the time of reset. The external mute circuitry needs to be self-biased into an active state in order to be muted during reset. Upon release of reset, the CS4365 will detect the status of the MUTEC pins (high or low) and will then select that state as the polarity to drive when the mutes become active. The external-bias voltage level that the MUTEC pins see at the time of release of reset must meet the “MUTEC auto-detect input high/low voltage” specifications as outlined in the Digital Characteristics section.
Figure 21 shows a single example of both an active high and an active low mute drive circuit. In these de-
signs, the pull-up and pull-down resistors have been especially chosen to meet the input high/lo w threshold when used with the MMUN2111 and MMUN2211 internal bias resistances of 10 kΩ. Use of the Mute Control function is not mandatory, but recommended, for designs requiring the absolute minimum in extraneous clicks and pops. Also, use of the Mute Control function can enable the system designer to achieve idle chan­nel noise/signal-to-noise ratios which are only limited by the external mute circuit.
CS4365

Figure 21. Recommended Mute Circuitry

4.12 Recommended Power-Up Sequence

4.12.1 Hardware Mode

1. Hold RST low until the power supplies and configuration pins are stab le, and the master and left/right clocks are locked to the appropriate frequencies, as discussed in Section 4.1. In this state, the registers are reset to the default settings, FILT+ will remain low, and VQ will be connected to VA/2. If RST
can not be held low long enough the SDINx pins should remain static low until all other clocks
are stable, and if possible the RST
2. Bring RST Hardware power-up sequence after approximately 512 LRCK cycles in Single-Speed Mode (1024 LRCK cycles in Double-Speed Mode, and 2048 LRCK cycles in Quad-Speed Mode).
DS670F2 29
high. The device will remain in a low power state with FILT+ low and will initiate the
should be toggled low again once the system is stable.

4.12.2 Software Mode

1. Hold RST low until the power supply is stable, and the master and left/right clocks are locked to the appropriate frequencies, as discussed in Section 4.1. In this state, the registers are reset to the default settings, FILT+ will remain low, and VQ will be connected to VA/2.
2. Bring RST Single-Speed Mode (1024 LRCK cycles in Double-Speed Mode, and 2048 LRCK cycles in Quad­Speed Mode).
3. In order to reduce the chances of clicks and pops, perform a write to the CP_EN bit prior to the completion of approximately 512 LRCK cycles in Single-Speed Mode (1024 LRCK cycles in Double­Speed Mode, and 2048 LRCK cycles in Quad-Speed Mode). The desired register settings can be loaded while keeping the PDN bit set to 1. Set the RMP_UP and RMP_DN bits to 1; then set the format and mode control bits to the desired settings.
If more than the stated range of LRCK cycles passes before CPEN bit is written, the chip will enter Hardware Mode and begin to operate with the M0-M4 as the mode settings. CPEN bit may be written at anytime, even after the Hardware sequence has begun. It is advised that if the CPEN bit cannot be set in time, the SDINx pins should remain static low (this way no audio data can be converted incorrectly by the Hardware Mode settings).
4. Set the PDN bit to 0. This will initiate the power-up sequence, which lasts approximately 50 µs.
high. The device will remain in a low power state with FILT+ low for 512 LRCK cycles in

4.13 Recommended Procedure for Switching Operational Modes

CS4365
For systems where the absolute minimum in clicks and pops is required, it is reco mmended that the M UTE bits are set prior to changing significant DAC functions (s uch as chan ging sample ra tes or clock sou rces). The mute bits may then be released after clocks have settled and the proper modes have been set.
It is required to have the device held in reset if the minimum high/low time specs of MCLK cannot be met during clock source changes.

4.14 Control Port Interface

The control port is used to load all the internal register settings in order to operate in Software Mode (see
Section 7. “Filter Plots” on page 45). The operation of the control port may be completely asynchronous with
the audio sample rate. However, to avoid potential interference problems, the control port pins should re­main static if no operation is required.
The control port operates in one of two modes: I²C or SPI.

4.14.1 MAP Auto Increment

The device has MAP (memory address pointer) auto-increment capability enabled by the INCR bit (also the MSB) of the MAP. If INCR is set to 0, MAP will stay constant for successive I²C writes or reads and SPI writes. If INCR is set to 1, MAP will auto-increment after each byte is written, allowing block reads or writes of successive registers.
4.14.2 I²C Mode
In the I²C Mode, data is clocked into and out of the bi-directional serial control data line , SDA, by the serial control port clock, SCL (see Figure 22 for the clock to data relationship). There is no CS enables the user to alter the chip address (001100[AD0 ][R/W quired, before powering up the dev ice. If the device e ver detect s a high- to-low tra nsition o n the AD0/CS pin after power-up, SPI Mode will be selected.
30 DS670F2
]) and should be tied to VLC or GND, as re-
pin. The AD0 pin
CS4365
4.14.2.1 I²C Write
To write to the device, follow the procedure below while adhering to the control port Switching Specifica­tions in Section .
1. Initiate a START condition to the I²C bus followed by the address byte. The upper 6 bits must be
001100. The seventh bit must match the setting of the AD0 pin, and the eighth must be 0. T he eighth bit of the address byte is the R/W
2. Wait for an acknowledge (ACK) from the part, then write to the memory address pointer, MAP. This
byte points to the register to be written.
3. Wait for an acknowledge (ACK) from the part, then write the desired data to the register pointed to by
the MAP.
4. If the INCR bit (see Section 4.14.1) is set to 1, repeat the previous step until all the desired registers
are written, then initiate a STOP condition to the bus.
5. If the INCR bit is set to 0 and further I²C writes to other registers are desired, it is necessary to in itiate
a repeated START condition and follow the procedu re detailed from step 1. If no fu rther writes to other registers are desired, initiate a STOP condition to the bus.
4.14.2.2 I²C Read
To read from the device, follow the procedure below while adhering to the control port Switching Specifi­cations.
bit.
1. Initiate a START condition to the I²C bus followed by the address byte. The upper 6 bits must be
001100. The seventh bit must match the setting of the AD0 pin, and the eighth must be 1. T he eighth bit of the address byte is the R/W
bit.
2. After transmitting an acknowledge (ACK), the device will then transmit the contents of the register
pointed to by the MAP. The MAP register will contain the address of the last register written to the MAP, or the default address (see Section 4.14.1) if an I²C read is the first operation performed on th e device.
3. Once the device has transmitted the contents of the register pointed to by the MAP, issue an ACK.
4. If the INCR bit is set to 1, the device will continue to transmit the contents of successive registers. Con-
tinue providing a clock and issue an ACK af te r ea ch by te u nt il all the de sir ed re gis te rs a re re ad , th en initiate a STOP condition to the bus.
5. If the INCR bit is set to 0 and further I²C reads from other registers are desired, it is necessary to initiate
a repeated START condition and follow the procedure detailed from steps 1 and 2 from the I²C Write instructions followed by step 1 of the I²C Read section. If no further reads from other r egisters are de­sired, initiate a STOP condition to the bus.
Note 1
SDA
SCL
Start
001100
ADDR AD0
R/W
ACK
DATA 1-8
ACK
DATA 1-8
ACK
Stop
Note: If operation is a write, this byte contains the Memory Address Po inter, MA P.
Figure 22. Control Port Timing, I²C Mode
DS670F2 31

4.14.3 SPI Mode

In SPI Mode, data is clocked into the serial control data line, CDIN, by the serial control port clock, CCLK (see Figure 23 for the clock to data relationship). There is no AD0 pin. Pin CS is used to control SPI writes to the control port. When the device detects a high to low transition on the AD0/CS
pin after power-up, SPI Mode will be selected. All signals are inputs and data is clocked in on the
rising edge of CCLK.
4.14.3.1 SPI Write
To write to the device, follow the procedure below while adhering to the control port Switching Specifica­tions in Section .
CS4365
is the chip select signal and
1. Bring CS
low.
2. The address byte on the CDIN pin must then be 00110000.
3. Write to the memory address pointer, MAP. This byte points to the register to be written.
4. Write the desired data to the register pointed to by the MAP.
5. If the INCR bit (see Section 4.14.1) is set to 1, repeat the previous step until all the desired registers
are written, then bring CS
high.
6. If the INCR bit is set to 0 and further SPI writes to other registers are desired, it is necessary to bring
CS
high, and follow the procedure detailed from step 1. If no further writes to other registers are de-
sired, bring CS
high.
CS
CCLK
CDIN
CHIP
ADDRESS
0011000
MAP = M emory Address Pointer
Figure 23. Control Port Timing, SPI Mode
R/W
MAP
MSB
byte 1
DATA
LSB
byte n

4.15 Memory Address Pointer (MAP)

76543210
INCR Reserved Reserved MAP4 MAP3 MAP2 MAP1 MAP0
00000000

4.15.1 INCR (Auto Map Increment Enable)

Default = ‘0’ 0 - Disabled 1 - Enabled

4.15.2 MAP4-0 (Memory Address Pointer)

Default = ‘00000’
32 DS670F2
CS4365

5. REGISTER QUICK REFERENCE

Addr Function 7 6 5 4 3 2 1 0
01h Chip Revision PART4 PART3 PART2 PART1 PART0 REV REV REV
default 0 1 1 0 1 x x x
02h Mode Control CPEN FREEZE DSD/PCM
default 0 0 0 0 0 0 0 1
03h PCM Control DIF3 DIF2 DIF1 DIF0 Reserved Reserved FM1 FM0
default 0 0 0 0 0 0 1 1
04h DSD Control DSD_DIF2 DSD_DIF1 DSD_DIF0 DIR_DSD STATIC_DSDINVALID_DSDDSD_PM_MDDSD_PM_
default 0 0 0 0 1 0 0 0
05h Filter Control Reserved Reserved Reserved Reserved Reserved Reserved Reserved FILT_SEL
default 0 0 0 0 0 0 0 0
06h Invert Control Reserved Reserved INV_B3 INV_A3 INV_B2 INV_A2 INV_B1 INV_A1
default 0 0 0 0 0 0 0 0
07h Group Control MUTEC1 MUTEC0 Reserved P1_A=B P2_A=B P3_A=B Reserved SNGLVOL
default 0 0 0 0 0 0 0 0
08h Ramp and Mute SZC1 SZC0 RMP_UP RMP_DN PAMUTE DAMUTE MUTE_P1 MUTE_P0
default 1 0 1 1 1 1 0 0
09h Mute Control Reserved Reserved MUTE_B3 MU TE_A3 MUTE_B2 MUTE_A2 MUTE_B1 MUTE_A1
default 0 0 0 0 0 0 0 0
0Ah Mixing Control
Pair 1 (AOUTx1)
default 0 0 0 0 1 0 0 1
0Bh Vol. Control A1 A1_VOL7 A1_VOL6 A1_VOL5 A1_VOL4 A1_VOL3 A1_VOL2 A1_VOL1 A1_VOL0
default 0 0 0 0 0 0 0 0
0Ch Vol. Control B1 B1_VOL7 B1_VOL6 B1_VOL5 B1_VOL4 B1_VOL3 B1_VOL2 B1_VOL1 B1_VOL0
default 0 0 0 0 0 0 0 0
0Dh Mixing Control
Pair 2 (AOUTx1)
default 0 0 0 0 1 0 0 1
0Eh Vol. Control A2 A2_VOL7 A2_VOL6 A2_VOL5 A2_VOL4 A2_VOL3 A2_VOL2 A2_VOL1 A2_VOL0
default 0 0 0 0 0 0 0 0
0Fh Vol. Control B2 B2_VOL7 B2_VOL6 B2_VOL5 B2_VOL4 B2_VOL3 B2_VOL2 B2_VOL1 B2_VOL0
default 0 0 0 0 0 0 0 0
10h Mixing Control
Pair 3 (AOUTx1)
default 0 0 0 0 1 0 0 1
11h Vol. Control A3 A3_VOL7 A3_VOL6 A3_VOL5 A3_VOL4 A3_VOL3 A3_VOL2 A3_VOL1 A3_VOL0
default 0 0 0 0 0 0 0 0
12h Vol. Control B3 B3_VOL7 B3_VOL6 B3_VOL5 B3_VOL4 B3_VOL3 B3_VOL2 B3_VOL1 B3_VOL0
default 0 0 0 0 0 0 0 0
16h PCM clock mode Reserved Reserved MCLKDIV Reserved Reserved Reserved Reserved Reserved
default 0 0 0 0 0 0 0 0
Reserved P1_DEM1 P1_DEM0 P1ATAPI4 P1ATAPI3 P1ATAPI2 P1ATAPI1 P1ATAPI0
Reserved P2_DEM1 P2_DEM0 P2ATAPI4 P2ATAPI3 P2ATAPI2 P2ATAPI1 P2ATAPI0
Reserved P3_DEM1 P3_DEM0 P3ATAPI4 P3ATAPI3 P3ATAPI2 P3ATAPI1 P3ATAPI0
Reserved DAC3_DIS DAC2_DIS DAC1_DIS PDN
EN
DS670F2 33
CS4365

6. REGISTER DESCRIPTION

Note: All registers are read/write in I²C Mod e an d wr it e on ly in SP I, un les s oth e rwis e no te d.

6.1 Chip Revision (address 01h)

76543210
PART4 PART3 PART2 PART1 PART0 REV2 REV1 REV0
01101- --

6.1.1 Part Number ID (PART) [Read Only]

01101- CS4365 Revision ID (REV) [Read Only] 000 - Revision A0
001 - Revision B0 Function: This read-only register can be used to identify the model and revision number of the device.

6.2 Mode Control 1 (address 02h)

76543210
CPEN FREEZE DSD/PCM Reserved DAC3_DIS DAC2_DIS DAC1_DIS PDN
00000001

6.2.1 Control Port Enable (CPEN)

Default = 0 0 - Disabled 1 - Enabled
Function: This bit defaults to 0, allowing the device to power-up in Stand- Alone Mo de. The Co ntrol Por t Mode can
be accessed by setting this bit to 1. This will allow the operation of the device to be controlled by the reg­isters, and the pin definitions will conform to Control Port Mode. To accomplish a clean power-up, the user should write this bit within 10 ms following the release of Reset.

6.2.2 Freeze Controls (FREEZE)

Default = 0 0 - Disabled 1 - Enabled
Function: This function allows modifications to be made to the registers without the changes taking effect until the
FREEZE is disabled. To make multiple changes in the Control port registers take effect simultaneously, enable the FREEZE Bit, make all register changes, then Disable the FREEZE bit.
34 DS670F2

6.2.3 PCM/DSD Selection (DSD/PCM)

Default = 0 0 - PCM 1 - DSD
Function: This function selects DSD or PCM Mode. The appropriate data and clocks should be present before
changing modes, or else MUTE should be selected.

6.2.4 DAC Pair Disable (DACx_DIS)

Default = 0 0 - DAC Pair x Enabled 1 - DAC Pair x Disabled
Function: When the bit is set, the respective DAC channel pair (AOUTAx and AOUTBx) will remain in a reset state.
It is advised that changes to these bits be made while the power-down (PDN) bit is enabled to eliminate the possibility of audible artifacts.

6.2.5 Power Down (PDN)

CS4365
Default = 1 0 - Disabled 1 - Enabled
Function: The entire device will enter a low-power state when this function is enabled, and the contents of the control
registers are retained in this mode. The powe r-down bit defaults to ‘enabled’ on power-up and must be disabled before normal operation in Control Port Mode can occur.

6.3 PCM Control (address 03h)

76543210
DIF3 DIF2 DIF1 DIF0 Reserved Reserved FM1 FM0
00000011

6.3.1 Digital Interface Format (DIF)

Default = 0000 - Format 0 (Left-Justified, up to 24-bit data) Function: These bits select the interface format for the serial audio input. The DSD/PCM
PCM or DSD Mode is selected. The required relationship between the Left/Right clock, serial clock and seri al data is defined by the Digital
Interface Format and the options are det aile d in Figures 8 through 15.
bit determines whether
Note: While in PCM Mode, the DIF bits should only be changed when the power-down (PDN) bit is set to ensure proper switching from one mode to another.
DS670F2 35
DIF3 DIF2 DIF1 DIF0 DESCRIPTION FORMAT
0 0 0 0 Left-Justified, up to 24-bit data 0 0 0 0 1 I²S, up to 24-bit data 1 0 0 1 0 Right-Justified, 16-bit data 2 0 0 1 1 Right-Justified, 24-bit data 3 0 1 0 0 Right-Justified, 20-bit data 4 0 1 0 1 Right-Justified, 18-bit data 5 1000 1001
X X X X All other combinations are Reserved

6.3.2 Functional Mode (FM)

Default = 11 00 - Single-Speed Mode (4 to 50 kHz sample rates) 01 - Double-Speed Mode (50 to 100 kHz sample rates) 10 - Quad-Speed Mode (100 to 200 kHz sample rates) 11 - Auto Speed Mode detect (32 kHz to 200 kHz sample rates)
Function:
One-Line Mode 1, 24-bit Data One-Line Mode 2, 20-bit Data
Table 7. Digital Interface Formats - PCM Mode
CS4365
8 9
Selects the required range of input sample rates or Auto Speed Mode.

6.4 DSD Control (address 04h)

765 4 3 2 1 0
DSD_DIF2 DSD_DIF1 DSD_DIF0 DIR_DSD STATIC_DSD INVALID_DSD DSD_PM_MD DSD_PM_EN
000 0 1 1 0 0

6.4.1 DSD Mode Digital Interface Format (DSD_DIF)

Default = 000 - Format 0 (64x oversampled DSD data with a 4x MCLK to DSD data rate) Function: The relationship between the oversampling ratio of the DSD audio data an d the required Master clock-to-
DSD-data rate is defined by the Digital Interface Format pins. The DSD/PCM bit determines whether PCM or DSD Mode is selected.
DIF2 DIF1 DIFO DESCRIPTION
0 0 0 64x oversampled DSD dat a w it h a 4 x MCL K to DSD data rate 0 0 1 64x oversampled DSD dat a w it h a 6 x MCL K to DSD data rate 0 1 0 64x oversampled DSD dat a w it h a 8 x MCL K to DSD data rate 0 1 1 64x oversampled DSD data with a 12x MCLK to DSD data rate 1 0 0 128x oversampled DSD data with a 2x MCLK to DSD data rate 1 0 1 128x oversampled DSD data with a 3x MCLK to DSD data rate 1 1 0 128x oversampled DSD data with a 4x MCLK to DSD data rate 1 1 1 128x oversampled DSD data with a 6x MCLK to DSD data rate
Table 8. Digital Interface Formats - DSD Mode
36 DS670F2

6.4.2 Direct DSD Conversion (DIR_DSD)

Function: When set to 0 (default), DSD input data is sent to the DSD processor for filtering and volume control func-
tions. When set to 1, DSD input data is sent directly to the switched capacitor DACs for a pure DSD conver sion.
In this mode, the full-scale DSD and PCM levels will not be matched (see Section ), the dynamic range performance may be reduced, the volume control is inactive, and the 50 kHz low pass filter is not available (see Section for filter specifications).

6.4.3 Static DSD Detect (STATIC_DSD)

Function: When set to 1 (default), the DSD processor checks for 28 consecutive zeroes or ones and, if detected,
sends a mute signal to the DACs. The MUTEC pins will eventually go active according to the DAMUTE register.
When set to 0, this function is disabled.

6.4.4 Invalid DSD Detect (INVALID_DSD)

CS4365
Function: When set to 1, the DSD processor checks for greater than 24 out of 28 bits of the same value and, if de-
tected, will attenuate the data sent to the DACs. The MUTEC pins go active according to the DAMUTE register.
When set to 0 (default), this function is disabled.

6.4.5 DSD Phase Modulation Mode Select (DSD_PM_MODE)

Function: When set to 0 (default), the 128Fs (BCKA) clock should be input to DSD_SCLK for Phase Modulation
Mode. (See Figure 18 on page 27) When set to 1, the 64Fs (BCKD) clock should be input to DSD_SCLK for Phase Modulation Mode.

6.4.6 DSD Phase Modulation Mode Enable (DSD_PM_EN)

Function: When set to 1, DSD phase modulation input mode is enabled, and the DSD_ PM_MODE bit should be set
accordingly. When set to 0 (default), this function is disabled (DSD normal mode).
DS670F2 37
CS4365

6.5 Filter Control (address 05h)

76543210
Reserved Reserved Reserved Reserved Reserved Reserved Reserved FILT_SEL
00000000

6.5.1 Interpolation Filter Select (FILT_SEL)

Function: When set to 0 (default), the Interpolation Filter has a fast roll-off. When set to 1, the Interpolation Filter has a slow roll-off. The specifications for each filter can be found in the Analog characteristics table, and response plo ts can
be found in Figures 24 to 47.

6.6 Invert Control (address 06h)

76543210
Reserved Reserved INV_B3 INV_A3 INV_B2 INV_A2 INV_B1 INV_A1
00000000

6.6.1 Invert Signal Polarity (Inv_xx)

Function: When set to 1, this bit inverts the signal polarity of channel xx. When set to 0 (default), this function is disabled.

6.7 Group Control (address 07h)

76543210
MUTEC1 MUTEC0 Reserved P1_A=B P2_A=B P3_A=B Reserved SNGLVOL
00000000

6.7.1 Mute Pin Control (MUTEC1, MUTEC0)

Default = 00
00 - Six mute control signals 01, 10 - One mute control signal 11 - Three mute control signals
Function: Selects how the internal mute control signals are routed to the MUTEC1 through MUTEC6 pins. When
set to ‘00’, there is one mute control signal for each channel: AOUT1A on MUTEC1, AOUT1B on MUTEC2, etc. When set to ‘01’ or ‘10’, there is a single mute control signal on the MUTEC1 pin. When set to ‘11’, there are three mute control sign als, one for each stereo pair: AOUT1A and AOUT1B on MUTEC1, AOUT2A and AOUT2B on MUTEC2, and AOUT3A and AOUT3B on MUTEC3.
38 DS670F2

6.7.2 Channel A Volume = Channel B Volume (Px_A=B)

Default = 0
0 - Disabled 1 - Enabled
Function: The AOUTAx and AOUTBx volume levels are independently controlled by the A and the B Channel Vol-
ume Control Bytes when this function is disabled. The volume on both AOUTAx and AOUTBx are deter­mined by the A Channel Attenuation and Volume Control Bytes (per A-B pair), and the B Channel Bytes are ignored when this function is enabled.

6.7.3 Single Volume Control (SNGLVOL)

Default = 0
0 - Disabled 1 - Enabled
Function: The individual channel volume levels are independently controlled by their respective Volume Control
Bytes when this function is disabled. The volume on all channels is determined by the A1 Channel Volume Control Byte, and the other Volume Control Bytes are ignored when this function is enabled.
CS4365

6.8 Ramp and Mute (address 08h)

76543210
SZC1 SZC0 RMP_UP RMP_DN PAMUTE DAMUTE MUTE_P1 MUTE_P0
10111100

6.8.1 Soft Ramp and Zero Cross CONTROL (SZC)

Default = 10
00 - Immediate Change 01 - Zero Cross 10 - Soft Ramp 11 - Soft Ramp on Zero Crossings
Function: Immediate When Immediate Change is selected, all level changes will take effect immediately in one step. Zero Cross Zero Cross Enable dictates that signal-level changes, either by attenuation changes or muting, will occur
on a signal zero crossing to minimize audible artifacts. The requested level change will occur after a tim­eout period between 512 and 1024 sample periods (10 .7 ms to 21.3 ms at 48 kHz sample rate) if the sign al does not encounter a zero crossing. The zero cross function is in dependently monitored and implemented for each channel.
Change
Soft Ramp Soft Ramp allows level changes, both muting and attenuation, to be implemente d by incrementally ramp-
ing, in 1/8 dB steps, from the current level to the new level at a r ate of 1 dB per 8 left/right clock periods.
DS670F2 39
Soft Ramp on Zero Crossing Soft Ramp and Zero Cross Enable dictates that signal-level changes, either by attenuation changes or
muting, will occur in 1/8 dB steps and be implemented on a signal zero crossing. The 1/8 dB level change will occur after a timeout period between 512 and 1024 sample periods (10.7 ms to 21.3 ms at 48 kHz sample rate) if the signal does not encounter a zero crossing. The zero cross function is independently monitored and implemented for each channel.

6.8.2 Soft Volume Ramp-Up after Error (RMP_UP)

Function: An un-mute will be performed after executing an LRCK/MCLK ratio change or error, and after changing
the Functional Mode. When set to 1 (default), this unmute is effected, similar to attenuation changes, by the Soft and Zero Cross
bits in the Volume and Mixing Control register. When set to 0, an immediate unmute is performed in these instances. Note: For best results, it is recommended that this feature be used in conjunction with the RMP_DN bit.

6.8.3 Soft Ramp-Down before Filter Mode Change (RMP_DN)

Function:
CS4365
If either the FILT_SEL or DEM bits are changed the DAC will stop conversion for a period of time to change its filter values. This bit selects how the data is effected prior to and after the change of the filter values.
When set to 1 (default), a mute will be performed prior to executing a filter mode change and an un-mute will be performed after executing the filter mode change. This mute and un-mute are effected, similar to attenuation changes, by the Soft and Zero Cross bits in the Volume and Mixing Control register.
When set to 0, an immediate mute is performed prior to executing a filter mode change. Note: For best results, it is recommended that this feature be used in conjunction with the RMP_UP bit.

6.8.4 PCM Auto-Mute (PAMUTE)

Function: When set to 1 (default), the Digital-to-Analog converter output will mute following the reception of 8192
consecutive audio samples of static 0 or -1. A single sample of non-static data will release the mute. De­tection and muting is done independently for each channel. The quiescent voltage on the output will be retained and the Mute Control pin will go active during the mute period.
When set to 0, this function is disabled.
40 DS670F2

6.8.5 DSD Auto-Mute (DAMUTE)

Function: When set to 1 (default), the Digital-to-Analog converter output will mute following the reception of 256 re-
peated 8-bit DSD mute patterns (as defined in the SACD specification). A single bit not fitting the repeated mute pattern (mentioned above) will release the mute. Detection and
muting is done independently for each channel. The quiescent voltage on the output will be retained, and the Mute Control pin will go active during the mute period.

6.8.6 MUTE Polarity and DETECT (MUTEP1:0)

Default = 00
00 - Auto polarity detect, selected from MUTEC1 pin 01 - Reserved 10 - Active low mute polarity 11 - Active high mute polarity
Function: Auto mute polarity detect (00) See Section 4.11 “The MUTEC Outputs” on page 29 for description.
CS4365
Active low mute polarity (10) When RST
released and after this bit is set, the MUTEC output pins will be active low polarity. Active high mute polarity (11) At reset time, the outputs are high impedance and will need to be biased active. Once reset has been
released and after this bit is set, the MUTEC output pins will be active high polarity.
is low, the outputs are high impedance and will need to be biased active. Once reset has been

6.9 Mute Control (address 09h)

76543210
Reserved Reserved MUTE_B3 MUTE_A3 MUTE_B2 MUTE_A2 MUTE_B1 MUTE_A1
00000000

6.9.1 Mute (MUTE_xx)

Default = 0
0 - Disabled 1 - Enabled
Function: The Digital-to-Analog converter output will mute when enabled. The quiescent voltage on the output will
be retained. The muting function is affected, similarly to attenuation changes, by the Soft and Zero Cross bits. The MUTE pins will go active during the mute period according to the MUTEC bits.
DS670F2 41
CS4365

6.10 Mixing Control (address 0Ah, 0Dh, 10h, 13h)

76543210
Reserved Px_DEM1 Px_DEM0 PxATAPI4 PxATAPI3 PxATAPI2 PxATAPI1 PxATAPI0
00001001

6.10.1 De-Emphasis Control (PX_DEM1:0)

Default = 00
00 - Disabled 01 - 44.1 kHz 10 - 48 kHz 11 - 32 kHz
Function: Selects the appropriate digital filte r to maintain the standard 15 μs/50 μs digital de-emphasis filter re-
sponse at 32, 44.1 or 48 kHz sample rates. (see Figure 16) De-emphasis is only available in Single-Speed Mode.

6.10.2 ATAPI Channel Mixing and Muting (ATAPI)

Default = 01001 - AOUTAx=aL, AOUTBx=bR (Stereo) Function: The CS4365 implements the channel-mixing functions of the ATAPI CD-ROM specification. The ATAPI
functions are applied per A-B pair. Refer to Table 9 and Figure 17 for additional information.
ATAPI4 ATAPI3 ATAPI2 ATAPI1 ATAPI0 AOUTAx AOUTBx
0 0 0 0 0 MUTE MUTE 00001 MUTE bR 00010 MUTE bL 0 0 0 1 1 MUTE b[(L+R)/2] 00100 aR MUTE 00101 aR bR 00110 aR bL 00111 aR b[(L+R)/2] 01000 aL MUTE 01001 aL bR 01010 aL bL 01011 aL b[(L+R)/2] 0 1 1 0 0 a[(L+R)/2] MUTE 01101 a[(L+R)/2] bR 01110 a[(L+R)/2] bL 0 1 1 1 1 a[(L+R)/2] b[(L+R)/2] 1 0 0 0 0 MUTE MUTE 10001 MUTE bR 10010 MUTE bL
Table 9. ATAPI Decode Table
42 DS670F2
CS4365
ATAPI4 ATAPI3 ATAPI2 ATAPI1 ATAPI0 AOUTAx AOUTBx
1 0 0 1 1 MUTE [(bL+aR)/2] 10100 aR MUTE 10101 aR bR 10110 aR bL 1 0 1 1 1 aR [(aL+bR)/2] 11000 aL MUTE 11001 aL bR 11010 aL bL 1 1 0 1 1 aL [(aL+bR)/2] 1 1 1 0 0 [(aL+bR)/2] MUTE 1 1 1 0 1 [(aL+bR)/2] bR 1 1 1 1 0 [(bL+aR)/2] bL 1 1 1 1 1 [(aL+bR)/2] [(aL+bR)/2]
T able 9. ATAPI Decode T able

6.11 Volume Control (address 0Bh, 0Ch, 0Eh, 0Fh, 11h, 12h)

76543210
xx_VOL7 xx_VOL6 xx_VOL5 xx_VOL4 xx_VOL3 xx_VOL2 xx_VOL1 xx_VOL0
00000000
These six registers provide individual volume and mute control for each of the six channels. The values for “xx” in the bit fields above are as follows: Register address 0Bh - xx = A1 Register address 0Ch - xx = B1 Register address 0Eh - xx = A2 Register address 0Fh - xx = B2 Register address 11h - xx = A3 Register address 12h - xx = B3

6.11.1 Digital Volume Control (xx_VOL7:0)

Default = 00h (0 dB) Function: The Digital Volume Control registers allow independent control of the signal levels in 1/2 dB increments
from 0 to -127.5 dB. Volume settings are decoded as shown in Table 10. The volume changes are imple­mented as dictated by the Soft and Zero Cross bits in the Power and Muting Control register. Note that the values in the volume setting column in Table 10 are approximate. The actual attenuation is determined by taking the decimal value of the volume register and multiplying by 6.02/12.
Binary Code Decimal Value Volume Setting
00000000 0 0 dB 00000001 1 -0.5 dB
00000110 6 -3.0 dB
11111111 255 - 127.5 dB
Table 10. Example Digital Volume Settings
DS670F2 43
CS4365

6.12 PCM Clock Mode (address 16h)

76543210
Reserved Reserved MCLKDIV Reserved Reserved Reserved Reserved Reserved
00000000

6.12.1 Master Clock DIVIDE by 2 ENABLE (MCLKDIV)

Function: When set to 1, the MCLKDIV bit enables a circ uit wh ich divides the externally applied MCLK signal by 2
prior to all other internal circuitry. When set to 0 (default), MCLK is unchanged.
44 DS670F2

7. FILTER PLOTS

1
6
5
5
1
6
CS4365
0
−20
−40
−60
Amplitude (dB)
−80
−100
−120
0.4
0.5
0.6
0.7
Frequency(normalized to Fs)
0.8
0.9
0
−20
−40
−60
Amplitude (dB)
−80
−100
−120
0.4
0.42
0.44
0.46
0.48
Frequency(normalized to Fs)
0.5
0.52
0.54
0.56
0.58

Figure 24. Single-Speed (fast) Stopband Rejection Figure 25. Single-Speed (fast) Transition Band

0
−1
−2
−3
−4
−5
Amplitude (dB)
−6
−7
−8
−9
−10
0.45
0.46
0.47
0.48
0.49
Frequency(normalized to Fs)
0.5
0.51
0.52
0.53
0.54
0.5
0.02
0.015
0.01
0.005
0
Amplitude (dB)
−0.005
−0.01
−0.015
−0.02
0
0.05
0.1
0.15
0.2
0.25
0.3
0.35
0.4
Frequency(normalized to Fs)
0.45

Figure 26. Single-Speed (fast) Transition Band (detail) Figure 27. Single-Speed (fast) Passband Ripple

0.
0.
0
−20
−40
−60
Amplitude (dB)
−80
−100
−120
0.4
0.5
0.6
0.7
Frequency(normalized to Fs)
0.8
0.9
0
−20
−40
−60
Amplitude (dB)
−80
−100
−120
0.4
0.42
0.44
0.46
0.48
Frequency(normalized to Fs)
0.5
0.52
0.54
0.56
0.58
0.

Figure 28. Single-Speed (slow) Stopband Rejection Figure 29. Single-Speed (slow) Transition Band

DS670F2 45
CS4365
5
5
1
6
5
5
0
−1
−2
−3
−4
−5
Amplitude (dB)
−6
−7
−8
−9
−10
0.45
0.46
0.47
0.48
0.49
0.5
0.51
0.52
0.53
0.54
Frequency(normalized to Fs)
0.5

Figure 30. Single-Speed (slow) Transition Band (detail) Figure 31. Single-Speed (slow) Passband Ripple

0.02
0.015
0.01
0.005
0
Amplitude (dB)
−0.005
−0.01
−0.015
−0.02
0
0.05
0.1
0.15
0.2
0.25
0.3
0.35
0.4
Frequency(normalized to Fs)
0.45
0.
0
20
40
60
Amplitude (dB)
80
100
120
0.4 0.5 0.6 0.7 0.8 0.9
Frequency(normalized to Fs)
0
20
40
60
Amplitude (dB)
80
100
120
0.4 0.42 0.44 0.46 0.48 0.5 0.52 0.54 0.56 0.58 0.
Frequency(normalized to Fs)

Figure 32. Double-Speed (fast) Stopband Rejection Figure 33. Double-Speed (fast) Transition Band

0
1
2
3
4
5
Amplitude (dB)
6
7
8
9
10
0.45 0.46 0.47 0.48 0.49 0.5 0.51 0.52 0.53 0.54 0.5
Frequency(normalized to Fs)
0.02
0.015
0.01
0.005
0
Amplitude (dB)
0.005
0.01
0.015
0.02 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.
Frequency(normalized to Fs)

Figure 34. Double-Speed (fast) Transition Band (detail) Figure 35. Double-Speed (fast) Passband Ripple

46 DS670F2
1
8
5
5
1
8
CS4365
0
20
40
60
Amplitude (dB)
80
100
120
0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Frequency(normalized to Fs)
0
20
40
60
Amplitude (dB)
80
100
120
0.2 0.3 0.4 0.5 0.6 0.7 0.
Frequency(normalized to Fs)

Figure 36. Double-Speed (slow) Stopband Rejection Figure 37. Double-Speed (slow) Transition Band

0
1
2
3
4
5
Amplitude (dB)
6
7
8
9
10
0.45 0.46 0.47 0.48 0.49 0.5 0.51 0.52 0.53 0.54 0.5
Frequency(normalized to Fs)
0.02
0.015
0.01
0.005
0
Amplitude (dB)
0.005
0.01
0.015
0.02 0 0.05 0.1 0.15 0.2 0.25 0.3 0.3
Frequency(normalized to Fs)

Figure 38. Double-Speed (slow) Transition Band (detail) Figure 39. Double-Speed (slow) Passband Ripple

0
20
40
60
Amplitude (dB)
80
100
120
0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Frequency(normalized to Fs)
0
20
40
60
Amplitude (dB)
80
100
120
0.2 0.3 0.4 0.5 0.6 0.7 0.
Frequency(normalized to Fs)

Figure 40. Quad-Speed (fast) Stopband Rejection Figure 41. Quad-Speed (fast) Transition Band

DS670F2 47
5
5
1
9
9
5
2
CS4365
0
1
2
3
4
5
Amplitude (dB)
6
7
8
9
10
0.45 0.46 0.47 0.48 0.49 0.5 0.51 0.52 0.53 0.54 0.5
Frequency(normalized to Fs)
0.2
0.15
0.1
0.05
0
Amplitude (dB)
0.05
0.1
0.15
0.2 0 0.05 0.1 0.15 0.2 0.2
Frequency(normalized to Fs)

Figure 42. Quad-Speed (fast) Transition Band (detail) Figure 43. Quad-Speed (fast) Passband Ripp le

0
0
20
40
60
Amplitude (dB)
80
0
20
20
40
40
60
60
Amplitude (dB)
Amplitude (dB)
80
80
100
100
120
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Frequency(normalized to Fs)
100
120
120
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.
Frequency(normalized to Fs)
Frequency(normalized to Fs)

Figure 44. Quad-Speed (slow) Stopband Rejection Figure 45. Quad-Speed (slow) Transition Band

0
1
2
3
4
5
Amplitude (dB)
6
7
8
9
10
0.45 0.46 0.47 0.48 0.49 0.5 0.51 0.52 0.53 0.54 0.5
Frequency(normalized to Fs)
0.02
0.015
0.01
0.005
0
Amplitude (dB)
0.005
0.01
0.015
0.02 0 0.02 0.04 0.06 0.08 0.1 0.1
Frequency(normalized to Fs)

Figure 46. Quad-Speed (slow) Transition Band (detail) Figure 47. Quad-Speed (slow) Passband Ripple

48 DS670F2

8. PARAMETER DEFINITIONS

Total Harmonic Distortion + Noise (THD+N)
The ratio of the rms value of the signal to the rms sum of all other spectral components over the specified bandwidth (typically 10 Hz to 20 kHz), including distortion components. Expressed in decibels.
Dynamic Range
The ratio of the full-scale rms value of the signal to the rms sum of all other spe ctral components over the specified bandwidth. Dynamic range is a signal-to-noise measurement over the specified bandwidth made with a -60 dBFS signal. 60 dB is then added to the resulting measurement to refer the measure­ment to full scale. This technique ensures that the dis tor tio n comp o ne n ts ar e be low the no ise leve l and do not affect the measurement. This measurement technique has been accepted by the Audio Engineer­ing Society, AES17-1991, and the Electronic Industries Association of Japan, EIAJ CP-307.
Interchannel Isolation
A measure of crosstalk between the left and right ch annels. Measured for each channel at the con verter's output with all zeros to the input under test and a full-scale signal applied to the other channel. Units in decibels.
Interchannel Gain Mismatch
The gain difference between left and right channels. Units in decibels.
CS4365
Gain Drift
The change in gain value with temperature. Units in ppm/°C.
DS670F2 49

9. PACKAGE DIMENSIONS 48L LQFP PACKAGE DRAWING

D1
D
CS4365
E
E1
1
e
B
A
A1
L
INCHES MILLIMETERS
DIM MIN NOM MAX MIN NOM MAX
A --- 0.055 0.063 --- 1.40 1.60
A1 0.002 0.004 0.006 0.05 0.10 0.15
B 0.007 0.009 0.011 0.17 0.22 0.27 D 0.343 0.354 0.366 8.70 9.0 BSC 9.30
D1 0.272 0.28 0.280 6.90 7.0 BSC 7.10
E 0.343 0.354 0.366 8.70 9.0 BSC 9.30
E1 0.272 0.28 0.280 6.90 7.0 BSC 7.10
e* 0.016 0.020 0.024 0.40 0.50 BSC 0.60
L 0.018 0.24 0.030 0.45 0.60 0.75 µ 0.000° 7.000° 0.00° 7.00°
* Nominal pin pitch is 0.50 mm
*Controlling dimension is mm.
*JEDEC Designation: MS022
50 DS670F2
CS4365

10.ORDERING INFORMATION

Product Description Package Pb-Free Grade Temp Range Container Order #
CS4365
CDB4365 CS4365 Evaluation Board - - - - CDB4365
1 14 dB, 19 2 kH z 6-ch an-
nel D/A Converter
48-pin
LQFP
YES
Commercial -40°C to +85°C
Automotive -40°C to +105°C
Tray CS4365-CQZ
Tape & Reel CS4365-CQZR
Tray CS4365-DQZ
Tape & Reel CS4365-DQZR

11.REFERENCES

1. How to Achieve Optimum Performance from Delta-Sigma A/D & D/A Converters, by Steven Harris. Paper presented at the 93rd Convention of the Audio Engineering Society, October 1992.
2. CDB4365 data sheet, available at http://www.cirrus.com.
3. Design Notes for a 2-Pole Filter with Differential Input, by Steven Green. Cirrus Logic Application Note AN48
4. The I²C-Bus Specification: Version 2.0, Philips Semiconductors, December 1998.
http://www.semiconductors.philips.com.

12.REVISION HISTORY

Release Changes
Updated Guaranteed Operational Temperature Range in “Recommended Operating Conditions” on page 8. Updated VA, VLC, and VLS current cunsumption specs
PP3
F1
F2
Updated Fullscale output level Updated Dynamic perforamnce limits. Removed VOH specification Updated VOL specification
Updated “Recommended Operating Conditions” on page 8 Updated “DAC Analog Characteristics - Commercial (-CQZ)” on page 9 Updated “DAC Analog Characteristics - Automotive (-DQZ)” on page 10 Updated “Power and Thermal Characteristics” on page 11 Updated Legal Information on page 52 Removed TDM Mode functionality
Updated “DAC Pair Disable (DACx_DIS)” on page 35 Updated “Digital Interface Format (DIF)” on page 35 Added PCM mode format changeable in reset only to “Mode Select” on page 22 Updated Package Thermal Resistance in “Power and Thermal Characteristics” on page 11
DS670F2 51
CS4365
Contacting Cirrus Logic Support
For all product questions and inquiries, contact a Cirrus Logic Sales Representative. To find the one nearest to you, go to www.cirrus.com
IMPORTANT NOTICE Cirrus Logic, Inc. and its subsidiari es ("Cirrus") believ e that the informatio n contained in this document is accurate and reliable. However, the information is subject
to change without n otice an d is pro vided "A S IS" wit hout warr anty of any kind (express or impl ied). Customers ar e advis ed to ob tain the latest version of relevant information to verify, before placing orders, that information being relied on is current and complete. All products are sold subject to the terms and conditions of sale supplied at the time of order acknowledgm ent, including those pertaining to warranty, inde mnification, and lim itation of liability. No r esponsib ility is ass umed b y Cirrus for the use of this information, including use of this information as the basis for manufacture or sale of any items, or for infringement of patents or other rights o f third parties. This document is the property of Cirr us and by furnishing this information, Cirrus grants no license, express or implied under any patents, mask work rights, copyrights, trademarks, trade secrets or other intellectual property rights. Cirrus owns the copyrights associated with the information contained herein and gives con­sent for copies to be made of the information only for use within your organization with respect to C irrus in te grated circuits or other products of Cirrus. This consent does not extend to other copying such as copying for general distribution, advertising or promotion al p ur poses, or for creating any work for resale.
CERTAIN APPLICATIONS USING SEMICONDUCTOR PRODUCTS MAY INVOLVE POTENTIAL RISKS OF DEATH, PERSONAL I NJU RY, OR SE VERE PROP­ERTY OR ENVIRONMENTAL DAMAGE (“CRITICAL APPLICATIONS”). CIRRUS PRODUCTS ARE NOT DESIGNED, AUTHORIZED OR WARRANTED FOR USE IN PRODUCTS SURGICALLY IMPLANTED INTO THE BODY, AUTOMOTIVE SAFETY OR SECURITY DEVICES, LIFE SUPPORT PRODUCTS OR OTHER CRIT­ICAL APPLICATIONS. INCLUSION OF CIRRUS PRODUCTS IN SUCH APPLICATIONS IS UNDERSTOOD TO BE FULLY AT THE CUSTOMER’S RISK AND CIR­RUS DISCLAIMS AND MAKES NO WARRANTY, EXPRESS, STATUTORY OR IMPLIED, INCLUDING THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR PARTICULAR PURPOSE, WITH REGARD TO ANY CIRRUS PRODUCT THAT IS USED IN SUCH A MANNER. IF TH E CUSTOMER OR CUSTOM­ER’S CUSTOMER USES OR PERMITS THE USE OF CIRRUS PRODUCTS IN CRITICAL APPLICATIONS, CUSTOMER AGREES, BY SUCH USE, TO FULLY INDEMNIFY CIRRUS, ITS OFFICERS, DIRECTORS, EMPLOYEES, DISTRIBUTORS AND OTHER AGENTS FROM ANY AND ALL LI ABILI TY, INCLUDING AT ­TORNEYS’ FEES AND COSTS, THAT MAY RESULT FROM OR ARISE IN CONNECTION WITH THESE USES.
Cirrus Logic, Cirrus, and the Cirrus Logic logo designs are trademarks of Cirrus Logic, Inc. All other brand and product names in this document may be trademarks or service marks of their respective owners.
I²C is a registered tradem ar k of Philips Semiconducto r. SPI is a trademark of Motorola, Inc.
52 DS670F2
Loading...