Cirrus Logic CS4362 User Manual

CS4362
114 dB, 192 kHz 6-Channel D/A Converter
Features
24-bit ConversionUp to 192 kHz Sample Rates114 dB Dynamic Range-100 dB THD+NSupports PCM or DSD Data FormatsSelectable Digital FiltersVolume Control with Soft Ramp
1 dB Step Size – Zero Crossing Click-free Transitions
Dedicated DSD InputsLow Clock Jitter SensitivitySimultaneous Support for Two Synchronous
Sample Rates for DVD Audio
μC or Stand-Alone Operation
I
Description
The CS4362 is a complete 6-channel digital-to-analog system including digital interpolation, fifth-order delta­sigma digital-to-analog conversion, digital de-empha­sis, volume control and analog filtering. The advantages of this architecture include: ideal differential linearity, no distortion mechanisms due to resistor matching errors, no linearity drift over time and temperature and a high tolerance to clock jitter.
The CS4362 is available in a 48-pin LQFP package in Commercial grade (-10°C to +70°C). The CDB4362 Customer Demonstration Board is also available for de­vice evaluation and implementation suggestions. Please see “Ordering Information” on page 42 for com­plete details.
The CS4362 accepts PCM data at sample rates from 4 kHz to 192 kHz, DSD audio data, and operates over a wide power supply range. These features are ideal for multi-channel audio systems including DVD players. SACD players, A/V receivers, digital TV ’s, mixing con­soles, and effects processors.
M3/DSD_SCLK
RST
VLS
1
SCLK LRCK
1 2
SCLK
LRCK2 SD IN1 SD IN2 SD IN3
MCLK
2
÷
DSDxx
6
http://www.cirrus.com
M1/S C L /C C L K
Volume Control Interpolation Filter Analog FilterΔΣ
Volume Control
Volume Control Interpolation Filter Analog FilterΔΣ
Serial Port
Volume Control
Volume Control Interpolation Filter Analog FilterΔΣ
Volume Control
M2/SDA /CDIN M0/AD0/CS
Control Port/Mode Select
Mixer
Interpolation Filter
Mixer
Interpolation Filter
Mixer
Interpolation Filter
GND
Copyright © Cirrus Logic, Inc. 2008
(All Rights Reserved)
VLC
MUTEC[1:6]
6
External
Mute Control
DAC
ΔΣ
DAC
DAC
ΔΣ
DAC
DAC
ΔΣ
DAC
VAGNDVD
Analog Filter
Analog Filter
Analog Filter
AO UTA1+ AO UTA1-
AO UTB1+ AO UTB1-
AO UTA2+
A2-
AO UT
AO UTB2+ AO UTB2-
AO UTA3+ AO UTA3-
AO UTB3+ AO UTB3-
VQ
FILT+
FEB '08
DS257F2
TABLE OF CONTENTS
1. CHARACTERISTICS AND SPECIFICATIONS ..................................................................................... 5
ANALOG CHARACTERISTICS.............................................................................................................5
ANALOG CHARACTERISTICS.............................................................................................................6
POWER AND THERMAL CHARACTERISTICS ................................................................................... 6
ANALOG FILTER RESPONSE ............................................................................................................. 7
DIGITAL CHARACTERISTICS............................ ... ... .... ... ... ... .... ...................................... ... .... ... ... ........ 8
ABSOLUTE MAXIMUM RATINGS........................................................................................................8
RECOMMENDED OPERATING CONDITIONS.................................................................................... 8
SWITCHING CHARACTERISTICS............................................ ...................................... ... .... ... ... ........9
DSD - SWITCHING CHARACTERISTICS .......................................................................................... 10
SWITCHING CHARACTERISTICS - CONTROL PORT - I²C
SWITCHING CHARACTERISTICS - CONTROL PORT - SPI™ FORMAT......................................... 12
2. TYPICAL CONNECTION DIAGRAM ............................................................................................... 13
3. REGISTER QUICK REFERENCE ....................................... ....................................... ... ... ... .... ............ 15
4. REGISTER DESCRIPTION ....... ... ....................................... ... .... ... ... ... ................................................ 16
4.1 Mode Control 1 (address 01h) ...................................................................................................... 16
4.1.1 Control Port Enable (CPEN) ............................................................................................ 16
4.1.2 Freeze Controls (FREEZE) .............................................................................................. 16
4.1.3 Master Clock Divide Enable (MCLKDIV) ......................................................................... 16
4.1.4 DAC Pair Disable (DACx_DIS) ........................................................................................ 16
4.1.5 Power Down (PDN) .......................................................................................................... 17
4.2 Mode Control 2 (address 02h) ...................................................................................................... 17
4.2.1 Digital Interface Format (DIF) .......................................................................................... 17
4.2.2 Serial Audio Data Clock Source (SDINXCLK) ................................................................. 18
4.3 Mode Control 3 (address 03h) ...................................................................................................... 18
4.3.1 Soft Ramp and Zero Cross Control (SZC) ....................................................................... 18
4.3.2 Single Volume Control (SNGLVOL) ................................................................................. 19
4.3.3 Soft Volume Ramp-Up After Error (RMP_UP) ................................................................. 19
4.3.4 MUTEC Polarity (MUTEC+/-) ........................................................................................... 19
4.3.5 Auto-Mute (AMUTE) ........................................................................................................20
4.3.6 Mute Pin Control (MUTEC1, MUTEC0) ........................................................................... 20
4.4 Filter Control (address 04h) ....................... ...... ... .... ... ... ... .... ... ... ... ... .... ... ... ... .... ... ...... ... ................ 20
4.4.1 Interpolation Filter Select (FILT_SEL) ..................... ... ... ... ... .... ...................................... ... 20
4.4.2 De-Emphasis Control (DEM) ........................................................................................... 20
4.4.3 Soft Ramp-Down Before Filter Mode Change (RMP_DN) ...................................... ... ... ... 21
4.5 Invert Control (address 05h) ......................... .......................................................... ......................21
4.5.1 Invert Signal Polarity (Inv_Xx) ..........................................................................................21
4.6 Mixing Control Pair 1 (Channels A1 & B1)(address 06h) Mixing Control Pair 2 (Channels A2 & B2)(address 09h) Mixing Control Pair 3 (Channels A3 & B3)(address 0Ch) 21
4.6.1 Channel A Volume = Channel B Volume (A=B) .................. ............. ............. .......... ......... 21
4.6.2 ATAPI Channel Mixing and Muting (ATAPI) .................................................................... 22
4.6.3 Functional Mode (FM) ................................... ... ... .... ... ...................................... .... ... ... ... ... 23
4.7 Volume Control (addresses 07h, 08h, 0Ah, 0Bh, 0D h, 0Eh) .................................... ... .... ... ... ...... 23
4.7.1 Mute (MUTE) ................................................................................................................... 23
4.7.2 Volume Control (xx_VOL) ................................................................................................ 23
4.8 Chip Revision (address 12h) ........................................................................................................ 24
4.8.1 Part Number ID (PART) [Read Only] ............................................................................... 24
5. PIN DESCRIPTION ....................... .... ... ... ... ... .... ... ....................................... ... ... ... .... ... ......................... 25
6. APPLICATIONS .................................................................................................................................. 28
6.1 Grounding and Power Supply Decoupling .................................................................................... 28
CS4362
®
FORMAT........................................... 11
2 DS257F2
CS4362
6.2 PCM Mode Select ......................................................................................................................... 28
6.3 Recommended Power-Up Sequence ........................................................................................... 28
6.4 Analog Output and Filtering .......................................................................................................... 28
6.5 Interpolation Filter ......................................................................................................................... 28
6.6 Clock Source Selection ................................................................................................................ 29
6.7 Using DSD Mode .......................................................................................................................... 29
6.8 Recommended Procedure for Switching Operational Modes ....................................................... 29
7. CONTROL PORT INTERFACE ........................ ... ... ... .... ...................................... .... ... ... ... ... ................ 30
7.1 Enabling the Control Port ............................................................................................................. 30
7.2 Format Selection .......................................................................................................................... 30
7.3 I²C Format .................................................................................................................................... 30
7.3.1 Writing in I²C Format . .... ... ... ... ... .... ...................................... .... ... ... ... ................................ 30
7.3.2 Reading in I²C Format ............................ .... ... ... ... .... ... ... ....................................... ... ... ...... 30
7.4 SPI Format ................................................................................................................................... 31
7.4.1 Writing in SPI ...................... ... ... .... ...................................... .... ... ... ... .... ............................ 31
7.5 Memory Address Pointer (MAP) ............................. ............................................................. .........32
7.5.1 INCR (Auto Map Increment Enable) ................................................................................ 32
7.5.2 MAP4-0 (Memory Address Pointer) ................................. ................................................ 32
8. FILTER PLOTS ........................................................................................................................... 33
9. DIAGRAMS ...................................................................................................................... 37
10. PARAMETER DEFINITIONS ............................................................................................................. 40
11. REFERENCES ................................................................................................................................... 40
12. PACKAGE DIMENSIONS ................................................................................................................. 41
13. ORDERING INFORMATION ............................................................................................................ 42
14. REVISION HISTORY ........................................................................................................................ 42
LIST OF FIGURES
Figure 1. Serial Mode Input Timing.............................................................................................................. 9
Figure 2. Direct Stream Digital - Serial Audio Input Timing........................................................................ 10
Figure 3. Control Port Timing - I²C Format................................................................................................. 11
Figure 4. Control Port Timing - SPI Format................................................................................................ 12
Figure 5. Typical Connection Diagram Control Port.......................... ...... ... ... .... ... ... ... .... ... ... ... ... .... ... ... ...... 13
Figure 6. Typical Connection Diagram Stand-Alone.................................................................................. 14
Figure 7. Control Port Timing, I²C Format.................................................................................................. 31
Figure 8. Control Port Timing, SPI Format................................................................................................. 31
Figure 9. Single-Speed (fast) Stopband Rejection..................................................................................... 33
Figure 10. Single-Speed (fast) Transition Band......................................................................................... 33
Figure 11. Single-Speed (fast) Transition Band (detail).......................................................................... 33
Figure 12. Single-Speed (fast) Passband Ripple................................. ... ... ... ............................................. 33
Figure 13. Single-Speed (slow) Stopband Rejection ........... ... ... ... .... ... ... ....................................... ... ... ...... 33
Figure 14. Single-Speed (slow) Transition Band........................................................................................ 33
Figure 15. Single-Speed (slow) Transition Band (detail)........................................................................... 34
Figure 16. Single-Speed (slow) Passband Ripple...................................................................................... 34
Figure 17. Double-Speed (fast) Stopband Rejection ................................................................................. 34
Figure 18. Double-Speed (fast) Transition Band........................................................................................ 34
Figure 19. Double-Speed (fast) Transition Band (detail)............................................................................ 34
Figure 20. Double-Speed (fast) Passband Ripple...................................................................................... 34
Figure 21. Double-Speed (slow) Stopband Rejection................................................................................35
Figure 22. Double-Speed (slow) Transition Band................... ....................................... ... ... ... ... .... ............ 35
Figure 23. Double-Speed (slow) Transition Band (detail).................... ...................................... .... ... ... ... ... 35
Figure 24. Double-Speed (slow) Passband Ripple.................................................................................... 35
Figure 25. Quad-Speed (fast) Stopband Rejection....................... .... ... ...................................... .... ... ... ...... 35
Figure 26. Quad-Speed (fast) Transition Band .......................................................................................... 35
DS257F2 3
Figure 27. Quad-Speed (fast) Transition Band .......................................................................................... 36
Figure 28. Quad-Speed (fast) Passband Ripple........................................................................................ 36
Figure 29. Quad-Speed (slow) Stopband Rejection................................................................................... 36
Figure 30. Quad-Speed (slow) Transition Band......................................................................................... 36
Figure 31. Quad-Speed (slow) Transition Band (detail).......................................................................... 36
Figure 32. Quad-Speed (slow) Passband Ripple....................................................................................... 36
Figure 33. Format 0 - Left Justified up to 24-bit Data................................................................................. 37
Figure 34. Format 1 - I²S up to 24-bit Data................................................................................................ 37
Figure 35. Format 2 - Right Justified 16-bit Data ....................................................................................... 37
Figure 36. Format 3 - Right Justified 24-bit Data ....................................................................................... 37
Figure 37. Format 4 - Right Justified 20-bit Data ....................................................................................... 38
Figure 38. Format 5 - Right Justified 18-bit Data ....................................................................................... 38
Figure 39. De-Emphasis Curve.................................................................................................................. 38
Figure 40. Channel Pair Routing Diagram (x = Channel Pair 1, 2, or 3).................................................... 39
Figure 41. ATAPI Block Diagram (x = channel pair 1, 2, or 3) ................................................................... 39
Figure 42. Recommended Output Filter..................................................................................................... 39
LIST OF TABLES
Table 1. Digital Interface Formats - PCM Mode......................................................................................... 17
Table 2. Digital Interface Formats - DSD Mode ......................................................................................... 18
Table 3. ATAPI Decode ............................................................................................................................. 22
Table 4. Example Digital Volume Settings....... ... ....................................................................................... 23
Table 5. Common Clock Frequencies........................................................................................................ 27
Table 6. Digital Interface Format, Stand-Alone Mode Options................................................................... 27
Table 7. Mode Selection, Stand-Alone Mode Options ...............................................................................27
Table 8. Direct Stream Digital (DSD), Stand-Alone Mode Options............................................................ 27
CS4362
4 DS257F2
CS4362

1. CHARACTERISTICS AND SPECIFICATIONS

ANALOG CHARACTERISTICS

(Full-Scale Output Sine Wave, 997 Hz; Measurement Bandwidth 10 Hz to 20 kHz, unless otherwise specified; Test load R For Single-Speed Mode, Fs = 48 kHz, SCLK = 3.072 MHz, MCLK = 12.288 MHz;
For Double-Speed Mode, Fs = 96 kHz, SCLK = 6.144 MHz, MCLK = 12.288 MHz; For Quad-Speed Mode, Fs = 192 kHz, SCLK = 12.288 MHz, MCLK = 24.576 MHz; For Direct Stream Digital Mode, Fs = 128 x 48 kHz, DSD_SCLK = 6.144 MHz, MCLK = 12.288 MHz).
CS4362-KQZ Dynamic Performance - All PCM modes and DSD (Note 1)
Specified Temperature Range T Dynamic Range (Note 2) 24-bit unweighted
Total Harmonic Distortion + Noise (Note 2)
Idle Channel Noise / Signal-to-noise ratio - 114 - dB Interchannel Isolation (1 kHz) - 90 - dB
= 3 kΩ, CL = 100 pF, VA = 5 V, VD = 3.3 V (see Figure 5)
L
Parameters Symbol Min Typ Max Unit
A
A-Weighted
16-bit unweighted
(Note 3) A-Weighted
THD+N
24-bit 0 dB
-20 dB
-60 dB
16-bit 0 dB
(Note 3) -20 dB
-60 dB
-10 - 70 °C
105 108
-
-
-
-
-
-
-
-
111 114
94 97
-100
-91
-51
-94
-74
-34
-
-
-
-
-94
-
-
-
-
-
dB dB dB dB
dB dB dB dB dB dB
Notes:
1. CS4362-KQZ parts are tested at 25°C.
2. One-half LSB of triangular PDF dither is added to data.
3. Performance limited by 16-bit quantization noise.
DS257F2 5
CS4362

ANALOG CHARACTERISTICS

(Continued)
Parameters Symbol Min Typ Max Units
Analog Output - All PCM modes and DSD
Full Scale Differential Output Voltage (Note 4) V Quiescent Voltage V Max Current from V
Q
FS
I
QMAX
Q
Interchannel Gain Mismatch - 0.1 - dB Gain Drift - 100 - ppm/°C Output Impedance (Note 4) Z AC-Load Resistance R Load Capacitance C
OUT
L L
86% V
A
91% V
A
96% V
A
Vpp
- 50% VA-VDC
-1 -μA
- 100 - Ω
3- -kΩ
- - 100 pF

POWER AND THERMAL CHARACTERISTICS

Parameters Symbol Min Typ Max Units
Power Supplies
Power Supply Current normal operation, VA= 5 V
(Note 5) V
V
= 5 V
D
= 3.3 V
D
Interface current, VLC=5 V (Notes 6, 7)
VLS=5 V
power-down state (all supplies) (Note 8)
Power Dissipation (Note 5) VA = 5 V, VD = 3.3 V normal operation
power-down (Note 8)
VA = 5 V, VD = 5 V normal operation
power-down (Note 8)
Package Thermal Resistance multi-layer
dual-layer
Power Supply Rejection Ratio (Note 9) (1 kHz)
(60 Hz)
I
A
I
D
I
D
I
LC
I
LS
I
pd
θ
JA
θ
JA
θ
JC
PSRR -
-
-
-
-
-
-
-
-
-
-
-
-
-
-
50 38 25
2
84
200
335
1
440
1
48 65 15
60 40
55 60 40
-
-
-
410
-
575
-
-
-
-
-
-
mA mA mA
μA μA μA
mW mW mW mW
°C/Watt °C/Watt °C/Watt
dB dB
Notes:
4. V
is tested under load RL and includes attenuation due to Z
FS
OUT
5. Current consumption increases with increasing FS within a given speed mode and is signal dependa nt. Max values are based on highest FS and highest MCLK.
6. I
measured with no external loading on the SDA pin.
LC
7. This specification is violated when the VLC supply is greater than VD and when pin 16 (M1/SDA) is tied or pulled low. Logic tied to pin 16 needs to be able to sink this current.
8. Power Down Mode is defined as RST
pin = Low with all clock and data lines held static.
9. Valid with the recommended capacitor values on FILT+ and VQ as shown in Figures 5 and 6.
6 DS257F2
CS4362

ANALOG FILTER RESPONSE

Fast Roll-Off Slow Roll-Off (Note 10)
Parameter
Combined Digital and On-chip Analog Filter Response - Single-Speed Mode
Passband (Note 12) to -0.01 dB corner
to -3 dB corner00 Frequency Response 10 Hz to 20 kHz -0.01 - +0.01 -0.01 - +0.01 dB StopBand .547 - - .583 - - Fs StopBand Attenuation (Note 13) 90 - - 64 - - dB Group Delay - 12/Fs - - 6.5/Fs - s Passband Group Delay Deviation 0 - 20 kHz - - ±0.41/Fs - ±0.14/Fs s De-emphasis Error (Note 14) Fs = 32 kHz (Relative to 1 kHz) Fs = 44.1 kHz
Fs = 48 kHz
-
-
-
-
-
-
-
-
.454 .499
±0.23 ±0.14 ±0.09
(Note 11)
0 0
-
-
-
-
-
-
-
-
0.417
0.499
±0.23 ±0.14 ±0.09
Combined Digital and On-chip Analog Filter Response - Double-Speed Mode - 96 kHz (Note 11)
Passband (Note 12) to -0.01 dB corner
to -3 dB corner00 Frequency Response 10 Hz to 20 kHz -0.01 - 0.01 -0.01 - 0.01 dB StopBand .583 - - .792 - - Fs StopBand Attenuation (Note 13) 80 - - 70 - - dB Group Delay - 4.6/Fs - - 3.9/Fs - s Passband Group Delay Deviation 0 - 20 kHz - - ±0.03/Fs - ±0.01/Fs s
-
-
.430 .499
0 0
-
-
.296 .499
Combined Digital and On-chip Analog Filter Response - Quad-Speed Mode - 192 kHz (Note 11)
Passband (Note 12) to -0.01 dB corner
to -3 dB corner00 Frequency Response 10 Hz to 20 kHz -0.01 - 0.01 -0.01 - 0.01 dB StopBand .635 - - .868 - - Fs StopBand Attenuation (Note 13) 90 - - 75 - - dB Group Delay - 4.7/Fs - - 4.2/Fs - s Passband Group Delay Deviation 0 - 20 kHz - - ±0.01/Fs - ±0.01/Fs s
-
-
.105 .490
0 0
-
-
.104 .481
Combined Digital and On-chip Analog Filter Response - DSD Mode (Note 11)
Passband (Note 12) to -0.1 dB corner
to -3 dB corner Frequency Response 10 Hz to 20 kHz - - - -.01 - 0.1 dB
-
-
-
-
-
-
0 0
-
-
20
120
UnitMin Typ Max Min Typ Max
Fs Fs
dB dB dB
Fs Fs
Fs Fs
kHz kHz
Notes:
10. Slow Roll-Off interpolation filter is only available in Control Port Mode.
11. Filter response is not tested but is guaranteed by design.
12. Response is clock dependent and will scale with Fs. Note that the response plots (Figures 9 to 32) have been normalized to Fs and can be de-normalized by multiplying the X-axis scale by Fs.
13. Single- and Double-Speed Mode Measurement Bandwidth is from stopband to 3 Fs. Quad-Speed Mode Measurement Bandwidth is from stopband to 1.34 Fs.
14. De-emphasis is available only in Single-Speed Mode; Only 44.1 kHz De-emphasis is available in Stand­Alone Mode.
DS257F2 7
CS4362

DIGITAL CHARACTERISTICS

(For KQZ TA = -10°C to +70°C; VLC = VLS = 1.8V to 5.5V)
Parameters Symbol Min Typ Max Units
High-Level Input Voltage Serial Data Port
Control Port
Low-Level Input Voltage Serial Data Port
Control Port Input Leakage Current (Note 7) I Input Capacitance - 8 - pF Maximum MUTEC Drive Current - 3 - mA MUTEC High-Level Output Voltage V MUTEC Low-Level Output Voltage V
V
IH
V
IH
V
IL
V
IL
in
OH OL
70% VLS 70% VLC
-
-
--±10μA
-VA-V
-0-V
-
-
-
-
-
-
20% VLS 20% VLC
V V
V V

ABSOLUTE MAXIMUM RATINGS

(GND = 0 V; all voltages with respect to ground.)
Parameters Symbol Min Max Units
DC Power Supply Analog power
Digital internal power
Serial data port interface power
Control port interface powe r Input Current, Any Pin Except Supplies I Digital Input Voltage Serial data port interface
Control port interface Ambient Operating Temperature (power applied) T Storage Temperature T
WARNING:Operation at or beyond these limits may result in permanent damage to the device. Normal operation
is not guaranteed at these extremes.
VLS VLC
V
IND-S
V
IND-C
VA VD
stg
-0.3
-0.3
-0.3
-0.3
in
A
10mA
-0.3
-0.3
-55 125 °C
-65 150 °C
6.0
6.0
6.0
6.0
VLS+ 0.4 VLC+ 0.4
V V V V
V V

RECOMMENDED OPERATING CONDITIONS

(GND = 0 V; all voltages with respect to ground.)
Parameters Symbol Min Typ Max Units
DC Power Supply Analog power
Digital internal power
Serial data port interface power
Control port interface powe r
8 DS257F2
VA
VD VLS VLC
4.5
3.0
1.8
1.8
5.0
3.3
5.0
5.0
5.5
5.5
5.5
5.5
V V V V
CS4362

SWITCHING CHARACTERISTICS

(For KQZ TA = -10°C to +70°C; VLS = 1.8 V to 5.5 V; Inputs: Logic 0 = GND, Logic 1 = VLS, CL = 30 pF)
Parameters Symbol Min Typ Max Units
MCLK Frequency (Note 15)
Single-Speed Mode 1.024 - 51.2 MHz
Double-Speed Mode 6.400 - 51.2 MHz
Quad-Speed Mode 6.400 - 51.2 MHz MCLK Duty Cycle 405060% Input Sample Rate Single-Speed Mode
Double-Speed Mode
Quad-Speed Mode LRCK Duty Cycle 45 50 55 % SCLK Pulse Width Low t SCLK Pulse Width High t
SCLK Period
Fs Fs Fs
sclkl
sclkh
t
sclkw
4
50
100
-
-
-
50 100 200
20 - - ns 20 - - ns
2
-----------------
MCLK
--ns
kHz kHz kHz
(Note 16)
SCLK rising to LRCK edge delay t SCLK rising to LRCK edge setup time t SDATA valid to SCLK rising setup time t SCLK rising to SDATA hold time t
t
sclkw
slrd slrs
sdlrs
sdh
4
-----------------
MCLK
20 - - ns 20 - - ns 20 - - ns 20 - - ns
--ns
LRCK1 to LRCK2 frequency ratio (Note 17) 0.25 1.00 4.00
Notes:
15. See Table 5 on page 27 for suggested MCLK frequencies
16. This serial clock is available only in Control Port Mode when the MCLK Divide bit is enabled.
17. The higher frequency LRCK must be an exact integer multiple (1, 2, or 4) of the lower frequency LRCK
.
LRCK
t
sclkl
t
sdh
t
sclkh
SCLK
t
slrd
t
sdlrs
t
slrs
SDATA

Figure 1. Serial Mode Input Timing

DS257F2 9
CS4362

DSD - SWITCHING CHARACTERISTICS

(TA=-10°C to 70°C; Logic 0 = GND; VLS = 1.8 V to 5.5 V; Logic 1 = VLS Volts; CL=30pF)
Parameter Symbol Min Typ Max Unit
Master Clock Frequency (Note 18) 4.096 - 38.4 MHz MCLK Duty Cycle (All DSD
modes) DSD_SCLK Pulse Width Low t DSD_SCLK Pulse Width High t DSD_SCLK Frequency (64x Oversam-
pled)
(128x Oversampled) DSD_L / _R valid to DSD_SCLK rising setup time t DSD_SCLK rising to DSD_L or DSD_R hold time t
Note:
18. Min is 4 times 64x DSD or 2 times 128x DSD, and Max is 12 times 64x DSD or 6 times 128x DSD. The proper MCLK to DSD_SCLK ratio must be set either by the DIF registers or the M0:2 pins
sclkl
sclkh
sdlrs
sdh
40 50 60 %
20 - - ns 20 - - ns
1.024
2.048
20 - - ns 20 - - ns
t
sclkh
t
sclkl
-
-
3.2
6.4
MHz MHz
DSD_SCLK
DSD_L, DSD_R

Figure 2. Direct Stream Digital - Serial Audio Input Timing

sdlrstsdh
t
10 DS257F2
CS4362
SWITCHING CHARACTERISTICS - CONTROL PORT - I²C® FORMAT
(For KQZ TA = -10°C to +70°C; VLC = 1.8 V to 5.5 V; Inputs: Logic 0 = GND, Logic 1 = VLC, CL=30pF)
Parameter Symbol Min Max Unit
SCL Clock Frequency f
Rising Edge to Start t
RST Bus Free Time Between Transmissions t Start Condition Hold Time (prior to first clock pulse) t Clock Low time t Clock High Time t Setup Time for Repeated Start Condition t SDA Hold Time from SCL Falling (Note 19) t SDA Setup time to SCL Rising t Rise Time of SCL and SDA t Fall Time SCL and SDA t Setup Time for Stop Condition t Acknowledge Delay from SCL Falling (Note 20) t
Notes:
19. Data must be held for sufficient time to bridge the transition time, t
20. The acknowledge delay is based on MCLK and can limit the maximum transaction speed.
15
---------------------
21. for Single-Speed Mode, for Double-Speed Mode, for Quad-Speed Mode.
256 Fs×
15
--------------------­128 Fs×
hdst
low high sust
hdd
sud
rc
fc
susp
ack
scl
irs
buf
, t , t
rc fc
- 100 kHz
500 - ns
4.7 - µs
4.0 - µs
4.7 - µs
4.0 - µs
4.7 - µs 0-µs
250 - ns
-1µs
- 300 ns
4.7 - µs
- (Note 21) ns
, of SCL.
fc
15
-----------------­64 Fs×
RST
SDA
SCL
t
irs
Stop Sta rt
t
buf
t
hdst
t
t
high
low
t
hdd
t
sud
t
ack
Figure 3. Control Port Timing - I²C Format
Repeated
Start
t
sust
t
hdst
t
rd
t
fc
t
rc
Stop
t
fd
t
susp
DS257F2 11
CS4362

SWITCHING CHARACTERISTICS - CONTROL PORT - SPI™ FORMAT

(For KQZ TA = -10°C to +70°C; VLC = 1.8 V to 5.5 V; Inputs: Logic 0 = GND, Logic 1 = VLC, CL=30pF)
Parameter Symbol Min Max Unit
CCLK Clock Frequency f RST Rising Edge to CS Falling t
CCLK Edge to CS
High Time Between Transmissions t
CS CS
Falling to CCLK Edge t
CCLK Low Time t CCLK High Time CDIN to CCLK Rising Setup Time t
CCLK Rising to DATA Hold Time (Note 23) t Rise Time of CCLK and CDIN (Note 24) t Fall Time of CCLK and CDIN (Note 24) t
Falling (Note 22) t
Notes:
22. t
only needed before first falling edge of CS after RST rising edge. t
spi
23. Data must be held for sufficient time to bridge the transition time of CCLK.
24. For F
< 1 MHz.
SCK
sclk
csh css
t
sch dsu
srs spi
scl
dh
-
500 - ns 500 - ns
1.0 - µs
20 - ns
1
-----------------
MCLK
1
-----------------
MCLK
40 - ns 15 - ns
r2 f2
- 100 ns
- 100 ns
= 0 at all other times.
spi
MCLK
----------------­2
-ns
-ns
MHz
RST
CS
CCLK
CDIN
t
srs
t
t
spi
t
css
r2
t
t
scl
sch
t
f2
t
t
dsu
dh

Figure 4. Control Port Timing - SPI Format

t
csh
12 DS257F2

2. TYPICAL CONNECTION DIAGRAM

CS4362
+3.3 V to +5 V
+1.8 V to +5 V
Controller
PCM
Digital Audio
Source
Source
Micro-
DSD
Audio
1 µF
+
0.1 µF
0.1 µF
6 7
9
10
12
8
11
13
43
3 2
1
48
47
46
42
19
15 16
17
VD
MCLK
LRCK1 SCLK1
LRCK2 SCLK2
SDIN1
SDIN2 SDIN3
VLS
DSDA1 DSDB1 DSDA2
DSDB2
DSDA3 DSDB3 DSD_SCLK
RST
SCL/CCLK
SDA/CDIN
ADO/CS
4
CS4362
32
VA
AOUTA1+
AOUTA1-
AOUTB1+
AOUTB1-
AOUTA2+
AOUTA2-
AOUTB2+
AOUTB2-
AOUTA3+
AOUTA3-
AOUTB3+
AOUTB3-
MUTEC1
MUTEC2
MUTEC3
MUTEC4
MUTEC5
MUTEC6
0.1 µF
39
40
38
37
35
36
34
33
29
30
28
27
41
26
25
24
23
22
+
1 µF
Analog Conditioning
and Muting
Analog Conditioning
and Muting
Analog Conditioning
and Muting
Analog Conditioning
and Muting
Analog Conditioning
and Muting
Analog Conditioning
and Muting
Mute Drive
+5 V
Note*
0.1 µF
Ω
2 K
18
VLC
GND
5
GND
31
FILT+
CMOUT
20
21
0.1 µ
+
47 µF
F
F
1 µF
+
0.1 µ
Ω
2 K
+1.8 V to + 5 V
Note*: Necessary for I2C control port operation

Figure 5. Typical Connection Diagram Control Port

DS257F2 13
CS4362
+3.3 V to +5 V
VLS
+1.8 V to + 5 V
Note
PCM
Digital
Audio
Source
DSD
Audio
Source
DSD
1 µF
47 K
Ω
0.1 µF
+
Note
12
11
13
DSD
6 7
9
10
8
43
48
47
46
0.1 µF
3 2
1
MCLK
LRCK1 SCLK1
LRCK2 SCLK2
SDIN1
SDIN2 SDIN3
VLS
DSDA1 DSDB1 DSDA2
DSDB2
DSDA3 DSDB3
4
VD
CS4362
32
VA
AOUTA1+
AOUTA1-
MUTEC1
AOUTB1+
AOUTB1-
MUTEC2
AOUTA2+
AOUTA2-
MUTEC3
AOUTB2+
AOUTB2-
MUTEC4
AOUTA3+
AOUTA3-
MUTEC5
0.1 µF
39
40
41
38
37
26
35
36
25
34
33
24
29
30
23
+
1 µF
Analog Conditioning
and Muting
Analog Conditioning
and Muting
Analog Conditioning
and Muting
Analog Conditioning
and Muting
Analog Conditioning
and Muting
+5 V
47 K
Ω
42
Stand-Alone
Mode
Configuration
+1.8 V to + 5 V
VLC
Note
: If series resistors are used they must be <1k Ohm. If possible tie VLC to the VD supply to reduce possible excess current consumption from VLC .
Note
VLC
0.1 µF
M3(DSD_SCLK)
15
M2
16
M1
17
M0
19
RST
18
VLC
GND
5
AOUTB3+
AOUTB3-
MUTEC6
CMOUT
GND
31
FILT+
28
27
22
20
21
Analog Conditioning
and Muting
F
0.1 µ
DSD
Note
1) LRCK1 m ust be tied to VLS and rema in s ta tic hig h .
2) M3 PCM stand-alone configuration pin becomes DSD_SCLK
1 µF
+
: For DSD operation:
0.1 µ
+
F
47 µF

Figure 6. Typical Connection Diagram Stand-Alone

14 DS257F2
CS4362

3. REGISTER QUICK REFERENCE

AddrFunction76543210
01h Mode Control 1 CPEN FREEZE MCLKDIV Reserved DAC3_DIS DAC2_DIS DAC1_DIS PDN
default00000001
02h Mode Control 2 Reserved DIF2 DIF1 DIF0 Reserved SDIN3CLK SDIN2CLK SDIN1CLK
default00000000
03h Mode Control 3 SZC1 SZC0 SNGLVOL RMP_UP MUTEC+/- AMUTE MUTEC1 MUTEC0
default10000100
04h Filter Control Reserved Reserved Reserved FILT_SEL Reserved DEM1 DEM0 RMP_DN
default00000000
05h Invert Control Reserved Reserved INV_B3 INV_A3 INV_B2 INV_A2 INV_B1 INV_A1
default00000000
06h Mixing Control
Pair 1 (AOUTx1)
default00100100
07h Vol. Control A1 A1_MUTE A1_VOL6 A1_VOL5 A1_VOL4 A1_VOL3 A1_VOL2 A1_VOL1 A1_VOL0
default00000000
08h Vol. Control B1 B1_MUTE B1_VOL6 B1_VOL5 B1_VOL4 B1_VOL3 B1_VOL2 B1_VOL1 B1_VOL0
default00000000
09h Mixing Control
Pair 2 (AOUTx2)
default00100100
0Ah Vol. Control A2 A2_MUTE A2_VOL6 A2_VOL5 A2_VOL4 A2_VOL3 A2_VOL2 A2_VOL1 A2_VOL0
default00000000
0Bh Vol. Control B2 B2_MUTE B2_VOL6 B2_VOL5 B2_VOL4 B2_VOL3 B2_VOL2 B2_VOL1 B2_VOL0
default00000000
0Ch Mixing Control
Pair 3 (AOUTx3)
default00100100
0Dh Vol. Control A3 A3_MUTE A3_VOL6 A3_VOL5 A3_VOL4 A3_VOL3 A3_VOL2 A3_VOL1 A3_VOL0
default00000000
0Eh Vol. Control B3 B3_MUTE B3_VOL6 B3_VOL5 B3_VOL4 B3_VOL3 B3_VOL2 B3_VOL1 B3_VOL0
default00000000
12h Chip Revision PART3 PART2 PART1 PART0 Reserved Reserved Reserved Reserved
default1110----
P1_A=B P1ATAPI4 P1ATAPI3 P1ATAPI2 P1ATAPI1 P1ATAPI0 P1FM1 P1FM0
P2_A=B P2ATAPI4 P2ATAPI3 P2ATAPI2 P2ATAPI1 P2ATAPI0 P2FM1 P2FM0
P3_A=B P3ATAPI4 P3ATAPI3 P3ATAPI2 P3ATAPI1 P3ATAPI0 P3FM1 P3FM0
DS257F2 15
CS4362

4. REGISTER DESCRIPTION

Note: All registers are read/write in I²C Mode and write-on ly in SPI, un le ss oth e rwis e no te d.

4.1 Mode Control 1 (address 01h)

76543210
CPEN FREEZE MCLKDIV Reserved DAC3_DIS DAC2_DIS DAC1_DIS PDN
00000001

4.1.1 Control Port Enable (CPEN)

Default = 0 0 - Disabled 1 - Enabled
Function: This bit defaults to 0, allowing the device to power-up in Stand- Alone Mo de. The Co ntrol Por t Mode can
be accessed by setting this bit to 1. This will allow the operation of the device to be controlled by the reg­isters and the pin definitions will conform to Control Port Mode. To accomplish a clean power-up, the user should write this bit within 10 ms following the release of Reset.

4.1.2 Freeze Controls (FREEZE)

Default = 0 0 - Disabled 1 - Enabled
Function: This function allows modifications to be made to the registers without the changes taking effect until the
FREEZE is disabled. To make multiple changes in the Control port registers take effect simultaneously, enable the FREEZE bit, make all register changes, then Disable the FREEZE bit.

4.1.3 Master Clock Divide Enable (MCLKDIV)

Default = 0 0 - Disabled 1 - Enabled
Function: The MCLKDIV bit enables a circuit that divides the externally applied MCLK signal by 2 prior to all other
internal circuitry.

4.1.4 DAC Pair Disable (DACx_DIS)

Default = 0 0 - DAC Pair x Enabled 1 - DAC Pair x Disabled
Function: When the bit is set, the respective DAC channel pair (AOUTAx and AOUTBx) will remain in a reset state.
It is advised that changes to these bits be ma de while th e power- down (PDN ) bit is enabled to elimina te the possibility of audible artifacts.
16 DS257F2
CS4362

4.1.5 Power Down (PDN)

Default = 1 0 - Disabled 1 - Enabled
Function: The entire device will enter a low-power state when this function is enabled, and the contents of the control
registers are retained in this mode. The power-down bit defaults to ‘enabled’ on power-up and must be disabled before normal operation in Control Port Mode can occur.

4.2 Mode Control 2 (address 02h)

76543210
Reserved DIF2 DIF1 DIF0 Reserved SDIN3CLK SDIN2CLK SDIN1CLK
00000000

4.2.1 Digital Interface Format (DIF)

Default = 000 - Format 0 (Left Justified, up to 24-bit data) Function: These bits select the interface format for the serial audio input. The Functional Mode bits determine
whether PCM or DSD Mode is selected. PCM Mode: The required relationship between the Le ft/Right clock, serial clock and serial data is defined
by the Digital Interface Format and the options are detailed in Figures 33 to 38. Note: While in PCM Mode, the DIF bits should only be changed when the power-down (PDN) bit is set
to ensure proper switching from one mode to another.
DIF2 DIF1 DIF0 DESCRIPTION Format FIGURE
000 001 010 011 100 101 110 111
Left Justified, up to 24-bit data I²S, up to 24-bit data Right Justified, 16-bit data Right Justified, 24-bit data Right Justified, 20-bit data Right Justified, 18-bit data Reserved Reserved
0 33 1 34 2 35 3 36 4 37 5 38
Table 1. Digital Interface Formats - PCM Mode
DS257F2 17
DSD Mode: The relationship between the oversampling ratio of the DSD audio data and the required
Master clock to DSD data rate is defined by the Digital Interface Format pins. An additional write of 99h to register 00h and 80h to register 1Ah is required to access the modes denoted with *.
DIF2 DIF1 DIFO DESCRIPTION Note
0 0 0 64x oversampled DSD data with a 4x MCLK to DSD data rate 0 0 1 64x oversampled DSD data with a 6x MCLK to DSD data rate * 0 1 0 64x oversampled DSD data with a 8x MCLK to DSD data rate * 0 1 1 64x oversampled DSD data with a 12x MCLK to DSD data rate * 1 0 0 128x oversampled DSD data with a 2x MCLK to DSD data rate 1 0 1 128x oversampled DSD data with a 3x MCLK to DSD data rate * 1 1 0 128x oversampled DSD data with a 4x MCLK to DSD data rate * 1 1 1 128x oversampled DSD data with a 6x MCLK to DSD data rate *
Table 2. Digital Interface Formats - DSD Mod e

4.2.2 Serial Audio Data Clock Source (SDINXCLK)

Default = 0 0 - SDINx clocked by SCLK1 and LRCK1 1 - SDINx clocked by SCLK2 and LRCK2
Function:
CS4362
The SDINxCLK bit specifies which SCLK/LRCK input pair is used to clock in the data on the given SDINx line. For more details see “Clock Source Selection” on page 29.

4.3 Mode Control 3 (address 03h)

76543210
SZC1 SZC0 SNGLVOL RMP_UP Reserved AMUTE MUTEC1 MUTEC0
10000100

4.3.1 Soft Ramp and Zero Cross Control (SZC)

Default = 10 00 - Immediate Change 01 - Zero Cross 10 - Soft Ramp 11 - Soft Ramp on Zero Crossings
Function: Immediate Change When Immediate Change is selected all level changes will take effect immediately in one step. Zero Cross Zero Cross Enable dictates that signal level changes, either by attenuation changes or muting, will occur
on a signal zero crossing to minimize audible artifacts. The requested level change will occur after a tim­eout period between 512 and 1024 sample periods (10.7 ms to 21.3 ms at 48 kHz sample rate) if the signal does not encounter a zero crossing. The zero cros s function is independently monitored and impleme nted for each channel.
18 DS257F2
Soft Ramp Soft Ramp allows level changes, both muting and attenuation, to be implemented by incrementally ramp-
ing, in 1/8 dB steps, from the current level to the new level at a rate of 1 dB per 8 left/right clock periods. Soft Ramp on Zero Crossing Soft Ramp and Zero Cross Enable dictates that signal level changes, either by attenuation changes or
muting, will occur in 1/8 dB steps and be implemented on a signal zero crossing. The 1/8 dB level change will occur after a timeout period between 512 and 1024 sample periods (10.7 ms to 21.3 ms at 48 kHz sample rate) if the signal does not encounter a zero crossing. The zero cross function is independently monitored and implemented for each channel.

4.3.2 Single Volume Control (SNGLVOL)

Default = 0 0 - Disabled 1 - Enabled
Function: The individual channel volume levels are independently controlled by their respective Volume Control
Bytes when this function is disabled. The volume on all channels is determined by the A1 Channel Volume Control Byte, and the other Volume Control Bytes are ignored when this function is enabled.
CS4362

4.3.3 Soft Volume Ramp-Up After Error (RMP_UP)

Default = 0 0 - Disabled 1 - Enabled
Function: An un-mute will be performed after executing a filter mode change, after a LRCK/MCLK ratio change or
error, and after changing the Functional Mode. When this feature is enab led, this un-mute is effected, sim­ilar to attenuation changes, by the Soft and Zero Cross bits in the Mode Control 3 r egister. When disabled, an immediate un-mute is performed in these instances.
Note: For best results, it is recommended that this feature be used in conjunction with the RMP_DN bit.

4.3.4 MUTEC Polarity (MUTEC+/-)

Default = 0 0 - Active High 1 - Active Low
Function: The active polarity of the MUTEC pin(s) is determined by this register . When set to 0 (default) the MUTEC
pins are high when active. When set to 1 the MUTEC pin(s) are low when active. Note: When the on board mute circuitry is designed for active low, the MUTEC outputs will be high (un-
muted) for the period of time during reset and before this bit is enabled to 1.
DS257F2 19

4.3.5 Auto-Mute (AMUTE)

Default = 1 0 - Disabled 1 - Enabled
Function: The Digital-to-Analog converter output will mute following the reception of 8192 consecutive audio sam-
ples of static 0 or -1. A single sample of non-static data will release the mute. Detection and muting is done independently for each channel. The quiescent voltage on the output will be retained and the Mute Control pin will go active during the mute period. The muting function is affected, similar to volume control changes, by the Soft and Zero Cross bits in the Mode Control 3 register.

4.3.6 Mute Pin Control (MUTEC1, MUTEC0)

Default = 00 00 - Six mute control signals 01, 10 - One mute control signal 11 - Three mute control signals
Function: Selects how the internal mute control signals are routed to the MUTEC1 through MUTEC6 pins. When
set to ‘00’, there is one mute control signal for each channel: AOUT1A on MUTEC1, AOUT1B on MUTEC2, etc. When set to either ‘01’ or ‘10’, there is a single mute control signal on the MUTEC1 pin. When set to ‘11’, there are three mute control signals, one for each stereo pair: AOUT1A and AOUT1B on MUTEC1, AOUT2A and AOUT2B on MUTEC2, and AOUT3A and AOUT3B on MUTEC3.
CS4362

4.4 Filter Control (address 04h)

76543210
Reserved Reserved Reserved FILT_SEL Reserved DEM1 DEM0 RMP_DN
00000000

4.4.1 Interpolation Filter Select (FILT_SEL)

Default = 0 0 - Fast roll-off 1 - Slow roll-off
Function: This Function allows the user to select whether the interpolation filter has a fast or slow roll off. For filter
characteristics please see Section 1. Characteristics and Specifications.

4.4.2 De-Emphasis Control (DEM)

Default = 00 00 - Disabled 01 - 44.1 kHz 10 - 48 kHz 11 - 32 kHz
Function:
20 DS257F2
CS4362
Selects the appropriate digital filte r to maintain the standard 15 μs/50 μs digital de-emphasis filter re­sponse at 32, 44.1 or 48 kHz sample rates. (see Figure 39)
De-emphasis is only available in Single-Speed Mode.

4.4.3 Soft Ramp-Down Before Filter Mode Change (RMP_DN)

Default = 0 0 - Disabled 1 - Enabled
Function: A mute will be performed prior to executing a filter mode change. When this feature is enabled, this mute
is effected, similar to attenuation changes, by the Soft and Zero Cross bits in the Mode Control 3 register. When disabled, an immediate mute is performed prior to executing a filter mode change.
Note: For best results, it is recommended that this feature be used in conjunction with the RMP_UP bit.

4.5 Invert Control (address 05h)

76543210
Reserved Reserved INV_B3 INV_A3 INV_B2 INV_A2 INV_B1 INV_A1
00000000

4.5.1 Invert Signal Polarity (Inv_Xx)

Default = 0 0 - Disabled 1 - Enabled
Function: When enabled, these bits will invert the signal polarity of their respective channels.
4.6 Mixing Control Pair 1 (Channels A1 & B1)(address 06h) Mixing Control Pair 2 (Channels A2 & B2)(address 09h) Mixing Control Pair 3 (Channels A3 & B3)(address 0Ch)
76543210
Px_A=B PxATAPI4 PxATAPI3 PxATAPI2 PxATAPI1 PxATAPI0 PxFM1 PxFM0
00100100

4.6.1 Channel A Volume = Channel B Volume (A=B)

Default = 0 0 - Disabled 1 - Enabled
Function: The AOUTAx and AOUTBx volume levels are independently controlled by the A and the B Channel Vol-
ume Control Bytes when this function is disabled. The volume on both AOUTAx and AOUTBx are deter­mined by the A Channel Attenuation and Volume Control Bytes (per A-B pair), and the B Channel Bytes are ignored when this function is enabled.
DS257F2 21

4.6.2 ATAPI Channel Mixing and Muting (ATAPI)

Default = 01001 - AOUTAx=aL, AOUTBx=bR (Stereo) Function: The CS4362 implements the channel mixing functions of the ATAPI CD-ROM specification. The ATAPI
functions are applied per A-B pair. Refer to Table 3 and Figure 41 for additional information.
ATAPI4 ATAPI3 ATAPI2 ATAPI1 ATAPI0 AOUTAx AOUTBx
00000 MUTE MUTE 00001 MUTE bR 00010 MUTE bL 00011 MUTE b[(L+R)/2] 00100 aR MUTE 00101 aR bR 00110 aR bL 00111 aR b[(L+R)/2] 01000 aL MUTE 01001 aL bR 01010 aL bL 01011 aL b[(L+R)/2] 0 1 1 0 0 a[(L+R)/2] MUTE 01101 a[(L+R)/2] bR 01110 a[(L+R)/2] bL 0 1 1 1 1 a[(L+R)/2] b[(L+R)/2] 10000 MUTE MUTE 10001 MUTE bR 10010 MUTE bL 10011 MUTE [(aL+bR)/2] 10100 aR MUTE 10101 aR bR 10110 aR bL 10111 aR [(bL+aR)/2] 11000 aL MUTE 11001 aL bR 11010 aL bL 11011 aL [(aL+bR)/2] 11100[(aL+bR)/2] MUTE 11101[(aL+bR)/2] bR 11110[(bL+aR)/2] bL 1 1 1 1 1 [(aL+bR)/2] [(aL+bR)/2]
CS4362
Table 3. ATAPI Decode
22 DS257F2
CS4362

4.6.3 Functional Mode (FM)

Default = 00 00 - Single-Speed Mode (4 to 50 kHz sample rates) 01 - Double-Speed Mode (50 to 100 kHz sample rates) 10 - Quad-Speed Mode (100 to 200 kHz sample rates) 11 - Direct Stream Digital Mode
Function: Selects the required range of input sample rates or DSD Mode. All DAC pairs set to the same SCLK/LRCK
pair (Section 4.2.2) are required to be set to the same functional mode setting before a speed mode change is accepted. When DSD Mode is selected for any channel pair then all pairs will switch to DSD Mode.

4.7 Volume Control (addresses 07h, 08h, 0Ah, 0Bh, 0Dh, 0Eh)

76543210
xx_MUTE xx_VOL6 xx_VOL5 xx_VOL4 xx_VOL3 xx_VOL2 xx_VOL1 xx_VOL0
00000000

4.7.1 Mute (MUTE)

Default = 0 0 - Disabled 1 - Enabled
Function: The Digital-to-Analog converter output will mute when enabled. The quiescent voltage on the output will
be retained. The muting f unction is effected, similar to attenuation changes, by the Soft and Zero Cross bits. The MUTE pins will go active during the mute period according to the MUTEC bits.

4.7.2 Volume Control (xx_VOL)

Default = 0 (No attenuation) Function: The Digital Volume Control registers allow independent control of the signal levels in 1 dB increments
from 0 to -127 dB. Volume settings are decoded as shown in Table 4. The volume changes are imple­mented as dictated by the Soft and Zero Cross bits. All volume settings less than -127 dB are equivalent to enabling the MUTE bit.
Binary Code Decimal Value Volume Setting
0000000 0 0 dB 0010100 20 -20 dB 0101000 40 -40 dB
0111100 60 -60 dB
1011010 90 -90 dB
Table 4. Example Digital Volume Settings
DS257F2 23
CS4362

4.8 Chip Revision (address 12h)

76543210
PART3 PART2 PART1 PART0 Reserved Reserved Reserved Reserved
1110- - - -

4.8.1 Part Number ID (PART) [Read Only]

1110 - CS4362 Function: This read-only register can be used to identify the model number of the device.
24 DS257F2

5. PIN DESCRIPTION

DSDA2 DSDB1 DSDA1
VD
GND
MCLK
LRCK1(DSD_EN)
SDIN1
SCLK1
LRCK2
SDIN2
SCLK2
AOUTA1-
VLS
MUTEC1
M3(DSD_SCLK)
TST
TST
DSDB3
DSDA3
DSDB2
48 47 46 45 44 4 3 4 2 41 40 39 38 37
1 2 3 4 5 6 7 8 9 10 11
2
1
13 14 15 16 17 18 19 20 21 22
CS4362
AOUTA1+
23 24
AOUTB1+
AOUTB1-
36 35 34 33 32 31 30 29 28 27 26 25
CS4362
AOUTA2­AOUTA2+ AOUTB2+ AOUTB2­VA GND AOUTA3­AOUTA3+ AOUTB3+ AOUTB3­MUTEC2 MUTEC3
TST
SDIN3
VLC
RST
M0(AD0/CS)
M1(SDA/CDIN)
M2(SCL/CCLK)
Pin Name # Pin Description
VD 4
GND
MCLK 6 LRCK1
LRCK2 SDIN1
SDIN2 SDIN3
SCLK1 SCLK2
TST
RST 19
VA 32
VLS 43
VLC 18
Digital Power (Input) - Positive power supply for the digital section. Refer to the Recom­mended Operating Conditions for appropriate voltages.
5
Ground (Input) - Ground reference. Should be connected to analog ground.
31
Master Clock (Input) - Clock source for the delta-sigma modulator and digital filters. Table 5 illustrates several standard audio sample rates and the required master clock frequencies.
710Left Right Clock (Input) - Determines which channel, Left or Right, is currently active on the
serial audio data line. The frequency of the left/right clock must be at the audio sample rate, Fs.
8
1113Serial Data Input (Input) - Input for two’s complement serial audio data.
9
Serial Clock (Input) - Serial clocks for the serial audio interface.
12 14
4445Test - These pins need to be tied to analog ground.
Reset (Input) - The device enters a low power mode and all internal registers are reset to their default settings when low.
Analog Power (Input) - Positive power supply for the analog section. Refer to the Recom­mended Operating Conditions for appropriate voltages.
Serial Audio Interface Power (Input) - Determines the required signal level for the serial audio interface. Refer to the Recommended Operating Conditions for appropriate voltages.
Control Port Power (Input) - Determines the required signal level for the control port and stand- alone configuration pins. Refer to the Recommended Operating Conditions for appropri­ate voltages.
VQ
FILT+
MUTEC4
MUTEC5
MUTEC6
DS257F2 25
CS4362
Pin Name # Pin Description
Quiescent Voltage (Output) - Filter connection for internal quiescent voltage. VQ must be
capacitively coupled to analog ground, as shown in the Typical Connection Diagram. The nom­inal voltage level is specified in the Analog Characteristics and Specifications section. VQ pre-
VQ 21
FILT+ 20
AOUTA1 +,­AOUTB1 +,­AOUTA2 +,­AOUTB2 +,­AOUTA3 +,­AOUTB3 +,-
MUTEC1 MUTEC2 MUTEC3 MUTEC4 MUTEC5 MUTEC6
Stand-Alone Definitions
M0 M1 M2 M3
Control Port Definitions
SCL/CCLK 15
SDA/CDIN 16
AD0/CS
DSD Definitions
DSDA1 DSDB1 DSDA2 DSDB2 DSDA3 DSDB3
DSD_SCLK 42 DSD Serial Clock (Input) - Serial clock for the Direct Stream Digital serial audio interface. DSD_EN 7
sents an appreciable source impedance and any current drawn from this pin will alter device performance. However, VQ can be used to bias the analog circuitry assuming there is no AC signal component and the DC current is less then the maximum specified in the Analog Charac­teristics and Specifications section.
Positive Voltage Reference (Output) - Positive reference voltage for the internal sampli ng cir­cuits. Requires the capacitive decoupling to analog ground as shown in the Typical Connection Diagram.
39,40 38,37 35,36
Differential Analog Output (Output) - The full-scale differential analog output level is specified
34,33
in the Analog Characteristics specification table. 29,30 28,27
41
Mute Control (Output) - The Mute Control pins go high during power-up initialization, reset,
26
muting, power-down or if the master clock to left/right clock frequency ratio is incorrect. These
25
pins are intended to be used as a control for external mute circuits on the line outputs to prevent
24
the clicks and pops that can occur in any single supply system. Use of Mute Control is not man-
23
datory but recommended for designs requiring the absolute minimum in extraneous clicks and
22
pops.
17 16
Mode Selection (Input) - Determines the operational mode of the device as detailed in Tables 6
15
and 7.
42
Serial Control Port Clock (Input) - Serial clock for the serial control port. Requires an external
pull-up resistor to the logic interface voltage in I²C Mode as shown in the Typical Connection
Diagram.
Serial Control Port Data (Input/Output) - SDA is a data I/O line in I²C Mode and is open drain,
requiring an external pull-up resistor to the logic interface voltage, as shown in the Typical Con-
nection Diagram; CDIN is the input data line for the control port interface in SPI Mode.
Address Bit 0 (I²C) / Control Port Chip Select (SPI) (Input) - AD0 is a chip address pin in I²C
17
Mode; CS
3 2 1
Direct Stream Digital Input (Input) - Input for Direct Stream Digital serial audio data.
48 47 46
DSD Enable (Input) - When held at logic ‘1’ the device will enter DSD Mode (Stand-Alone Mode
only).
is the chip select signal for SPI Mode.
26 DS257F2
Mode
(sample-rate range)
Sample
Rate
(kHz)
MCLK (MHz)
MCLK Ratio 256x 384x 512x 768x 1024x*
Single-Speed
(4 to 50 kHz)
32 8.1920 12.2880 16.3840 24.5760 32.7680
44.1 11.2896 16.9344 22.5792 33.8688 45.1584 48 12.2880 18.4320 24.5760 36.8640 49.1520
MCLK Ratio 128x 192x 256x 384x 512x*
Double-Speed
(50 to 100 kHz)
64 8.1920 12.2880 16.3840 24.5760 32.7680
88.2 11.2896 16.9344 22.5792 33.8688 45.1584 96 12.2880 18.4320 24.5760 36.8640 49.1520
MCLK Ratio 64x 96x 128x 192x 256x*
Quad-Speed
(100 to 200 kHz)
176.4 11.2896 16.9344 22.5792 33.8688 45.1584 192 12.2880 18.4320 24.5760 36.8640 49.1520

Table 5. Common Clock Frequencies

*Note: These modes are only available in Control Port Mode by setting the MCLKDIV bit = 1.
M1
(DIF1)
00 01
10 11
M0
(DIF0)
DESCRIPTION FORMAT FIGURE
Left Justified, up to 24-bit data
2
I
S, up to 24-bit data Right Justified, 16-bit Data Right Justified, 24-bit Data

Table 6. Digital Interface Format, Stand-Alone Mode Options

033 134
235 336
CS4362
Control Port Only Modes
M3
00 01 10 11
M2
(DEM)
Single-Speed without De-Emphasis (4 to 50 kHz sample rates) Single-Speed with 44.1 kHz De-Emphasis; see Figure 39 Double-Speed (50 to 100 kHz sample rates) Quad-Speed (100 to 200 kHz sample rates)

Table 7. Mode Selection, Stand-Alone Mode Options

DSD_Mode
(LRCK1)
M2 M1 M0 DESCRIPTION
1 000 1 001 1 010 1 011 1 100 1 101 1 110 1 111

Table 8. Direct Stream Digital (DSD), Stand-Alone Mode Options

DESCRIPTION
64x oversampled DSD data with a 4x MCLK to DSD data rate Reserved Reserved Reserved 128x oversampled DSD data with a 2x MCLK to DSD data rate Reserved Reserved Reserved
DS257F2 27

6. APPLICATIONS

6.1 Grounding and Power Supply Decoupling

As with any high resolution converter, the CS4362 requires care ful attention to power supply and g rounding arrangements to optimize performance. Figures 5 and 6 show the recommended power arrangement with VA, VD, VLS and VLC connected to clean supplies. Decoupling capacitors should be located as close to the device package as possible. If desired, all supply pins may be connected to the same supply, but a de­coupling capacitor should still be placed on each supply pin (see Characteristics and Specifications for rec­ommended voltages).

6.2 PCM Mode Select

The CS4362 operates in one of three PCM oversamp ling modes based on the input sample rate. Mode se­lection is determined by the M3 and M2 pins in Stand-Alone Mode or the FM bits in Control Port Mode. Sin­gle-Speed Mode supports input sample rates up to 50 kHz and uses a 128x oversampling ratio. Double­Speed Mode supports input sample rates up to 100 kHz and uses an oversampling ratio of 64x. Quad­Speed Mode supports input sample rates up to 200 kHz and uses an oversampling ratio of 32x. The PCM digital interface format is determined by the M1 and M0 pins in Stand-Alone Mode or the DIF bits in Control Port Mode.
In Stand-Alone Mode, the states of these pins are continua lly scanned for any ch anges; however, the mode should only be changed while the device is in reset (RST to another.
CS4362
pin low) to ensure proper switching from one mode

6.3 Recommended Power-Up Sequence

1. Hold RST low until the power supply, master, and left/right clocks are stable. In this state, the control port is reset to its default settings and VQ will remain low.
2. Bring RST power-up sequence. The control port will be accessible at this time. If Control Port operation is desired, write the CPEN bit prior to the completion of the Stand-Alone power-up sequence, approximately 512 LRCK cycles in Single-Speed Mode (1024 LRCK cycles in Double-Spe ed Mode, and 2048 LRCK cycles in Quad-Speed Mode). Writing this bit will halt the Stand-Alone power-up sequence and initialize the control port to its default settings. The desired register settings can be loaded while keeping the PDN bit set to 1.
3. If Control Port Mode is selected via the CPEN bit, set the RMP_UP and RMP_DN bits in registers 03h and 04h to 1, set the format and mode control bits to the desired settings, and then set the PDN bit to 0 which will initiate the power-up sequence.
high. The device will remain in a low power state with VQ low and will initiate the Stand-Alone

6.4 Analog Output and Filtering

The application note “Design Notes for a 2-Pole Filter with Differential Input” discusses the second-order Butterworth filter and differential to single-ended converter which was implemented on the CS4362 evalua­tion board, CDB4362, as seen in Figure 42. The CS4362 does not include phase or amplitude compensa­tion for an external filter. Therefore, the DAC system phase and amplitude response will be dependent on the external analog circuitry.

6.5 Interpolation Filter

To accommodate the increasingly complex requirements of digital audio systems, the CS4362 incorporates selectable interpolation filters for each mode of operation. A “fast” and a “slow” roll-off filter is available in each of Single-, Double-, and Quad-Speed Modes. These filters have been designed to accommodate a
28 DS257F2
variety of musical tastes and styles. The FILT_SEL bit is used to select which filter is used (see the control port section for more details).
When in Stand-Alone Mode, only the “fast” roll-off filter is available. Filter specifications can be found in Section 1, and filter response plots can be found in Figures 9 to 32.

6.6 Clock Source Selection

The CS4362 has two serial clock and two left/right clock inputs. The SDINxCLK bits in the control port allow the user to set which SCLK/LRCK pair is used to latch the data for each SDINx pin. The clocks applied to LRCK1 and LRCK2 must be derived from the sa me M C LK and must be exact frequency multiples of each other as specified in the “Switching Characteristics” on page 9. When using both SCLK1/LRCK1 and SCLK2/LRCK2, if either SCLK/LRCK pair loses synchronization then both SCLK/LRCK pairs will go through a retime period where the de vice is re-evaluatin g clock ratios. Du ring the retime period, all DAC pairs are temporarily inactive, outputs are muted, and the mute control pins will go active according to the MUTEC bits.
If unused, SCLK2 and LRCK2 should be tied static low and SDINx bits should all be set to SCLK1/LRCK1. In Stand-Alone Mode, all DAC pa irs use SCLK1 and LRCK1 for timing and SCLK2/LRCK2 should be tied
to ground.

6.7 Using DSD Mode

CS4362
In Stand-Alone Mode, DSD operation is selected by holding DSD_EN(LRCK1) high and applying the DSD data and clocks to the appropriate pins. The M2:0 pins set the expected DSD rate and MCLK ratio.
In Control-Port Mode, the FM bits set the device into DSD Mode (DSD_EN pin is not required to be held high). The DIF register then con trols the expected DSD rate and MCLK ratio. To access the full range of DSD clocking modes (other than 64x DSD 4x MCLK and 128x DSD 2x MCLK), the following additional reg­ister sequence needs to be written:
99h to register 00h 80h to register 1Ah 00h to register 00h
When exiting DSD Mode the following additional sequence needs to be written: 99h to register 00h
00h to register 1Ah 00h to register 00h
During DSD operation, the PCM related pins should either be tied low or remain active with clocks (except LRCK1 in Stand-Alone Mode). When the DSD related pins are not being used, they should either be tied static low or remain active with clocks (except M3 in Stand-Alone Mode).

6.8 Recommended Procedure for Switching Operational Modes

For systems where the absolute minimum in clicks and pops is required, it is reco mmended that the M UTE bits are set prior to changing significant DAC functions (s uch as chan ging sample ra tes or clock sou rces). The mute bits may then be released after clocks have settled and the proper CS436 2 modes have been set.
It is required that the CS4362 be held in reset if the minimu m high /low time specs of MCLK can not be met during clock source changes.
DS257F2 29
CS4362

7. CONTROL PORT INTERFACE

The control port is used to load all the internal settings. The operation of the control port may be completely asyn­chronous with the audio sample rate. However, to avoid potential interference problems, the control port pins should remain static if no operation is required.
The CS4362 has MAP auto increment capability, enabled by the INCR bit in the MAP register, which is the MSB. If INCR is 0, then the MAP will stay constant for successive writes. If INCR is set to 1, then MAP will auto increment after each byte is written from register 01h to 08h and then from 09h and 11h, allowing blo ck reads or writes of suc­cessive registers in two separate sections (the counter will not auto-increment to register 09h from register 08h).

7.1 Enabling the Control Port

On the CS4362 the contro l port pins are shar ed w ith stan d-al one conf iguratio n p ins . To e nab le th e co ntro l port, the user must set the CPEN bit. This is done by performing a I²C or SPI write. Once the control port is enabled, these pins are dedicated to control port functionality.
To prevent audible artifacts the CPEN bit (see Section 4.1.1) sh ould be set prior to the completion of the Stand-Alone power-up sequence, approximately 1024 LRCK cycles. Writing this bit will halt the Stand-Alone power-up sequence and initialize the control port to its default settings. Note, the CP_EN bit can be set any time after RST can cause audible artifacts.
goes high; however, setting this bit after the Stand-Alone power-up sequence ha s completed

7.2 Format Selection

The control port has 2 formats: SPI and I²C, with the CS4362 operating as a slave device. If I²C operation is desired, AD0/CS
transition on AD0/CS
after power-up and after the control port is activated, SPI format will be selected.
7.3 I²C Format
In I²C Format, SDA is a bidirectional data line. Data is clocked into and out of the part by the clock, SCL, with a clock to data relationship as shown in Figure Figure 7. The receiving device should send an acknowl­edge (ACK) after each byte received. There is no CS be tied to VLC or GND as required. The upper 6 bits of the 7 bit address field must be 001100.
Note: MCLK is required during all I²C transactions. Please see “References” on page 40 to obtain addi-
tional information on the I²C Bus specification or visit http://www.semiconductors.philips.com.
7.3.1 Writing in I²C Format
To communicate with the CS4362, initiate a START condition of the bus. Next, send the chip address. The eighth bit of the address byte is the R/W Pointer, MAP, which selects the register to be read or written . The MAP is then fo llowed by the data to be written. To write multiple registers, continue providing a clock and data, waiting for the CS4362 to ac­knowledge between each byte. To end the transaction, send a STOP condition.
should be tied to VLC or GND. If the CS4362 ever detects a high to low
pin. Pin AD0 forms the partial chip address and should
bit (low for a write). The next byte is the Memory Address
7.3.2 Reading in I²C Format
To communicate with the CS4362, initiate a START condition of the bus. Next, send the chip address. The eighth bit of the address byte is the R/W by the MAP will be output after the chip address. To read multiple registers, continue providing a clock and issue an ACK after each byte. To end the transaction, send a STOP conditio n.
30 DS257F2
bit (high for a read). The contents of the register pointed to

7.4 SPI Format

In SPI format, CS is the CS4362 chip select signal, CCLK is the control port bit clock, CDIN is the input data line from the microcontroller and the chip addre ss is 0011000. CS is clocked in on the rising edge of CCLK.
Note: The CS4362 is write-only when in SPI format.

7.4.1 Writing in SPI

Figure 8 shows the operation of the control port in SPI format. To write to a register, bring CS low. The
first 7 bits on CDIN form the chip address and must be 0011000. The eighth bit is a read/write indicator (R/W
), which must be low to write. The next 8 bits form the Memory Address Pointer (MAP), which is set to the address of the register that is to be updated. The next 8 bits are the data which will be placed into register designated by the MAP. To write multiple registers, keep CS on CCLK. End the read transaction by setting CS
SDA
SCL
001100
ADDR AD0
R/W
ACK
high.
DATA 1-8
, CCLK and CDIN are all inputs and data
low and continue providing clocks
Note 1
ACK
DATA 1-8
ACK
CS4362
Start
Note: If operation is a write, this byte contains the M emory Address P ointer, M AP.
Stop
Figure 7. Control Port Timing, I²C Format
CS
CCLK
CHIP
CDIN
ADDRESS
0011000
R/W
MAP
MSB
byte 1
DATA
LSB
byte n
MAP = Memory Address Pointer
Figure 8. Control Port Timing, SPI Format
DS257F2 31
CS4362

7.5 Memory Address Pointer (MAP)

76543210
INCR Reserved Reserved MAP4 MAP3 MAP2 MAP1 MAP0
00000000

7.5.1 INCR (Auto Map Increment Enable)

Default = ‘0’ 0 - Disabled 1 - Enabled Note: When Auto Map Increment is enabled, the register must be written it two separate blocks: from
register 01h to 08h and then from 09h and 11h. The counter will not auto-increment to register 09h from register 08h

7.5.2 MAP4-0 (Memory Address Pointer)

Default = ‘00000’
32 DS257F2

8. FILTER PLOTS

1
6
5
5
1
6
CS4362
0
20
40
60
Amplitude (dB)
80
100
120
0.4 0.5 0.6 0.7 0.8 0.9
Frequency(normalized to Fs)
0
20
40
60
Amplitude (dB)
80
100
120
0.4 0.42 0.44 0.46 0.48 0.5 0.52 0.54 0.56 0.58 0.
Frequency(normalized to Fs)

Figure 9. Single-Speed (fast) Stopband Rejection Figure 10. Single-Speed (fast) Transition Band

0
1
2
3
4
5
Amplitude (dB)
6
7
8
9
10
0.45 0.46 0.47 0.48 0.49 0.5 0.51 0.52 0.53 0.54 0.5
Frequency(normalized to Fs)
Figure 11. Single-Speed (fast) Transition Band
0.02
0.015
0.01
0.005
0
Amplitude (dB)
0.005
0.01
0.015
0.02 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.
Frequency(normalized to Fs)

Figure 12. Single-Speed (fast) Passband Ripple

(detail)
0
20
40
60
Amplitude (dB)
80
100
120
0.4 0.5 0.6 0.7 0.8 0.9
Frequency(normalized to Fs)
0
20
40
60
Amplitude (dB)
80
100
120
0.4 0.42 0.44 0.46 0.48 0.5 0.52 0.54 0.56 0.58 0.
Frequency(normalized to Fs)

Figure 13. Single-Speed (slow) Stopband Rejection Figure 14. Single-Speed (slow) Transition Band

DS257F2 33
5
5
1
6
5
5
0
1
2
3
4
5
Amplitude (dB)
6
7
8
9
10
0.45 0.46 0.47 0.48 0.49 0.5 0.51 0.52 0.53 0.54 0.5
Frequency(normalized to Fs)
Figure 15. Single-Speed (slow) Transition Band
(detail)
CS4362
0.02
0.015
0.01
0.005
0
Amplitude (dB)
0.005
0.01
0.015
0.02 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.

Figure 16. Single-Speed (slow) Passband Ripple

Frequency(normalized to Fs)
0
20
40
60
Amplitude (dB)
80
100
120
0.4 0.5 0.6 0.7 0.8 0.9
Frequency(normalized to Fs)
0
20
40
60
Amplitude (dB)
80
100
120
0.4 0.42 0.44 0.46 0.48 0.5 0.52 0.54 0.56 0.58 0.
Frequency(normalized to Fs)

Figure 17. Double-Speed (fast) Stopband Rejection Figure 18. Double-Speed (fast) Transition Band

0
1
2
3
4
5
Amplitude (dB)
6
7
8
9
10
0.45 0.46 0.47 0.48 0.49 0.5 0.51 0.52 0.53 0.54 0.5
Frequency(normalized to Fs)
Figure 19. Double-Speed (fast) Transition Band
0.02
0.015
0.01
0.005
0
Amplitude (dB)
0.005
0.01
0.015
0.02 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.
Frequency(normalized to Fs)

Figure 20. Double-Speed (fast) Passband Ripple

(detail)
34 DS257F2
1
8
5
5
1
8
CS4362
0
20
40
60
Amplitude (dB)
80
100
120
0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Frequency(normalized to Fs)
0
20
40
60
Amplitude (dB)
80
100
120
0.2 0.3 0.4 0.5 0.6 0.7 0.
Frequency(normalized to Fs)

Figure 21. Double-Speed (slow) Stopband Rejection Figure 22. Double-Speed (slow) Transition Band

0
1
2
3
4
5
Amplitude (dB)
6
7
8
9
10
0.45 0.46 0.47 0.48 0.49 0.5 0.51 0.52 0.53 0.54 0.5
Frequency(normalized to Fs)
Figure 23. Double-Speed (slow) Transition Band
0.02
0.015
0.01
0.005
0
Amplitude (dB)
0.005
0.01
0.015
0.02 0 0.05 0.1 0.15 0.2 0.25 0.3 0.3
Frequency(normalized to Fs)

Figure 24. Double-Speed (slow) Passband Ripple

(detail)
0
20
40
60
Amplitude (dB)
80
100
120
0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Frequency(normalized to Fs)
0
20
40
60
Amplitude (dB)
80
100
120
0.2 0.3 0.4 0.5 0.6 0.7 0.
Frequency(normalized to Fs)

Figure 25. Quad-Speed (fast) Stopband Rejection Figure 26. Quad-Speed (fast) Transition Band

DS257F2 35
CS4362
5
5
1
9
5
2
0
1
2
3
4
5
Amplitude (dB)
6
7
8
9
10
0.45 0.46 0.47 0.48 0.49 0.5 0.51 0.52 0.53 0.54 0.5
Frequency(normalized to Fs)

Figure 27. Quad-Speed (fast) Transition Band Figure 28. Quad-Speed (fast) Passband Ripple

0
20
40
0.2
0.15
0.1
0.05
0
Amplitude (dB)
0.05
0.1
0.15
0.2 0 0.05 0.1 0.15 0.2 0.2
0
20
40
Frequency(normalized to Fs)
60
Amplitude (dB)
80
100
120
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Frequency(normalized to Fs)
60
Amplitude (dB)
80
100
120
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.
Frequency(normalized to Fs)

Figure 29. Quad-Speed (slow) Stopband Rejection Figure 30. Quad-Speed (slow) Transition Band

0
1
2
3
4
5
Amplitude (dB)
6
7
8
9
10
0.45 0.46 0.47 0.48 0.49 0.5 0.51 0.52 0.53 0.54 0.5
Frequency(normalized to Fs)
Figure 31. Quad-Speed (slow) Transition Band
0.02
0.015
0.01
0.005
0
Amplitude (dB)
0.005
0.01
0.015
0.02 0 0.02 0.04 0.06 0.08 0.1 0.1
Frequency(normalized to Fs)

Figure 32. Quad-Speed (slow) Passband Ripple

(detail)
36 DS257F2

9. DIAGRAMS

CS4362
LRCK
SCLK
SDINx +3 +2 +1+5 +4
MSB LSB MSB LSB
-1 -2 -3 -4 -5
Left Channel

Figure 33. Format 0 - Left Justified up to 24-bit Data

LRCK
SCLK
SDINx +3 +2 +1+5 +4
LRCK
SCLK
MSB
-2 -3 -4 -5
-1
Left Channel
Left Channel
-2 -3 -4
-1
LSB LSB
MSB
-1
-2 -3 -4
Figure 34. Format 1 - I²S up to 24-bit Data
Right Channel
+3 +2 +1+5 +4
Right Channel
+3 +2 +1+5 +4
Right Channel
SDINx
LRCK
SCLK
SDINx
15 14 13 12 11 10
32 clocks
6543210987
15 14 13 12 11 10
6543210987

Figure 35. Format 2 - Right Justified 16-bit Data

Left Channel
0
23 22 21 20 19 18
32 clocks
65432107
23 22 21 20 19 18
Right Channel
65432107

Figure 36. Format 3 - Right Justified 24-bit Data

DS257F2 37
CS4362
LRCK
SCLK
SDINx
LRCK
SCLK
SDINx
10
10
Left Channel
17 16 17 16
19 18 19 18
15 14 13 12 11 10
32 clocks
6543210987

Figure 37. Format 4 - Right Justified 20-bit Data

Left Channel
17 16 17 16
15 14 13 12 11 10
32 clocks
6543210987

Figure 38. Format 5 - Right Justified 18-bit Data

Gain
dB
Right Channel
15 14 13 12 11 10
Right Channel
15 14 13 12 11 10
6543210987
6543210987
0dB
-10dB
T1=50 µs
T2 = 15 µs
F1 F2
Frequency
3.183 kHz 10 .61 kHz

Figure 39. De-Emphasis Curve

38 DS257F2
CS4362
SDINx
SDINx
L
DAC
Channel
Pair x
Control
R
DAC

Figure 40. Channel Pair Routing Diagram (x = Channel Pair 1, 2, or 3)

Left Chan
Audio Data
nel
A Channel
Volume
Control
MUTE
ΣΣ
Right Channel
Audio Data
BChannel
Volume
Control
MUTE
AOUTAx+ AOUTAx-
AOUTBx+
AOUTBx-
AoutAx
AoutBx

Figure 41. ATAPI Block Diagram (x = channel pair 1, 2, or 3)

Figure 42. Recommended Output Filter

DS257F2 39

10.PARAMETER DEFINITIONS

Total Harmonic Distortion + Noise (THD+N)
The ratio of the rms value of the signal t o the rms su m of all other spectral components over the specified bandwidth (typically 10 Hz to 20 kHz), including distortion components. Expressed in decibels.
Dynamic Range
The ratio of the full-scale rms value of the signal to the rms sum of all other spectral components over the specified bandwidth. Dynamic range is a signal-to-noise measurement over the specified bandwidth made with a -60 dBFS signal. 60 dB is then added to the resulting measurement to refer the measurement to full scale. This technique ensures that the distortion components are below the noise level and do not effect the measurement. This measurement technique has been accepted by the Audio Engineering Society, AES17­1991, and the Electronic Industries Association of Japan, EIAJ CP-307.
Interchannel Isolation
A measure of crosstalk between the left and right channels. Measured for each channel at the converter's output with all zeros to the input under test and a full-scale signa l applied to the other channel. Units in d eci­bels.
Interchannel Gain Mismatch
The gain difference between left and right channels. Units in decibels.
CS4362
Gain Error
The deviation from the nominal full scale analog output for a full scale digital inpu t.
Gain Drift
The change in gain value with temperature. Units in ppm/°C.

11.REFERENCES

1. How to Achieve Optimum Performance from Delta-Sigma A/D & D/A Converters by Steven Harris. Paper presented at the 93rd Convention of the Audio Engineering Society, October 1992.
2. CDB4362 Evaluation Board Data Sheet, available at http:www.cirrus.com.
3. Design Notes for a 2-Pole Filter with Differential Input by Steven Green. Cirrus Logic Application No te AN48, available at http:www.cirrus.com.
4. The I²C-Bus Specification: Version 2.0, Philips Semiconductors, December 1998.
http://www.semiconductors.philips.com
40 DS257F2
12.PACKAGE DIMENSIONS 48L LQFP PACKAGE DRAWING
D1
D
CS4362
E
E1
1
e
B
A
A1
L
INCHES MILLIMETERS
DIM MIN NOM MAX MIN NOM MAX
A --- 0.055 0.063 --- 1.40 1.60
A1 0.002 0.004 0.006 0.05 0.10 0.15
B 0.007 0.009 0.011 0.17 0.22 0.27
D 0.343 0.354 0.366 8.70 9.0 BSC 9.30
D1 0.272 0.28 0.280 6.90 7.0 BSC 7.10
E 0.343 0.354 0.366 8.70 9.0 BSC 9.30
E1 0.272 0.28 0.280 6.90 7.0 BSC 7.10
e* 0.016 0.020 0.024 0.40 0.50 BSC 0.60
L 0.018 0.24 0.030 0.45 0.60 0.75
0.000° 7.000° 0.00° 7.00°
* Nominal pin pitch is 0.50 mm
Controlling dimension is mm.
JEDEC Designation: MS022
DS257F2 41
CS4362

13. ORDERING INFORMATION

Product Description Package Pb-Free Grade Temp Range Container Order #
CS4362
114 dB, 192 kHz 6-
channel D/A Converter
48-pin
LQFP
YES Commercial -10°C to +70°C
CDB4362 CS4362 Evaluation Board - - - - CDB4362
Tray CS4362-KQZ
Tape and Reel CS4362-KQZR

14.REVISION HISTORY

Release Changes
Removed -BQ ordering option Corrected specifications for Full-Scale Differential Output Voltage Updated legal text Incorporated changes outlined in ER257B3 and ER257F1: Corrected pin order for analog outputs in the pin description
F1
F2
Corrected mute pin decode in Section 4.3.6 Updated description for Section 4.6.3 Updated description for 3) in Section 6.3 Added Section 6.8 Updated Table 2 on page 18 Updated Section 6.7 “Using DSD Mode” on page 29
Corrected DAC Pair Disable register description in Section 4.1.4 Added note to Digital Interface Format in Section 4.2.1 Added PCM mode format changeable in reset only to Section 6.2 Updated Package Thermal Resistance in “Power and Thermal Characteristics” on page 6
Contacting Cirrus Logic Support
For all product questions and inquiries, contact a Cirrus Logic Sales Representative. To find the one nearest you, go to www.cirrus.com.
IMPORTANT NOTICE
Cirrus Logic, Inc. and its subsidiaries ("Cirrus") believe that the information contained in this document is accurate and reliable. However, the information is subject to change without not ice and is pr ovided "AS IS" witho ut warr anty of any kind (express or implied). Customers are advised to obtain the latest version of relevant information to verify, before placing orders, that information being relied on is current and complete. All products are sold subject to the terms and conditions of sale supplied at the time of order acknowledgment, including those pertaining to warranty, indemnification, and limitation of liability. No responsibility is assumed by Cirrus for the use of this information, including use of this information as the basis for manufacture or sale of any items, or for infringement of patents or other rights of third parties. This document is the property of Cirrus and by furnishing this information, Cirrus grants no license, express or implied under any patents, mask work rights, copyrights, trademarks, trade secrets or other inte llectual property rig hts. Cirrus owns the copyrights associ ated with the information contained herein and gives con­sent for copies to be made of the information only for use within your organization with respect to Cirrus integrated circuits or other products of Cirrus. This consent does not extend to other copying such as copying for general distribution, advertising or promotional purposes, or for creating any work for resale.
CERTAIN APPLICATIONS USING SEMICONDUCTOR PRODUCTS MAY INVOLVE POTENTIAL RISKS OF DEATH, PERSONAL I N JURY, OR SEVERE PROP­ERTY OR ENVIRONMENTAL DAMAGE (“CRITICAL APPLICATIONS”). CIRRUS PRODUCTS ARE NOT DESIGNED, AUTHORIZED OR WARRANTED FOR USE IN PRODUCTS SURGICALLY IMPLANTED INTO THE BODY, AUTOMOTIVE SAFETY OR SECURITY DEVICES, LIFE SUPPORT PRODUCTS OR OTHER CRIT­ICAL APPLICATIONS. INCLUSION OF CIRRUS PRODUCTS IN SUCH APPLICATIONS IS UNDERSTOOD TO BE FULLY AT THE CUSTOMER’S RISK AND CIRRUS DISCLAIMS AND MAKES NO WARRANTY, EXPRESS, STATUTORY OR IMPLIED, INCLUDING THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR PARTICULAR PURPOSE, WITH REGARD TO ANY CIRRUS PRODUCT THAT IS USED IN SUCH A MANNER. IF THE CUS TOMER OR CUSTOMER’S CUSTOMER USES OR PERMITS THE USE OF CIRRUS PRODUCTS IN CRITICAL APPLICATIONS, CUSTOMER AGREES, BY SUCH USE, TO FULLY INDEMNIFY CIRRUS, ITS OFFICERS, DIRECTORS, EMPLOYEES, DISTRIB UTORS A ND OTHER AGENTS FROM ANY AND ALL LI A BIL IT Y, I NCLUD­ING ATTORNEYS’ FEES AND COSTS, THAT MA Y RE SULT FROM OR ARISE IN CONNECTION WITH THESE USES.
Cirrus Logic, Cirrus, and the Cirrus Logic logo designs are trademarks of Cirrus Logic, Inc. All other brand and product names in this document may be trademarks or service marks of their respective owners.
I²C is a registered trademark of Philips Semiconductor. SPI is a trademark of Motorola, Inc.
42 DS257F2
Loading...