Ultralow Power, Stereo Codec with Class H Headphone Amp
DIGITAL to ANALOG FEATURES
5 mW Stereo Playback Power Consumption
99 dB Dynamic Range (A-wtd)
-86 dB THD+N
Digital Signal Processing Engine
–Bass & Treble Tone Control, De-emphasis
–Master Volume Control (+12 to -102 dB in
0.5 dB steps)
–Soft-ramp & Zero-cross Transitions
–Programmable Peak-detect and Limiter
–Beep Generator with Full Tone Control
Stereo Headphone and Line Amplifiers
Step-down/Inverting Charge Pump
Class H Amplifier - Automatic Supply Adj.
–High Efficiency
–Low EMI
Pseudo-differential Ground-centered Outputs
High HP Power Output at -75 dB THD+N
–2 x 20 mW Into 16 @ 1.8 V
1V
Analog Vol. Ctl. (+12 to -60 dB in 1 dB steps)
Analog In to Analog Out Passthrough
Pop and Click Suppression
Line Output @ 1.8 V
RMS
ANALOG to DIGITAL FEATURES
3.5 mW Stereo Record Power Consumption
95 dB Dynamic Range (A-wtd)
-87 dB THD+N
Configurable Analog Inputs
–Two Pseudo-differential Stereo Inputs or
–One Pseudo-differential Stereo Inputs +
One Standard Stereo Input + One Standard
Mono Input or
–Three Standard Stereo Inputs
–Pseudo-differential Inputs Reduce
Common Mode Signal Noise
–3:1 Stereo Input MUX for ADC or
Passthrough
Analog Programmable Gain Amplifier (PGA)
–+12 to -6 dB in 0.5 dB steps
–+10 dB or +20 dB Additional Gain for
Microphone Inputs
Programmable, Low-noise MIC Bias Output
Programmable Automatic Level Control (ALC)
–Noise Gate for Noise Suppression
–Programmable Threshold &
Attack/Release Rates
Independent ADC Channel Control
High-pass Filter Disable for DC Measurements
http://www.cirrus.com
Copyright Cirrus Logic, Inc. 2014
(All Rights Reserved)
FEB '14
DS851F2
CS42L56
SYSTEM FEATURES
Audio (11.2896 MHz or 12.288 MHz) or USB
(12 MHz) Master Clock Input
Low-power Operation
–Stereo Anlg. Passthrough: 3.3 mW @1.8 V
–Stereo Rec. and Playback: 8.3 mW @1.8 V
Headphone Detect Input
High Performance 24-bit Converters
–Multi-bit Delta–Sigma Architecture
Integrated High Efficient Power Management
Reduces Power Consumption
–Step-down Charge Pump Improves
Efficiency
–Inverting Charge Pump Accommodates
Low System Voltage by Providing Negative
Rail for HP/Line Amp
–LDO Reg. Provides Low Digital Supply
Voltage
Digital Power Reduction
–Very Low ADC/DAC Oversampling Rate
–Bursted Serial Clock Providing up to 24 Bits
per Sample
Power Down Management
–ADC, DAC, CODEC, PGA, DSP
Analog & Digital Routing/Mixes
–Line/Headphone Out = Analog In (ADC
Bypassed)
–Line/Headphone Out = ADC Out
–Internal Digital Loopback
–Mono Mixes
I²C or SPI™ Control Port
I²S or Left-justified Digital Interface Format
Flexible Clocking Options
–Master or Slave Operation
–Wide Range of Sample Rates Supported
APPLICATIONS
HDD and Flash-based Portable Audio Players
PDAs
Personal Media Players
Portable Game Consoles
Digital Voice Recorders
MD Players/Recorders
Digital Camcorders
Digital Cameras
GENERAL DESCRIPTION
The CS42L56 is a highly integrated, 24-bit, ultra-lowpower stereo CODEC based on multi-bit delta-sigma
modulation. Both the ADC and DAC offer many features
suitable for low power portable system applications.
The analog input path allows independent channel
control of a variety of features. The Programmable Gain
Amplifier (PGA) provides analog gain with zero cross
transitions. The ADC path includes a digital volume attenuator with soft ramp transitions and a programmable
ALC and noise gate monitor the input signals and adjust
the volume appropriately. An analog passthrough also
exists, accommodating a lower noise, lower power analog in to analog out path to the headphone and line
amplifiers, bypassing the ADC and DAC.
The DAC output path includes a fixed-function digital
signal processing engine. Tone control provides bass
and treble adjustment at four selectable corner frequencies. The digital mixer provides independent volume
control for both the ADC output and PCM input signal
paths, as well as a master volume control. Digital volume controls may be configured to change on soft ramp
transitions while the analog controls can be configured
to occur on every zero crossing. The DAC path also includes de-emphasis, limiting functions and a beep
generator delivering tones selectable across a range of
two full octaves.
The Class H stereo headphone amplifier combines the
efficiency of an integrated step-down and invertingcharge pump with the linearity and low EMI of a Class
AB amplifier. A step-down/inverting charge pump operates in two modes: ±VCP mode or ±VCP/2) mode.
Based on the amplifier’s output signal, internal logic automatically adjusts the output of the charge pump,
+VHPFILT and –VHPFILT, to optimize efficiency. With
these features, the amplifier delivers a ground-centered
output with a large signal swing even at low voltages
and eliminates the need for external DC-blocking
capacitors.
These features make the CS42L56 the ideal solution for
portable applications which require extremely low power consumption in a minimal amount of space.
The CS42L56 is available in a 40-pin QFN package for
the Commercial (-40 to +85° C) grade. The CDB42L56
Customer Demonstration board is also available for device evaluation and implementation suggestions.
Please see “Ordering Information” on page 93 for complete details.
4.1.6 Power Management .............................................................................................................. 30
4.2 Analog Inputs .................................................................................................................................. 31
Figure 31.Serial Port Timing in Master Mode ............................................................................................ 48
Figure 32.I²S Format ................................................................................................................................. 49
Figure 33.Left-Justified Format ................................................................................................................. 49
Figure 34.Control Port Timing in SPI Mode .............................................................................................. 53
Figure 35.Control Port Timing, I²C Write ................................................................................................... 54
Figure 36.Control Port Timing, I²C Read ................................................................................................... 54
Figure 37.PGA Step Size vs. Volume Setting ........................................................................................... 88
Figure 38.PGA Output Volume vs. Volume Setting .................................................................................. 88
Figure 39.HP/Line Step Size vs. Volume Setting ...................................................................................... 88
Figure 40.HP/Line Output Volume vs. Volume Setting .............................................................................88
Figure 41.ADC Frequency Response ....................................................................................................... 89
Figure 47.DAC Transition Band ....................................................................................................
Figure 48.DAC Transition Band (Detail) .................................................................................................... 89
CS42L56
......... 89
...
DS851F27
1. PIN DESCRIPTIONS
12
11
13
14
15
16
17
18
19
20
29
30
28
27
26
25
24
23
22
21
39
40
38
37
36
35
34
33
32
31
2
1
3
4
5
6
7
8
9
10
GND/Thermal Pad
VDFILT
VL
SDOUT
MCLK
SDIN
SCLK
-VHPFILT
HPREF
HPOUTB
TSTN
LINEOUTB
VA
AGND
AFILTB
SDA/CDIN
SCL/CCLK
AD0/CS
+VHPFILT
RESET
FLYC
FLYN
FILT+
AIN2A
MICBIAS
AIN1REF/AIN3A
AFILTA
AIN1A
AIN1B
VQ
FLYP
LRCK
VLDO
VCP
HPOUTA
TSTN
LINEOUTA
LINEREF
AIN2B
HPDETECT
AIN2REF/AIN3B
Top-Down (Through-Package) View
40-Pin QFN Package
CS42L56
Pin Name#Pin Description
SDIN1Serial Audio Data Input (Input) - Input for two’s complement serial audio data.
LRCK2
SDA/CDIN
SCL/CCLK
AD0/CS
VCP6Step-Down Charge Pump Power (Input) - Power supply for the step-down charge pump.
FLYP7
+VHPFILT8
FLYC9
FLYN10
8DS851F2
Left Right Clock (Input/Output) - Determines which channel, Left or Right, is currently active on the
serial audio data lines.
SerialControl Data (Input/Output) - SDA is the bidirectional data pin for the I²C control interface.
3
CDIN is the input data pin for the SPI control interface.
Serial Control Port Clock (Input) - Serial clock for the I²C and SPI control interfaces.
4
Chip Address (I²C) / Chip Select (SPI) (Input) - For I²C operation, this pin must remain static high
5
or low. For SPI, CS
Charge Pump Cap Positive Node (Output) - Positive node for the step-down charge pump’s flying
capacitor.
Step-Down Charge Pump Filter Connection (Output) - Power supply from the step-down charge
pump that provides the positive rail for the headphone and line amplifiers
Charge Pump Cap Common Node (Output) - Common positive node for the step-down and invert-
ing charge pumps’ flying capacitors.
Charge Pump Cap Negative Node (Output) - Negative node for the inverting charge pump’s flying
capacitor.
is the chip-select pin.
CS42L56
-VHPFILT11
HPOUTA
HPOUTB
HPREF13
TSTN
LINEOUTA
LINEOUTB
LINEREF18Pseudo Diff. Line Output Reference (Input) - Ground reference for the line amplifiers.
VA20Analog Power (Input) - Power supply for the internal analog section.
AGND21Analog Ground (Input) - Ground reference for the internal analog section.
FILT+22Positive Voltage Reference (Output) - Positive reference voltage for the internal sampling circuits.
VQ23Quiescent Voltage (Output) - Filter connection for the internal quiescent voltage.
AFILTA
AFILTB
MICBIAS
AIN1A
AIN1B
AIN2A
AIN2B
AIN1REF/AIN3A
AIN2REF/AIN3B2831
HPDETECT33
RESET
VLDO35Low Dropout Regulator (LDO) Power (Input) - Power supply for the LDO regulator.
VDFILT36
VL37
SDOUT38Serial Audio Data Output (Output) - Output for two’s complement serial audio data.
MCLK39Master Clock (Input) - Clock source for the delta-sigma modulators.
SCLK40Serial Clock (Input/Output) - Serial clock for the serial audio interface.
GND/
Thermal Pad
Inverting Charge Pump Filter Connection (Output) - Power supply from the inverting charge
pump that provides the negative rail for the headphone and line amplifiers.
1214Headphone Audio Output (Output) - The full-scale output level is specified in “HP Output Charac-
teristics” on page 19.
Pseudo Diff. Headphone Output Reference (Input) - Ground reference for the headphone amplifi-
ers
Test Input (Input) - This pin is an input used for test purposes only and should be tied to ground for
15
normal operation.
16
1719Line Audio Output (Output) - The full-scale output level is specified in “Line Output Characteristics”
on page 20.
24
Antialias Filter Connection (Output) - Antialias filter connection for the ADC inputs.
25
Microphone Bias (Output) - Low noise bias supply for an external microphone. Electrical character-
26
istics are specified in the DC Electrical Characteristics table.
27
29
An
30
page 14.
32
Pseudo Differential Analog Input Reference/Analog Input 3 (Input) - Configurable as the ground
reference for the programmable gain amplifiers (PGA) or as additional analog inputs. The full-scale
level is specified in “Analog Input Characteristics” on page 14.
Headphone Detect (Input) - The HPDETECT circuit can be set to control the power down of the left
and/or right channel of the line and/or headphone outputs as described in “Headphone Power Con-
trol” on page 59 and “Line Power Control” on page 60 and/or cause an interrupt. This pin is
debounced such that the signal must remain stable in the new state for approximately 10 ms before
a change is passed on to the internal HPDETECT circuit.
34Reset (Input) - The device enters a low power mode when this pin is driven low.
Low Dropout Regulator (LDO) Filter Connection (Output) - Power supply from the LDO regulator
that provides the low voltage power to the digital section.
Digital Interface Power (Input) - Determines the required signal level for the serial audio interface
and I²C control port.
-Ground reference for the internal charge pump and digital section; thermal relief pad.
Inputs 1 & 2 (Input) - The full-scale level is specified in “Analog Input Characteristics” on
alog
DS851F29
1.1I/O Pin Characteristics
Input and output levels and associated power supply voltage are shown in the table below. Logic levels
should not exceed the corresponding power supply voltage.
CS42L56
Power
Supply
VL
VAHPDETECTInput--1.8 V - 2.5 V, with Hysteresis
Pin NameI/OInternal
Connections
RESET
SCLInput--1.8 V - 3.3 V, with Hysteresis
SDAInput/Output-CMOS/Open Drain 1.8 V - 3.3 V, with Hysteresis
AD0Input--1.8 V - 3.3 V, with Hysteresis
CCLKInput--1.8 V - 3.3 V, with Hysteresis
CDINInput--1.8 V - 3.3 V, with Hysteresis
CS
MCLKInput--1.8 V - 3.3 V
LRCKInput/Output
SCLKInput/Output
SDOUTOutput
SDINInput--1.8 V - 3.3 V
Input--1.8 V - 3.3 V, with Hysteresis
Input--1.8 V - 3.3 V, with Hysteresis
Weak Pull-up
(~1 M
Weak Pull-up
(~1 M
Weak Pull-up
(~1 M
DriverReceiver
1.8 V - 3.3 V, CMOS1.8 V - 3.3 V
1.8 V - 3.3 V, CMOS1.8 V - 3.3 V
1.8 V - 3.3 V, CMOS-
10DS851F2
2. TYPICAL CONNECTION DIAGRAMS
Note 1
Note 2
2.2 µF
Note 1
Analog
Input 1
Analog
Input 2
1 µF
GND/Thermal Pad
VL
0.1 µF
+1.65 V to +3.63 V
RESET
R
p
LRCK
MCLK
SCLK
2.2 µF
+VHPF ILT
VDFILT
LINEREF
SDIN
SDOUT
1 µF
AIN2REF
AIN1A
1800 pF
1800 pF
100 k
100
AIN1B
*
*
Digital Audio
Processor
AIN2A
1800 pF
1800 pF
AIN2B
*
*
FLYC
FLYN
-VHPFI LT
2. 2 µF
1 µF
1 µF
1 µF
1 µF
100 k
100
100
100
100 k
100 k
2.2 µ F
**
**
VCP
AIN1REF
1 µF
LINEOUTA
LINEOUTB
0.1 µF
VA
+1.65 V to +2.75 V
0.1 µF
VLDO
2.2 µF
VQ
AGND
NPO /C0G dielect ric c apacit ors.
1000 pF
AFILT A
AFILT B
1000 pF
2.2 µF
*
*
HPOUTB
HPOUTA
Headphone Out
Left & Right
33
0.1 µ F
HPDETECT
33
0.1 µ F
47 k
HPREF
FILT+
+1.65 V to +2.75 V
FLYP
2.2 µ F
**
**
**
Note 1
Notes:
1.The headphone amplifier’s output powerand distortion are rated using the nominalcapacitance shown. Largercapacitance
reducesthe ripple on the internal amplifiers’ suppliesand in turn reducesthe amplifier’sdistortion at high outputpower levels. Smaller capacitance maynot sufficiently reduce ripple toachieve the ratedoutputpower and distortion. Since the actualvalue of typical X7R/X5Rceramiccapacitorsdeviates fromthe nominalvalue bya percentagespecified in the manufacturer’s data sheet,capacitors should be selected basedon the minimum outputpower and maximum distortionrequired.
2.The headphone amplifier’s output powerand distortion are rated using the nominalcapacitance shownandusingthe defaultcharge pump switching frequency.The required capacitance follows an inverse relationship withthe charge pump’sswitching frequency.When increasing the switchingfrequency,the capacitance maydecrease;when lowering theswitching frequency,the capacitance must increase.Since the actual value of typicalX7R/X5R ceramic capacitorsdeviatesfrom the nominal valueby a percentage specified in the manufacturer’s datasheet,capacitors should be selected based on the minimum outputpower,maximumdistortion and maximum charge pump switching frequency required.
3.Additional bulkcapacitance may be addedto improve PSRR atlowfrequencies.
4.These capacitors serve asa chargereservoir for the internal switched capacitor ADC modulatorsand should be placed as
close as possible to the inputs.Theyare onlyneeded when the PGA (Programmable Gain Amplifier) isbypassed.
Note 4
Note 3
R
p
*
**
Low ESR, X7R/X5R dielec tric capac itors.
**
**
**
**
**
**
**
**
**
****
**
**
**
562
562
3300 pF
R
ext
R
ext
LPF i s Opti onal
Line Level Out
Left & Right
3300 pF
*
*
SCL\CCLK
SDA\CD IN
AD0\CS
TSTN
TSTN
Figure 1. Typical Connection Diagram - Four Pseudo-Differential Analog Inputs
CS42L56
Notes:
1. The headphone amplifier’s output power and distortion are rated using the nominal capacitance shown. Larger capacitance reduces the ripple on the internal
amplifiers’ supplies and in turn reduces the amplifier’s distortion at high output power levels. Smaller capacitance may not sufficiently reduce ripple to achieve the
rated output power and distortion. Since the actual value of typical X7R/X5R ceramic capacitors deviates from the nominal value by a percentage specified in the
manufacturer’s data sheet, capacitors should be selected based on the minimum output power and maximum distortion required.
2. The headphone amplifier’s output power and distortion are rated using the nominal capacitance shown and using the default charge pump switching frequency.
The required capacitance follows an inverse relationship with the charge pump’s switching frequency. When increasing the switching frequency, the capacitance
may decrease; when lowering the switching frequency, the capacitance must increase. Since the actual value of typical X7R/X5R ceramic capacitors deviates
from the nominal value by a percentage specified in the manufacturer’s data sheet, capacitors should be selected based on the minimum output power, maximum
distortion and maximum charge pump switching frequency required.
3. Additional bulk capacitance may be added to improve PSRR at low frequencies.
4. These capacitors serve as a charge reservoir for the internal switched capacitor ADC modulators and should be placed as close as possible to the inputs. They
are only needed when the PGA (Programmable Gain Amplifier) is bypassed.
CS42L56
DS851F211
CS42L56
2.2 µF
Note 1
**
Note 2
2.2 µF
Note 1
1 µF
GND/Thermal Pad
VL
0.1 µF
+1.65 V to +3.63 V
RESET
R
p
LRCK
MCLK
SCLK
+VHPFILT
VDFILT
LINEREF
SDIN
SDOUT
Digital Audio
Processor
FLYC
FLYN
-VHPFILT
2.2 µF
2.2 µF
**
**
VCP
LINEOUTA
LINEOUTB
0.1 µF
VA
+1.65 V to +2.75 V
0.1 µF
VLDO
2.2 µF
VQ
AGND
NPO/C0G dielectric capacitors.
1000 pF
AFILTAAFILTB
1000 pF
2.2 µF
**
HPOUTB
HPOUTA
Headphone OutLeft &Right
33
0.1 µF
HPDETECT
33
0.1 µF
47 k
HPREF
FILT+
+1.65 V to +2.75V
FLYP
2.2 µF
**
**
Note 1
Notes:
1.The headphone amplifier’s output power and distortion are rated using the nominal capacitance shown.Larger capacitance
reduces the ripple on the internal amplifiers’ supplies and in turn reduces the amplifier’s distortion at high output power levels. Smaller capacitance may not sufficiently reduce ripple to achieve the rated output power and distortion.Since the actual value of typical X7R/X5R ceramic capacitors deviates from the nominal value by a percentage specified in the manufacturer’s data sheet,capacitors should be selected based on the minimum output power and maximum distortion required.
2.The headphone amplifier’s output power and distortion are rated using the nominal capacitance shown and using the defaultcharge pump switching frequency.The required capacitance follows an inverse relationship with the charge pump’s switching frequency.When increasing the switching frequency,the capacitance may decrease; when lowering the switching frequency,the capacitance must increase.Since the actual value of typical X7R/X5R ceramic capacitors deviatesfrom the nominal value by a percentage specified in the manufacturer’s data sheet,capacitors should be selected based on the minimum outputpower,maximum distortion and maximum charge pump switching frequency required.
3.Additional bulk capacitance may be added to improve PSRR at low frequencies.
4.These capacitors serve as a charge reservoir for the internal switched capacitor ADC modulators and should be placed as
close as possible to the inputs. They are only needed when the PGA (Programmable Gain Amplifier)is bypassed.
5.The value of R
L
,a current-limiting resistor used with electret condenser microphones,is dictated by the microphone
cartridge.
6.The negative terminal of the microphone inputs connects to the ground pin of the microphone cartridge.Gain is applied onlyto the positive terminal.
Note 3
R
p
*
Low ESR,X7R/X5R dielectric capacitors.
**
**
**
**
****
**
**
**
562
562
3300 pF
R
ext
R
ext
LPF is Optional
Line Level OutLeft & Right
3300 pF
*
*
SCL\CCLK
SDA\CDIN
MICBIAS
R
L
1 µF
AIN1A
AIN1REF
1 µF
1 µF
Note 5
Note 6
Microphone 1
Microphone 2
R
L
AIN1B
Note 5
Left Analog Input 2
AIN2A
1800 pF
1800 pF
100 k
100
AIN2B
*
*
1 µF
1 µF
100 k
100
Note 4
**
**
Analog Input 3
AIN3B
1800 pF
100 k
100
*
1 µF
Note 4
**
Right Analog Input 2
AD0\CS
TSTN
TSTN
1 µF
Figure 2. Typical Connection Diagram - Two Pseudo-Differential / Three Single-Ended Analog Inputs
CS42L56
Note 1
Note 2
2.2 µF
Note 1
Analog
Input 1
Analog
Input 2
1 µF
GND/Thermal Pad
VL
0.1 µF
+1.65 V to +3.63 V
RESET
R
p
LRCK
MCLK
SCLK
2.2 µF
+VHPF ILT
VDFILT
LINEREF
SDIN
SDOUT
1 µF
AIN2REF
AIN1A
1800 pF
1800 pF
100 k
100
AIN1B
*
*
Digital Audio
Processor
AIN2A
1800 pF
1800 pF
AIN2B
*
*
FLYC
FLYN
-VHPFI LT
2. 2 µF
1 µF
1 µF
1 µF
1 µF
100 k
100
100
100
100 k
100 k
2.2 µ F
**
**
VCP
AIN1REF
1 µF
LINEOUTA
LINEOUTB
0.1 µF
VA
+1.65 V to +2.75 V
0.1 µF
VLDO
2.2 µF
VQ
AGND
NPO /C0G dielect ric c apacit ors.
1000 pF
AFILT A
AFILT B
1000 pF
2.2 µF
*
*
HPOUTB
HPOUTA
Headphone Out
Left & Right
33
0.1 µ F
HPDETECT
33
0.1 µ F
47 k
HPREF
FILT+
+1.65 V to +2.75 V
FLYP
2.2 µ F
**
**
**
Note 1
Notes:
1.The headphone amplifier’s output powerand distortion are rated using the nominalcapacitance shown. Largercapacitance
reducesthe ripple on the internal amplifiers’ suppliesand in turn reducesthe amplifier’sdistortion at high outputpower levels. Smaller capacitance maynot sufficiently reduce ripple toachieve the ratedoutputpower and distortion. Since the actualvalue of typical X7R/X5Rceramiccapacitorsdeviates fromthe nominalvalue bya percentagespecified in the manufacturer’s data sheet,capacitors should be selected basedon the minimum outputpower and maximum distortionrequired.
2.The headphone amplifier’s output powerand distortion are rated using the nominalcapacitance shownandusingthe defaultcharge pump switching frequency.The required capacitance follows an inverse relationship withthe charge pump’sswitching frequency.When increasing the switchingfrequency,the capacitance maydecrease;when lowering theswitching frequency,the capacitance must increase.Since the actual value of typicalX7R/X5R ceramic capacitorsdeviatesfrom the nominal valueby a percentage specified in the manufacturer’s datasheet,capacitors should be selected based on the minimum outputpower,maximumdistortion and maximum charge pump switching frequency required.
3.Additional bulkcapacitance may be addedto improve PSRR atlowfrequencies.
4.These capacitors serve asa chargereservoir for the internal switched capacitor ADC modulatorsand should be placed as
close as possible to the inputs.Theyare onlyneeded when the PGA (Programmable Gain Amplifier) isbypassed.
Note 4
Note 3
R
p
*
**
Low ESR, X7R/X5R dielec tric capac itors.
**
**
**
**
**
**
**
**
**
****
**
**
**
562
562
3300 pF
R
ext
R
ext
LPF i s Opti onal
Line Level Out
Left & Right
3300 pF
*
*
SCL\CCLK
SDA\CD IN
AD0\CS
TSTN
TSTN
Notes:
1. The headphone amplifier’s output power and distortion are rated using the nominal capacitance shown. Larger capacitance reduces the ripple on the internal
amplifiers’ supplies and in turn reduces the amplifier’s distortion at high output power levels. Smaller capacitance may not sufficiently reduce ripple to achieve the
rated output power and distortion. Since the actual value of typical X7R/X5R ceramic capacitors deviates from the nominal value by a percentage specified in the
manufacturer’s data sheet, capacitors should be selected based on the minimum output power and maximum distortion required.
2. The headphone amplifier’s output power and distortion are rated using the nominal capacitance shown and using the default charge pump switching frequency.
The required capacitance follows an inverse relationship with the charge pump’s switching frequency. When increasing the switching frequency, the capacitance
may decrease; when lowering the switching frequency, the capacitance must increase. Since the actual value of typical X7R/X5R ceramic capacitors deviates
from the nominal value by a percentage specified in the manufacturer’s data sheet, capacitors should be selected based on the minimum output power, maximum
distortion and maximum charge pump switching frequency required.
3. Additional bulk capacitance may be added to improve PSRR at low frequencies.
4. These capacitors serve as a charge reservoir for the internal switched capacitor ADC modulators and should be placed as close as possible to the inputs. They
are only needed when the PGA (Programmable Gain Amplifier) is bypassed.
5. The value of R
L
, a current-limiting resistor used with electret condenser microphones, is dictated by the microphone cartridge.
6. The negative terminal of the microphone inputs connects to the ground pin of the microphone cartridge. Gain is applied only to the positive terminal.
12DS851F2
CS42L56
Note 1
Note 2
2.2 µF
Note 1
1 µF
GND/Thermal Pad
VL
0.1 µF
+1.65 V to +3.63 V
RESET
R
p
LRCK
MCLK
SCLK
2.2 µF
+VHPFI LT
VDFI LT
LINEREF
SDIN
SDOUT
AIN1A
1800 pF
1800 pF
100 k
100
AIN1B
*
*
Digital Audio
Processor
FLYC
FLYN
-VHP FILT
2.2 µ F
1 µF
1 µF
100 k
100
2.2 µF
**
**
VCP
LINEOUTA
LINEOUTB
0.1 µF
VA
+1.65 V to +2.75 V
0.1 µF
VLDO
2.2 µ F
VQ
AGND
NPO /C0G dielectric c apacitors.
1000 pF
AFILT A
AFILT B
1000 pF
2.2 µF
**
HPOUTB
HPOUTA
Headphone Out
Left & R ight
33
0.1 µF
HPDETECT
33
0.1 µF
47 k
HPREF
FILT+
+1.65 V to +2.75 V
FLYP
2.2 µF
**
**
**
Note 1
Notes:
1.The headphone amplifier’s output power and distortion are rated using the nominal capacitance shown.Larger capacitance
reduces the ripple onthe internal amplifiers’ suppliesand in turn reduces the amplifier’s distortionat high outputpower levels. Smaller capacitance may not sufficientlyreduce ripple to achieve the rated output power and distortion.Since the actual value of typical X7R/X5R ceramic capacitors deviates from the nominal value by a percentage specified in the manufacturer’sdata sheet,capacitors should be selected based on the minimum output power and maximumdistortion required.
2.The headphone amplifier’s output power and distortion are rated using the nominal capacitance shown and using the defaultcharge pumpswitching frequency.The required capacitance follows an inverse relationship with the charge pump’s switching frequency.When increasing the switching frequency,the capacitance may decrease; when lowering the switching frequency,the capacitance must increase.Since the actual value of typical X7R/X5R ceramic capacitors deviates from the nominal value by a percentage specified in the manufacturer’s data sheet,capacitors should be selected based on the minimum outputpower,maximum distortion and maximum chargepump switching frequency required.
3.Additional bulk capacitance may be added to improve PSRR at low frequencies.
4.These capacitors serve as a charge reservoir for the internal switched capacitor ADC modulatorsand should be placed as
close as possible to theinputs. They are only needed when the PGA (Programmable Gain Amplifier)is bypassed.
5.The value of R
L
,a current-limiting resistor used with electret condenser microphones,is dictated by the microphone
cartridge.
6.The negative terminal ofthe microphone inputsconnects to the ground pin of the microphone cartridge.Gain is applied onlyto the positive terminal.
Note 4
Note 3
R
p
*
Low ESR, X7R/X5R dielectric capacit ors.
**
**
**
**
**
**
****
**
**
**
562
562
3300 pF
R
ext
R
ext
LPF is Optional
Line Level Out
Left & Right
3300 pF
*
*
SCL\CCLK
SDA\CDIN
AD0\CS
AIN2A
1800 pF
1800 pF
100 k
100
AIN2B
*
*
1 µF
1 µF
100 k
100
Note 4
**
**
Microphone 1
MICBIAS
R
L
1 µF
AIN3A
AIN3B
Microphone 2
R
L
1 µF
1 µF
Note 5
Note 6
Left Analog
Input 1
Right Analog
Input 1
Left Analog
Input 2
Right Analog
Input 2
TSTN
TSTN
Figure 3. Typical Connection Diagram - Six Single-Ended Analog Inputs
CS42L56
Notes:
1. The headphone amplifier’s output power and distortion are rated using the nominal capacitance shown. Larger capacitance reduces the ripple on the internal
amplifiers’ supplies and in turn reduces the amplifier’s distortion at high output power levels. Smaller capacitance may not sufficiently reduce ripple to achieve the
rated output power and distortion. Since the actual value of typical X7R/X5R ceramic capacitors deviates from the nominal value by a percentage specified in the
manufacturer’s data sheet, capacitors should be selected based on the minimum output power and maximum distortion required.
2. The headphone amplifier’s output power and distortion are rated using the nominal capacitance shown and using the default charge pump switching frequency.
The required capacitance follows an inverse relationship with the charge pump’s switching frequency. When increasing the switching frequency, the capacitance
may decrease; when lowering the switching frequency, the capacitance must increase. Since the actual value of typical X7R/X5R ceramic capacitors deviates
from the nominal value by a percentage specified in the manufacturer’s data sheet, capacitors should be selected based on the minimum output power, maximum
distortion and maximum charge pump switching frequency required.
3. Additional bulk capacitance may be added to improve PSRR at low frequencies.
4. These capacitors serve as a charge reservoir for the internal switched capacitor ADC modulators and should be placed as close as possible to the inputs. They
are only needed when the PGA (Programmable Gain Amplifier) is bypassed.
5. The value of R
L
, a current-limiting resistor used with electret condenser microphones, is dictated by the microphone cartridge.
6. The negative terminal of the microphone inputs connects to the ground pin of the microphone cartridge. Gain is applied only to the positive terminal.
DS851F213
CS42L56
3. CHARACTERISTIC AND SPECIFICATION TABLES
RECOMMENDED OPERATING CONDITIONS
GND = AGND = 0 V; all voltages with respect to ground.
ParametersSymbol Min MaxUnits
DC Power Supply
Analog(Note 1)VA1.622.75V
Charge Pump(Note 1)VCP1.62VAV
LDO Regulator for DigitalVLDO 1.622.75V
Serial/Control Port InterfaceVL1.623.63V
Ambient TemperatureCommercial - CNZT
A
-40+85C
ABSOLUTE MAXIMUM RATINGS
GND = AGND = 0 V; all voltages with respect to ground.
ParametersSymbolMinMaxUnits
DC Power SupplyAnalog, Charge Pump, LDO
Serial/Control Port Interface
Input Current(Note 2)I
External Voltage Applied to Analog Input(Note 3)
External Voltage Applied to Analog Output(Note 4)
External Voltage Applied to Digital Input(Note 3)V
Ambient Operating Temperature (power applied)T
Storage TemperatureT
WARNING: Operation at or beyond these limits may result in permanent damage to the device. Normal operation
is not guaranteed at these extremes.
VA, VCP, VLDO
VL
in
V
IN
V
IN
IND
A
stg
-0.3
-0.3
-±10mA
AGND-0.3VA+0.3
-VHPFILT - 0.3+VHPFILT + 0.3
-0.3VL+ 0.3V
-50+115°C
-65+150°C
3.0
4.0
V
V
V
V
Notes:
1. Due to the existence of parasitic body diodes between VCP and VA, current flows from VCP to VA whenever the VA power supply is lower than VCP. This causes a “back-powering” effect on the VA power
supply rails internal to the part; therefore, VA should be maintained at an equal or greater voltage than
VCP at all times. While “back-powering” does not have any adverse effects on device operation with
respect to performance and reliability, it does lead to extra power consumption and therefore should be
avoided.
2. Any pin except supplies. Transient currents of up to ±100 mA on the analog input pins will not cause
SCR latch-up.
3. The maximum over/under voltage is limited by the input current.
4. VHPFILT is specified in “DC Characteristics” on page 27.
ANALOG INPUT CHARACTERISTICS
Test Conditions (unless otherwise specified): Connections to the CS42L56 are shown in the “Typical Connection Diagrams” on
page 11; Input test signal is a 1 kHz sine wave through the passive input filter, PGA = 0 dB; All Supplies = VA;
GND = AGND = 0 V; T
nal path is AINxx to SDOUT.
Parameter
Analog In to ADC (PGA bypassed)
=+25C; Measurement bandwidth is 20 Hz to 20 kHz; Sample Frequency = 48 kHz. Measurement sig-
A
VA = 2.5 VVA = 1.8 V
MinTypMaxMinTypMaxUnit
14DS851F2
CS42L56
ANALOG INPUT CHARACTERISTICS (CONTINUED)
Test Conditions (unless otherwise specified): Connections to the CS42L56 are shown in the “Typical Connection Diagrams” on
page 11; Input test signal is a 1 kHz sine wave through the passive input filter, PGA = 0 dB; All Supplies = VA;
GND = AGND = 0 V; T
nal path is AINxx to SDOUT.
Dynamic Range A-weighted
Total Harmonic Distortion + Noise-1 dBFS
Analog In to PGA to ADC, PREAMPx[1:0]=00 (0 dB Gain + PGA Setting)
Dynamic Range
PGA Setting: 0 dBA-weighted
PGA Setting: +12 dBA-weighted
Total Harmonic Distortion + Noise
PGA Setting: 0 dB-1 dBFS
PGA Setting: +12 dB -1 dBFS--83-77--81-75dB
Common Mode Rejection (Note 5)-66- -66-dB
Analog In to PGA to ADC, PREAMPx[1:0]=01 (+10 dB Gain + PGA Setting)
Dynamic Range
PGA Setting: 0 dBA-weighted
PGA Settin
Total Harmonic Distortion + Noise
PGA Setting: 0 dB -1 dBFS--77---77-dB
PGA Setting: +12 dB -1 dBFS--64---64-dB
Common Mode Rejection (Note 5)-66- -66-dB
Analog In to PGA to ADC, PREAMPx[1:0]=10 (+20 dB Gain + PGA Setting)
Dynamic Range
PGA Setting: 0 dBA-weighted
PGA Setting: +12 dBA-weighted
Total Harmonic Distortion + Noise
PGA Setting: 0 dB -1 dBFS--71---71-dB
PGA Setting: +12 dB -1 dBFS--63---63-dB
Common Mode Rejection (Note 5)-58- -58-dB
DC Accuracy
Interchannel Gain Mismatch-0.2--0.2-dB
Gain Drift-±100--±100-ppm/°C
Offset Error(Note 6)-352- -352-LSB
Input
Interchannel Isolation (1 kHz) (Note 7)-90- -90-dB
HP Amp to Analog Input IsolationR
Full-scale Input VoltageADC
+12 dBA-weighted
g:
=+25C; Measurement bandwidth is 20 Hz to 20 kHz; Sample Frequency = 48 kHz. Measurement sig-
A
unweighted8986
-20 dBFS
-60 dBFS
unweighted8885
unweighted8178
-60 dBFS
unweighted
unweighted
unweighted
unweighted
= 3 k
L
= 16
R
L
PGA (-1.5 dB)
PGA (0 dB)
PGA (+12 dB)
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
0.76•VA
0.78•VA
95
92
-85
-72
-32
94
91
87
84
-87
-31
91
88
81
78
85
82
73
70
90
83
0.80•VA
0.95•VA
0.82•VA
0.198•VA
-
-
-79
-
-26
-
-
-
-
-81
-25
-
-
-
-
-
-
-
-
-
-
0.84•VA
0.86•VA
86
83
-
-
-
85
82
78
75
-
-
-
-
-
-
-
-
-
-
-
-
0.76•VA
0.78•VA
92
89
-85
-69
-29
91
88
84
81
-85
-28
88
86
78
75
82
79
70
67
90
83
0.80•VA
0.95•VA
0.82•VA
0.198•VA
-
-
-79
-
-23
-
-
-
-
-79
-22
-
-
-
-
-
-
-
-
-
-
0.84•VA
0.86•VA
dB
dB
dB
dB
dB
dB
dB
dB
dB
dB
dB
dB
dB
dB
dB
dB
dB
dB
dB
dB
dB
Vpp
Vpp
Vpp
DS851F215
CS42L56
100 mVPP,
25 Hz
100
1 F
AINxA
AINxREF
Figure 4. CMRR Test Configuration
1 µF
AINxx
AINxREF
1 µF
300 mV
PP,
1 kHz
100
Figure 5. AINxREF Input Voltage Test Configuration
ANALOG INPUT CHARACTERISTICS (CONTINUED)
Test Conditions (unless otherwise specified): Connections to the CS42L56 are shown in the “Typical Connection Diagrams” on
page 11; Input test signal is a 1 kHz sine wave through the passive input filter, PGA = 0 dB; All Supplies = VA;
GND = AGND = 0 V; TA=+25C; Measurement bandwidth is 20 Hz to 20 kHz; Sample Frequency = 48 kHz. Measurement sig-
nal path is AINxx to SDOUT.
DC Voltage at Analog Input (Pin Floating)-VA/2--VA/2-V
0.78•VA
Notes:
5. See Figure 4.
6. SDOUT Code with HPFx=1 and HPFRZx=0.
7. See “Parameter Definitions” on page 91.
8. The full scale input voltage values given in the table refers to the maximum voltage difference between
the AINxx and AINxREF pins. Providing an input signal at these pins that exceeds the full scale input
voltage may result in clipping the analog input.
9. Measured between AINxx and AGND.
10. Providing a signal level higher than 300 mVpp on the AINxREF pin may degrade the PGA linearity and
adversely affect analog input performance. See Figure 5.
-
-
-
-
-
-
-
-
-
-
0.80•VA
0.95•VA
0.82•VA
0.198•VA
0.259•VA
0.082•VA
0.064•VA
0.020•VA
60
40
12.65
4
0.84•VA
-
0.86•VA
-
-
-
-
-
-
-
-
-
0.76•VA
-
0.78•VA
-
-
-
-
-
-
-
-
-
0.80•VA
0.95•VA
0.82•VA
0.198•VA
0.259•VA
0.082•VA
0.064•VA
0.020•VA
60
40
12.65
4
0.84•VA
-
0.86•VA
-
-
-
-
-
-
-
-
-
Vpp
Vpp
Vpp
Vpp
Vpp
Vpp
Vpp
Vpp
k
k
k
k
16DS851F2
CS42L56
ADC DIGITAL FILTER CHARACTERISTICS
Parameter (Note 11)MinTypMaxUnit
Frequency Response (20 Hz to 20 kHz)-0.07-+0.02dB
Passband to -0.05 dB corner
to -3 dB corner-Stopband0.52--Fs
Stopband Attenuation33--dB
Total Group Delay-4.3/Fs-s
Interchannel Gain Mismatch(Note 17)
Output OffsetMute
(Note 17)0 dB Analog Gain
Gain Drift(Note 17)
Load Resistance (R
Load Capacitance (C
) (Note 17)
L
) (Note 17)
L
MinTypMaxMinTypMaxUnit
92
89
-
-
-
-
-
-
-
-
1.56•VA 1.64•VA 1.73•VA 1.56•VA 1.64•VA 1.73•VAV
89
86
-
-
--75-69--75-69dB
0.76•VA 0.82•VA 0.88•VA 0.76•VA 0.82•VA 0.88•VAV
-32- -17-mW
-
-
-0.10.28-0.10.28dB
-
-
-±100--±100-ppm/°C
16--16--
--150--150pF
98
95
96
94
-84
-75
-35
-82
-74
-34
95
92
93
90
90
90
0.5
3.9
±15.1
= 10 k CL=150 pFfor a line load,
L
-
-
-
-
-78
-
-30
-
-
-
-
-
-
-
-
-
1.0
90
87
88
85
96
93
-
-
-
-
-
-
-
-
-
-
-
-
-
-
94
92
-85
-73
-33
-83
-72
-32
94
91
92
89
90
90
0.5
3.1
-
-
-
-
-79
-
-28
-
-
-
-
-
-
-
-
-
1.0
±11.4
dB
dB
dB
dB
dB
dB
dB
dB
dB
dB
PP
dB
dB
dB
dB
PP
dB
dB
mV
mV
18DS851F2
CS42L56
LINE OUTPUT CHARACTERISTICS
Test conditions (unless otherwise specified): Connections to the CS42L56 are shown in the “Typical Connection Diagrams” on
page 11; Input test signal is a full-scale 997 Hz sine wave; All Supplies = VA, VCP Mode; GND = AGND = 0 V; TA = +25C;
Measurement bandwidth is 20 Hz to 20 kHz; Sample Frequency = 48 kHz; Test load R
page 21); Measurement signal path is SDIN to LINEOUTx.
VA = 2.5 VVA = 1 . 8 V
Parameter (Note 15)
(+2 dB Analog Gain) (Note 14)
Dynamic Range
18 to 24-BitA-weighted
unweighted
16-BitA-weighted
unweighted
Total Harmonic Distortion + Noise(Note 16)
18 to 24-Bit0 dB
-20 dB
-60 dB
16-Bit0 dB
-20 dB
-60 dB
Full-scale Output Voltage (Note 17)
Other Characteristics
Interchannel Isolation (Note 17)
Interchannel Gain Mismatch(Note 17)
Output OffsetMute
(Note 17)0dB Analog Gain
Gain Drift(Note 17)
Output Impedance
Load Resistance (R
Load Capacitance (CL) (Note 17)
) (Note 17)
L
MinTypMaxMinTypMaxUnit
93
90
-
-
-
-
-
-
-
-
1.50•VA 1.58•VA 1.71•VA 1.50•VA 1.58•VA 1.71•VAV
-90- -90-dB
-0.10.32-0.10.32dB
-
-
-±100- -±100-ppm/°C
-100- -100-
10--10--k
--150--150pF
99
96
96
94
-84
-76
-36
-82
-74
-34
0.5
3.6
= 10 k CL = 150 pF (see Figure 6 on
L
-
-
-
-
-78
-
-30
-
-
-
1.0
±14.6
91
88
97
94
-
-
-
-
-
-
-
-
-
-
94
92
-86
-74
-34
-84
-72
-32
0.5
2.8
-80
-28
1.0
±10.6
-
-
-
-
-
-
-
-
dB
dB
dB
dB
dB
dB
dB
dB
dB
dB
PP
mV
mV
Notes:
14. The analog gain setting (“Headphone Volume Control” on page 84 or “Line Volume Control” on
page 84) must be configured as indicated to achieve the specified output characteristics.
15. One LSB of triangular PDF dither is added to data.
16. VCP settings lower than VA reduces the headroom of the headphone amplifier. As a result, the specified THD+N performance at full-scale output voltage and power may not be achieved.
17. See Figure 6 and Figure 7. Refer to “Parameter Definitions” on page 91.
18. Response is clock dependent and will scale with Fs. Note that the response plots (Figures 45 to Note 48
on page 90) have been normalized to Fs and can be denormalized by multiplying the X-axis scale by Fs.
19. Measurement bandwidth is from Stopband to 3 Fs.
DS851F219
CS42L56
Figure 6. HP Output Test Configuration
Test Load
HPOUTx
GND/A GND
C
L
0.1 µF
33
HPREF
R
L
Measurement
Device
-
+
Symbolized component values are specified in table “HP
Output Characteristics” on page 19
Test Load
LINEOUTx
GND/A GND
C
L
LINERE F
R
L
Measurement
Device
-
+
Figure 7. Line Output Test Configuration
Symbolized component values are specified in table “Line
Output Characteristics” on page 20
20DS851F2
CS42L56
ANALOG PASSTHROUGH CHARACTERISTICS
Test Conditions (unless otherwise specified): Connections to the CS42L56 are shown in the “Typical Connection Diagrams” on
page 11; Input test signal is a 1 kHz sine wave through the passive input filter shown in Figure 1, PGA and HP/Line gain = 0 dB;
All Supplies = VA, VCP Mode; GND = AGND = 0 V; T
quency = 48 kHz; Measurement signal path is AINxx to HPOUTx or LINEOUTx.
Parameter
Analog In to HP Amp (ADC is powered down)
R
= 10 k(+2 dB Output Analog Gain) (Note 14)
L
Dynamic Range A-weighted
Total Harmonic Distortion + Noise (Note 16)
Full-scale Input Voltage(Note 8)-0.80•VA--0.80•VA-Vpp
Full-scale Output Voltage(Note 17)-0.93•VA--0.93•VA-Vpp
Frequency Response-0/-0.3--0/-0.3-dB
= 16 (-4 dB Output Analog Gain) (Note 14)
R
L
Dynamic Range A-weighted
Total Harmonic Distortion + Noise(Note 16)
-20 dB
Full-scale Input Voltage(Note 8)-0.80•VA--0.80•VA-Vpp
Output Power (Note 16)-12- -6.5-mW
Frequency Response-0/-0.3--0/-0.3-dB
Analog In to Line Amp (ADC is powered down)
= 10 k(+2 dB Output Analog Gain) (Note 14)
R
L
Dynamic RangeA-weighted
Total Harmonic Distortion + Noise(Note 16)
Full-scale Input Voltage(Note 8)-0.80•VA--0.80•VA-Vpp
Full-scale Output Voltage(Note 17)-0.89•VA--0.89•VA-Vpp
Frequency Response-0/-0.3--0/-0.3-dB
= +25C; Measurement bandwidth is 20 Hz to 20 kHz; Sample Fre-
A
VA = 2.5 VVA = 1.8 V
MinTypMaxMinTypMaxUnit
unweighted--
-1 dB
-20 dB
-60 dB
unweighted--
-1 dB
-60 dB
unweighted--
-1 dB
-20 dB
-60 dB
94
91
-
-
-
-
-
-
-
-
-
-70
-71
-31
94
91
-70
-71
-31
94
91
-70
-71
-31
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
91
88
-80
-68
-28
91
88
-80
-68
-28
91
88
-80
-68
-28
-
dB
-
dB
-
dB
-
dB
-
dB
-
dB
-
dB
-
dB
-
dB
-
dB
-
dB
-
dB
-
dB
-
dB
-
dB
COMBINED DAC INTERPOLATION & ON-CHIP ANALOG FILTER RESPONSE
Parameter (Note 18)MinTypMaxUnit
Frequency Response 20 Hz to 20 kHzFs = 48.000 kHz
Fs = 44.118 kHz
Passbandto -0.05 dB corner
to -3 dB corner
Stopband0.55--Fs
Stopband Attenuation(Note 19)49--dB
Total Group Delay-6.5/Fs-s
De-emphasis ErrorFs = 44.118 kHz--+0.05/-0.25dB
DS851F221
-0.007
-0.081
-
-
-
-
0.48
0.49
+0.007
+0.081
-
-
dB
dB
Fs
Fs
CS42L56
Figure 8. Serial Port Timing (Slave Mode)Figure 9. Serial Port Timing (Master Mode)
24. Data must be held for sufficient time to bridge the transition time of CCLK.
25. For f
<1 MHz.
sck
f
t
t
t
t
t
sck
srs
css
csh
t
sch
dsu
t
t
t
scl
dh
20-ns
20-ns
1.0-s
66-ns
66-ns
40-ns
15-ns
r2
f2
CS42L56
06.0MHz
-100ns
-100ns
24DS851F2
CS42L56
ANALOG OUTPUT ATTENUATION CHARACTERISTICS
Test Conditions (unless otherwise specified): Connections to the CS42L56 are shown in the “Typical Connection Diagrams” on
page 11; GND = AGND = 0 V. Attenuation is referenced to the full-scale voltage for the given output. Test load RL = 3 k
= 150 pFfor a line load, and test load RL=16 CL = 150 pF for a headphone load (See Figure 6 and Figure 7 on page 21).
C
L
Power Status
Parameters
Headphone Mute Attenuation (HPxMUTE=1) (Note 26)
Line Mute Attenuation (LINExMUTE=1) (Note 26)
Notes:
26. Assumes no external impedance on HPREF or LINEREF. External impedance on HPREF or LINEREF
will impact the attenuation.
HeadphoneLine
OFF
OFF
ON
ON
OFF
OFF
ON
ON
OFF
ON
OFF
ON
OFF
ON
OFF
ON
MinTypMaxUnits
-
-
-
-
-
-
-
-
90
90
90
90
90
90
90
90
-
-
-
-
-
-
-
-
dB
dB
dB
dB
dB
dB
dB
dB
DS851F225
CS42L56
DC CHARACTERISTICS
Test Conditions (unless otherwise specified): Connections to the CS42L56 are shown in the “Typical Connection Diagrams” on
page 11; GND = AGND = 0 V; all voltages with respect to ground.
ParametersMinTypMaxUnits
VHPFILT Characteristics (Note 27)
VCP Mode+VHPFILT
-VHPFILT
VCP/2 Mode+VHPFILT
-VHPFILT
MIC BIAS Characteristics
Nominal VoltageBIAS_LVL[1:0] = 00
BIAS_LVL[1:0] = 01
BIAS_LVL[1:0] = 10
BIAS_LVL[1:0] = 11
DC Output Current (Note 28)--1.22mA
Power Supply Rejection Ratio (PSRR) @ 1 kHzBIAS_LVL[1:0] = 00
BIAS_LVL[1:0] = 01
BIAS_LVL[1:0] = 10
BIAS_LVL[1:0] = 11
Misc. DC Filter Characteristics
FILT+
VQ
VDFILT
Power Supply Rejection Ratio (PSRR) Characteristics
PSRR with 100 mVpp, 1 kHz signal (Note 29)PGA to ADC
PGA (Pseudo Differential) to ADC
ADC
PGA to HP & Line Amps
PGA (Pseudo Differential) to HP & Line Amps
DAC to HP & Line Amps
P
SRR with 100 mVpp, 60 Hz signal (Notes 29, 30)PGA to ADC
ADC
PGA to HP & Line Amps
DAC to HP & Line Amps
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
VCP
-VCP
VCP/2
-VCP/2
0.9•VA
0.8•VA
0.7•VA
0.6•VA
45
50
50
50
VA
VA/ 2
0.9
47
58
57
44
54
56
35
25
50
60
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
V
V
V
V
V
V
V
V
dB
dB
dB
dB
V
V
V
dB
dB
dB
dB
dB
dB
dB
dB
dB
dB
Notes:
27. No load connected to HPOUTx and LINEOUTx.
28. VA = 2.71 V, BIAS_LVL[1:0] = 00, total equivalent external impedance to ground = 2 k.
29. Valid with the recommended capacitor values on FILT+ and VQ, no load on HP and Line. Increasing
the capacitance on FILT+ and VQ will also increase the PSRR.
30. The PGA is biased with VQ, created by a resistor divider from the VA supply. Increasing the capacitance
on FILT+ and VQ will also increase the PSRR at low frequencies. A 10 µF capacitor on VQ improves
the PSRR to 42 dB.
26DS851F2
CS42L56
VCP
GND/AGND
Voltmeter
-
+
1
Power Supply
-
+
1
-
+
1
-
+
1
VA
VLDO
VL
2.2 µF
0.1 µF
0.1 µF
0.1 µF
Note: Current is derived from the voltage drop across
a 1 resistor in series with each supply input.
Figure 12. Power Consumption Test Configuration
DIGITAL INTERFACE SPECIFICATIONS & CHARACTERISTICS
31. See “I/O Pin Characteristics” on page 10 for serial and control port power rails.
-±10A
VL - 0.2-V
-0.2V
0.83•VL
0.76•VL
0.68•VL
0.65•VL
-
V
-
-
-
-0.30•VLV
0.65•VA-V
-0.35•VAV
DS851F227
POWER CONSUMPTION - ALL SUPPLIES = 1.8 V
Power Ctl. RegistersADC, Line, HP
Sel. Registers
Operation Test Conditions (unless otherwise
specified): All zeros input,
slave mode, sample rate =
48 kHz; No load. Refer to
Figure 12 on page 28.
1
Off (Note 32)
Standby (Note 33) MCLKDIS=1
2
MCLKDIS=0
(Note 34) MCLKDIS=x
Mono Record (Note 35) ADC
3
PGA to ADC
Stereo Record (Note 35) ADC
4
PGA to ADC
Mono Play to HPNo Effects
5
Mono Play to Line No Effects
6
Stereo Play to HPNo Effects
7
Stereo Play to Line No Effects
8
Stereo Passthrough to HP
9
Stereo Passthrough to Line
10
Mono Rec. & Play No Effects
11
PGA In, HP Out
Stereo Rec. & Play No Effects
12
PGA In, HP Out
Stereo Play to HPNo Effects
13
16 load (Note 36)
02h
page 58
PDN_CHRG
PDN_ADCB
03h page 5908h page 74
PDN_ADCA
PDN
PDN_HPB[1:0]
PDN_HPA[1:0]
PDN_LINB[1:0]
PDN_LINA[1:0]
ADCBMUX[1:0]
ADCAMUX[1:0]
xxxxx x x x x x xxxxx
xxx1x x x x x x xxxxx
xxx1x x x x x x xxxxx
xxx1x x x x x x xxxxx
010011111111xx01xxxxx
010011111111xx00xxxxx
0000111111110101xxxxx
0000111111110000xxxxx
111011101111xxxxxxx01
Effects
111011101111xxxxxxx00
111011111110xxxxx0xx1
Effects
111011111110xxxxx0xx0
111010101111xxxxxx001
Effects
111010101111xxxxxx000
111011111010xxxx00xx1
Effects
111011111010xxxx00xx0
011010101111xxxxxx11x
011011111010xxxx11xxx
010011101111xx00xxx01
010011101111xx00xxx00
Effects
0000101011110000xx001
Effects
0000101011110000xx000
111010101111xxxxxx001
LINEBMUX
LINEAMUX
HPBMUX
HPAMUX
CS42L56
Typical Current (mA)
i
VCPiVAiVLDOiVL
Class
H
Mode
page
63
PDN_DSP - 0Fh page 66
-0.001 0.001 0.007 0.0020.02
-0.001 0.001 0.053 0.0070.11
-0.001 0.010 0.292 0.0070.56
-0.001 0.001 0.020 0.0010.04
-0.001 0.915 0.671 0.0182.89
-0.001 1.056 0.672 0.0173.14
-0.001 1.207 0.824 0.0233.70
-0.002 1.469 0.826 0.0224.17
VCP/2
0.407 1.100 0.718 0.0074.02
VCP
0.949 1.107 0.718 0.0075.01
VCP/2
0.407 1.100 1.050 0.0074.62
VCP
0.948 1.107 1.050 0.0075.60
VCP/2
0.392 1.101 0.719 0.0073.99
VCP
0.844 1.107 0.717 0.0074.82
VCP/2
0.392 1.101 1.046 0.0074.58
VCP
0.844 1.107 1.046 0.0075.41
VCP/2
0.604 1.587 0.720 0.0075.25
VCP
1.420 1.594 0.717 0.0076.73
VCP/2
0.604 1.587 1.090 0.0075.92
VCP
1.419 1.594 1.090 0.0077.40
VCP/2
0.570 1.589 0.718 0.0075.19
VCP
1.205 1.597 0.719 0.0076.35
VCP/2
0.570 1.589 1.089 0.0075.86
VCP
1.205 1.597 1.088 0.0077.01
VCP/2
0.565 1.180 0.213 0.0073.54
VCP
1.198 1.188 0.213 0.0074.69
VCP/2
0.571 1.183 0.213 0.0073.55
VCP
1.205 1.190 0.213 0.0074.71
VCP/2
0.408 1.921 1.084 0.0186.18
VCP
0.950 1.928 1.089 0.0187.17
VCP/2
0.408 1.921 1.415 0.0186.77
VCP
0.952 1.928 1.412 0.0187.76
VCP/2
0.604 2.820 1.239 0.0238.43
VCP
1.422 2.827 1.240 0.0239.92
VCP/2
0.604 2.820 1.613 0.0239.11
VCP
1.424 2.827 1.612 0.02310.59
VCP/2
2.725 1.579 0.737 0.0089.09
Tota l
Power
(mW)
28DS851F2
Loading...
+ 64 hidden pages
You need points to download manuals.
1 point = 1 manual.
You can buy points or you can get point for every manual you upload.