Brooks Instrument 5866M User Manual

Page 1
Installation and Operation Manual
X-PR-5866E-5866M-eng PN 541-C-005-AAA April, 2008
Brooks® Compact Pressure Controller
Model 5866
Page 2
Section 1 Introduction
Section 2 Installation
Contents
Contents
Page
Purpose.......................................................................................1-1
Description..................................................................................1-1
Principle of Operation..................................................................1-1
Specifications..............................................................................1-6
Controller Specifications..............................................................1-7
Receipt of Equipment..................................................................2-1
Recommended Storage Practice................................................2-1
General........................................................................................2-1
Gas Connections.........................................................................2-1
Installation...................................................................................2-2
In-Line Filter................................................................................2-3
Electrical Interface.......................................................................2-3
Remote Setpoint (Command) Input............................................2-3
Valve Override.............................................................................2-5
Precision 5V Reference...............................................................2-5
Remote Transducer Input............................................................2-5
Valve Test Point...........................................................................2-5
Optional Valve Return..................................................................2-6
C O N T E N T S
Section 3 Operation
Section 4 Maintenance
Section 5 Troubleshooting
Operation.....................................................................................3-1
Proportional Band and Integration Time Constant Adjustment...3-1
General........................................................................................4-1
General........................................................................................5-1
Troubleshooting...........................................................................5-1
Disassembly................................................................................5-2
Assembly.....................................................................................5-5
Adjusting the Control Valve..........................................................5-6
Orifice Sizing..............................................................................5-12
i
Page 3
Brooks Instrument Model 5866 Mass Flow Controller
Section 6 Calibration
Calibration Procedure..................................................................6-1
Gas Conversion Factors..............................................................6-2
Section 7 Parts List
General........................................................................................7-1
Appendix A CE Certification
CE Certification for Mass Flow Equipment................................A-1
Figures
1-1 Model 5866 Pressure Transducer.................................1-2
1-2 Model 5866 Silicon Chip Configuration.........................1-2
1-3 Model 5866 System Block Diagram..............................1-2
1-4 Model 5866 Dimensions...............................................1-3
1-5 Model 5866 Upstream Controller..................................1-4
1-6 Model 5866 Downstream Controller.............................1-4
1-7 Typical Application of Downstream Controller...............1-5
1-8 Typical Application of Upstream Controller...................1-6
2-1 Customer Connections and Settings............................2-4
3-1 Error Signal Step Response.........................................3-1
3-2 Proportional Control......................................................3-3
3-3 Integral Control.............................................................3-3
3-4 P.I. Control.....................................................................3-4
5-1 Torque Sequence for the Valve Retainer Plate.............5-6
5-2 Adjustment Test Setup..................................................5-7
5-3 Valve Adjusting Spacer Locations.................................5-9
5-4 Valve Adjusting Spacer Locations, Normally Open
(N.O.) Valve..................................................................5-11
5-5 Application Configuration.............................................5-12
5-6 Example Application of Orifice Sizing Procedure........5-14
7-1 Model 5866E Parts Drawing.........................................7-2
7-2 Model 5866M Parts Drawing.........................................7-4
Page
Tables
ii
2-1 D-Connector Pin Arrangement......................................2-5
5-1 Bench Troubleshooting..................................................5-3
5-2 Sensor Troubleshooting.................................................5-3
5-3 Minimum Flow Values..................................................5-10
5-4 Model 5866 Orifice Selection.......................................5-14
6-1 Conversion Factors.......................................................6-4
7-1 Model 5866E Parts List.................................................7-3
7-2 Troubleshooting Aids and Spare Parts Kit for
Model 5866...................................................................7-3
7-3 Model 5866M Parts List................................................7-5
Page 4
Introduction
1-1 Purpose
1-2 Description
Introduction
Section
1
This instruction manual is intended to provide the user with all the information necessary to install, operate and maintain the Brooks® Model 5866 Pressure Controller. This manual is organiz ed into seven sections:
Section 1 - Introduction Section 2 - Installation Section 3 - Operation Section 4 - Maintenance Section 5 - Troubleshooting and Repair Section 6 - Calibration Section 7 - Spare Parts
It is recommended that this manual be read in its entirety before attempting to operate or repair the Model 5866.
The Brooks Model 5866 Pressure Controller accurately measures and controls upstream or downstream pressures. The heart of the system is a solid state pressure transducer which produces an electrical output proportional to pressure. The electronics use this signal to operate the control valve and to pro vide an output signal.
1-3 Principle of Operation
The pressure to be measured acts on a stainless steel diaphragm. Via silicone oil, this pressure is transmitted to the actual sensing element, a silicon chip (refer to Figure 1-1). The chip consists of an anisotropically etched diaphragm with four piezo resistiv e resistors , configured in a Wheatstone bridge, etched into its surface (refer to Figure 1-2). The mechanical deformation of this diaphragm results in an imbalance of the resistors which is proportional to pressure. An amplifier provides output to the control circuit as well as the electrical output signal.
In addition to the pressure transducer the Model 5866 has an integral control valve and control circuitry. A difference between the pressure and setpoint signals will cause the electronics to modulate the control valve to maintain the desired pressure. A system block diagram is shown in Figure 1-3.
The integration of pressure transducer , control electronics and control valve into one unit results in a compact siz e . The mounting dimensions are comparable to a mass flow controller. Refer to Figure 1-4.
The “upstream pressure regulation mode” shown in Figure 1-5 places the pressure controller at the outlet of the pressure vessel. The pressure in the process upstream of the controller will be constant independent of downstream variation. Pressure measurement and control takes place at the outlet side of the pressure vessel.
1-1
Page 5
Brooks Instrument Model 5866 Pressure Controller
Figure 1-1. Model 5866 Pressure Transducer .
Figure 1-2. Model 5866 Silicon Chip Configuration.
Figure 1-3. Model 5866 System Block Diagram (Downstream version).
REMOTE
TRANSDUCER
INPUT
COMMAND
INPUT
COMMAND
POT
PRESSURE
TRANSDUCER
COMPARISON
AMPLIFIER
VALVE
OVERRIDE
LOGIC
5 VOL T
REFERENCE
VALVE DRIVE
VALVE
OVERRIDE
®
Model 5866
CONTROL
VALVE
= OPTIONAL
1-2
Page 6
Introduction
.75
(19.0)
9/16 - 18 UNF (Both Ends)
Integral
Adjustment
Upstream Inlet
(Downstream Outlet)
"A"
0.50
(12.7)
1.50
(38.0)
5.23
(133.0)
3.00
(76.2)
15 Pin Male D-Connector
Upstream Outlet
(Downstream Inlet)
Proportional Adjustment
P I
Upstream/Downstream Flow Indicator Label
Valve Height w/
Downstream Adapter
.14
(3.6)
.39
(10.0)
.71
(18.0)
2.58
(65.4)
8 - 32 UNC - 2B x 1/4 Deep (2 Mounting Holes)
1.50
(38.0)
15 Position Male D-Connector
.71
(18.0)
"Z"
8-32-UNC x 1/4 Deep, (2 Mounting Holes)
.39
(9.9)
.28
(7.0)
2.07
(52.6)
NOTE:
1. 1/4 VCR Fitting Shown.
1.48
(37.7)
"X"
5.18
(131.5)
"Y"
(See Note)
Inlet
FLOW
.50
(12.7)
.74
(18.7)
Outlet (See Note)
1.48
(37.7)
Figure 1-4. Model 5866 Dimensions.
Model 5866E
Connection "A" Dim.
1/4" (M) VCR 4.88/124.0 1/4" (M) VCO 4.56/115.8 1/8" Compression 4.84/122.9 1/4" Compression 5.02/127.5 3/8" Compression 5.14/130.6 6 mm Compression 5.02/127.5 10 mm Compression 5.16/131.1 3/8" or 1/2" (M) VCR 5.18/131.6 3/8" or 1/2" (M) VCO 5.00/125.0 1/4" (F) NPT 5.36/136.1
Model 5866M
Connection "X" Dim. "Y" Dim. "Z" Dim. 1/4" Tube VCR 4.88/124.8 3.22/81.8 1.11/28.2
1-3
Page 7
Brooks Instrument Model 5866 Pressure Controller
When the pressure controller is used in the “downstream pressure regulation” mode as shown in Figure 1-6, the pressure in the process vessel will be constant independent of upstream variation, provided the upstream pressure does not fall below the do wnstream setting. Pressure measurement and control takes place at the inlet side of the pressure vessel.
The most common application of the pressure controller is in conjunction with a mass flow controller (refer to Figure 1-7). Mass flow controllers accurately measure and control the required quantity of process gas flows. In this figure, the mass flow controllers will supply the desired quantity and mixture of process gas while the pressure controller will maintain the desired reactor pressure by varying the gas outflow. This system allows the process reactants to be varied while maintaining a constant reaction pressure.
The Model 5866 Pressure Controller has proportional and integral control action. The reset or integral control is combined with the proportional control action (normally referred to as P.I. control). Both proportional band (0.5% to 100%) and integration time (0.05 to 5 seconds) are customer adjustable. Tuning of the pressure controller to perform as a stable optimum for each application is perf ormed in-process by adjusting easily accessible P.I. action potentiometers (refer to Figure 1-4).
Figure 1-5. Model 5866 Upstream Controller.
Figure 1-6. Model 5866 Downstream Controller .
Note: The Controller Mode and valve type are determined at the time of order. Mechanical parts must be changed to convert modes or valve types.
Model 5866E
Vessel
Pressure Controller
1-4
Model 5866
Pressure Controller
Vessel
Page 8
Introduction
Upstream Controller Mode sets the controller to maintain the upstream
process pressure constant, independent of downstream pressure or flow variations (ref. Fig. 1-5). For jumper positions on the PC board see Figure 2-1.
Downstream Controller Mode sets the controller to maintain the downstream process pressure constant, independent of upstream pressure or flow variations. For jumper positions on the PC board, see Figure 2-1.
Normally Open/Normally Closed Control Valve - Both Normally Open (N.O.) and Normally Closed (N.C.) configurations are a v ailable. Normally Closed is the standard valve type . The Normally Open valve may be specified when Safety, Operation or Process considerations warrant this type of valve .
Remote Pressure Sensor Input allows the use of the integral control electronics and the valve to regulate the process pressure in response to the remote pressure transducer signal (refer to Section 2-11).
Voltage and Current Inputs/Outputs - Jumpers are provided on the PC board to allow 0-5 V, 0-10 V, 0-20 mA or 4-20 mA input/output. 0-5 V input/ output is the standard configuration. F or maxim um accur acy, the Model 5866 should be calibrated with the input/output configuration it will ultimately use. Controllers will be configured at the factory if requested at the time of ordering.
Figure 1-7. Typical Application of Downstream Controller.
®
®
Reactor
®
®
Model 5866E
Mass Flow
Controllers
Vacuum Pump
1-5
Page 9
Brooks Instrument Model 5866 Pressure Controller
V alve Override permits the user to fully open and close the valve
independent of the command setting (refer to Section 2-9). Precision +5 Volt Ref erence is pro vided to be used in conjunction with a
user supplied command potentiometer to generate a 0-5 V command signal.
1-4 Specifications
Do not operate this instrument in excess of the specifications listed below. Failure to heed this warning can result in serious personal injury and/or damage to the equipment.
Pressure Ranges
7.25 psia to 1450 psia full scale (Elastomer Seals)
7.25 psia to 72.5 psia full scale (Metal Seals)
WARNING
Figure 1-8. Typical Application of Upstream Controller.
®
®
1-6
®
Mass Flow
Controllers
®
Model 5866E
Reactor
Page 10
Introduction
Flow Rates
0-30,000 sccm* (Nitrogen Equivalent).
*Standard pressure and temperature in accordance with SEMI (Semiconductor Equipment and Materials Institute) standard: 32°F (0°C) and 101 kPa (760 Torr). Other reference conditions available upon request.
Accuracy
±1.00% full scale including linearity and hysteresis
Repeatability
±0.1% full scale
Control Range
20:1
Zero Stability
0.001% full scale per 30 days
T emperature Range (ambient and gas)
32°F to 150°F (0°C to 65°C)
T emperature Coefficient
0.1% full scale/° C
Maximum T ransducer Pressure
21.75 psia for 0-14.5 psia range
108.5 psia for 14.5-72.5 psia range 435 psia for 72.5-290 psia range 1,450 psia for 290-1,450 psia range
Maximum Design Pressure
1,450 psig
1-5 Controller Specifications
Input/Output Offset
< 0.2% full scale (voltage), < 1.5% full scale (current)
Proportional Gain
Adjustable, 1 to 200%
Integration Time
Adjustable, 0.05 to 5 seconds
Control Action
Upstream or downstream pressure control
Valve Type
Standard: Normally Closed Optional: Normally Open
Materials of Construction
Model 5866 Model 5866M Wetted P arts 316 SS 316L V ar SS Seals/V alve Seats Viton
®
Options Buna-N
®
Teflon
®
Kalrez
Metal
N/A
1-7
Page 11
Brooks Instrument Model 5866 Pressure Controller
Power Requirements
N.C. 3.5 watts; +15 Vdc (±5%) @ 35 mA, -15 Vdc (±5%) @ 180 mA N.O. 10.5 watts, ±15 Vdc (±5%) @ 350 mA Class III Equipment: The dc Mains input shall be supplied from a SELV (Separated Extra-Low Voltage) source.
Output Signals
Standard: 0-5 Vdc min load resistance 1 k ohm Optional: 0-10 Vdc min load resistance 2 k ohm, 0 or 4-20 mA into maximum 500 ohm
5 Volt Reference Output
5 Volts ±0.2% min Load 1 k ohms.
Pressure Setpoint Signals
Standard: 0-5 Vdc input (impedance 1M ohm) Optional: 0-10 Vdc input (impedance 1M ohm), 0 or 4-20 mA input (impedance 250 ohm)
Remote Pressure Sensor Input
Standard: 0-5 Vdc input (impedance 1M ohm) Optional: 0-10 Vdc input (impedance 1M ohm)
Dimensions
Refer to Figure 1-4
Valve Type
Standard: Normally Closed Optional: Normally Open
Process Connections
Standard: 1/4" stainless steel compression fittings Optional: 1/4" VCR
TM
, 1/4" VCOTM, 1/8" compression
Electrical Connection
15 pin D-Connector (DA-15P)
Environmental Conditions
Installation Category: “I” Pollution Degree: 2 Humidity: 50-80% Relative Humidity Meter Altitude: 6562 feet (2,000 meters) For Indoor Use ONLY Mains supply voltage fluctuations not to exceed ±10% of the nominal voltage
Environmental Effects
EMC Effects Meets the requirement of the EMC directive
(89/336/EEC) EN 61000-4-2 thru 4-8
PED Sound Engineering Practice (SEP)
1-8
Area classifcation and certification
Area Certified for use in hazardous areas in Europe
II 3 G EEx nA II T4 KEMA 03ATEX1532 X Per EN 60079-15:2003
The modules shall be installed in a suitable enclosure providing a degree of protection of at least IP54 according to EN 60529, taking into account the environmental conditions under which the equipment will be used.
Page 12
Installation
Installation
2-1 Receipt of Equipment
When the equipment is received, the outside packing case should be checked for damage incurred during shipment. If the packing case is damaged, the local carrier should be notified at once regarding his liability. A report should be submitted to the Product Service Department, Brooks Instrument, 407 West Vine Street, Hatfield, Pennsylv ania 19440.
Remove the en v elope containing the packing list. Carefully remov e the equipment from the packing case. Make sure spare parts are not discarded with the packing material. Inspect for damaged or missing parts.
2-2 Recommended Storage Practice
If intermediate or long term storage is required for the equipment, as supplied be Brooks Instrument, it is recommended that said equipment be stored in accordance with the following:
a. Within the original shipping container. b. Store in a sheltered area with the following conditions:
1. Ambient temperature 70°F (21°C) nominal, 90°F (32°C) maximum/ 45°F (7°C) minimum
2. Relative humidity 45% nominal, 60% maximum 25% minimum.
Section
2
2-3 General
2-4 Gas Connections
Upon removal from storage , a visual inspection should be conducted to verify the condition of the equipment is “as receiv ed". If the equipment has been in storage for an e xcess of ten (10) months or under conditions in excess of those recommended, all pressure boundary seals should be replaced and the device subjected to a pneumatic pressure test in accordance with applicable vessel codes.
A pressure controller system can be built in upstream or downstream control configurations (refer to Figures 1-7 and 1-8). When the controller is placed downstream (upstream pressure controller) of the pressure vessel, the flow is usually determined by MFC(s) in the line upstream of the vessel.
With the pressure controller upstream of the vessel (downstream pressure controller), the most likely application is controlling a subatmospheric pressure in the vessel. The inlet of the pressure controller can be at atmospheric gas pressure or at vapor pressure of a liquid source. The flow in this situation is usually determined by the characteristics of a vacuum pump.
Standard inlet and outlet connections on the Model 5866 and 1/4" compression fittings. Optional VCOTM and V CRTM connections are availab le upon request.
2-1
Page 13
Brooks Instrument Model 5866 Pressure Controller
Prior to installation, insure that all piping is clean and free of obstructions. Install the piping in such a manner that permits easy removal if the instrument is to be removed for cleaning or test bench troub leshooting.
2-5 Installation
Do not operate this instrument in excess of specifications. Failure to heed this warning can result in serious personal injury and/or damage to the equipment.
When installing the instrument, insure that no f oreign materials enter the inlet or outlet of the meter. Do not remove the protective end caps until time of installation.
Any Brooks Instrument mass flo w meter or flow contr oller with a 15 pin D-Connector PC Board bearing the "CE Mark" must use a 100% shielded cable and metal shell mating connectors. The shield is tied over 360 degrees to the shell at both ends. This is mandatory to be in compliance with the EMC Directive (89/336/EEC). Refer to Appendix A.
WARNING
CAUTION
CAUTION
Recommended Installation Procedures
a. The Model 5866 should be located in a clean, dry atmosphere relatively
free from shock and vibration. b. Leav e sufficient room f or access to the electrical components. c. Install in such a manner that permits easy removal if the instrument
requires cleaning.
CAUTION
When used with a reactive (sometimes toxic) gas, contamination or corrosion may occur as a result of plumbing leaks or impr oper purging. Plumbing should be checked carefully for leaks and the controller purged with dry nitrogen before use. See Brooks’ Te chnical Bulletin T-086 for further information.
d. The Model 5866 pressure controller may be installed in an y position. Note: The control valve in the Model 5866 provides precision control and is
not designed for positive shut-off. If positive shut-off is required, it is recommended that a separate shut-off valve be installed in-line .
2-2
Page 14
2-6 In-Line Filter
Installation
CAUTION
Since the Model 5866 Control Valve is not a positive shut-off, a separate solenoid valve may have been installed f or that purpose. It should be noted that a small amount of gas may be trapped between the downstream side of the pressure controller and the solenoid, resulting in a sur ge upon opening of the solenoid v alve. This surge can be reduced in magnitude by locating the controller and solenoid valve close together or by mo ving the solenoid v alve upstream of the controller.
It is recommended that an in-line filter, such as the Brooks Model 5848, be installed upstream from the controller to prev ent the possibility of any foreign material entering the meter. The filter porosity should be approximately ten times smaller than the orifice used in the installation, however, it is recommended that the minimum porosity that does not restrict the flow rate being used. The filtering element should be periodically replaced or cleaned.
2-7 Electrical Interface
To insure proper operation, the Model 5866 must be connected per Figure 2-1. As a minim um, the following connections must be made for new installations.
Pin Number Description
1 Command Common
2 or 4 Signal Output
5 +15 Vdc Supply 6 -15 Vdc Supply 8 Command Input
9 Supply V oltage Common 10 V oltage Signal Common 13 +15 Vdc Supply (Current I/O)
Note: The Command Return is internally connected to Signal Return and Supply Voltage Common.
2-8 Remote Setpoint (Command) Input
If the pressure controller will be commanded by an external voltage or current signal, the command potentiometer is not used.
The command hookup is as follows: a. Voltage Signal: Connect the external command signal to Terminal 8 and
the external command return to Terminal 1. Refer to Figure 2-1 and Table 2-1.
b. Current Signal: Connect the command signal to Terminal 8 and the
command return to Terminal 1. Jumper J4 should be ON. Refer to Figure 2-1 and Table 2-1.
Note: The command return is internally connected to signal return and power supply common. Current supplied by the device providing the set point will not be returned on the current loop.
2-3
Page 15
Brooks Instrument Model 5866 Pressure Controller
Figure 2-1. Customer Connections and Settings.
2-4
Page 16
Table 2-1. D-Connector Pin Arrangement.
Installation
PIN NO. FUNCTION COLOR CODE
1 Command Common (Command Pot "CCW") Black 2 Voltage Signal Output White 3 Remote Valve Return Red 4 Current Output Green 5 +15 Vdc Supply Orange 6 -15 Vdc Supply Blue 7 Valve Voltage Out/External Valve Control Wht/Blk 8 Command Input (Command Pot "S") Red/Blk
9 Supply Voltage Common Grn/Blk 10 Voltage Signal Common Org/Blk 11 +5 Volt Reference (Command Pot "CW") Blu/Blk 12 Valve Override Blk/Wht 13 +15 Vdc Supply (1) Red/Wht 14 Chassis Ground (2) Grn/Wht 15 External Sensor Input Blu/Wht
2-9 V alve Override
The valve o v erride function allows full opening and closing of the v alv e independent of the command setting.
The valve o v erride f or the pressure controller is as follows: a. To open the valve, apply +15 Vdc to the valve override terminal. b. To close the valve, apply -15 Vdc to the valve override terminal.
1
9
NOTES:
1. Pin 13 does not have to be connected if current I/O is not used.
2. Cable shield tied to chassis ground in meter connector.
8
15
The valve o v erride function is accessed from Terminal 12 (refer to Figure 2-1 and Table 2-1).
Note: F or normal operation, Terminal 12 may be left open (floating) or grounded.
2-10 Precision 5V Reference
The Model 5866 is equipped with a precision 5 Vdc reference. The reference is used internally for precise zero adjustment and is also availab le as a buffered output for use in conjunction with a 1 to 10 k ohm potentiometer to provide 0-5 Vdc set-point. The 5 Vdc reference is availab le at Terminal 11 (refer to Figure 2-1 and Table 2-1).
2-11 Remote Transducer Input
To allow the Model 5866 control circuitry and valve to be used with an external transducer signal such as a capacitance manometer , J umper J2 “C” or “D” must be moved to the Position B. Jumper J2, "A" can be in either P osition a or b depending on v alve/controller type. The external sensor signal (0-5 or 0-10 Vdc) must be connected to Terminals 15 and 10 (refer to Figure 2-1 and Table 2-1).
2-12 V alve T est Point
The valve voltage may be monitored on Terminal 7 of the D-Connector.
2-5
Page 17
Brooks Instrument Model 5866 Pressure Controller
2-13 Optional Valve Return
Units manufactured after J anuary, 1992 with a Normally Closed valve can be configured so the valve current can be returned to the power supply on a separate line. This is recommended if the power supply lines are longer than 10 feet. The feature is enab led b y connecting Pin 3 of the D-Connector to power supply common with a separate lead and moving J umper J3 to the Position a.
2-6
Page 18
Operation
Operation
Section
3-1 Operation
a. Purge the system with dry nitrogen for at least thirty minutes prior to
start-up to prevent the formation of deposits if reactive gas is to be used.
b. In unpressurized piping, apply power to the controller and allow
approximately fifteen minutes f or it to w arm up and stabilize its
temperature. c. Slowly apply gas pressure to the system. d. Set the command for the desired pressure to assume normal operation.
3-2 Proportional Band and Integration Time Constant Adjustment
The Model 5866 Pressure Controller has proportional and integral control action. The reset, or integral, control is combined with the proportional control actions, commonly referred to as P.I. control. Both proportional band and integration time are user adjustable. Refer to Figure 1-4 for P and I adjustment potentiometer locations. The dynamic behavior of the control system is influenced by flow range , pressure range , fluid type, orifice size and system volume. Therefore, Model 5866 may have to be adjusted in the field to achiev e the best dynamic response.
3
Figure 3-1. Error Signal Step Response.
The factory settings are typically: proportional band minimum, 0.5%, potentiometer fully counterclockwise (c.c.w .) and integ ration time minimum, 0.05 seconds, potentiometer fully clockwise (c.w.). This combination of adjustments usually results in stable control. For most systems the dynamic response is adequate with the factory settings. Improved response can be had b y final tuning the P and I potentiometers in the system by the user. The tuning of the P and I constants does not affect the calibration of the instrument.
Definitions
Both proportional and integral control actions are defined with respect to a step response error signal. Refer to Figure 3-1.
3-1
Page 19
Brooks Instrument Model 5866 Pressure Controller
Proportional Control
Proportional control is a basic continuous control mode in which the controller output is proportional to the error input signal to the controller. Refer to Figure 3-2. It provides very rapid response and is relatively stable. Used alone, proportional control has one major disadvantage: at steady state it exhibits an offset. That is there is a difference betw een the desired value, or setpoint and the actual v alue of the controlled variable. An integral action added to the proportional mode eliminates offset.
Integral Control
Integral or reset action is an integration of the input error signal ov er time. Refer to Figure 3-3. This means that with integral action the v alue of the manipulated variable changes at a rate proportional to the error . With integral action present there can be no offset at steady state since the manipulated variable will continue to change as long as an error is present.
Characteristics of P.I. Control
By using both proportional and integral control actions, rapid control can be achiev ed with out a steady state offset. Refer to Figure 3-4. Typically there is a slight decrease in system stability due to the presence of the integral mode. The dynamic response of the system is better than the response would be with integral alone. Because the two controller modes are interactive the P.I. controller is somewhat more difficult to tune.
Tuning the P.I. control
Turning the P potentiometer clockwise (c.w .) will increase the proportional band thus increasing the offset and system response time. If the proportional band is too low, the system ma y o v ershoot the command, or oscillate. Turning the I potentiometer counterclockwise (c.c.w.) will increase the integration time, making the system respond slower, but more stable.
Adjust the P and I potentiometers until the optimum response is achiev ed. Check the adjustment in the system ov er the expected range of pressures and flows.
Fastest controller response to set point changes are obtained with the P potentiometer fully counterclockwise and the I potentiometer fully clockwise.
3-2
Page 20
Figure 3-2. Proportional Control.
Operation
Figure 3-3. Integral Control.
3-3
Page 21
Brooks Instrument Model 5866 Pressure Controller
Figure 3-4. P.I. Control.
3-4
Page 22
Maintenance
4-1 General
Maintenance
Section
4
No routine external maintenance is required for Brooks thermal mass flow controller. If an in-line filter is used for the Model 5866, the filtering element should periodically be replaced or cleaned.
4-1
Page 23
Brooks Instrument Model 5866 Pressure Controller
4-2
Page 24
Troubleshooting
5-1 General
Troubleshooting
Section
5
CAUTION
It is important that this controller be serviced only by properly trained and qualified personnel.
A.System Checks
The Model 5866 is generally used as a component in gas handling systems which can be quite complex. This can make the task of isolating a malfunction in the system a difficult one. An incorrectly diagnosed malfunction can cause many hours of unnecessary down time. If possible, make the following system checks before removing a suspected defective pressure controller for bench troubleshooting or return to the factory, especially if the system is new.
1.Verify a low resistance common connection and that the correct power
supply voltage and signals are reaching and leaving the controller. The
Break-out Board (P/N S-273-Z-649-AAA) will make this job much
easier.
2.Verify that the process gas connections have been correctly terminated
and leak checked.
3.If the pressure controller appears to be functioning but cannot achieve
set-point, verify that sufficient inlet pressure and pressure drop are
available at the controller to provide the required flow.
4.Verify that all user selectable jumpers are in their desired positions
(refer to Figure 2-1).
5-2 Troubleshooting
WARNING
If it becomes necessary to remove the controller from the system after exposure to toxic, pyrophoric, flammable or corrosive gas, purge the controller thoroughly with a dry inert gas such as nitrogen before disconnecting the gas connections. Failure to correctly purge the controller could result in fire, explosion or death. Corrosion or contamination of the pressure controller upon exposure to air may also occur.
A. Bench Troubleshooting (Table 5-1)
1.Connect the pressure controller to a ±15 Vdc power supply, and a
command voltage source. Connect an output signal readout device (a
4-1/2 digit voltmeter is recommended) to Terminals 2 and 10 (refer to
Table 2-1).
2.Apply power to the controller, close the valve using the valve override
closed input and allow it to warm up for fifteen minutes. Do not connect
the controller to a gas source at this time.
5-1
Page 25
Brooks Instrument Model 5866 Pressure Controller
3. Observe the output signal and, if necessary, perform the zero
adjustment procedure, Section 6.
4. If the output signal will not zero properly, troubleshoot the sensor using
the procedures given in Section 5-2B. If the sensor is electrically
functional, the printed circuit board is defective and will require
replacement.
5. Connect the controller to a source of the gas it is calibrated for.
Command 100% pressure and adjust the inlet and outlet pressures to
the calibration conditions. Verify that the output signal reaches and
stabilizes at 5.00 Volts.
6. Vary the command voltage ov er the 5 to 100% r ange and v erify the
output signal follows the set-point.
B. T ransducer T roubleshooting (Table 5-2)
1. Troubleshoot the transducer using the steps given in Table 5-2. If any of
the steps do not give the e xpected result, the transducer assembly is
defective and m ust be replaced.
2. If the transducer is defective, refer to Sections 5-3 and 5-4 for the
disassembly and assembly procedures f or replacing the transducer. Note: Do not attempt to disassemb le the tr ansducer.
5-3 Disassembly
The Model 5866 pressure controller may be disassembled in the field b y the user for cleaning, re-ranging or servicing. The disassembly procedures below detail the upstream control version of the Model 5866 with a Normally Closed control valve. The procedures f or the upstream control version and the Normally Open control valve are substantially the same . Disassemble the controller as follo ws:
Note: The controller should be disassembled in a clean environment to prevent contamination.
CAUTION
Do not attempt to disassemble the controller until pressure has been removed and purging has been perf ormed.
A. Disassembl y Pr ocedure [numbers in ( ) refer to Figure 7-1]
1. Remove the jam n ut (1) on top of the v alve assembly.
2. Unplug the valv e connector from the electronics cover and remove the
coil assembly (2).
3. Remove the hex socket screws (3) securing the valve retaining plate (4)
attaching the valve stem assemb ly (6).
5-2
CAUTION
When performing the following pr ocedure, the v alve stem m ust be removed without cocking it to pre vent damage to the valve spring.
4. Carefully remove the v alve stem assembly (6).
5. Remove the plunger assemb ly (7, 8, 9 and 11).
6. Remove and note the position of the valve spring spacers (10). Spacers
may be used abov e and/or below the lower valve springs (8).
7. Unscrew the orifice (12) from the flow controller body (25).
Page 26
Troubleshooting
Table 5-1. Bench Troubleshooting.
Trouble Possible Cause Check/Corrective Action
Output stays at zero Volts regardless of com- Defective Sensor Replace sensor. Refer to Section 5-3 and Table 5-2. mand and there is pressure on the controller.
Output stays at zero Volts regardless of Clogged Control Valve Check Pin 7 if the voltage is more than +11 V. Disassemble and repair the control valve. command and there is no flow through the Refer to Sections 5-3 and 5-4. controller.
Output signal stays at +14 V. regardless of Valve stuck open or leaky. Clean and/or adjust control valve. Refer to cleaning procedure and/or Section 5-5. command and there is flow through the controller. +15 Vdc applied to the valve override input. Check the valve override terminal. Refer to Figure 2-2 for terminal assignments.
Output signal follows setpoint at higher Leaky control valve. Disassemble and repair valve. Refer to Sections 5-3 and 5-4. commands but will not go to zero.
Output signal follows setpoint at lower Insufficient inlet pressure or pressure drop Adjust pressures, check calibration. Refer to Section 5-1. commands but does not reach full scale.
Controller oscillates. Pressure drop or inlet pressure excessive. Adjust pressures.
-15 V applied to the valve override input. Check valve override input. Refer to Figure 2-2 for terminal assignments. Defective printed circuit board. Replace printed circuit board. Refer to Sections 5-3 and 5-4.
Defective printed circuit board Replace printed circuit board. Refer to Sections 5-3 and 5-4.
Command input floating. Connect command signal. Refer to Figures 2-1 and 2-2 for terminal assignments.
Excessive resistance in valve voltage return Reduce wiring resistance line.
Partially clogged valve. Disassemble and repair control valve. Refer to Sections 5-3 and 5-4. Valve out of adjustment. Adjust valve. Refer to Section 5-5. Valve guide spring failure. Controller oscillates (see below)
Oversized orifice Check orifice size. Refer to Section 5-6 and Table 5-4. Valve out of adjustment. Adjust valve. Refer to Section 5-5. P/I adjustment not correct. Adjust P/I potentiometers. Refer to Section 3-2. Faulty pressure regulator. Check regulator output. Defective printed circuit board Replace printed circuit board. Refer to Sections 5-3 and 5-4.
Table 5-2. Sensor Troubleshooting.
OHMMETER RESULT IF ELECTRICALLY
CONNECTION FUNCTIONAL
4 Sensor wires to body Open circuit on Ohmmeter.
(ground) If one of these is shorted,
(Pin 1 to 4 to body) an Ohmmeter reading will
be obtained.
Between the different Minimum 1 k Ohm
wires Maximum 4 k Ohm
Depending on sensor used
NOTE: Remove the sensor connector from the P.C. board
for this procedure.
5-3
Page 27
Brooks Instrument Model 5866 Pressure Controller
8. Remove the three scre ws (29) and jack posts (32) attaching the
electronics cover. Remove the electronics cover (31).
Be careful not to stress the transducer lead wires to transducer assembly junction when removing the sensor connector from the printed circuit board. If the transducer lead wires are stressed, an open in the transducer wiring could result.
9. Unplug the sensor connector from the printed circuit board. Remo ve the
two screws (29) securing the brack et (28) and printed circuit board (30).
Remove the brac k et and board.
Do not remove the transducer before reading the following instructions. Failure to heed this warning can result in personal injury.
10.Transducer removal should be avoided. The Model 5866 pressure
transducer is not serviceable and only needs to be removed when the
transducer is replaced or when the O-rings are replaced. Transducer
removal will require the use of compressed gas to f orce the transducer
from the body. This pressure may exceed the maximum withstand
pressure of the transducer , creating the need f or adjustment or
replacement. Be sure the tr ansducer needs to be remo ved before
proceeding.
11.Remove the two scre ws (3) from the base plate (27) then reinstall them
2-3 turns into the body. Reinstall the valv e stem (6), retaining plate (4)
using the four hex socket screws (3). Cap the outlet port.
CAUTION
W ARNING
WARNING
The screws (3) are to be reinstalled to prevent violent ejection of the transducer when the pressure is applied. Personal injury can result if the transducer is not captured by these loose screws.
12.Slowly pressurize the inlet port to force the transducer (26) from the
body (25) and against the loosened base plate (27). Remove the
pressure once the transducer (26) is against the base plate (27).
Remove the base plate (27), transducer (26) and v alve stem (6) from
the body (25.)
CAUTION
Do not scratch the transducer O-ring sealing surfaces or touch the transducer diaphragm surface.
13.Remove the O-ring (5) from the transducer assemb ly (26). The Teflon
backup ring may remain in place.
Note: Steps 10, 11, 12 and 13 may be eliminated if the transducer is not
to be removed.
B. Cleaning Pr ocedures
Should the Model 5866 Pressure Controller require cleaning due to contamination with foreign material, use the follo wing procedures:
5-4
Page 28
Troubleshooting
1. Remove the unit from the system.
2. Refer to Section 5-3 to disassemble the controller.
CAUTION
Do not soak the pressure transducer assembly in a cleaning solution. If solvent seeps into the transducer assembly, it may damage the transducer or, at least, significantly alter its operating characteristics.
3. Inspect the orifice for clogging by holding it in front of a light source and
looking for light through the bore. Clean by soaking in a suitable non-
residuous solvent and directing a stream of compressed dry nitrogen
through the bore.
4. Deposits of silicon dioxide ma y be remo v ed b y soaking the internal
parts in a solution of 5% hydrofluoric acid (5 parts hydrofluoric (HF), 95
parts water (H2O) followed b y Freon TFTM.
5. Blow all parts dry with dry nitrogen and reassemble. Ref er to Section 5-4
Assembly Procedure.
6. Purge the assembled controller with dry nitrogen.
7. P erform calibration procedure in Section 6 if needed.
8. When the controller is reinstalled in the system, the connections should
be leak-tested and the system should be purged with dry nitrogen or
argon for thirty minutes prior to start-up to prevent the formation of
deposits.
5-4 Assembly
The assembly procedures below detail the downstream control v ersion of the Model 5866 with a Normally Closed control valve. The procedures for the upstream control version and the Normally Open control valv e are substantially the same.
CAUTION
Do not get halocarbon grease on the hands. This is a special inert lubricant which is not easily removed.
Note: It is recommended that all O-rings be replaced during assembly. All O-rings should be lightly lubricated with halocarbon lubricant prior to their installation.
Note: Glo v es should be w orn to reduce the possibility of contaminating the Model 5866 or process.
A. Assembly Procedure [numbers in ( ) refer to Fig. 7-1]
1. Examine all parts for signs of wear or damage, replace as necessary.
2. Install the transducer O-ring (5) on the transducer assembly (26). The
O-ring (5) is placed below (process side) the Teflon backup ring on the
transducer .
3. Install the transducer (26) and base plate (27), securing it with two
screws (3) tightened to 15 in/lbs.
Note: The orifice can easily become clogged with skin or other foreign
matter during assembly. Do not touch the orifice with the bare hand
during installation. Use rubber gloves, finger cotts or pliers to start the
orifice in the body.
5-5
Page 29
Brooks Instrument Model 5866 Pressure Controller
4. Install the orifice (12) and its O-ring (13) using a 3/8" nut driver. Insure
that the orifice is fully seated but do not overtighten.
5. Insert the valve preload spacers (10), if used, into the valve cavity in the
controller body (25). Use care to preserve the correct order.
6. Install the valve plunger assemb ly (7, 8, 9 and 11) on the preload
spacers (10). Install air gap spacers, if used, on top of the valve
springs.
7. Install the valv e stem assemb ly (6), secure with the valve retaining plate
(4) and four hex socket screws (3). When installing the screws, insure
that the plate makes full contact all the way around the stem. Torque the
screws, securing the retaining plate in a diagonal pattern (refer to
Figure 5-1) to 15 in-lbs.
8. Install the coil assembly (2) ov er the valve stem assembly (6) and
secure with jam nut (1).
9. Install the printed circuit board (30), secure with the bracket (28) and
two screws (29). Plug the connector from the sensor onto the printed
circuit board.
10.Install the electronics cover (31) on the controller, secure with three
screws (29) and two standoffs (33). Plug the connector from the valve
coil into the printed circuit board through the hole in the electronics
cover.
11.Prior to installation, leak and pressure test the controller to any
applicable pressure f or the transducer (refer to Section 4-1).
5-5 Adjusting the Control Valve [numbers in ( ) refer to Figure 7-1]
The Model 5866 control valve has been f actory adjusted to insure proper operation. Adjustment is not normally required during the life of the instrument. Readjustment ma y be required if an y of the f ollo wing parts have been replaced:
Normally Closed Valve Normally Open Valve
Orifice (12) Orifice (12) V alv e Stem (6) V alv e Stem (15) Plunger (7) Plunger (16) Lower Guide Spring(s) (8) Lower Guide Spring (8) V alv e Seat (11) V alv e Seat (11) Downstream Control Downstream Control
Adaptor (21) Adaptor (21)
Plunger Extension (18) Spring Spacer (19) Insert Sleeve (17)
Figure 5-1. Torque Sequence for the Valve Retainer Plate.
5-6
Page 30
Troubleshooting
The valve is adjusted in Brooks pressure controllers b y adding spacers (9 and 10) to the control valve to vary the initial position of the parts. The proper initial position is required so the valve will ha ve the proper travel and force available to insure reliable control. Scre w type adjustments are not used in Brooks control valve since they can change with pressure and vibration. Screw type adjustments also introduce a dynamic seal that is a potential leak site and source for contamination.
The adjustment procedures below require the use of a variable v oltage power supply, pressure regulator, pressure gage, voltmeter, flow meter and a supply of nitrogen or air. The test set up is sho wn in Figure 5-2. The power supply must be capab le of deliv ering 400 mA at 30 V. If the proper equipment or facilities are not av ailab le to perf orm this procedure, please return the instrument to the factory or an authorized repair station. Refer to Figure 7-1 for the location of the parts. Section A describes the adjustment of the Normally Closed control valve, Section B describes the adjustment of the Normally Open control valve. Please refer to the proper section for your valve type.
CAUTION
When testing upstream type pressure controllers, be certain not to exceed the maximum overpressure specification for the pressure transducer installed, as specified in Section 1-4. For the 0-1 bar transducer this is only 7 psig!
Figure 5-2. Adjustment Test Setup.
+ -
Variable
Power Supply
Voltmeter
+ -
P
®
Nitrogen
or Air
Pressure
Regulator
Pressure
Gage
Model 5866
Flow Meter
5-7
Page 31
Brooks Instrument Model 5866 Pressure Controller
The procedure described below requires the disassembly of the control valve. Be certain to remove gas pressure prior to disassembly to prevent injury.
A. Adjustment pr ocedure, Normally Closed (N.C.) control valve
Refer to Figure 5-3 f or spacer locations and nomenclature f or the Normally Closed (N.C.) control valve. Refer to Section 7, spare parts for the spacer part numbers and the spacer kit part number. The preload determines the initial force required to raise the v alv e seat off the orifice and start gas flow. If the preload is insufficient the valve will not fully close and gas will leak through when the valve is closed. If preload is excessive the magnetic force generated between the plunger and stem will be insufficient to raise the plunger and the valve will not open.
1. Make the bench testing set up as shown in Figure 5-2. Disconnect the
valve connector from the side of the Model 5866 and connect it to the
variable pow er supply and voltmeter as shown. Polarity is not important.
2. Remove gas pressure. Disassemble the control valv e following the
procedure given in Section 5-3, abov e . Note the orifice size, which is
marked on the orifice face. Referring to Figure 5-3, note the number ,
location and thickness of all spacers (9 and 10).
3. Decrease the preload of the valv e b y .005" b y either remo ving a .005"
small (9) preload spacer or by adding a .005" large (10) preload spacer .
4. Reassemble the control valv e following the assembly procedure in
Section 5-4, above.
5. Apply 5 psig to the inlet of the Model 5866 if equipped with 0-1 bar
transducer. Apply 10 psig for instruments equipped with other
transducers.
6. Apply zero Volts to the control v alv e and observe the flo w.
7. If the valve leaks through, remo ve the gas pressure and increase the
preload by .005" and go to Step 8. If the valve does not leak through
repeat Steps 2 through 6.
8. Apply 5 psig to the inlet of the Model 5866 if equipped with 0-1 bar
transducer. Apply 10 psig for instruments equipped with other
transducers.
9. Apply 14.5 Volts to the valve using the variable power supply and
observe the flow .
10.Compare the flow with the minimum flow listed in Table 5-3. The
minimum flows hav e been listed with reference to both 0°C and 70°F for
convenience . Be sure to use the column that is correct for the flow
meter used in the set up. The outlet pressure at the controller must be
less than 0.4 psig (10 inches of water).
11.If the observed flow is greater than the flow listed in Table 5-3 go to
Step 13.
12.If the observed flow does not achiev e the minim um flow, then increase
the air gap by adding a large .005" air gap spacer (10) to increase the
valve tr avel. Repeat Steps 8, 9, 10 and 11.
13.Apply 11.5 Volts to the valve using the variable pow er supply. Observe
the flow and compare it to the minimum flow values listed in Table 5-3.
14.If the observed flow is greater than the flow listed in Table 5-3 the valve
adjustment is complete.
15.If the observed flow is less than the flow listed in Table 5-3 decrease the
air gap by adding a small 0.005" air gap spacer (9). Repeat Steps 13 and 14.
CAUTION
5-8
Page 32
Figure 5-3. Valve Adjusting Spacer Locations.
Troubleshooting
5-9
Page 33
Brooks Instrument Model 5866 Pressure Controller
B. Adjustment pr ocedure, Normally Open (N.O.) control valve
Refer to Figure 5-4 f or spacer locations and nomenclature f or the Normally Open (N.O.) type control v alve. Ref er to Section 7, spare parts for the spacer part numbers and the spacer kit part number. The v alve clearance determines the maximum space between the orifice (12) and the valve seat (11). If the valve clearance is too small the controller will not achieve full flow. If the valv e clearance is too large , the control valve will not close properly.
The air gap is the space between the plunger (16) and insert (17) in the control valve. The air gap determines the magnetic force a vailable to operate the valve . If the air gap is too large the magnetic force will be insufficient and the valve will not close . If the air gap is too small the valve will have insufficient tr a v el and the v alv e will not close.
1. Make the bench testing set up as shown in Figure 5-2. Disconnect the
valve connector from the side of the Model 5866 and connect it to the
variable power supply and v olt meter as shown. Polarity is not important.
2. Remove gas pressure. Disassemble the control valv e following the
procedure given in Section 5-3, abov e . Note the orifice size, which is
marked on the orifice face. Referring to Figure 5-4, note the number ,
location and thickness of all spacers (9 and 10).
3. Reassemble the valv e and set the variable voltage power supply to zero
V olts .
4. Apply 5 psig to the inlet of the Model 5866 if equipped with 0-1 bar
transducer. Apply 10 psig for instruments equipped with other
transducers.
5. Observe the flow and compare it to the values listed in Table 5-3.
6. If the observed flow is greater that the listed value for the orifice size
that is installed then go to Step 8.
7. If the flow is less than the minimum flow increase the v alv e clearance
by adding a large 0.005" spacer (10) abov e the spring spacer (19) and
repeat Steps 5 and 6.
8. Apply 18 Volts to the valve using the variable pow er supply and observe
the flow .
Note: The maximum allowable leak through in controllers with an
elastomer valve seat is 2% of the v alues listed in Table 5-3, (multiply by
0.02). The maximum allowable leak through for controllers with a metal
or Teflon valve seat is 8% of the values listed in Table 5-3, (multiply by
0.08).
Table 5-3. Minimum Flow Values.
5-10
Orifice Minimum Flow Minimum Flow
Size with 10 psig pressure with 5 psig pressure
(inches) sccm (0°C) sccm (70°F) sccm (0°C) sccm (70°F)
.001 5.3 5.7 3.9 4.0 .002 12.5 13.5 8.8 9.5 .003 39.2 42.2 27.7 29.8 .004 82.5 88.9 58.5 62.9 .007 374 403 264 285 .010 748 806 529 570 .014 1,364 1,470 964 1,039 .020 2,673 2,879 1,890 2,040 .032 6,490 7,000 4,590 4,940 .048 13,000 14,000 9,180 9,890 .062 22,000 23,700 15,500 16,800 .078 31,900 34,400 22,500 24,300 .093 42,500 45,800 30,000 32,400 .120 69,300 74,700 49,000 52,800
Page 34
Figure 5-4. V alve Adjusting Spacer Locations, Normally Open (N.O.) Valve.
Troubleshooting
5-11
Page 35
Brooks Instrument Model 5866 Pressure Controller
9. If the flow shuts off, or is less than the maxim um allow able leak through
for the type of valv e seat installed the adjustment is complete .
10.If the leakage at 18 Volts is excessive add a large 0.005" spacer (10) to
decrease the air gap and repeat Steps 8 and 9.
5-6 Orifice Sizing
The Model 5866 Pressure Controller can be configured with the valve on the outlet to control the pressure upstream of the instrument. This configuration is called an upstream controller . The Model 5866 can also be configured with the valve on the inlet to control the pressure do wnstream of the instrument. This configuration is called a downstream controller.
The calibration or sensed pressure is the pressure that is controlled. This is the upstream pressure for an upstream controller or downstream pressure for a downstream controller. The reference pressure is the pressure opposite the calibration pressure. The reference pressure would be the downstream pressure for an upstream controller and the upstream pressure for a downstream controller. The reference pressure is usually relatively constant. The calibration pressure is the pressure to which the electronics is calibrated to give 100% output signal. The calibration pressure is the maximum sensed pressure. The abov e definitions are shown in Figure 5-5.
Figure 5-5. Application Configuration.
To properly size the control valve orifice in the Model 5866 the f ollo wing information must be known:
·Calibration Pressure, psia
·Reference Pressure, psia
·T = Gas Temperature (approximate) °R, (°R = °F + 460)
·Q
= Max. Flow, sccm, 0°C reference temperature
max
·SG = Gas Specific Gravity, reference Air @ 14.7 psia and
70°F=1.0
1. Determine the minimum pressure drop across the pressure controller.
· For an upstream controller this will be when the sensed (inlet) pressure
is 5% of the calibration pressure, or 1.5 psi, whichever is larger.
· For a downstream controller this will be the ref erence pressure min us
the calibration pressure.
2. Determine the P1 and P2 in psia.
· For an upstream controller P1 is the ref erence pressure plus the
minimum pressure drop. P2 is the reference pressure.
P1=P P2=P
+ minimum pressure drop
Ref
Ref
5-12
P1
CALIBRATION
OR
P2 P1 P2
CALIBRATION
OR
Page 36
Troubleshooting
· For a downstream controller P1 is the ref erence pressure . P2 is the
calibration pressure.
P1=P
Ref
P2=P
Cal
3. Determine the Cv for the application. The ratio between P1 and P2 will
determine the calculation to use: Equation #1
P2 Q
If: > 0.5 use: C
v
=
max
SG * T
P1 800,000 (P1-P2) * P2
Equation #2
P2 Q
If: < 0.5 use: C
v
= SG * T
max
P1 397,000 * P1
4. Select the orifice size from Table 5-4 that has a C
just greater than the
v
Cv determined in Step 3.
5. Check to see if the maximum operating pressure drop is greater than
the maximum allowab le pressure drop for the orifice size selected. If the
pressure drop is too high for the orifice selected the instrument will not
be able to function correctly. This situation can be corrected by reducing
the pressure drop to the allowable level, or, reducing the maximum flow
so a smaller orifice will be selected.
An example Model 5866 application is shown in Figure 5-6 to illustrate
the orifice sizing procedure.
Given:
Controller Type: Upstream Gas: 5/8 Nitrogen, 3/8 Hydrogen Temperature; 70°F (530°R) Maximum Flow: 800 sccm Calibration Pressure: 100 psig (114.7 psia) Reference Pressure; 1 atmosphere (14.7 psia) Max Flow: 10 slpm (0°C ref. temp.)
Calculations:
SG Mixture = (3/8 x 0.070) + (5/8 x 0.964) = .629 Minimum Pressure Drop = 114.7 x .05 = 5.7 psi Maximum Pressure Drop = 114.7 - 14.7 = 100 psi P1 = 14.7 + 5.7 = 20.4 psia P2 = 14.7 psia P2/P1 = 14.7/20.4 = 0.721 which is
> 0.5 therefore use equation #1
800 0.629 x 530
C
= = 2.0 x 10
v
800,000 (20.4 - 14.7) x 14.7
-3
5-13
Page 37
Brooks Instrument Model 5866 Pressure Controller
Since the Cv calculated is the same as listed for the .014" orifice the .020" orifice should be selected. The last step is to check the maximum pressure drop for the application. The maximum pressure drop for the .020 orifice is 300 psi, this is greater than the 100 psi pressure drop required for the application so the .020" orifice is correct.
Table 5-4. Model 5866 Orifice Selection.
Figure 5-6. Example Application of Orifice Sizing Procedure.
®
N
2
Model 5850E Mass Flow Controller 500 sccm, Full Scale
100 psig
Maximum
Desired
Pressure
C
v
5.0x10
2.0x10
5.0x10
1.1x10
4.0.x10
9.0x10
2.0x10
4.7x10
1.4x10
3.5x10
5.5x10
8.0x10
1.0x10
1.4x10
1.5x10
Orifice Maximum
-6
-5
-5
-4
-4
-4
-3
-3
-2
-2
-2
-2
-1
-1
-1
Size Pressure Drop (psi)
.001 1500 .002 1500 .003 1500 .004 1500 .007 1500 .010 750 .014 550 .020 300 .032 175 .048 85 .062 55 .078 50 .093 50 .116 50 .120 50
Vent to
®
Atmosphere
Model 5866
5-14
®
H
2
Model 5850E Mass Flow Controller 300 sccm, Full Scale
Reactor
Page 38
Calibration
6-1 Calibration Procedure
Calibration
Section
6
The calibration of the Model 5866 Pressure Controller can be divided into three parts: Transducer Adjustment, Control Valve Adjustment and Control Electronics Adjustment. The control valve adjustment and sizing procedures are given in Sections 5-5 and 5-6 respectively. The adjustment of the control electronics is best done in the actual system the Model 5866 will be installed in and this procedure is covered in Section 3-2. This section of the manual will cov er the calibration of the pressure transducer. Please refer to the abov e sections of the manual if the control valve or control electronics require adjustment.
Note: Calibr ation of the Model 5866 Pressure Controller requires the use of a precision pressure and vacuum source, precision pressure indicators and a digital voltmeter (DVM). The calibration may also involv e high pressure. It is recommended the calibration procedure be performed by qualified personnel.
CAUTION
Excessive pressure can damage the pressure transducer and make it inoperative. Care must be taken not to allow the pressure transducer to be exposed to more than the maximum over-range pressure. The maxim um over -range pressure is specific to the range of the pressure transducer. These pressures are listed in Section 1-4 of this manual.
Refer to Figures 1-9 and 1-10 f or locations for the adjustment potentiometers, jumpers and D-Connector pins.
1. Connect power to the instrument and allow it to warm up for
approximately 15 minutes.
2. Connect the D VM positiv e lead to the +5 V olt ref erence output (Pin 11)
and the D VM negative lead to signal ground (Pin 10). Adjust the +5 Volt
reference output to 5.000 V using P1.
3. Connect the D VM positiv e lead to the pressure signal output (Pin 2) and
the negative lead to signal ground (Pin 10). Connect the transducer
side of the Model 5866 to a vacuum source capable of achieving an
absolute pressure less than 0.02 psia (1 Torr). Put a cap or some
suitable plug on valv e side inlet. Attaching the transducer side of the
Model 5866 to a mass spectrometer type helium leak detector is a good
way to achieve a suitable vacuum. Adjust the signal output to 0.000 V
using zero potentiometer, P4.
6-1
Page 39
Brooks Instrument Model 5866 Pressure Controller
Note: If a vacuum pump is not available and the atmospheric pressure
is accurately known the zero pressure signal output can be adjusted
using the following f ormula:
Output at Output at 100% Atmospheric
Atmospheric Pressure = x Pressure
(Vdc) Pressure at 100% (psia)
The above f ormula will be most accurate with high pressure
transducers where the output at atmospheric pressure is a small
fraction of the full scale pressure.
4. Apply the desired full scale pressure to the transducer side of the Model
5866 and adjust the span potentiometer (P3) so the Model 5866 output
agrees with the output of the precision pressure indicator . If the output
cannot be adjusted to the correct value with the span potentiometer
change the course gain setting by moving jumper (J1).
5. Apply a vacuum to the transducer side of the Model 5866 and chec k
zero pressure output. If the zero pressure output is correct, the
calibration is complete. If zero pressure output is not correct, repeat
Steps 3 and 4. Readjustment will probably only be required if the
atmospheric pressure method of adjustment was used to set zero.
(Vdc)
(psia)
6-2 Gas Conversion Factors
If a mass flow controller is operated on a gas other than the gas it was calibrated with, a scale shift will occur in the relation between the output signal and the mass flow rate. This is due to the difference in heat capacities between the two gases. This scale shift can be approximated by using the ratio of the molar specific heat of the two gases or by sensor conversion factor. A list of sensor conversion factors is given in Table 6-1. To change to a new gas, multiply the output reading by the ratio of the gas factor for the desired gas by the gas factor for the calibration gas used.
Actual Gas Flow Rate = Output Reading x
Example: The controller is calibrated for Nitrogen. The desired gas is Carbon Dioxide The output reading is 75 sccm when Carbon Dioxide is flowing Then 75 x 0.773 = 57.98 sccm
In order to calculate the conversion factor for a gas mixture, the following formula should be used:
Sensor Conversion Factor
Mixture
=
P
1
Sensor
Conversion
Factor
1
Factor of the New Gas
Factor of the Calibr ation Gas
100
P
+ +
2
Sensor
Conversion
Factor
2
P
3
Sensor
Conversion
Factor
3
6-2
Page 40
Calibration
Where, P
= percentage (%) of gas 1 (by volume)
1
P2 = percentage (%) of gas 2 (by volume) Pn = percentage (%) of gas n (by volume)
Example: The desired gas is 20% Helium (He) and 80% Chlorine (Cl) by volume. The desired full scale flow rate of the mixture is 20 slpm. Sensor conversion factor for the mixture is:
Mixture Factor = = 0.945
20
1.386
100
+
80
0.876
Nitrogen equivalent flow = 20/.945 = 21.16 slpm Nitrogen It is generally accepted that the mass flow rate derived from this equation
is only accurate to ±5%. The sensor conversion factors given in Table 6-1 are calculated based on a gas temperature of 21°C and a pressure of one atmosphere. The specific heat of most gases is not strongly pressure, and/ or temperature, dependent. However, gas conditions that vary widely from these reference conditions ma y cause an additional error due to the change in specific heat caused by pressure and/or temperature.
6-3
Page 41
Brooks Instrument Model 5866 Pressure Controller
Table 6-1. Conversion Factors (Nitrogen Base).
GAS NAME FORMULA SENSOR ORIFICE DENSITY
Acetylene C Air Mixture 0.998 1.018 1.293 Allene C Ammonia NH Argon Ar 1.395 1.195 1.784 Arsine AsH
Boron Trichloride BCL Boron Trifluoride BF Bromine Pentafluoride BrF Bromine Trifluoride BrF Bromotrifluoroethylene C Bromotrifluoromethane f-13B1 CBrF 1,3-Butadiene C Butane C 1-Butene C CIS-2-Butene C Trans-2-Butene C
Carbon Dioxide CO Carbon Disulfide CS Carbon Monoxide CO 0.995 1.000 1.250 Carbon Tetrachloride CCL Carbon Tetrafluoride f-14 CF Carbonyl Fluoride COF Carbonyl Sulfide COS 0.680 1.463 2.180 Chlorine CL Chlorine Dioxide CLO Chlorine Trifluoride CLF 2-Chlorobutane C Chlorodifluoromethane f-22 CHCLF Chloroform (Trichloromethane) CHCL Chloropentafluoroethane f-115 C Chlorotrifluoroethylene C Chlorotrifluoromethane f-13 CCLF Cyanogen (CN) Cyanogen Chloride CLCN 0.618 1.480 2.730 Cyclobutane C Cyclopropane C3H
Deuterium D Diborane B Diboromodifluoromethane f-12B2 CBr 1,2-Dibromotetrafluoroethane f-114B2 C Dichlorodifluoromethane f-12 CCL Dichlorofluoromethane f-21 CHCL2F 0.456 1.985 4.912 Dichlorosilane SiH 1,2-Dichloroethane C 1,2-Dichlorotetrafluoroethane f-114 C 2,2 Dichloro C 1,1-Difluoro-1-Chloroethane C 1,1-Difluoroethane CH 1,1-Difluoroethylene CH Diethylsilane C Difluoromethane f-32 CF Dimethylamine (CH Dimethylether (CH 2,2-Dimethylpropane C(CH Disilane Si
Ethane C Ethanol C Ethylacetylene C Ethyl Chloride C Ethylene C Ethylene Oxide C
Fluorine F Fluoroform f-23 CHF
Germane GeH Germanium Tetrachloride GeCl
Halothane (R-123B1) C Helium He 1.386 0.378 0.178 Hexafluoroacetone F Hexaflorobenzine C Hexafluoroethane f-116 C Hexafuoropropylene (HFP) C Hexamethyldisilane (HMDS) (CH Hexane C
2H2
3H4
3
3 3
3
5 3
BrF
2
3
3 4H6 4H10 4H8 4H8 4H8
2
2
4
4
2
2
2
3
Cl 0.234 1.818 4.134
4H9
2
3
CLF
2
5
CLF
2
3
3
2
4H8
6
2
2H6
2F2
2Br2F4
2F2
2CL2 2H4Cl2 2CL2F4 2HC12F3
CLF
2H3
2
CHF
3
2
:CF
2
2
Si 0.183 1.775 3.940
4H12
2H2
NH 0.370 1.269 2.013
3)2
O 0.392 1.281 2.055
3)2
3)4
2H6
2H6
O 0.394 1.282 2.057
2H6 4H6
CL 0.408 1.516 2.879
2H5 2H4
O 0.589 1.254 1.965
2H4
2
3 4
4
HBrClF
2
3
CCOCF
3
3 6F6 2F6 3F6
2)6Si2
6H14
FACTOR FACTOR (kg/m
0.615 0.970 1.173
0.478 1.199 1.787
0.786 0.781 0.771
0.754 1.661 3.478
0.443 2.044 5.227
0.579 1.569 3.025
0.287 2.502 7.806
0.439 2.214 6.108
0.326 2.397 7.165
0.412 2.303 6.615
0.354 1.413 2.491
0.257 1.467 2.593
0.294 1.435 2.503
0.320 1.435 2.503
0.291 1.435 2.503
0.773 1.255 1.977
0.638 1.650 3.393
0.344 2.345 6.860
0.440 1.770 3.926
0.567 1.555 2.045
0.876 1.598 3.214
0.693 1.554 3.011
0.433 1.812 4.125
0.505 1.770 3.906
0.442 2.066 5.340
0.243 2.397 7.165
0.337 2.044 5.208
0.430 1.985 4.912
0.498 1.366 2.322
0.387 1.413 2.491
0.505 1.224 1.877
0.995 0.379 0.177
0.448 1.000 1.235
0.363 2.652 8.768
0.215 2.905 10.53
0.390 2.099 5.492
0.442 1.897 4.506
0.382 1.879 4.419
0.231 2.449 7.479
0.259 2.336 6.829
0.341 1.957 4.776
0.415 1.536 2.940
0.458 1.512 2.860
0.627 1.360 2.411
0.247 1.613 3.244
0.332 1.493 2.779
0.490 1.038 1.357
0.365 1.384 2.388
0.619 1.000 1.261
0.924 1.163 1.695
0.529 1.584 3.127
0.649 1.653 3.418
0.268 2.766 9.574
0.257 2.654 8.814
0.219 2.434 7.414
0.632 2.577 8.309
0.255 2.219 6.139
0.249 2.312 6.663
0.139 2.404 7.208
0.204 1.757 3.847
3
)
Ref. No. J-836D508 gasdata.doc Vsn. 8.6
6-4
Page 42
Table 6-1. Conversion Factors (Nitrogen Base) Continued.
GAS NAME FORMULA SENSOR ORIFICE DENSITY
Hydrogen H Hydrogen Bromide HBr 0.987 1.695 3.645
2
Hydrogen Chloride HCL 0.983 1.141 1.639 Hydrogen Cyanide HCN 0.744 0.973 1.179 Hydrogen Fluoride HF 0.998 0.845 0.893 Hydrogen Iodide HI 0.953 2.144 5.789 Hydrogen Selenide H Hydrogen Sulfide H
Iodine Pentafluoride IF Isobutane C Isobutene C Isopentane C
Krypton Kr 1.382 1.729 3.708 Methane CH
Methylacetylene C Methyl Bromide CH 3-Methyl-1-butene C Methyl Chloride CH Methyl Fluoride CH Methyl Mercaptan CH Methyl Silane CH Methyl Trichlorosilane (MTS) CH Methyl Vinyl Ether C Monoethanolamine C Monoethylamine C Monomethylamine CH
Neon Ne 1.398 0.847 0.902 Nickel Carbonyl Ni(CO) Nitric Oxide NO 0.995 1.030 1.339 Nitrogen N Nitrogen Dioxide NO Nitrogen Trifluoride NF Nitrogen Trioxide N Nitrosyl Chloride NOCL 0.644 1.529 2.913 Nitrous Oxide N
Octofluorocyclobutane C Oxygen O Oxygen Difluoride OF Ozone O
Pentafluorethane f-125 C Pentane (n-Pentane) C Perchloryl Fluoride CLO3F 0.448 1.905 4.571 Perfluorobutane C Perfluoro-2-Butene C Perfluoromethyl-vinylether PMVE 0.296 2.029 5.131 Perfluoropropane C Pentane (n-Pentane) C Phosgene COCL Phosphine PH Phosphorous Pentafluoride PF Phosphorous Trifluor ide PF Propane (same as CH3CH2CH3)C Propylene (Propene) C
Rhenium Hexafluoride ReF Silane SiH
Silicon Tetrachloride SiCL Silicon Tetrafluoride SiF Sulfur Dioxide SO Sulfur Hexafluoride S F Sulfur Tetrafluor ide SF Sulfur Tri oxide SO Sulfuryl Fluoride SO
Tetrachloromethane CCL Tetrafluoroethylene (TFE) C Tetrafluorohydrazine N Trichlorofluoromethane f-11 CCL Trichlorosilane SiHCL Trimethyloxyborane (TMB) B(OCH3) 1,1,2-Trichloro-1,1,2-Triflouroet f-113 C Trimethylamine (CH Tungsten Hexafluoride WF
Uranimum Hexafluoride UF Vinyl Bromide C
Vinyl Chloride C Vinyl Fluoride C
Water Vapor H Xenon Xe 1.383 2.180 5.851
Se 0.837 1.695 3.613
2
S 0.850 1.108 1.539
2
5 4H10 4H8 5H12
4
3H4
Br 0.646 1.834 4.236
3
5H10
CL 0.687 1.347 2.308
3
F 0.761 1.102 1.518
3
S 0.588 1.313 2.146
4
Si 0.393 1.283 2.061
6
Si 0.267 2.310 6.675
3Cl3
O 0.377 1.435 2.567
3H6
NO 0.305 1.477 2.728
2H7 2HH5NH2
3NH2
4
2
2
3
2O3
O 0.752 1.259 1.964
2 4F8
2
2
3 2HF5
5H12
4F10 4F8
3F8 5H12
2 3 5 3
3H8 3H6
6
4
4 4 2
6 4
3 2F2
4
2F4 2F4
F 0.374 2.244 6.281
3
3
3
2CL3F3
N 0.316 1.467 2.639
3)3
6
6
Br 0.524 1.985 4.772
2H3
CL 0.542 1.492 2.788
2H3
F 0.576 1.281 2.046
2H3
O 0.861 0.802 0.804
2
F ACTOR FACTOR (kg/m
1.008 0.269 0.090
0.283 2.819 9.907
0.260 1.440 2.593
0.289 1.435 2.503
0.211 1.605 3.222
0.763 0.763 0.717
0.473 1.196 1.782
0.252 1.584 3.127
0.359 1.269 2.013
0.565 1.067 1.420
0.212 2.371 7.008
1.000 1.000 1.251
0.758 1.713 2.052
0.501 1.598 3.168
0.443 1.649 3.389
0.169 2.672 8.933
0.988 1.067 1.429
0.672 1.388 2.402
0.738 1.310 2.138
0.287 2.070 5.360
0.212 1.605 3.222
0.738 2.918 10.61
0.268 2.672 8.933
0.179 2.591 8.396
0.212 1.605 3.222
0.504 1.881 4.418
0.783 1.100 1.517
0.346 2.109 5.620
0.495 1.770 3.906
0.343 1.274 2.008
0.401 1.234 1.875
0.230 3.279 13.41
0.625 1.070 1.440
0.310 2.465 7.579
0.395 1.931 4.648
0.728 1.529 2.858
0.270 2.348 6.516
0.353 1.957 4.776
0.535 1.691 3.575
0.423 1.931 4.648
0.344 2.345 6.858
0.361 1.905 4.526
0.367 1.926 4.624
0.329 2.201 6.038
0.300 1.929 4.638
0.231 2.520 7.920
0.227 3.264 13.28
0.220 3.548 15.70
Calibration
3
)
Ref. No. J-836D508 gasdata.doc Vsn. 8.6
6-5
Page 43
Brooks Instrument Model 5866 Pressure Controller
6-6
Page 44
Parts List
7-1 General
Parts List
Section
7
Replacement parts for the Model 5866 are readily available worldwide through the factories and customer service facilities listed on the back cover of this manual. Parts can also be ordered through authorized repair stations and sales agents. When ordering replacement parts please specify: Brooks serial number, model number, part description, part number and quantity.
Refer to Figure 7-1 and Table 7-1 for Model 5866E parts drawing and list and Figure 7-2 and Table 7-3 for Model 5866M parts drawing and list. Table 7-2 lists tools and parts that are useful for troubleshooting and repair .
7-1
Page 45
Brooks Instrument Model 5866 Pressure Controller
Figure 7-1. Model 5866E Parts Drawing.
7-2
Page 46
Table 7-1. Model 5866E Parts List.
Item
No. Qty. Description Part Number
1 1 Jam Nut 573-B-027-ACK 2 1 Coil Assembly S-185-Z-271-AAA 3 6 Valve/Transducer Screw 751-C-322-AWA 4 1 Retaining Plate 715-Z-169-CZ% 5 2 or 3 O-ring, Valve Stem, 375-B-016-***
Transducer, Size 016
6 1 Valve Stem, N.C. 949-Z-203-QOA 6A 1 Valve Plug, (w/o valve) 953-Z-068-BMT 6B 1 Backing Ring, (w/o valve) 763-Z-064-QTA
7 1 Plunger Assy, N.C. S-622-Z-165-AAA
8 1 or 2 Lower Guide Spring 820-Z-083-BMA
9 AR Small Valve Spacer, .005" TK 810-A-362-BMA
AR Small Valve Spacer, .010" TK 810-A-363-BMA
10 AR Large Valve Spacer, .005" TK 810-A-368-BMA
AR Large Valve Spacer, .010" TK 810-A-361-BMA
11 1 Valve Seat w/Viton Insert S-715-Z-051-AAG
Valve Seat w/Buna Insert S-715-Z-050-AAG Valve Seat w/Kalrez Insert S-715-Z-163-AAA Valve Seat w/Teflon Insert S-715-Z-049-AAA Valve Seat, Stainless Steel 715-Z-181-BNT
12 1 Orifice Stainless Hastelloy
ID 0.0013" 577-Z-375-BMT 577-Z-404-CVA ID 0.002" 577-Z-376-BMT 577-Z-405-CVA ID 0.003" 577-Z-377-BMT 577-Z-406-CVA
ID 0.004" 577-Z-378-BMT 577-Z-407-CVA (Refer ID 0.007" 577-Z-381-BMT 577-Z-410-CVA to ID 0.010" 577-Z-383-BMT 577-Z-412-CVA Section ID 0.014" 577-Z-385-BMT 577-Z-414-CVA 5-6 ID 0.020" 577-Z-387-BMT 577-Z-416-CVA for ID 0.032" 577-Z-391-BMT 577-Z-420-CVA Sizing) ID 0.048" 577-Z-393-BMT 577-Z-422-CVA
ID 0.062" 577-Z-395-BMT 577-Z-424-CVA
ID 0.078" 577-Z-397-BMT 577-Z-426-CVA
ID 0.093" 577-Z-398-BMT 577-Z-427-CVA
ID 0.116" 577-Z-399-BMT 577-Z-428-CVA
ID 0.120" 577-Z-400-BMT 577-Z-429-CVA
Parts List
Item
No. Qty. Description Part Number
13 1 or 2 O-ring, Orifice, Size 008 375-B-008-*** 14 1 Spacer, Nut, N.O. Valve BV-810-A-326-CEA 15 1 Valve Stem, N.O. Valve BV-839-Z-042-BMT 16 1 Plunger Assembly, N.O. Valve BV-622-Z-118-AAA 17 1 Insert, Sleeve, N.O. Valve BV-456-C-179-CEA 18 1 Plunger Ext., N.O. Valve BV-622-Z-117-BMT 19 1 Spacer, Spring, N.O. Valve BV-810-A-327-BMT 20 4 Screw, Downstream Control 751-C-343-ACZ
Adaptor 21 1 Downstream Control Adaptor BV-019-Z-235-BMF 22 2 8-32 Mounting Screw 753-A-322-AWA 23 2 Fittings:
1/8" Compression, Swagelok 320-B-182-BMA 1/4" Compression, Swagelok 320-B-136-BMA 3/8" Compression, Swagelok 320-B-150-BMA 6mm Compression, Swagelok 320-Z-101-BMA 1/4" VCR 315-Z-036-BMA 3/8 or 1/2" VCR 315-Z-034-BMA 1/4" VCO 315-Z-035-BMA
TM
24 2 O-ring, Fitting 375-B-906-*** 25 1 Controller Body BV-092-B-095-BMT 26 1 Pressure Transducer, 0-1 Bar BV-774-Z-001-GDE
27 1 Base Plate BV-613-H-106-BMF 28 1 PC Board Mounting Bracket 079-Z-135-EAA 29 5 Screw, PC Board, Cover 753-L-056-AWZ 30 1 PC Board Assembly, 5866 097-B-190-ZZZ 31 1 Electronics Cover Can 219-Z-256-EAD 32 2 Pot Hole Plug 620-Z-434-SXA 33 2 Jack Post 760-Z-037-ACS
*** QTA= Viton, SUA= Buna, TTA= Kalrez
3/8 or 1/2" VCO 315-Z-033-BMA
Pressure Transducer, 0-5 Bar BV-774-Z-002-GDE Pressure Transducer, 0-20 Bar BV-774-Z-003-GDE Pressure Transducer, 0-100 Bar BV-774-Z-004-GDE
Table 7-2. Troubleshooting Aids and Spare Parts Kit for Model 5866E.
5850 Break Out Board Assembly 5850 Valve Shim Kit P/N S-273-Z-668-AAA P/N S-810-A-372-BMA
Installs directly between mass flow controller and interconnecting Contains: cable. Allows convenient access to all signals for easy 1- .010" Large Spacer troubleshooting of system. 2- .005" Large Spacers
1- .010" Small Spacer
Contains: 2- .005" Small Spacers
1- Break Out PC Board 1- 5 Foot Extension Cable 1- Terminal PC Board
7-3
Page 47
Brooks Instrument Model 5866 Pressure Controller
Figure 7-2. Model 5866M Parts Drawing.
7-4
Page 48
Table 7-3. Model 5866M Parts List.
Parts List
7-5
Page 49
Brooks Instrument Model 5866 Pressure Controller
7-6
Page 50
Installation and Operation Manual
а
а
а
-
е
с
о
о
о
t
541-C-005-AAA Rev D/ DRAFT
Section A, CE Certification of
Mass Flow Equipment
April, 2007
Bulgarian
Brooks Instrument Neonstraat 3 6718 WX Ede The Netherlands
Български
Всички снабдени с означението СЕ оборудвания Brooks (електрически/електронни) с преминали успешно през тестове съответно изискванията на електромагнитнат съвместимост. (предписание на EMC 89/336/EEC). Обаче на избирането на сигнални кабели за снабдените с означението СЕ оборудвания, трябва да се обръща особено внимание.
Качество на сигналните кабели, кабелните салници и присъединителните елементи:
Brooks осигурява кабелна инсталация с отлично качество, която отговаря на изискваният на директивите на СЕ. Ако обаче искате да използвате свой сигнален кабел, изберете сигнален кабел с поне 100% во покритие, който е напълно екраниран.
Който и да е използван „D” или коаксиален присъединителен елемент, трябва да бъд екраниран с метална броня. Ако е приложимо, покритието на кабелите трябва да се стегне метални кабелни салници. Покритието на кабелите трябва да се присъедини към металнот защитно покритие или салника, и и на двата си края трябва да осигурява 360 0 -в екраниране. Покритието трябва да се свърже към една заземяваща клема.
Напечатаните на платката присъединителни елементи са неметални, по стандарт. Използваните кабели, за да отговарят на директивите на СЕ, трябва да имат 100 % -в екраниране.
Model 5866
Czech
Brooks Instrument Neonstraat 3 6718 WX Ede The Netherlands
Český jazyk
Všechny (elektrické/elektronické) přístroje Brooks, které jsou označeny značkou CE, byly úspěšně testovány na elektromagnetickou kompatibilitu (předpis EMC 89/336/EEC). Při výběru signalizačních kabelů, které chcete u přístrojů se značkou CE použít je třeba věnova zvýšenou pozornost.
Kvalita signalizačních kabelů, kabelových průchodek a připojovacích svorek:
Brooks zabezpečuje spolehlivou kabeláž, která vyhovuje požadavkům směrnic CE. Chcete-li použít vlastní signalizační kabel, volte kabel s krytím nejméně 100 %, s úplným stíněním.
Jakákoliv použitá koaxiální přípojovací svorka nebo „D” svorka musí být stíněná kovovým pláštěm. Je-li to řešitelné, krytí kabelů je nutné zabezpečit kovovou kabelovou průchodkou. Stínění kabelu je třeba propojit s kovovým ochranným krytem nebo kovovou kabelovou průchodkou a na obou dvou koncích kabelu musí být zajištěno stínění 360 Kovový kryt se musí propojit s uzemňovací svorkou.
Připojovací svorky, nalisované na kartu nejsou kovové, jako je ve standardech, stínění použitých kabelů musí být minimálně 100 %, aby vyhověly CE směrnicím.
0
.
A-1
Page 51
Section A, CE Certification of Mass Flow Equipment
Installation and Operation Manual
541-C-005-AAA Rev D/ DRAFT
April, 2007
Model 5866
Dansk
Brooks Instrument Neonstraat 3 6718 WX Ede The Netherlands
Emne : Tillæg til instruktions manual. Reference : CE mærkning af Masse Flow udstyr Dato : Januar-1996.
Brooks Instrument har gennemført CE mærkning af elektronisk udstyr med succes, i henhold til regulativet om elektrisk støj (EMC direktivet 89/336/EEC). Der skal dog gøres opmærksom på benyttelsen af signalkabler i forbindelse med CE mærkede udstyr.
Kvaliteten af signal kabler og stik:
Brooks lever kabler af høj kvalitet, der imødekommer specifikationerne til CE mærkning. Hvis der anvendes andre kabel typer skal der benyttes et skærmet kabel med hel skærm med 100% dækning. Forbindelses stikket type “D” eller “cirkulære”, skal være skærmet med metalhus og eventuelle PG-forskruninger skal enten være af metal eller metal skærmet. Skærmen skal forbindes, i begge ender, til stikkets metalhus eller PG-forskruningen og have forbindelse over 360 grader. Skærmen bør være forbundet til jord. “Card Edge” stik er standard ikke af metal, der skal derfor ligeledes benyttes et skærmet kabel med hel skærm med 100% dækning. Skærmen bør være forbundet til jord. Forbindelse af stikket; venligst referer til vedlagte instruktions manual. Med venlig hilsen,
Deutsch
Brooks Instrument Neonstraat 3 6718 WX Ede The Netherlands
Subjekt : Nachtrag zur Bedienungsanleitung. Referenz: CE Zertifizierung für Massedurchflußgeräte Datum : Januar-1996.
Nach erfolgreichen Tests enstprechend den Vorschiften der Elektromagnetischen Verträglichkeit (EMC Richtlinie 89/336/EEC) erhalten die Brooks-Geräte (elektrische/elektronische Komponenten) das CE-Zeichen. Bei der Auswahl der Verbindungskabel für CE-zertifizierte Geräte sind spezielle Anforderungen zu beachten.
Qualität der Verbindungskabel, Anschlußstecker und der Kabeldurchführungen
Die hochwertigen Qualitätskabel von Brooks entsprechen der Spezifikation der CE-Zertifizierung. Bei Verwendung eigener Verbindungskabel sollten Sie darauf achten, daß eine 100 %igenSchirmababdeckung des Kabels gewährleistet ist. “D” oder “Rund” -Verbindungsstecker sollten eine Abschirmung aus Metall besitzen. Wenn möglich, sollten Kabeldurchführungen mit Anschlußmöglichkeiten für die Kabelabschrimung verwendet werden. Die Abschirmung des Kabels ist auf beiden Seiten des Steckers oder der Kabeldurchführungen über den vollen Umfang von 360 ° anzuschließen. Die Abschirmung ist mit dem Erdpotential zu verbinden. Platinen-Steckverbindunger sind standardmäßige keine metallgeschirmten Verbindungen. Um die Anforderungen der CE-Zertifizierung zu erfüllen, sind Kabel mit einer 100 %igen Schirmababdeckung zu verwenden. Die Abschirmung ist mit dem Erdpotential zu verbinden. Die Belegung der Anschlußpins können Sie dem beigelegten Bedienungshandbuch entnehmen.
A-2
Page 52
Installation and Operation Manual
541-C-005-AAA Rev D/ DRAFT
Section A, CE Certification of
Mass Flow Equipment
April, 2007
Model 5866
English
Brooks Instrument Neonstraat 3 6718 WX Ede The Netherlands
Subject : Addendum to the Instruction Manual. Reference : CE certification of Mass Flow Equipment Date : January-1996.
The Brooks (electric/electronic) equipment bearing the CE mark has been successfully tested to the regulations of the Electro Magnetic Compatibility (EMC directive 89/336/EEC). Special attention however is required when selecting the signal cable to be used with CE marked equipment.
Quality of the signal cable, cable glands and connectors:
Brooks supplies high quality cable(s) which meets the specifications for CE certification. If you provide your own signal cable you should use a cable which is overall completely screened with a 100% shield. “D” or “Circular” type connectors used should be shielded with a metal shield. If applicable, metal cable glands must be used providing cable screen clamping. The cable screen should be connected to the metal shell or gland and shielded at both ends over 360 Degrees. The shield should be terminated to a earth ground. Card Edge Connectors are standard non-metallic. The cables used must be screened with 100% shield to comply with CE certification. The shield should be terminated to a earth ground. For pin configuration : Please refer to the enclosed Instruction Manual.
Eesti
Brooks Instrument Neonstraat 3 6718 WX Ede The Netherlands
Brooksi kogu CE-märki kandev (elektriline ja elektrooniline) seadmestik on edukalt läbinud katsed vastavalt elektromagnetilise ühilduvuse eeskirjadele (elektromagnetilise ühilduvuse direktiiv 89/336/EMÜ). Signaalikaablite valimisel kasutamiseks koos CE-vastavusmärki omavate seadmetega tuleb siiski järgida spetsiaalseid nõudeid.
Signaalikaablite, läbiviiktihendite ja pistikühenduste kvaliteet:
Brooks valmistab kvaliteetkaableid, mis vastavad CE-sertifitseerimise spetsifikatsioonidele. Kui te aga soovite kasutada oma signaalikaablit, peaksite valima täielikult varjestatud kaabli vähemalt 100% varjestusega.
Kasutatavad poolümar- või ümarühendused tuleb varjestada metallekraaniga. Võimaluse korral tuleb kaablivarje kinnitamiseks kasutada metallist kaablihoidikuid. Kaabliekraan tuleb ühendada metallkesta või -tihendiga ning varustada mõlemas otsas varjestusega 360° ulatuses. Varjestus tuleb ühendada maandusklemmiga.
Plaadi külgühendused on tavaliselt mittemetalsest materjalist. CE-sertifitseerimisnõuetele vastamiseks peavad kasutatavad kaablid olema varustatud 100% varjestusega.
A-3
Page 53
Section A, CE Certification of Mass Flow Equipment
Installation and Operation Manual
541-C-005-AAA Rev D/ DRAFT
April, 2007
Model 5866
Español
Brooks Instrument Neonstraat 3 6718 WX Ede The Netherlands
Asunto : Addendum al Manual de Instrucciones. Referencia: Certificación CE de los Equipos de Caudal Másico Fecha : Enero-1996.
Los equipos de Brooks (eléctricos/electrónicos) en relación con la marca CE han pasado satisfactoriamente las pruebas referentes a las regulaciones de Compatibilidad Electro magnética (EMC directiva 89/336/EEC). Sin embargo se requiere una atención especial en el momento de seleccionar el cable de señal cuando se va a utilizar un equipo con marca CE
Calidad del cable de señal, prensaestopas y conectores:
Brooks suministra cable(s) de alta calidad, que cumple las especificaciones de la certificación CE . Si usted adquiere su propio cable de señal, debería usar un cable que esté completamente protegido en su conjunto con un apantallamiento del 100%. Cuando utilice conectores del tipo “D” ó “Circular” deberían estar protegidos con una pantalla metálica. Cuando sea posible, se deberán utilizar prensaestopas metálicos provistos de abrazadera para la pantalla del cable. La pantalla del cable deberá ser conectada al casquillo metálico ó prensa y protegida en ambos extremos completamente en los 360 Grados. La pantalla deberá conectarse a tierra. Los conectores estandar de tipo tarjeta (Card Edge) no son metálicos, los cables utilizados deberán ser protegidos con un apantallamiento del 100% para cumplir con la certificación CE. La pantalla deberá conectarse a tierra. Para ver la configuración de los pines: Por favor, consultar Manual de Instrucciones adjunto.
Français
Brooks Instrument Neonstraat 3 6718 WX Ede The Netherlands
Sujet : Annexe au Manuel d’Instructions. Référence : Certification CE des Débitmètres Massiques à Effet Thermique. Date : Janvier 1996.
Messieurs, Les équipements Brooks (électriques/électroniques) portant le label CE ont été testés avec succès selon les règles de la Compatibilité Electromagnétique (directive CEM 89/336/EEC). Cependant, la plus grande attention doit être apportée en ce qui concerne la sélection du câble utilisé pour véhiculer le signal d’un appareil portant le label CE.
Qualité du câble, des presse-étoupes et des connecteurs:
Brooks fournit des câbles de haute qualité répondant aux spécifications de la certification CE. Si vous approvisionnez vous-même ce câble, vous devez utiliser un câble blindé à 100 %. Les connecteurs « D » ou de type « circulaire » doivent être reliés à la terre. Si des presse-étoupes sont nécessaires, ceux ci doivent être métalliques avec mise à la terre. Le blindage doit être raccordé aux connecteurs métalliques ou aux presse-étoupes sur le pourtour complet du câble, et à chacune de ses extrémités. Tous les blindages doivent être reliés à la terre. Les connecteurs de type « card edge » sont non métalliques. Les câbles utilisés doivent être blindés à 100% pour satisfaire à la réglementation CE. Tous les blindages doivent être reliés à la terre. Se référer au manuel d’instruction pour le raccordement des contacts.
A-4
Page 54
Installation and Operation Manual
541-C-005-AAA Rev D/ DRAFT April, 2007
Greek
Brooks Instrument Neonstraat 3 6718 WX Ede The Netherlands
Section A, CE Certification of
Mass Flow Equipment
Model 5866
A-5
Page 55
Section A, CE Certification of Mass Flow Equipment
Installation and Operation Manual
541-C-005-AAA Rev D/ DRAFT
April, 2007
Model 5866
Italiano
Brooks Instrument Neonstraat 3 6718 WX Ede The Netherlands
Oggetto : Addendum al manuale di istruzioni. Riferimento : Certificazione CE dei misuratori termici di portata in massa Data : Gennaio 1996.
Questa strumentazione (elettrica ed elettronica) prodotta da Brooks Instrument, soggetta a marcatura CE, ha superato con successo le prove richieste dalla direttiva per la Compatibilità Elettomagnetica (Direttiva EMC 89/336/EEC). E’ richiesta comunque una speciale attenzione nella scelta dei cavi di segnale da usarsi con la strumentazione soggetta a marchio CE.
Qualità dei cavi di segnale e dei relativi connettori:
Brooks fornisce cavi di elevata qualità che soddisfano le specifiche richieste dalla certificazione CE. Se l’utente intende usare propri cavi, questi devono possedere una schermatura del 100%. I connettori sia di tipo “D” che circolari devono possedere un guscio metallico. Se esiste un passacavo esso deve essere metallico e fornito di fissaggio per lo schermo del cavo. Lo schermo del cavo deve essere collegato al guscio metallico in modo da schermarlo a 360° e questo vale per entrambe le estemità. Lo schermo deve essere collegato ad un terminale di terra. I connettori “Card Edge” sono normalmente non metallici. Il cavo impiegato deve comunque avere una schermatura del 100% per soddisfare la certificazione CE. Lo schermo deve essere collegato ad un terminale di terra. Per il corretto cablaggio dei terminali occorre fare riferimento agli schemi del manuale di istruzioni dello strumento.
Latviski
Neonstraat 3 6718 WX Ede The Netherlands
Latviski
Visas Brooks (elektriskās/elektroniskās) iekārtas ar CE marķējumu ir veiksmīgi pārbaudītas saskaņā ar noteikumiem
par elektromagnētisko saderību (EMC direktīva 86/336/EEK). Taču īpaša uzmanība ir jāpievērš, izvēloties signāla kabeļus, kas tiks lietoti kopā ar iekārtām, kam piešķirts CE marķējums.
Signāla kabeļu, kabeļu uzgaļu un savienotāju kvalitāte:
Brooks piedāvā augstas kvalitātes kabeļus, kas atbilst CE marķēšanas noteikumiem. Taču, ja vēlaties izmantot savu signāla kabeli, izvēlieties pilnībā ekranētu kabeli, kura ekrāna laukums ir vismaz 100%.
Visi izmantotie D tipa vai apaļas formas savienotāji jāekranē, izmantojot metāla ekrānu. Nepieciešamības gadījumā,
lai iespīlētu kabeļa ekranējumu, jāizmanto kabeļu uzgaļi. Kabeļa ekranējums jāsavieno ar metāla čaulu vai uzgali, un ekranējumam abos kabeļa galos jābūt 360°. Ekranējums jāsavieno ar zemējuma spaili.
Parasti drukāto shēmas plašu savienotāji nav izgatavoti no metāla. Lai atbilstu CE marķējuma prasībām, izmantotajiem kabeļiem jābūt ekranētiem, izmantojot ekrānu ar 100% laukumu.
A-6
Page 56
Installation and Operation Manual
z
s
a
t
541-C-005-AAA Rev D/ DRAFT
Section A, CE Certification of
Mass Flow Equipment
April, 2007
Lietuviškai
Neonstraat 3 6718 WX Ede The Netherlands
Visi „CE“ ženklu pažymėti „Brooks“ (elektros/elektroniniai) prietaisai sėkmingai testuoti pagal Elektromagnetinio suderinamumo reikalavimus (EMC direktyva 89/336/EEC). Tačiau reikia skirti ypatingą dėmesį, parenkant „CE” ženklu pažymėtiems gaminiams naudojamus duomenų kabelius.
Duomenų kabelių, kabelių riebokšlių ir kištukų kokybė:
„Brooks” užtikrina puikios kokybės duomenų siuntimą kabeliu, atitinkantį „CE” direktyvų reikalavimus. Jei, nepaisant to, Jūs pageidaujate naudoti savo duomenų kabelį, rinkitės mažiausiai 100% padengtą, pilnai ekranuotą duomenų kabelį.
Jis turi būti ekranuotas bet kokiu panaudotu „D” arba koaksialiniu jungiamuoju metalo šarvu. Jei įmanoma, kabelio dangą reikia suveržti metaliniais kabelio riebokšliais. Kabelio dangą reikia prisegti prie metalinės apsauginės dangos arba riebokšlio, ir abiejuose galuose turi būti užtikrintas
0
ekranavimas.
360 Dangą reikia prijungti prie įžeminimo apkabos.
Ant kortelės spausdinti kištukai nemetaliniai, atitinka standartus. Tam, kad jie atitiktų „CE” direktyvas, panaudoti kabeliai turi būti 100% ekranuoti.
Model 5866
Magyar
Brooks Instrument
Neonstraat 3 6718 WX Ede The Netherlands
Valamennyi CE jellel ellátott Brooks (elektromos/elektronikus) berendezést sikeresen teszteltek a elektromágneses összeférhetőség követelményeinek megfelelően (EMC előírás 89/336/EEC). Azonban a CE jellel ellátott berendezésekhez használandó jelkábelek kiválasztására különö figyelmet kell szentelni.
A jelkábelek, kábel tömszelencék és csatlakozók minősége:
A Brooks kitűnő minőségű kábelezést biztosít, ami eleget tesz a CE irányelvek követelményeinek.
Ha azonban saját jelkábelét szeretné használni, egy legalább 100 %-ban burkolt, teljesen árnyékolt jelkábelt válasszon.
Bármelyik felhasznált „D” vagy koaxiális csatlakozó fémvértezettel kell legyen árnyékolva. H alkalmazható, a kábelburkolást fém kábeltömszelencékkel kell összefogni. A kábelburkolást a fém védőburkolathoz vagy tömszelencéhez kell kapcsolni, és mindkét végén 360 kell biztosítson. A burkolást egy földelőkapocshoz kell csatlakoztatni.
A kártyára nyomtatott csatlakozók nemfémesek, mint szabványok. A felhasznált kábelek, ahhoz, hogy megfeleljenek a CE irányelveknek 100 % -os árnyékoltsággal kell rendelkezzenek.
0
–os árnyékoltságo
A-7
Page 57
Section A, CE Certification of Mass Flow Equipment
Installation and Operation Manual
541-C-005-AAA Rev D/ DRAFT
April, 2007
Model 5866
Nederlands
Brooks Instrument Neonstraat 3 6718 WX Ede The Netherlands
Onderwerp : Addendum voor Instructie Handboek Referentie : CE certificering voor Mass Flow Meters & Controllers Datum : Januari 1996
Alle CE gemarkeerde elektrische en elektronische produkten van Brooks Instrument zijn met succes getest en voldoen aan de wetgeving voor Electro Magnetische Compatibiliteit (EMC wetgeving volgens 89/336/EEC). Speciale aandacht is echter vereist wanneer de signaalkabel gekozen wordt voor gebruik met CE gemarkeerde produkten.
Kwaliteit van de signaalkabel en kabelaansluitingen:
Brooks levert standaard kabels met een hoge kwaliteit, welke voldoen aan de specificaties voor CE certificering. Indien men voorziet in een eigen signaalkabel, moet er gebruik gemaakt worden van een kabel die volledig is afgeschermd met een bedekkingsgraad van 100%.
“D” of “ronde” kabelconnectoren moeten afgeschermd zijn met een metalen connector kap. Indien kabelwartels worden toegepast, moeten metalen kabelwartels worden gebruikt die het mogelijk maken het kabelscherm in te klemmen. Het kabelscherm moet aan beide zijden over 360° met de metalen connectorkap, of wartel verbonden worden. Het scherm moet worden verbonden met aarde.
“Card-edge” connectors zijn standaard niet-metallisch. De gebruikte kabels moeten volledig afgeschermd zijn met een bedekkingsgraad van 100% om te voldoen aan de CE certificering. Het scherm moet worden verbonden met aarde. Voor pin-configuraties a.u.b. verwijzen wij naar het bijgesloten instruktie handboek.
Norsk
Brooks Instrument Neonstraat 3 6718 WX Ede The Netherlands
Vedrørende : Vedlegg til håndbok Referanse : CE sertifisering av utstyr for massestrømsmåling og regulering Dato : Januar 1996 Til den det angår
Brooks Instrument elektrisk og elektronisk utstyr påført CE-merket har gjennomgått og bestått prøver som beskrevet i EMC forskrift om elektromagnetisk immunitet, direktiv 89/336/EEC. For å opprettholde denne klassifisering er det av stor viktighet at riktig kabel velges for tilkobling av det måletekniske utstyret.
Utførelse av signalkabel og tilhørende plugger:
Brooks Instrument tilbyr levert med utstyret egnet kabel som møter de krav som stilles til CE-sertifisering.
Dersom kunden selv velger kabel, må kabel med fullstendig, 100% skjerming av lederene benyttes.
“D” type og runde plugger og forbindelser må være utført med kappe i metall og kabelnipler må være utført i metall for jordet innfesting av skjermen. Skjermen i kabelen må tilknyttes metallet i pluggen eller nippelen i begge ender over 360°, tilkoblet elektrisk jord.
Kort-kantkontakter er normalt utført i kunststoff. De tilhørende flatkabler må være utført med fullstendig, 100% skjerming som kobles til elektrisk jord på riktig pinne i pluggen, for å møte CE sertifiseringskrav.
For tilkobling av medleverte plugger, vennligst se håndboken som hører til utstyret. Vennlig hilsen
A-8
Page 58
Installation and Operation Manual
y
o
ć
z
ć
ą
541-C-005-AAA Rev D/ DRAFT
Section A, CE Certification of
Mass Flow Equipment
April, 2007
Polski
Brooks Instrument Neonstraat 3 6718 WX Ede The Netherlands
Wszystkie urządzenia (elektryczne/elektroniczne) typu Brooks oznaczone znakiem CE był pomyślnie kontrolowane pod względem wymagań zgodności elektromagnetycznej (przepisy EMC 89/336/EEC). Natomiast szczególną uwagę należy poświęcić na wybranie odpowiednej kabli instalacyjnej d urządzeń oznaczonych znakiem CE.
Jakość kabli instalacyjnych, dławnic kablowych i złącz:
Brooks zapewnia okablowanie o wybitnej jakości, co odpowiada wymaganiom wytycznych CE.
Aczkolwiek Państwo zamierzacie stosować własny kabel instalacyjny, to należy wybra odpowiedny kabel ekranowy, przykryty oplotem minimum w 100%. Wszystkie stosowane złącze typu „D” lub kable koncentryczne powinne być przykryte oplotem drutów miedzianych. Jeżeli da się zastosować, to należy osłony kablowe zgromadzić dławnicami
kablowymi. Osłony kablowe należy podłączyć do dławnic lub do metalowych pokryw ochronnych,
które na obydwuch końcach muszą być zatłumione w 360%.
Pokrywy muszą być podłączone do złącz uziemnionych.
Drukowane do kart złącze są niemetalowe, jako normy. Stosowane kable ekranowe mają by przykryte oplotem w 100%, ponieważ wymagania CE to przepisują, którym kable musz odpowiadać.
Model 5866
Português
Brooks Instrument Neonstraat 3 6718 WX Ede The Netherlands
Assunto : Adenda ao Manual de Instruções Referência : Certificação CE do Equipamento de Fluxo de Massa Data : Janeiro de 1996.
O equipamento (eléctrico/electrónico) Brooks com a marca CE foi testado com êxito nos termos do regulamento da Compatibilidade Electromagnética (directiva CEM 89/336/EEC). Todavia, ao seleccionar-se o cabo de sinal a utilizar com equipamento contendo a marca CE, será necessário ter uma atenção especial.
Qualidade do cabo de sinal, buchas de cabo e conectores:
A Brooks fornece cabo(s) de qualidade superior que cumprem os requesitos da certificação CE. Se fornecerem o vosso próprio cabo de sinal, devem utilizar um cabo que, na sua totalidade, seja isolado com uma blindagem de 100%. Os conectores tipo “D” ou “Circulares” devem ser blindados com uma blindagem metálica. Se tal for necessário, deve utilizarse buchas metálicas de cabo para o isolamento do aperto do cabo. O isolamento do cabo deve ser ligado à blindagem ou bucha metálica em ambas as extremidades em 360º. A blindagem deve terminar com a ligação à massa. Os conectores “Card Edge” não são, em geral, metálicos e os cabos utilizados devem ter um isolamento com blindagem a 100% nos termos da Certificação CE.. A blindagem deve terminar com ligação à massa. Relativamente à configuração da cavilha, queiram consultar o Manual de Instruções.
A-9
Page 59
Section A, CE Certification of
t
a
ţ
e
e
e
o
z
e
a
Mass Flow Equipment
Installation and Operation Manual
541-C-005-AAA Rev D/ DRAFT
Model 5866
Românã
Brooks Instrument Neonstraat 3 6718 WX Ede The Netherlands
Fiecare aparat Brooks (electric/electronic), pevăzut cu inscripţia CE a fost testat cu succes potrivi cerinţelor compatibilităţii electromagnetice (standardul EMC 89/366/EEC). Însă o atenţie deosebită trebuie acordată la alegerea cablurilor de semnal pentru aparatur prevăzută cu inscripţia CE.
Calitatea cablurilor de semnal, a glandelor şi a conexiunilor:
Brooks asigură a cablare de calitate excelentă, care satiface cerinţele standardelor CE. Însă, în cazul în care doriţi să utililiza semnal izolat în proporţie de cel puţin 100%, având o ecranare integrală.
Orice conexiune de tip „D” sau coaxială utilizată trebuie să fie ecranată cu armătură metalică. În cazul în care acesta este utilizabilă, învelişul cablului trebuie strâns cu glande metalice. Est necesară fixarea invelişului cablului la invelişul metalic sau la glande, în aşa fel încât la ambel capete ale cablului să asigure o ecranare de 3600. Învelişul trebuie conectat la o clemă de pământare.
Conform standardelor, conexiunile imprimate pe cartele nu sunt considerate conexiuni metalice. În vederea conformării standardelor CE, cablurile utilizate trebuie să asigure o ecranare de 100%.
i un cablu de semnal propriu, trebuie să alegeţi un cablu d
April, 2007
Slovensko
Brooks Instrument Neonstraat 3 6718 WX Ede The Netherlands
Vse (električne/elekronske) naprave Brooks z zaznamovanjem CE so uspešno testirane primern zahtevam elektromagnetne kompatibilnosti (EMC predpis 89/336/EEC). Medtem ko mora se posvetiti posebna pozornost za izbiro signalnih kabl, ki se uporabijo naprave zaznamovanjem CE.
Kakovost signalnih kabl, kabelskih tulcev in priključkov:
Brooks zavaruje kabliranje odlične kakovosti, kar zadoščuje zahtevam CE direktiv. Če medtem ko želite uporabiti svoj signalni kabel, izbirajte signalni kabel, ki je vsaj v 100 % zavit in
popolnoma zasenčeni signalni kabel.
Kateri koli „D” ali koaks priključek mora bit zasenčen s kovinsko opremo. Če je uporabivo, kabelsko oblogo je potrebno zajemati skupaj s kovinskimi tulci za kable. Kabelsko oblogo j potrebno povezovati s kovinsko zaščitno oblogo ali s tulci in na obeh koncih je potrebno d zavaruje senco od 360 °. Oblogo je treba spojiti z ozemljitvijo.
Priključki tiskani na kartico so nekovinski, kot standardi, da ustrezajo direktivam CE, uporabljeni kabli morajo razpolagati s senco od 100 %.
A-10
Page 60
Installation and Operation Manual
a
ý
k
é
541-C-005-AAA Rev D/ DRAFT
Section A, CE Certification of
Mass Flow Equipment
April, 2007
Model 5866
Slovensky
Brooks Instrument Neonstraat 3 6718 WX Ede The Netherlands
Všetky zariadenia (elektrické/elektronické) Brooks vybavené so značením CE boli úspešne testované podľ požiadaviek elektromagnetickej zhody (EMC predpis 89/336/EEC). Avšak pri voľbe signálových káblov k prístrojom vybaveným značkou CE sa musí zaobchádzať s veľkou opatrnosťou.
Kvalita signálových káblov, káblových izolačných krabíc a prípojok:
Brooks zabezpečuje vynikajúcu kábeláž, ktoré vyhovujú požiadavkám smernice CE.
Ale ak by ste chceli používať vlastné signálové káble, vyberte si aspoň do 100 % pokrytý úplne tienen signálový kábel.
Ktorákoľvek použitá „D” prípojka alebo koaxiálna prípojka musí byť tienená kovovým krytom. Ak je možné,
káblové pokrytie sa musí združiť izolovanými krabicami pre káblov. Pokrytie káblov sa musia pripojiť ochrannému krytiu alebo izolačnými krabicami, a na oboch koncoch sa musí zabezpečiť 360°-ové tienenie.
Krytie sa musí pripojiť uzemňovaciemu uzlu.
Prípojky tlačené na karty sú drahé kovy, podľa noriem. Aby vyhoveli požiadavkám smernice CE, použit káble musia disponovať s 100 %-ným tienením.
Suomi
Brooks Instrument Neonstraat 3 6718 WX Ede The Netherlands
Asia : Lisäys Käyttöohjeisiin Viite : Massamäärämittareiden CE sertifiointi Päivämäärä : Tammikuu 1996
Brooksin CE merkillä varustetut sähköiset laitteet ovat läpäissyt EMC testit (direktiivi 89/336/EEC). Erityistä huomiota on kuitenkin kiinnitettävä signaalikaapelin valintaan.
Signaalikaapelin, kaapelin läpiviennin ja liittimen laatu
Brooks toimittaa korkealaatuisia kaapeleita, jotka täyttävät CE sertifikaatin vaatimukset. Hankkiessaan signaalikaapelin itse, olisi hankittava 100%:sti suojattu kaapeli. “D” tai “Circular” tyyppisen liitimen tulisi olla varustettu metallisuojalla. Mikälì mahdollista, tulisi käyttää metallisia kaapeliliittimiä kiinnitettäessä suojaa. Kaapelin suoja tulisi olla liitetty metallisuojaan tai liittimeen molemmissa päissä 360°:n matkalta. Suojan tulisi olla maadoitettu. “Card Edge Connector”it ovat standarditoimituksina ei-metallisia. Kaapeleiden täytyy olla 100%: sesti suojattuja jotta ne olisivat CE sertifikaatin mukaisia. Suoja on oltava maadoitettu. Nastojen liittäminen; katso liitteenä oleva manuaali. Ystävällisin terveisin,
A-11
Page 61
Section A, CE Certification of Mass Flow Equipment
Installation and Operation Manual
541-C-005-AAA Rev D/ DRAFT
April, 2007
Model 5866
Svensk
Brooks Instrument Neonstraat 3 6718 WX Ede The Netherlands
Subject : Addendum to the Instruction Manual Reference : CE certification of Mass Flow Equipment Date : January 1996
Brooks (elektriska / elektronik) utrustning, som är CE-märkt, har testats och godkänts enligt gällande regler för elektromagnetisk kompabilitet (EMC direktiv 89/336/EEC). Speciell hänsyn måste emellertid tas vid val av signalkabel som ska användas tillsammans med CE-märkt utrustning.
Kvalitet på signalkabel och anslutningskontakter:
Brooks levererar som standard, kablar av hög kvalitet som motsvarar de krav som ställs för CE-godkännande. Om man använder en annan signalkabel ska kabeln i sin helhet vara skärmad till 100%. “D” eller “runda” typer av anslutningskontakter ska vara skärmade. Kabelgenomföringar ska vara av metall alternativt med metalliserad skärmning. Kabelns skärm ska, i bada ändar, vara ansluten till kontakternas metallkåpor eller genomföringar med 360 graders skärmning. Skärmen ska avslutas med en jordförbindelse. Kortkontakter är som standard ej metalliserade, kablar som används måste vara 100% skarmade för att överensstämma med CE-certifieringen. Skärmen ska avslutas med en jordförbindelse. För elektrisk anslutning till kontaktstiften hänvisas till medföljande instruktionsmanual.
A-12
Page 62
Addendum
April 5, 2004 Attach to the following publications:
X-5850EM, December 1998, Issue 3 X-5964, dated April 1996, Issue 2 X-5866, dated April 1998, Issue 2 X-5866RT, dated May 1998, Issue 2
Brooks® TMF Common Body Dimensions
Brooks® Thermal Mass Flow Common Body Dimensions
Issue
Dimensional drawings appearing in the above listed instruction manuals do not depict current body fitting configurations being offered.
Action
The latest revision VCR body fitting configurations offer a modified mounting configuration adding the SEMI standard mounting hole configuration and only one (1) of the legacy Brooks mounting holes. When specifying any of the models listed below, please refer to the attached Figures A-1 thru A-2 for mounting holes and Downport configuration information: 5850EMF 5964D 5866 5866RT
Page 63
Brooks® TMF Common Body Dimensions
Addendum
April 5, 2004
Attach to the following publications:
X-5850EM, December 1998, Issue 3
X-5964, dated April 1996, Issue 2 X-5866, dated April 1998, Issue 2
X-5866RT, dated May 1998, Issue 2
Figure A-1 Typical MFC/MFM Dimensional Drawing with VCR Fittings for Models 5850EMF, 5964D, 5866 and 5866RT.
2
Page 64
Addendum
April 5, 2004 Attach to the following publications:
X-5850EM, December 1998, Issue 3 X-5964, dated April 1996, Issue 2 X-5866, dated April 1998, Issue 2 X-5866RT, dated May 1998, Issue 2
Brooks® TMF Common Body Dimensions
Figure A-2 Typical Downport MFC/MFM Dimensional Drawing Fittings for Models 5850EMF, 5964D, 5866 and 5866RT.
3
Page 65
Model 5866
Installation and Operation Manual
X-PR-5866E-5866M-eng
PN 541-C-005-AAA
April, 2008
LIMITED WARRANTY
Seller warrants that the Goods manufactured by Seller will be free from defects in materials or workmanship under normal use and service and that the Software will execute the programming instructions provided by Seller until the expiration of the earlier of twelve (12) months from the date of initial installation or eighteen (18) months from the date of shipment by Seller. Products purchased by Seller from a third party for resale to Buyer (“Resale Products”) shall carry only the warranty extended by the original manufacturer. All replacements or repairs necessitated by inadequate preventive maintenance, or by normal wear and usage, or by fault of Buyer, or by unsuitable power sources or by attack or deterioration under unsuitable environmental conditions, or by abuse, accident, alteration, misuse, improper installation, modification, repair, storage or handling, or any other cause not the fault of Seller are not covered by this limited warranty, and shall be at Buyer’s expense. Goods repaired and parts replaced during the warranty period shall be in warranty for the remainder of the original warranty period or ninety (90) days, whichever is longer. This limited warranty is the only warranty made by Seller and can be amended only in a writing signed by an authorized representative of Seller.
BROOKS LOCAL AND WORLDWIDE SUPPORT
Brooks Instrument provides sales and service facilities around the world, ensuring quick delivery from local stock, timely repairs and local based sales and service facilities. Our dedicated flow experts provide consultation and support, assuring successful applications of the Brooks flow measurement and control products. Calibration facilities are available in local sales and service offices. The primary standard calibration equipment to calibrate our flow products is certified by our local Weights and Measures Authorities and traceable to the relevant international standards.
START-UP SERVICE AND IN-SITU CALIBRATION
Brooks Instrument can provide start-up service prior to operation when required. For some process applications, where ISO-9001 Quality Certification is important, it is mandatory to verify and/or (re)calibrate the products periodically. In many cases this service can be provided under in-situ conditions, and the results will be traceable to the relevant international quality standards.
CUSTOMER SEMINARS AND TRAINING
Brooks Instrument can provide customer seminars and dedicated training to engineers, end users and maintenance persons. Please contact your nearest sales representative for more details.
HELP DESK
In case you need technical assistance:
Americas Europe Asia
Due to Brooks Instrument's commitment to continuous improvement of our products, all specifications are subject to change without notice.
TRADEMARKS
Brooks ................................. ...............................Brooks Instrument, LLC
Freon TF ..................................................... E.I. DuPont de Nemours & Co.
Hastelloy ..................................................................Haynes International
Kalrez ................................................................... DuPont Dow Elastomers
Teflon .................................................................... E.I. DuPont de Nemours & Co.
Viton ............................................................... DuPont Performance Elastomers
1-888-554-FLOW +(31) 318 549 290 Within Netherlands 0318 549 290 +011-81-3-5633-7100
Loading...