4 Mounting and cabling..............................................................................................................................14
7.4Support and Service ........................................................................................................................53
EP3752-00003Version: 1.2
Table of contents
EP3752-00004Version: 1.2
Foreword
1Foreword
1.1Notes on the documentation
Intended audience
This description is only intended for the use of trained specialists in control and automation engineering who
are familiar with the applicable national standards.
It is essential that the documentation and the following notes and explanations are followed when installing
and commissioning these components.
It is the duty of the technical personnel to use the documentation published at the respective time of each
installation and commissioning.
The responsible staff must ensure that the application or use of the products described satisfy all the
requirements for safety, including all the relevant laws, regulations, guidelines and standards.
Disclaimer
The documentation has been prepared with care. The products described are, however, constantly under
development.
We reserve the right to revise and change the documentation at any time and without prior announcement.
No claims for the modification of products that have already been supplied may be made on the basis of the
data, diagrams and descriptions in this documentation.
Trademarks
Beckhoff®, TwinCAT®, EtherCAT®, EtherCATG®, EtherCATG10®, EtherCATP®, SafetyoverEtherCAT®,
TwinSAFE®, XFC®, XTS® and XPlanar® are registered trademarks of and licensed by Beckhoff Automation
GmbH. Other designations used in this publication may be trademarks whose use by third parties for their
own purposes could violate the rights of the owners.
Patent Pending
The EtherCAT Technology is covered, including but not limited to the following patent applications and
patents: EP1590927, EP1789857, EP1456722, EP2137893, DE102015105702 with corresponding
applications or registrations in various other countries.
EtherCAT® is registered trademark and patented technology, licensed by Beckhoff Automation GmbH,
Germany.
Please note the following safety instructions and explanations!
Product-specific safety instructions can be found on following pages or in the areas mounting, wiring,
commissioning etc.
Exclusion of liability
All the components are supplied in particular hardware and software configurations appropriate for the
application. Modifications to hardware or software configurations other than those described in the
documentation are not permitted, and nullify the liability of Beckhoff Automation GmbH & Co. KG.
Personnel qualification
This description is only intended for trained specialists in control, automation and drive engineering who are
familiar with the applicable national standards.
Description of instructions
In this documentation the following instructions are used.
These instructions must be read carefully and followed without fail!
DANGER
Serious risk of injury!
Failure to follow this safety instruction directly endangers the life and health of persons.
WARNING
Risk of injury!
Failure to follow this safety instruction endangers the life and health of persons.
CAUTION
Personal injuries!
Failure to follow this safety instruction can lead to injuries to persons.
NOTE
Damage to environment/equipment or data loss
Failure to follow this instruction can lead to environmental damage, equipment damage or data loss.
Tip or pointer
This symbol indicates information that contributes to better understanding.
This documentation refers to the firmware and hardware version that was applicable at the time the
documentation was written.
The module features are continuously improved and developed further. Modules having earlier production
statuses cannot have the same properties as modules with the latest status. However, existing properties
are retained and are not changed, so that older modules can always be replaced with new ones.
DocumentationFirmwareHardware
1.20205
1.10203
1.00102
The firmware and hardware version (delivery state) can be found in the batch number (D-number) printed on
the side of the EtherCAT Box.
Syntax of the batch number (D-number)
D: WW YY FF HH
WW - week of production (calendar week)
YY - year of production
FF - firmware version
HH - hardware version
Further information on this topic: Version identification of EtherCAT devices [}47].
Example with D no. 29 10 02 01:
29 - week of production 29
10 - year of production 2010
02 - firmware version 02
01 - hardware version 01
EP3752-00007Version: 1.2
EtherCAT Box - Introduction
2EtherCAT Box - Introduction
The EtherCAT system has been extended with EtherCAT Box modules with protection class IP67. Through
the integrated EtherCAT interface the modules can be connected directly to an EtherCAT network without an
additional Coupler Box. The high-performance of EtherCAT is thus maintained into each module.
The extremely low dimensions of only 126x30x26.5 mm (hxw xd) are identical to those of the Fieldbus
Box extension modules. They are thus particularly suitable for use where space is at a premium. The small
mass of the EtherCAT modules facilitates applications with mobile I/O interface (e.g. on a robot arm). The
EtherCAT connection is established via screened M8connectors.
Fig.1: EtherCAT Box Modules within an EtherCAT network
The robust design of the EtherCAT Box modules enables them to be used directly at the machine. Control
cabinets and terminal boxes are now no longer required. The modules are fully sealed and therefore ideally
prepared for wet, dirty or dusty conditions.
Pre-assembled cables significantly simplify EtherCAT and signal wiring. Very few wiring errors are made, so
that commissioning is optimized. In addition to pre-assembled EtherCAT, power and sensor cables, fieldconfigurable connectors and cables are available for maximum flexibility. Depending on the application, the
sensors and actuators are connected through M8 or M12connectors.
The EtherCAT modules cover the typical range of requirements for I/O signals with protection class IP67:
• digital inputs with different filters (3.0ms or 10μs)
• digital outputs with 0.5 or 2A output current
• analog inputs and outputs with 16bit resolution
• Thermocouple and RTD inputs
• Stepper motor modules
XFC (eXtreme Fast Control Technology) modules, including inputs with time stamp, are also available.
EP3752-00008Version: 1.2
Fig.2: EtherCAT Box with M8 connections for sensors/actuators
EtherCAT Box - Introduction
Fig.3: EtherCAT Box with M12 connections for sensors/actuators
Basic EtherCAT documentation
You will find a detailed description of the EtherCAT system in the Basic System Documentation for
EtherCAT, which is available for download from our website (www.beckhoff.com) under Downloads.
EtherCAT XML Device Description
You will find XML files (XML Device Description Files) for Beckhoff EtherCAT modules on our website (www.beckhoff.com) under Downloads, in the Configuration Files area.
EP3752-00009Version: 1.2
Product overview
3Product overview
3.1Introduction
2 x 3-axis accelerometers
The EP3752-0000 EtherCAT Box has two internal 3-axis accelerometers with 10-bit resolution and a
selectable measuring range of ±2 g, ±4 g, ±8 g and ±16 g. The maximum sampling rate is 5 kHz. The
measured values can be digitally filtered. Without filters the box operates cycle-synchronously.
Possible applications include the recording of vibrations and shocks/oscillations, but inclination
measurements in all three axes are also possible.
Through the measurement using sensors offset by 90°, the controller can carry out a plausibility check of the
data. Extended integrated filter functions enable the pre-processing and scaling of the acquired data in order
to filter out faults and relieve the controller.
EP3752-000010Version: 1.2
Product overview
3.2Technical data
All values are typical values over the entire temperature range, unless stated otherwise.
Downstream connection: 1 x M8 socket, 4-pin, black
Control voltage U
Nominal voltage24VDC (-15%/ +20%)
Sum currentmax. 4A
Current consumption from U
Peripheral voltage U
Nominal voltage24VDC (-15%/ +20%)
Sum currentmax. 4A
Current consumption from U
Acceleration sensors
Sensor typeTwo 3-axis sensors / offset by 90°
Resolution1)
Representation
Measuring range
Sampling rate200Hz to 5kHz
Environmental conditions
Ambient temperature
during operation
Ambient temperature
during storage
Vibration / shock resistanceconforms to EN 60068-2-6 / EN 60068-2-27
EMC immunity / emissionconforms to EN 61000-6-2 / EN 61000-6-4
Protection classIP65, IP66, IP67 conforms to EN 60529
Unit of measurement: 1g = 9.81m/s2 (acceleration of gravity). 1mg = 1/1000g.
2)
The resolution depends on the parameterization of the box. See section Resolution [}12].
EP3752-000011Version: 1.2
Product overview
Resolution
The resolution of measured values and raw values depends on the parameters "Measuring range" and
"Sampling rate". The table below shows how these parameters influence the resolution:
The data for the two accelerometers can be found under AI Inputs Channel.
• Status Error: An error occurred during communication with the accelerometer.
• Value: 16-bit acceleration value
Product overview
The assignment of the process values to the sensor axes can be found in the chapter Acceleration sensors[}22].
EP3752-000013Version: 1.2
Mounting and cabling
119
126
23
3026.5
13.5
4Mounting and cabling
4.1Mounting
4.1.1Dimensions
Fig.4: Dimensions
All dimensions are given in millimeters.
Housing features
Housing materialPA6 (polyamide)
Sealing compoundpolyurethane
Mountingtwo fastening holes Ø 3.5 mm for M3
Metal partsbrass, nickel-plated
ContactsCuZn, gold-plated
Installation positionvariable
Protection classIP65, IP66, IP67 (conforms to EN 60529) when screwed together
Dimensions (H x W x D)approx. 126 x 30 x 26.5 mm (without connectors)
Weightapprox. 165g
EP3752-000014Version: 1.2
Mounting and cabling
4.1.2Fixing
NOTE
Dirt during assembly
Dirty connectors can lead to malfunctions. Protection class IP67 can only be guaranteed if all cables and
connectors are connected.
• Protect the plug connectors against dirt during the assembly.
Mount the module with two M3 screws on the fastening holes in the corners of the module. The fastening
holes have no thread.
4.1.3Nut torque for connectors
Screw M8 connectors tight with a torque wrench. (e.g. ZB8801 from Beckhoff)
Torque: 0.4Nm.
EP3752-000015Version: 1.2
Mounting and cabling
Plug
Input
Socket
Forwarding
31
24
31
24
4.2Supply voltages
The EtherCAT Box is supplied with two supply voltages. The supply voltages are electrically isolated in the
EtherCAT Box.
• Control voltage U
• Peripheral voltage U
S
P
Redirection of the supply voltages
The IN and OUT power connections are bridged in the module (not IP204x-Bxxx and IE204x). The supply
voltages US and UP can thus easily be transferred from EtherCATBox to EtherCATBox.
NOTE
Pay attention to the maximum permissible current!
Pay attention also for the redirection of the supply voltages US and UP, the maximum permissible current for
M8 connectors of 4A must not be exceeded!
4.2.1Connectors
NOTE
Risk of confusion: supply voltages and EtherCAT
Defect possible through incorrect insertion.
• Observe the color coding of the connectors:
black: Supply voltages
green: EtherCAT
Fig.5: Connectors for supply voltages
Fig.6: M8 connector
ContactFunctionDescriptionCore color
1U
2U
3GND
4GND
1)
The core colors apply to cables of the type: Beckhoff ZK2020-3xxx-xxxx
S
P
S
P
Control voltageBrown
Peripheral voltageWhite
GND to U
GND to U
S
P
Blue
Black
1)
EP3752-000016Version: 1.2
Mounting and cabling
Vert. Faktor: 0,45 cm / V
5101520
2
4
6
8
10
250
0
12
30
Vert. Faktor: 0,45 cm / V
Voltage drop (V)
Cable length (m)
35
0,25 mm²
0,34 mm²
0,5 mm²
0,75 mm²
I = 2 A
Vert. Faktor: 0,45 cm / V
5101520
2
4
6
8
10
250
0
12
30
Vert. Faktor: 0,45 cm / V
Voltage drop (V)
Cable length (m)
35
0,25 mm²
0,34 mm²
0,5 mm²
0,75 mm²
I = 4 A
4.2.2Status LEDs
Fig.7: Status LEDs for the supply voltages
LEDDisplayMeaning
US (control voltage)offSupply voltage US is not present
green illuminatedSupply voltage US is present
UP (peripheral voltage)offSupply voltage UP is not present
green illuminatedSupply voltage UP is present
4.2.3Conductor losses
Take into account the voltage drop on the supply line when planning a system. Avoid the voltage drop being
so high that the supply voltage at the box lies below the minimum nominal voltage.
Variations in the voltage of the power supply unit must also be taken into account.
Voltage drop on the supply line
EP3752-000017Version: 1.2
Loading...
+ 38 hidden pages
You need points to download manuals.
1 point = 1 manual.
You can buy points or you can get point for every manual you upload.