5 Mounting and wiring................................................................................................................................33
5.1Installation on mounting rails ...........................................................................................................33
5.2Installation instructions for enhanced mechanical load capacity .....................................................36
5.3Connection system ..........................................................................................................................36
5.4Positioning of passive Terminals .....................................................................................................39
5.5Installation position for operation with or without fan.......................................................................41
7.3.5Simultaneous updating of several EtherCAT devices.................................................... 243
7.4Restoring the delivery state ...........................................................................................................244
7.5Support and Service ......................................................................................................................245
EL73x26Version: 3.5
Foreword
2Foreword
2.1Notes on the documentation
Intended audience
This description is only intended for the use of trained specialists in control and automation engineering who
are familiar with the applicable national standards.
It is essential that the documentation and the following notes and explanations are followed when installing
and commissioning these components.
It is the duty of the technical personnel to use the documentation published at the respective time of each
installation and commissioning.
The responsible staff must ensure that the application or use of the products described satisfy all the
requirements for safety, including all the relevant laws, regulations, guidelines and standards.
Disclaimer
The documentation has been prepared with care. The products described are, however, constantly under
development.
We reserve the right to revise and change the documentation at any time and without prior announcement.
No claims for the modification of products that have already been supplied may be made on the basis of the
data, diagrams and descriptions in this documentation.
Trademarks
Beckhoff®, TwinCAT®, EtherCAT®, EtherCATG®, EtherCATG10®, EtherCATP®, SafetyoverEtherCAT®,
TwinSAFE®, XFC®, XTS® and XPlanar® are registered trademarks of and licensed by Beckhoff Automation
GmbH. Other designations used in this publication may be trademarks whose use by third parties for their
own purposes could violate the rights of the owners.
Patent Pending
The EtherCAT Technology is covered, including but not limited to the following patent applications and
patents: EP1590927, EP1789857, EP1456722, EP2137893, DE102015105702 with corresponding
applications or registrations in various other countries.
EtherCAT® is registered trademark and patented technology, licensed by Beckhoff Automation GmbH,
Germany.
Please note the following safety instructions and explanations!
Product-specific safety instructions can be found on following pages or in the areas mounting, wiring,
commissioning etc.
Exclusion of liability
All the components are supplied in particular hardware and software configurations appropriate for the
application. Modifications to hardware or software configurations other than those described in the
documentation are not permitted, and nullify the liability of Beckhoff Automation GmbH & Co. KG.
Personnel qualification
This description is only intended for trained specialists in control, automation and drive engineering who are
familiar with the applicable national standards.
Description of instructions
In this documentation the following instructions are used.
These instructions must be read carefully and followed without fail!
DANGER
Serious risk of injury!
Failure to follow this safety instruction directly endangers the life and health of persons.
WARNING
Risk of injury!
Failure to follow this safety instruction endangers the life and health of persons.
CAUTION
Personal injuries!
Failure to follow this safety instruction can lead to injuries to persons.
NOTE
Damage to environment/equipment or data loss
Failure to follow this instruction can lead to environmental damage, equipment damage or data loss.
Tip or pointer
This symbol indicates information that contributes to better understanding.
EL73x28Version: 3.5
2.3Documentation issue status
VersionComment
3.5• Update chapter “Product overview”
• Update chapter “EL7342 – LEDs and connection”
• Update revision status
• Update structure
3.4• Note for fuse protection of the supply voltage added
• Update revision status
• Update structure
3.3• Update chapter "Technical data "
• Update structure
• Update revision status
3.2• Update chapter "Technical data "
• Update structure
• Update revision status
3.1• Update chapter "Notes on the documentation"
• Correction of Technical data
• Update chapter "TwinCAT 2.1x" -> "TwinCAT Development Environment" and "TwinCAT Quick Start"
• Addenda section "Download revision"
• Update structure
• Update revision status
3.0• First publication in PDF format
• Update structure
2.9• Update chapter "Technical data"
• Addenda chapter "Installation instructions for enhanced mechanical load capacity"
• Update structure
• Update revision status
2.8• Update chapter "Object description"
2.7• Update chapter "Object description"
• Update chapter "Technical data"
• Update chapter "Firmware status"
2.6• Update chapter "Object description"
• Update chapter "Technical data"
• Update chapter "Positioning Interface"
• Update chapter "Chopper operation"
• Update chapter "Process data"
• Update structure
2.5• Update chapter "Object description"
• Update structure
2.4• Update chapter "Chopper operation"
2.3• Update Technical data
2.2• Update Technical data
2.1• Update chapter "Positioning Interface"
2.0• Addenda chapter "TwinCAT 2.1x"
• Update structure
1.1• Addenda Technical data
1.0• 1st public issue, Addenda Technical data
0.3• Addenda Technical data
0.2• Addenda
0.1• Provisional documentation for EL7342
Foreword
EL73x29Version: 3.5
Foreword
2.4Version identification of EtherCAT devices
Designation
A Beckhoff EtherCAT device has a 14-digit designation, made up of
• family key
• type
• version
• revision
ExampleFamilyTypeVersionRevision
EL3314-0000-0016EL terminal
(12 mm, nonpluggable connection
level)
ES3602-0010-0017 ES terminal
(12 mm, pluggable
connection level)
CU2008-0000-0000 CU device2008 (8-port fast ethernet switch) 0000 (basic type) 0000
3314 (4-channel thermocouple
terminal)
3602 (2-channel voltage
measurement)
0000 (basic type) 0016
0010 (highprecision version)
0017
Notes
• The elements mentioned above result in the technical designation. EL3314-0000-0016 is used in the
example below.
• EL3314-0000 is the order identifier, in the case of “-0000” usually abbreviated to EL3314. “-0016” is the
EtherCAT revision.
• The order identifier is made up of
- family key (EL, EP, CU, ES, KL, CX, etc.)
- type (3314)
- version (-0000)
• The revision -0016 shows the technical progress, such as the extension of features with regard to the
EtherCAT communication, and is managed by Beckhoff.
In principle, a device with a higher revision can replace a device with a lower revision, unless specified
otherwise, e.g. in the documentation.
Associated and synonymous with each revision there is usually a description (ESI, EtherCAT Slave
Information) in the form of an XML file, which is available for download from the Beckhoff web site.
From 2014/01 the revision is shown on the outside of the IP20 terminals, see Fig. “EL5021 EL terminal,standard IP20 IO device with batch number and revision ID (since 2014/01)”.
• The type, version and revision are read as decimal numbers, even if they are technically saved in
hexadecimal.
Identification number
Beckhoff EtherCAT devices from the different lines have different kinds of identification numbers:
Production lot/batch number/serial number/date code/D number
The serial number for Beckhoff IO devices is usually the 8-digit number printed on the device or on a sticker.
The serial number indicates the configuration in delivery state and therefore refers to a whole production
batch, without distinguishing the individual modules of a batch.
Structure of the serial number: KKYYFFHH
KK - week of production (CW, calendar week)
YY - year of production
FF - firmware version
HH - hardware version
EL73x210Version: 3.5
Foreword
Example with
Ser. no.: 12063A02: 12 - production week 12 06 - production year 2006 3A - firmware version 3A 02 hardware version 02
Exceptions can occur in the IP67 area, where the following syntax can be used (see respective device
documentation):
Syntax: D ww yy x y z u
D - prefix designation
ww - calendar week
yy - year
x - firmware version of the bus PCB
y - hardware version of the bus PCB
z - firmware version of the I/O PCB
u - hardware version of the I/O PCB
Example: D.22081501 calendar week 22 of the year 2008 firmware version of bus PCB: 1 hardware version
of bus PCB: 5 firmware version of I/O PCB: 0 (no firmware necessary for this PCB) hardware version of I/O
PCB: 1
Unique serial number/ID, ID number
In addition, in some series each individual module has its own unique serial number.
See also the further documentation in the area
• IP67: EtherCAT Box
• Safety: TwinSafe
• Terminals with factory calibration certificate and other measuring terminals
Examples of markings
Fig.1: EL5021 EL terminal, standard IP20 IO device with serial/ batch number and revision ID (since
2014/01)
EL73x211Version: 3.5
Foreword
Fig.2: EK1100 EtherCAT coupler, standard IP20 IO device with serial/ batch number
Fig.3: CU2016 switch with serial/ batch number
Fig.4: EL3202-0020 with serial/ batch number 26131006 and unique ID-number 204418
EL73x212Version: 3.5
Foreword
Fig.5: EP1258-00001 IP67 EtherCAT Box with batch number/ date code 22090101 and unique serial
number 158102
Fig.6: EP1908-0002 IP67 EtherCAT Safety Box with batch number/ date code 071201FF and unique serial
number 00346070
Fig.7: EL2904 IP20 safety terminal with batch number/ date code 50110302 and unique serial number
00331701
Fig.8: ELM3604-0002 terminal with unique ID number (QR code) 100001051 and serial/ batch number
44160201
EL73x213Version: 3.5
Foreword
2.4.1Beckhoff Identification Code (BIC)
The Beckhoff Identification Code (BIC) is increasingly being applied to Beckhoff products to uniquely identify
the product. The BIC is represented as a Data Matrix Code (DMC, code scheme ECC200), the content is
based on the ANSI standard MH10.8.2-2016.
Fig.9: BIC as data matrix code (DMC, code scheme ECC200)
The BIC will be introduced step by step across all product groups.
Depending on the product, it can be found in the following places:
• on the packaging unit
• directly on the product (if space suffices)
• on the packaging unit and the product
The BIC is machine-readable and contains information that can also be used by the customer for handling
and product management.
Each piece of information can be uniquely identified using the so-called data identifier
(ANSIMH10.8.2-2016). The data identifier is followed by a character string. Both together have a maximum
length according to the table below. If the information is shorter, spaces are added to it. The data under
positions 1 to 4 are always available.
The following information is contained:
EL73x214Version: 3.5
Item
Type of
no.
information
1Beckhoff order
number
2Beckhoff Traceability
Number (BTN)
3Article descriptionBeckhoff article
4QuantityQuantity in packaging
5Batch numberOptional: Year and week
6ID/serial numberOptional: Present-day
7Variant numberOptional: Product variant
...
ExplanationData
Beckhoff order number 1P81P072222
Unique serial number,
see note below
description, e.g.
EL1008
unit, e.g. 1, 10, etc.
of production
serial number system,
e.g. with safety products
number on the basis of
standard products
Foreword
Number of digits
identifier
S12SBTNk4p562d7
1K321KEL1809
Q6Q1
2P142P401503180016
51S1251S678294104
30P3230PF971, 2*K183
incl. data identifier
Example
Further types of information and data identifiers are used by Beckhoff and serve internal processes.
Structure of the BIC
Example of composite information from item 1 to 4 and 6. The data identifiers are marked in red for better
display:
BTN
An important component of the BIC is the Beckhoff Traceability Number (BTN, item no.2). The BTN is a
unique serial number consisting of eight characters that will replace all other serial number systems at
Beckhoff in the long term (e.g. batch designations on IO components, previous serial number range for
safety products, etc.). The BTN will also be introduced step by step, so it may happen that the BTN is not yet
coded in the BIC.
NOTE
This information has been carefully prepared. However, the procedure described is constantly being further
developed. We reserve the right to revise and change procedures and documentation at any time and without prior notice. No claims for changes can be made from the information, illustrations and descriptions in
this information.
EL73x215Version: 3.5
Product overview
3Product overview
3.1EL7332 - Introduction
Fig.10: EL7332
2 channel DC motor output stage 24V, 1.0A
The EL7332 EtherCAT Terminal enables direct operation of two DC motors. It is galvanically isolated from
the E-bus. The speed is preset by a 16 bit value from the automation device. The output stage is protected
against overload and short-circuit. The EtherCAT Terminal contains two channels whose signal state is
indicated by LEDs. The LEDs enable quick local diagnosis.
Quick links
• EtherCAT basics
• Technology EL73x2 [}20]
• Settings in the CoE register [}124]
• NC settings [}128]
• CoE object description and parameterization [}158]
EL73x216Version: 3.5
3.2EL7342 - Introduction
Product overview
Fig.11: EL7342
2 channel DC motor output stage 48 VDC, 3.5 A
The EL7342 EtherCAT Terminal enables direct operation of two DC motors. It is galvanically isolated from
the E-bus. The speed and position are preset by a 16 bit value from the automation device. Connection of an
incremental encoder enables a simple servo axis to be realized. The output stage is protected against
overload and short-circuit. The EtherCAT Terminal contains two channels whose signal state is indicated by
LEDs. The LEDs enable quick local diagnosis.
Quick links
• EtherCAT basics
• Technology EL73x2 [}20]
• Settings in the CoE register [}124]
• NC settings [}128]
• CoE object description and parameterization [}194]
EL73x217Version: 3.5
Product overview
3.3EL73x2 - Technical data
EL73x218Version: 3.5
Product overview
Technical dataEL7332EL7342
Number of channels2 DC motors,
2 digital inputs
2 DC motors,
2 digital inputs
Encoder input
Rated load voltage24VDC (-15%/+20%)8 … 48V
DC
Load typeDC brush motors, inductive
Output current
without fan cartridge ZB8610
Output current
with fan cartridge ZB8610
2 x 1.0 A
(overload- and short-circuit-proof)
2 x 3.0 A
(overload- and short-circuit-proof)
2 x 3.5 A
(overload- and short-circuit-proof)
2 x 6.5 A
(overload- and short-circuit-proof)
PWM clock frequency30 kHz with 180° phase shift each
Duty factor0…100 % (voltage-controlled)
Distributed Clocksyes
Control resolutionmax. 10 bits current, 16 bits speed
Supply voltage for electronicvia E-bus and power contacts
Electrical isolation500 V (E-bus/field voltage)
Current consumption via E-bustyp. 140 mA
Current consumption power
typ. 40mA + motor currenttyp. 70 mA
contacts
Current consumption sensor supply -typ. 20 mA
Encoder/input signalSignal voltage "0":
-3 V... 1.5 V
Signal voltage "1":
2.5 V... 24 V
Nominal voltage of encoder signals 5...24V, 5mA,
single ended
Pulse frequency-400,000 increments/s,
4-fold evaluation
Weightapprox. 50 gapprox. 90 g
permissible ambient temperature
range during operation
permissible ambient temperature
0°C ... + 55°C
(aligned in horizontal installation position, see note [}41])
-25°C ... + 85°C
range during storage
permissible relative humidity95%, no condensation
Dimensions (W x H x D)approx. 15 mm x 100 mm x 70 mm
(width aligned: 12 mm)
Mounting [}33]
on 35 mm mounting rail conforms to EN 60715
Vibration/shock resistanceconforms to EN 60068-2-6 / EN
60068-2-27,
approx. 27 mm x 100 mm x 70 mm
(width aligned: 24 mm)
conforms to EN 60068-2-6 / EN
60068-2-27
see also installation instructions for
terminals with increased
mechanical load capacity [}36]
EMC immunity/emissionconforms to EN 61000-6-2 / EN 61000-6-4
without fan cartridge ZB8610: standard installing position
with fan cartridge ZB8610: standard installing position, other installing
positions (example 1 & 2)
see notice [}41]
ApprovalCE
cULus
EL73x219Version: 3.5
Product overview
3.4Technology
The EL7332 and EL7342 2-channel DC motor terminals integrate a compact Motion Control solution up to
200W in a compact design.
DC motor
DC motors can replace the considerably more expensive servo motors in many applications if they are
operated with an intelligent controller. Since its speed is proportional to the voltage, the DC motor is easy to
control in comparison with other motors.
Two DC motor output stages for optimum use
A DC motor can be integrated very simply into the control system using the EL7332 and EL7342 EtherCAT
Terminals. All parameters are adjustable via the fieldbus. The DC motor output stages for EtherCAT unite a
small, compact design with an extensive area of application. Two DC motors can be directly driven by the
output stages. The EL7342 additionally possess an integrated feedback system for incremental encoders.
The velocity can be adjusted in simple fashion via the process data with the EL7332 and EL7342 EtherCAT
Terminals. The integrated compensation of the internal resistance keeps the motor at the desired speed for
load changes. The speed is preset by a 16 bit value from the automation device. Thus a simple drive task
can be solved using a simple controller.
The EtherCAT Terminal contains two channels whose signal state is indicated by LEDs. This enables fast
local diagnosis.
Areas of application
Two areas of application are particularly well supported by the output stages:
1. A simple controller with inexpensive processor power and low demands on the cycle time.
By the use of the integrated travel distance control, the terminal can perform positioning drives independently
without the use of NC. Nothing further is required apart from a DC motor and an EtherCAT terminal.
2. High-end positioning with integration in TwinCAT NC.
In connection with the EtherCAT DC Motor Terminal, a DC motor is controlled under TwinCAT analogous to
a servo terminal. No further changes are necessary.
For demanding positioning tasks a closed speed control loop with a feedback system is needed. The EL7342
EtherCAT terminal enables an incremental encoder to be connected.
The control loop can be closed either by the EtherCAT terminal itself or by the higher-level controller.
EL73x220Version: 3.5
Product overview
Fig.12: Possibilities to implement control loops using the EL7342
The peak current may briefly significantly exceed the nominal current and in this way makes the whole drive
system very dynamic. In such dynamic applications, negative acceleration causes the feedback of energy,
which lead to voltage peaks at the power supply unit. The EL9570 buffer capacitor terminal protects from the
effects of overvoltage, in that it absorbs some of the energy. If the voltage exceeds the capacity of the
terminal, it dissipates the excess energy via an externally connected resistor.
3.5Start
For commissioning:
• Install the EL73x2 as described in section Mounting and wiring [}33].
• Configure the EL73x2 in TwinCAT as described in section Commissioning [}75].
EL73x221Version: 3.5
Basics communication
4Basics communication
4.1EtherCAT basics
Please refer to the EtherCAT System Documentation for the EtherCAT fieldbus basics.
4.2EtherCAT cabling – wire-bound
The cable length between two EtherCAT devices must not exceed 100 m. This results from the FastEthernet
technology, which, above all for reasons of signal attenuation over the length of the cable, allows a maximum
link length of 5 + 90 + 5 m if cables with appropriate properties are used. See also the Designrecommendations for the infrastructure for EtherCAT/Ethernet.
Cables and connectors
For connecting EtherCAT devices only Ethernet connections (cables + plugs) that meet the requirements of
at least category 5 (CAt5) according to EN 50173 or ISO/IEC 11801 should be used. EtherCAT uses 4 wires
for signal transfer.
EtherCAT uses RJ45 plug connectors, for example. The pin assignment is compatible with the Ethernet
standard (ISO/IEC 8802-3).
PinColor of conductorSignalDescription
1yellowTD +Transmission Data +
2orangeTD -Transmission Data 3whiteRD +Receiver Data +
6blueRD -Receiver Data -
Due to automatic cable detection (auto-crossing) symmetric (1:1) or cross-over cables can be used between
EtherCAT devices from Beckhoff.
Recommended cables
Suitable cables for the connection of EtherCAT devices can be found on the Beckhoff website!
E-Bus supply
A bus coupler can supply the EL terminals added to it with the E-bus system voltage of 5V; a coupler is
thereby loadable up to 2A as a rule (see details in respective device documentation).
Information on how much current each EL terminal requires from the E-bus supply is available online and in
the catalogue. If the added terminals require more current than the coupler can supply, then power feed
terminals (e.g. EL9410) must be inserted at appropriate places in the terminal strand.
The pre-calculated theoretical maximum E-Bus current is displayed in the TwinCAT System Manager. A
shortfall is marked by a negative total amount and an exclamation mark; a power feed terminal is to be
placed before such a position.
EL73x222Version: 3.5
Basics communication
Fig.13: System manager current calculation
NOTE
Malfunction possible!
The same ground potential must be used for the E-Bus supply of all EtherCAT terminals in a terminal block!
4.3General notes for setting the watchdog
ELxxxx terminals are equipped with a safety feature (watchdog) that switches off the outputs after a
specifiable time e.g. in the event of an interruption of the process data traffic, depending on the device and
settings, e.g. in OFF state.
The EtherCAT slave controller (ESC) in the EL2xxx terminals features two watchdogs:
• SM watchdog (default: 100 ms)
• PDI watchdog (default: 100 ms)
SM watchdog (SyncManager Watchdog)
The SyncManager watchdog is reset after each successful EtherCAT process data communication with the
terminal. If no EtherCAT process data communication takes place with the terminal for longer than the set
and activated SM watchdog time, e.g. in the event of a line interruption, the watchdog is triggered and the
outputs are set to FALSE. The OP state of the terminal is unaffected. The watchdog is only reset after a
successful EtherCAT process data access. Set the monitoring time as described below.
The SyncManager watchdog monitors correct and timely process data communication with the ESC from the
EtherCAT side.
PDI watchdog (Process Data Watchdog)
If no PDI communication with the EtherCAT slave controller (ESC) takes place for longer than the set and
activated PDI watchdog time, this watchdog is triggered.
PDI (Process Data Interface) is the internal interface between the ESC and local processors in the EtherCAT
slave, for example. The PDI watchdog can be used to monitor this communication for failure.
The PDI watchdog monitors correct and timely process data communication with the ESC from the
application side.
The settings of the SM- and PDI-watchdog must be done for each slave separately in the TwinCAT System
Manager.
• each watchdog has its own timer setting, the outcome of this in summary with the multiplier is a
resulting time.
• Important: the multiplier/timer setting is only loaded into the slave at the start up, if the checkbox is
activated.
If the checkbox is not activated, nothing is downloaded and the ESC settings remain unchanged.
Multiplier
Multiplier
Both watchdogs receive their pulses from the local terminal cycle, divided by the watchdog multiplier:
1/25 MHz * (watchdog multiplier + 2) = 100µs (for default setting of 2498 for the multiplier)
The standard setting of 1000 for the SM watchdog corresponds to a release time of 100ms.
The value in multiplier + 2 corresponds to the number of basic 40 ns ticks representing a watchdog tick.
The multiplier can be modified in order to adjust the watchdog time over a larger range.
EL73x224Version: 3.5
Basics communication
Example “Set SM watchdog”
This checkbox enables manual setting of the watchdog times. If the outputs are set and the EtherCAT
communication is interrupted, the SM watchdog is triggered after the set time and the outputs are erased.
This setting can be used for adapting a terminal to a slower EtherCAT master or long cycle times. The
default SM watchdog setting is 100ms. The setting range is 0...65535. Together with a multiplier with a
range of 1...65535 this covers a watchdog period between 0...~170 seconds.
Calculation
Multiplier = 2498 → watchdog base time = 1 / 25MHz * (2498 + 2) = 0.0001seconds = 100µs
SM watchdog = 10000 → 10000 * 100µs = 1second watchdog monitoring time
CAUTION
Undefined state possible!
The function for switching off of the SM watchdog via SM watchdog = 0 is only implemented in terminals
from version -0016. In previous versions this operating mode should not be used.
CAUTION
Damage of devices and undefined state possible!
If the SM watchdog is activated and a value of 0 is entered the watchdog switches off completely. This is
the deactivation of the watchdog! Set outputs are NOT set in a safe state, if the communication is interrupted.
4.4EtherCAT State Machine
The state of the EtherCAT slave is controlled via the EtherCAT State Machine (ESM). Depending upon the
state, different functions are accessible or executable in the EtherCAT slave. Specific commands must be
sent by the EtherCAT master to the device in each state, particularly during the bootup of the slave.
A distinction is made between the following states:
• Init
• Pre-Operational
• Safe-Operational and
• Operational
• Boot
The regular state of each EtherCAT slave after bootup is the OP state.
EL73x225Version: 3.5
Basics communication
Fig.15: States of the EtherCAT State Machine
Init
After switch-on the EtherCAT slave in the Init state. No mailbox or process data communication is possible.
The EtherCAT master initializes sync manager channels 0 and 1 for mailbox communication.
Pre-Operational (Pre-Op)
During the transition between Init and Pre-Op the EtherCAT slave checks whether the mailbox was initialized
correctly.
In Pre-Op state mailbox communication is possible, but not process data communication. The EtherCAT
master initializes the sync manager channels for process data (from sync manager channel 2), the FMMU
channels and, if the slave supports configurable mapping, PDO mapping or the sync manager PDO
assignment. In this state the settings for the process data transfer and perhaps terminal-specific parameters
that may differ from the default settings are also transferred.
Safe-Operational (Safe-Op)
During transition between Pre-Op and Safe-Op the EtherCAT slave checks whether the sync manager
channels for process data communication and, if required, the distributed clocks settings are correct. Before
it acknowledges the change of state, the EtherCAT slave copies current input data into the associated DPRAM areas of the EtherCAT slave controller (ECSC).
In Safe-Op state mailbox and process data communication is possible, although the slave keeps its outputs
in a safe state, while the input data are updated cyclically.
Outputs in SAFEOP state
The default set watchdog [}23] monitoring sets the outputs of the module in a safe state - depending on the settings in SAFEOP and OP - e.g. in OFF state. If this is prevented by deactivation of the
watchdog monitoring in the module, the outputs can be switched or set also in the SAFEOP state.
Operational (Op)
Before the EtherCAT master switches the EtherCAT slave from Safe-Op to Op it must transfer valid output
data.
In the Op state the slave copies the output data of the masters to its outputs. Process data and mailbox
communication is possible.
EL73x226Version: 3.5
Basics communication
Boot
In the Boot state the slave firmware can be updated. The Boot state can only be reached via the Init state.
In the Boot state mailbox communication via the file access over EtherCAT (FoE) protocol is possible, but no
other mailbox communication and no process data communication.
4.5CoE Interface
General description
The CoE interface (CAN application protocol over EtherCAT)) is used for parameter management of
EtherCAT devices. EtherCAT slaves or the EtherCAT master manage fixed (read only) or variable
parameters which they require for operation, diagnostics or commissioning.
CoE parameters are arranged in a table hierarchy. In principle, the user has read access via the fieldbus.
The EtherCAT master (TwinCAT System Manager) can access the local CoE lists of the slaves via
EtherCAT in read or write mode, depending on the attributes.
Different CoE parameter types are possible, including string (text), integer numbers, Boolean values or larger
byte fields. They can be used to describe a wide range of features. Examples of such parameters include
manufacturer ID, serial number, process data settings, device name, calibration values for analog
measurement or passwords.
The order is specified in two levels via hexadecimal numbering: (main)index, followed by subindex. The
value ranges are
• Index: 0x0000 …0xFFFF (0...65535
• SubIndex: 0x00…0xFF (0...255
dez
)
dez
)
A parameter localized in this way is normally written as 0x8010:07, with preceding “0x” to identify the
hexadecimal numerical range and a colon between index and subindex.
The relevant ranges for EtherCAT fieldbus users are:
• 0x1000: This is where fixed identity information for the device is stored, including name, manufacturer,
serial number etc., plus information about the current and available process data configurations.
• 0x8000: This is where the operational and functional parameters for all channels are stored, such as
filter settings or output frequency.
Other important ranges are:
• 0x4000: here are the channel parameters for some EtherCAT devices. Historically, this was the first
parameter area before the 0x8000 area was introduced. EtherCAT devices that were previously
equipped with parameters in 0x4000 and changed to 0x8000 support both ranges for compatibility
reasons and mirror internally.
• 0x6000: Input PDOs (“input” from the perspective of the EtherCAT master)
• 0x7000: Output PDOs (“output” from the perspective of the EtherCAT master)
Availability
Not every EtherCAT device must have a CoE list. Simple I/O modules without dedicated processor
usually have no variable parameters and therefore no CoE list.
If a device has a CoE list, it is shown in the TwinCAT System Manager as a separate tab with a listing of the
elements:
EL73x227Version: 3.5
Basics communication
Fig.16: “CoE Online” tab
The figure above shows the CoE objects available in device “EL2502”, ranging from 0x1000 to 0x1600. The
subindices for 0x1018 are expanded.
Data management and function “NoCoeStorage”
Some parameters, particularly the setting parameters of the slave, are configurable and writeable. This can
be done in write or read mode
• via the System Manager (Fig. “CoE Online” tab) by clicking
This is useful for commissioning of the system/slaves. Click on the row of the index to be
parameterized and enter a value in the “SetValue” dialog.
• from the control system/PLC via ADS, e.g. through blocks from the TcEtherCAT.lib library
This is recommended for modifications while the system is running or if no System Manager or
operating staff are available.
Data management
If slave CoE parameters are modified online, Beckhoff devices store any changes in a fail-safe
manner in the EEPROM, i.e. the modified CoE parameters are still available after a restart.
The situation may be different with other manufacturers.
An EEPROM is subject to a limited lifetime with respect to write operations. From typically 100,000
write operations onwards it can no longer be guaranteed that new (changed) data are reliably saved
or are still readable. This is irrelevant for normal commissioning. However, if CoE parameters are
continuously changed via ADS at machine runtime, it is quite possible for the lifetime limit to be
reached. Support for the NoCoeStorage function, which suppresses the saving of changed CoE values, depends on the firmware version.
Please refer to the technical data in this documentation as to whether this applies to the respective
device.
• If the function is supported: the function is activated by entering the code word 0x12345678 once
in CoE 0xF008 and remains active as long as the code word is not changed. After switching the
device on it is then inactive. Changed CoE values are not saved in the EEPROM and can thus
be changed any number of times.
• Function is not supported: continuous changing of CoE values is not permissible in view of the
lifetime limit.
EL73x228Version: 3.5
Startup list
Changes in the local CoE list of the terminal are lost if the terminal is replaced. If a terminal is replaced with a new Beckhoff terminal, it will have the default settings. It is therefore advisable to link
all changes in the CoE list of an EtherCAT slave with the Startup list of the slave, which is processed whenever the EtherCAT fieldbus is started. In this way a replacement EtherCAT slave can
automatically be parameterized with the specifications of the user.
If EtherCAT slaves are used which are unable to store local CoE values permanently, the Startup
list must be used.
Recommended approach for manual modification of CoE parameters
• Make the required change in the System Manager
The values are stored locally in the EtherCAT slave
• If the value is to be stored permanently, enter it in the Startup list.
The order of the Startup entries is usually irrelevant.
Basics communication
Fig.17: Startup list in the TwinCAT System Manager
The Startup list may already contain values that were configured by the System Manager based on the ESI
specifications. Additional application-specific entries can be created.
Online/offline list
While working with the TwinCAT System Manager, a distinction has to be made whether the EtherCAT
device is “available”, i.e. switched on and linked via EtherCAT and therefore online, or whether a
configuration is created offline without connected slaves.
In both cases a CoE list as shown in Fig. “CoE online tab” is displayed. The connectivity is shown as offline/
online.
• If the slave is offline
◦ The offline list from the ESI file is displayed. In this case modifications are not meaningful or
possible.
◦ The configured status is shown under Identity.
◦ No firmware or hardware version is displayed, since these are features of the physical device.
◦ Offline is shown in red.
EL73x229Version: 3.5
Basics communication
Fig.18: Offline list
• If the slave is online
◦ The actual current slave list is read. This may take several seconds, depending on the size and
cycle time.
◦ The actual identity is displayed
◦ The firmware and hardware version of the equipment according to the electronic information is
displayed
◦ Online is shown in green.
Fig.19: Online list
EL73x230Version: 3.5
Loading...
+ 222 hidden pages
You need points to download manuals.
1 point = 1 manual.
You can buy points or you can get point for every manual you upload.