BBK 9907-S Service manual

INDEX
INDEX
1. PRAFACE
1.1 PRAFACE.....................................................................................................................1
1.2 FRANT PENEL& REAR PENEL.....................................................................................2
1.3 REMOTE CONTROL............................................................................. .......................3
2. BLOCK DIAGRAM
2.1 BLOCK DIAGRAM........................................................................................................4.
3. EXPLODED VIEW......................................................................6
4. PARTS SPECIFICATIONS
4.1 2A265.....................................................................................................................7-10
4.2 CS9800.................................................................................................................11-18
4.3 DRAM 2M*32(EM638165).......................................................................................19-22
4.4 CS4955.................................................................................................................23-25
4.5 CS4360.................................................................................................................26-30
4.6 CS92288...............................................................................................................31-45
4.7 DRAM 1M*16(VT3617161)......................................................................................46-49
4.8 SAA7114H.............................................................................................................50-57
4.9 CS533...................................................................................................................58-59
4.10 PCF8563.............................................................................................................60-62
4.11 TUNER................................................................................................................... .63
4.12 VFD DRIVER PT6312.................................................................... ......................64-65
4.13 SERVO............................................................................................. .......................66
4.14 HDD INFORMATION.............................................................................................67-68
INDEX
5. SCHEMATIC DIAGRAM
5.1 POWER SCHEMATIC..................................................................... .......................69-70
5.2 MAIN SCHEMATIC......................................................................... .......................71-79
5.3 AV INPUT /OUTPUT SCHEMATIC.................................................... ...................... 80-87
5.4 VFD DRIVER........................................................................................................ 88-89
6. PARTS LIST
6.1 MAIN BOARD........................................................................................................90-92
6.2 VFD DRIVER BOARD.......................................................................... .......................93
6.3 POWER BOARD....................................................................................................94-95
6.4 AV BOARD.................................................................................................................96
1
2
3
~110~240V
POWER
BOARD
BLOCK DIAGRAM
VIDEO OUT VIDIO IN PUT
AUDIO OUT AUDIO IN PUT
+12V
+5V
-12V
+3.3V
+2.5V
+1.8V
S-VIDEO OUT
CB.CR.YOUT
COAXIAL OUT
OPTICAL OUT
TUNER75
IN PUT
AV BOARD
DVD LOADER
DRIVE
40GB HDD
40GB HDD DRIVE
MAIN BOARD
MPEG VIDEO DECODER&
MPEG-2
AUDIO/ VIDEO CODER
PT16312
KEY SCANNING &
VFD DISPLAY
4
SCHEMATIC DIAGRAM
ATAPI
TO DVD LOADER DRIVE
HDD ATAPI I/O CHAN
CPLD
Host interface
3.3V
L.R CH
2.5V
VCC
AUDIO
TO-TUNER
5VSTB
1.8V
AUDIO
ADC
DECOD
S-VIDEO
P-CT L
CS5331
SAA7114
VIDEO
1M*16 4PCS
DRAM
16M
FLASH
CS92288
MPEG-2
A/V CODEC
To front panel
SS9800
MPEG
DECODER
CS4360
AUDIO
DACS
AUDIO R(3CH)
AUDIO L3CH
ENCODER
VIDEO
—— D/A
ER
TO TUNER
CS4955
TO S-VIDEO
TO VFD BOARD
CN104
To front panel
2M*32
DRAM
5
COMPOSITE VIDEO
S-VIDEO
NO. ITEM NAME MATERIAL QUANTITY
Mirror bar pc
Left decorative bar ABS
Tray door ABS
Front panel ABS
Left four-key button ABS
Small light conductor PMMA
Big light conductor PMMA
LED stander PS
VFD driver board
Chasis SECC
Loader mechanism PS
DVD loader
Iron stand SECC
Power board
Top cover SECC
Rear panel SECC
AV board
Main board
Hard disc
Copper column
Rubber pad RUBBER
Open/close button ABS
Right four-key button ABS
Right decorative bar ABS
EXPLODED VIEW
14
10
4
5
3
2
1
6
7
8
9
11
13
12
15
24
23
22
21
19
20
18
17
16
6
Circuit Diagram: ICE2AXXX for OFF ¨C Line Switch Mode Power Supplies
7
ICE2AXXX for OFF – Line Switch Mode Power Supplies
Protection Functions
The block diagram displayed in Fig. 4 shows the interal functions of the protection unit. The
comparators C1, C2, C3 and C4 compare the soft-start and feedback-pin voltages. Logic gates
connected to the comparator outputs ensure the combination of the signals and enables the setting of
the “Error-Latch”.
8
ICE2AXXX for OFF – Line Switch Mode Power Supplies
V
V
Overload and Open-Loop Protection
Feedback voltage (VFB) exceeds 4.8V and soft start
voltage (VSS) is above 5.3V (soft start is completed) (t1)
After a 5µs delay the CoolMOS is switched off (t2)
Voltage at Vcc – Pin (VCC) decreases to 8.5V (t2)
Control logic is switched off (t3)
Start-up resistor charges Vcc capacitor (t3)
Operation starts again with soft start after Vcc voltage
has exceeded 13.5V (t4)
t1, t2
CC
VFB
VSS
Fig. 6
Fig. 7
t1, t2
t3
t4
CC
VFB
VSS
9
ICE2AXXX for OFF – Line Switch Mode Power Supplies
References
[1] Keith Billings,
Switch Mode Power Supply Handbook
[2] Ralph E. Tarter,
Solid-State Power Conversion Handbook
[3] R. D. Middlebrook and Slobodan Cuk,
Advances in Switched-Mode Power Conversion
[4] Herfurth Michael,
Ansteuerschaltungen für getaktete Stromversorgungen mit Erstellung eines linearisierten
Signalflußplans zur Dimensionierung der Regelung
[5] Herfurth Michael,
Topologie, Übertragungsverhalten und Dimensionierung häufig eingesetzter
Regelverstärker
[6] Infineon Technologies, Datasheet,
CoolSET-II
Off – Line SMPS Current Mode Controller with 650V/800V CoolMOSääää on Board,
[7] Robert W. Erickson,
Fundamentals of Power Electronics
10
Internet DVD (iDVD) Chip Solution
CS98000
Features
l
Powerful Dual 32-bit RISCs >160MIPS
l
Software based on popular RTOS, C/C++
l
MPEG video decoder supports DVD, VCD, VCD 3.0, SVCD standards
l
Video input with picture-in-picture & zoom
l
8-bit multi-region OSD w/vertical flicker filter
l
Universal subpictur e unit for DVD and SVCD
l
PAL<->NTSC Scaling ~ Transcoding
l
Supports SDRAM and FLASH memories
l
Powerful 32-bit Audio DSP >80 MIPS
l
Decodes: 5.1 channel AC-3, MPEG Stereo
l
Plays MP-3 CDs (a MP-3 CD =12 albums)
l
Karaoke echo mix and pitch shift
l
Optional 3-D Virtual, bass & treble control
l
8-channel dual-zone PCM output
l
IEC-60958/61937 Out: AC-3, DTS, MPEG
l
Multi-Mode Serial Audio I/O: I2S & AC-Link
l
AV Bus or ATAPI interface or DVD/CD/HD
l
GPIO support for all common sub-circuits
Description
Overall the CS98000 Crystal DVD Processor is targeted as a market s pecific c onsum er ent ert ainment proces sor empowering new product classes with the inclusion of a DVD player as a fundamental feature. This integrated circuit when used with al l the other Crystal mixed signal data converters, DSPs and high quality factory firmware enables the conception and rapid design of market lead­ing internet age products like:
DVD A/V Mini-System
Home Media Controller
Combination DVD Player
Car/SUV Entertainment Unit
Future Fir m w are Enhancem ent s :
Web I/O vi a AC-Li n k In put & Built-in Soft Modem
DVD Audio Navigation
MLP Decoder, DTS Dec oder, AAC Decoder
MP-3 Encoder, Ripping Controller
ORDERING INFORMATION
CS98000-CQ 0° to 70° C 208-pin CS98010-CQ 0° to 70° C 128-pin
RISC-1
I-Cache D-Cache
MMU
Video Input
Filter
MPEG Decoder
VLC Parser
RAM MoCo
Video Processor
On-Screen Display Picture-in-Picture
Video/Graphics Display
MAC
Scaler
IDCT
Preliminary Product Information
RISC-2
I-Cache D-Cache
MMU
Clock Manager
Dataflow Engine
External I/Os
This document contains information for a new product. Cirrus Logic reserves the right to modify this product without notice.
MAC
DMA / BitBlit SRAM Buffer
Remote Input
GPIOs
Memory Controller
SDRAM Control
FLASH Control
Subpicture Decode
Scaler
System Controls
STC
Interrupts
Registers
SDRAM
32- Bit DSP
I-Cache
X,Y Data
Memory
CPU / MAC
Audio I/O
PCM Out
PCM In
XMT958
A/V Bus ATAPI-IDE Local Bus
11
6. PIN DESCRIPTION
CS98000
Host/Loader (30)
Video In (12)
CODEC IF (5)
MISC. (41)
GPIO_[15-10, 8-7, 4-2, 0]
H_D_[15:0] H_CS_[3:0]
H_A_[4:0]
H_ALE
H_RD
H_WR
H_CKO
H_RDY
VIN_D[7:0] VIN_HSNC VIN_VSNC
VIN_CLK VIN_FLD
CDC_DI
CDC_DO
CDC_RST
CDC_CK CDC_SY
XTLCLOCK
RST_N
IR_IN
MFG_TST
GPIO_D[20-0]
GPIO_H[16-14]
GPIO_V10
CS98000
M_A_[11:0] M_BS_L M_D_[31:0] M_DQM_[3:0 ] M_RAS_L M_CAS_L M_WE_L M_AP M_CKE M_CKO NVR_OE_L NVR_WR_L
HSYNC VSYNC CLK27_O VDAT_[7:0]
AUD_BCK AUD_LRCK AUD_DO_[3:0] SPDIF_O
AIN_BCK AIN_LRCK AIN_DATA
Memory IF (57)
Video out (11)
DAC Out (7)
ADC In (3)
Table 5 lists the conventions used to identify the pin type and direction in the table that follows.
I Input IS Input, with schmitt trigger ID Input, with pull down resistor IU Input, with pull up resistor O Output O4 Output – 4mA drive
O8 Output – 8mA drive T4 Tri-State-able Output – 4mA drive B Bi-direction B4 Bi-direction – 4mA drive B4U Bi-direction – 4mA drive, with pull-up B8U Bi-direction – 8mA drive, with pull-up B4S Bi-direction – 4mA drive, with schmitt trigger B4SU Bi-direction – 4mA drive, with pull-up and schmitt trigger Pwr +2.5V or +3.3V power supply voltage Gnd Power supply ground Name_N Low active Name_L Low active
Table 5. Pin Type legend
12
CS98000
6.1 Pin Assignments
Table 6 lists the pin number, pin name and pin type for the 208 pin CS98000 package. The primary function and pin direction is shown for all signal
Pin Name Type Primary Function Dir Seco ndary Function Dir Note
1 V DD_P LL Pwr PLL Power 2.5V 2 M_A_11 O8 SDRAM Address[11] O ROM/NVRAM Address[11] O 3 M_A_10 O8 SDRAM Address[10] O ROM/NVR AM Ad dress[10] O 4 GPIO_D18 B4U GenioDVD[18] B System Clock PLL Bypass I 5 M_A_9 O8 SDRAM Address[9] O ROM/NVRAM Address[9] O 6 M_A _8 O8 SDRAM Address[8] O ROM/NVRAM Address8] O 7 M_A_7 O8 SDRAM Address[7] O ROM/NVRAM Address[7] O 8 GPIO_D16 B4SU GenioDVD[16] B
9 M_A_6 O8 SDRAM Address[6] O ROM/NVRAM Address[6] O 10 M_A_5 O8 SDRAM Address[5] O ROM/NVRAM Address[5] O 11 M_A_4 O8 SDRAM Addre ss[4] O ROM/NVRAM Address[4] O 12 GPIO_D17 B4U GenioDVD[17] B 13 M_A_3 O8 SDRAM Address[3] O ROM/NVRAM Address[3] O 14 M_A_2 O8 SDRAM Address[2] O ROM/NVRAM Address[2] O 15 M_A_1 O8 SDRAM Address[1] O ROM/NVRAM Address[1] O 16 M_A_0 O8 SDRAM Address[0] O ROM/NVRAM Address[0] O 17 GPIO_D19 B4U GenioDVD[19] B Memory Clock PLL Bypass I 18 VSS_IO G nd I/O Ground 19 M_CKO O8 SDRAM Clock O 20 VDD_IO Pwr I/O Power 3.3V 21 M_BS_L O8 SDRAM Bank Select O 22 M_CKE B8 SDRAM Clock Enable O GenioMis(7) B 23 M_ AP O8 SDRAM Auto Pre-charge O 24 M_RAS _L O8 SDRAM Row Strobe O 25 M_CAS _L O8 SDRAM Column Strobe O 26 GPIO_D20 B4U G enioDVD[20] B 27 M_WE_L O8 SDRA M Write Enable O 28 M_DQM_0 O8 SDRAM DQM[0] O 29 M_DQM_1 O8 SDRAM DQM[1] O 30 GPIO_D0 B4U GenioDVD[0] B 31 M_DQM_2 O8 SDRAM DQM[2] O 32 M_DQM_3 O8 SDRAM DQM[3] O 33 M_D_8 B8U SDRAM Data[8] B ROM/NVRAM Data[8] B 34 GPIO_D1 B4U GenioDVD[1] B 35 VSS_IO G nd I/O Ground
pins. For some signal pins, a secondary function and direction are also shown. For pins having more than one function, the primary function is chosen when the chip is reset.
Table 6. Pin assignments
13
CS98000
36 VSS_CORE Gnd Core Ground 37 M_D_7 B8U SDRAM Data[7] B ROM/NVRAM Data[7] B 38 VDD_IO Pwr I/O Power 3.3V 39 GPIO_D2 B4U GenioDVD[2] B 40 M_D_9 B8U SDRAM Data[9] B ROM/NVRAM Data[9] B 41 VDD_CORE Pwr Core Power 2.5V 42 M_D_6 B8U SDRAM Data[6] B ROM/NVRAM Data[6] B 43 GPIO_D3 B4U GenioDVD[3] B 44 M_D_10 B8U SDRAM Data[10] B ROM/NVRAM Data[10] B 45 M_D_5 B8U SDRAM Data[5] B ROM/NVRAM Data[5] B 46 M _D_11 B8U S DRAM Data[11] B ROM/NVRAM Data[11] B 47 GPIO_D4 B4U GenioDVD[4] B 48 M_D_4 B8U SDRAM Data[4] B ROM/NVRAM Data[4] B 49 M_D_12 B8U SDRAM Data[12] B ROM/NVRAM Data[12] B 50 GPIO_D5 B4U GenioDVD[5] B 51 M_D_3 B8U SDRAM Data[3] B ROM/NVRAM Data[3] B 52 UNUSED may leave unconnected 53 UNUSED may leave unconnected 54 M_D_13 B8U SDRAM Data[13] B ROM/NVRAM Data[13] B 55 M_D_2 B8U SDRAM Data[2] B ROM/NVRAM Data[2] B 56 M_D_14 B8U SDRAM Data[14] B ROM/NVRAM Data[14] B 57 GPIO_D6 B4U GenioDVD[6] B 58 VSS_IO G nd I/O Ground 59 M_D_1 B8U SDRAM Data[1] B ROM/NVRAM Data[1] B 60 M_D_15 B8U SDRAM Data[15] B ROM/NVRAM Data[15] B 61 GPIO_D7 B4U GenioDVD[7] I B 62 M_D_0 B8U SDRAM Data[0] B ROM/NVRAM Data[0] B 63 VSS_CORE Gnd Core Ground 64 M_D_24 B8U SDRAM Data[24] B ROM/NVRAM Address[20] O 65 GPIO_D11 B4U GenioDVD[11] B 66 VDD_CORE Pwr Core Power 2.5V 67 M_D_23 B8U SDRAM Data[23] B ROM/NVRAM Address[19] O 68 M_D_25 B8U SDRAM Data[23] B ROM/NVRAM Address[21] O 69 GPIO_D10 B4U GenioDVD[10] B 70 M_D_22 B8U SDRAM Data[22] B ROM/NVRAM Address[18] O 71 M_D_26 B8U SDRAM Data[26] B ROM/NVRAM Address[22] O 72 M_D_21 B8U SDRAM Data[21] B ROM/NVRAM Address[17] O 73 GPIO_D9 B4U GenioDVD[9] B 74 M_D_27 B8U SDRAM Data[27] B ROM/NVRAM Address[23] O 75 M_D_20 B8U SDRAM Data[20] B ROM/NVRAM Address[16] O 76 M_D_28 B8U SDRAM Data[28] B
Table 6. Pin assignments (Continued)
14
CS98000
77 GPIO_D8 B4U GenioDVD[8] B
78 M_D_19 B8U SDRAM Data[19] B ROM/NVRAM Address[15] O
79 M_D_29 B8U SDRAM Data[29] B
80 M_D_18 B8U SDRAM Data[18] B ROM/NVRAM Address[14] O
81 NV_WE_L B4U NV RA M Write Enable O GenioMis[8] B
82 VSS_CORE Gnd Core Ground
83 M_D_30 B8U SDRA M Data[30] B ROM/NVRAM Decode Low O
84 VDD_CORE Pwr Core Power 2.5V
85 H_ALE B4U Host Address Latch O GenioHst[13] B
86 M_D_17 B8U SDRAM Data[18] B ROM/NVRAM Address[13] O
87 M_D_31 B8U SDRAM Data[31] B ROM/NVRAM Decode High O
88 M_D_16 B8U SDRAM Data[16] B ROM/NVRAM Address[12] O
89 GPIO_H14 B4U GenioHst[14] B
90 NV_OE_L O4 ROM/NVRAM Output
Enable 91 VDD_IO Pwr I/O Power 3.3V 92 H_RD B4S Host Read Strobe O DVD Data Strobe I 1 93 H_WR B4 Host Write Strobe O DVD Data Enable I 1 94 GPIO_H15 B4U GenioHst[15] B 95 H_RDY B4 Host Ready I DVD Data Ready O 1 96 VSS_IO G nd I/O Ground 97 H_A_2 B4 Host Address[2] O GenioHst[10] B 1 98 GPIO_H16 B4U GenioHst[16] B 99 H_A_1 B4 Host Address[1] O GenioHst[9] B 1
100 H_A_0 B4 Host Address[0] O GenioHst[8] B 1 101 H_CS_1 B4 Host Chip Select [1] O DVD Error I 1 102 H_A_4 B4 Host Address[4] O GenioHst[12] B 1 103 VSS_CORE Gnd Core Ground 104 VSS_PLL Gnd PLL Ground 105 VDD_PLL Pwr PLL Power 2.5V 106 H_CS_0 B4 Ho st Chip Select[0] O DVD Start Sector I 1 107 H_A_3 B 4 Host Address[3] O G enioH st[11] B 1 108 VDD_CORE Pwr Core Power 2.5V 109 H_D_15 B4 Host Data[15] B CD Data I 1, 2 1 10 H_D_14 B4 Host Data[14] B CD Left Right Clock I 1, 2 111 H_CS_3 B4 Host Chip Select[3] O Gen ioHst[18] B 1 112 H_D_13 B4S Host Data[13] B CD Clock I 1, 2 113 H_D_12 B4 Host Data[12] B CD Error I 1, 2 1 14 H_D_11 B4 Host Data[11] B DVD Control Data In I 1, 2 115 H_CS_2 B4 Host Chip Select[2] O GenioHst[17] B 1 1 16 H_D_10 B4 Host Data[10] B DVD Control Data Out O 1, 2
O
Table 6. Pin assignments (Continued)
15
CS98000
117 H_D_9 B4 Host Data[9] B DVD Control Ready I 1, 2 1 1 8 H_D_8 B4 Host Data[8] B DVD Control Clock O 1, 2
119 VSS_IO Gnd I/O Ground 120 H_CKO B4 Host Clock O GenioHst[19] B 1 121 H_D_7 B4 Host Data[7] B DVD Data[7] I 1 122 H_D_6 B4 Host Data[6] B DVD Data[6] I 1 123 H_D_5 B4 Host Data[5] B DVD Data[5] I 1 124 AUD_BCK B4 Audio Out Bit Clock O GenioMis[3] B 125 H_D_4 B4 Host Data[4] B DVD Data[4] I 1 126 VSS_CORE Gnd Core Ground 127 H_D_3 B4 Host Data[3] B DVD Data[3] I 1 128 AUD_LRCK O4 A udio Out LR Clock O 129 VDD_CORE Pwr Core Power 2.5V 130 H_D_2 B4 Host Data[2] B DVD Data[2] I 1 131 VDD_IO Pwr I/O Pow er 3.3V 132 H_D_1 B4 Host Data[1] B DVD Data[1] I 1 133 AUD_DO_2 B4 Audio Out Data[2] O GenioMis[2] B 134 H_D_0 B4 Host Data[0] B DVD Data[0] I 1 135 AUD_DO_0 O4 Audio Out Data[0] O 136 AUD_DO_1 B4 Audio Out Data[1] O GenioMis[1] B 137 AIN_BC K IU Audio In Bit Clock I 138 VSS_CORE Gnd Core Ground 139 AIN_LRCK IU A udio In LR Clock I 140 AIN_DATA B4U Audio In Data I GenioMis[0] B 141 VDD_CORE Pwr Core Power 2.5V 142 CDC_DI IU S erial CODEC Data In I 143 VSS_IO Gnd I/O Ground 144 CDC_DO T4 Serial CODEC Data Out O 145 VIN_CLK IU Video Input Clock I 146 CDC_RST T4 Serial CODEC Reset O 147 CDC_CK IU Seri al CODEC Bit Clock I 148 CDC_SY B4U Serial CODEC Sync B 149 GPIO_V10 B4U GenioMis[26] B 150 GPIO_D15 B4U GenioDvd[15] 151 GPIO_D14 B4U GenioDvd[14] 152 GPIO_D13 B4SU GenioDvd[13] 153 VIN_VSNC B4U Video Input Vsync I GenioMis[25] B 154 CLK 27_O B4U Video Output Clock O GenioMis[6] B 155 GPIO_D12 B4U GenioDvd[12] 156 VDD_PLL Pwr PLL Power 2.5V 157 VSS_PLL Gnd PLL Ground
Table 6. Pin assignments (Continued)
16
CS98000
158 VSS_CORE Gnd Core Ground
159 HSYNC B4U Video Output Hsync O GenioMis[4] B
160 VIN_HSYNC B4U Video Input Hsync I GenioMis[24] B
161 VDD_CORE Pwr Core Power 2.5V
162 VSYNC B4U Video Output Vsync O GenioMis[ 5] B
163 VDAT_0 O4 Video Output Data[0] O
164 VIN_D0 B4U Video Input Data[ 0] I GenioMis[16] B
165 VDAT_1 O4 Video Output Data[1] O
166 VDAT_2 O4 Video Output Data[2] O
167 VDAT_3 O4 Video Output Data[3] O
168 VIN_D1 B4U Video Input Data[ 1] I GenioMis[17] B
169 VDAT_4 O4 Video Output Data[4] O
170 VDAT_5 O4 Video Output Data[5] O
171 UNUSED may leave unconnected
172 VDAT_6 O4 Video Output Data[6] O
173 VDAT_7 O4 Video Output Data[7] O
174 GPIO_0 B4U General Purpose IO[0] B Audio PLL Input Bypass I
175 VIN_D2 B4U Video Input Data[ 2] I GenioMis[18] B
176 VSS_CORE Gnd Core Ground
177 AUD_DO_3 B4U Audio Out Data[3] O General Purpos e IO[1] B
178 VDD_CORE Pwr Core Power 2.5V
179 VIN_D3 B4U Video Input Data[ 3] I GenioMis[19] B
180 VDD_IO Pwr I/O Pow er 3.3V
181 GPIO_2 B4U G eneral Purpose IO [2] B
182 VSS_IO Gnd I/O Ground
183 GPIO_3 B4U G eneral Purpose IO [3] B
184 VIN_D4 B4U Video Input Data[ 4] I GenioMis[20] B
185 GPIO_4 B4U G eneral Purpose IO [4] B
2
186 SCL B4U I
187 SDA B4U I
188 GPIO_7 B4U G eneral Purpose IO [7] B
189 VIN_D5 B4U Video Input Data[ 5] I GenioMis[21] B
190 GPIO_8 B4U G eneral Purpose IO [8] B
191 AUD_XCLK B4U Audio 256x/384x Clock B General Purpose IO[9] B
192 GPIO_10 B4U General Purpose IO[10] B
193 VIN_D6 B4U Video Input Data[ 6] I GenioMis[22] B
194 GPIO_11 B4U General Purpos e IO[11] B
195 GPIO_12 B4U General Purpose IO[12] B
196 GPIO_13 B4U General Purpose IO[13] B
197 GPIO_14 B4U General Purpose IO[14] B
198 VIN_D7 B4U Video Input Data[ 7] I GenioMis[23] B
C Clock B General Purpose IO[5] B
2
C Data B General Purpose IO[6] B
Table 6. Pin assignments (Continued)
17
CS98000
158 VSS_CORE Gnd Core Ground
159 HSYNC B4U Video Output Hsync O GenioMis[4] B
160 VIN_HSYNC B4U Video Input Hsync I GenioMis[24] B
161 VDD_CORE Pwr Core Power 2.5V
162 VSYNC B4U Video Output Vsync O GenioMis[ 5] B
163 VDAT_0 O4 Video Output Data[0] O
164 VIN_D0 B4U Video Input Data[ 0] I GenioMis[16] B
165 VDAT_1 O4 Video Output Data[1] O
166 VDAT_2 O4 Video Output Data[2] O
167 VDAT_3 O4 Video Output Data[3] O
168 VIN_D1 B4U Video Input Data[ 1] I GenioMis[17] B
169 VDAT_4 O4 Video Output Data[4] O
170 VDAT_5 O4 Video Output Data[5] O
171 UNUSED may leave unconnected
172 VDAT_6 O4 Video Output Data[6] O
173 VDAT_7 O4 Video Output Data[7] O
174 GPIO_0 B4U General Purpose IO[0] B Audio PLL Input Bypass I
175 VIN_D2 B4U Video Input Data[ 2] I GenioMis[18] B
176 VSS_CORE Gnd Core Ground
177 AUD_DO_3 B4U Audio Out Data[3] O General Purpos e IO[1] B
178 VDD_CORE Pwr Core Power 2.5V
179 VIN_D3 B4U Video Input Data[ 3] I GenioMis[19] B
180 VDD_IO Pwr I/O Pow er 3.3V
181 GPIO_2 B4U G eneral Purpose IO [2] B
182 VSS_IO Gnd I/O Ground
183 GPIO_3 B4U G eneral Purpose IO [3] B
184 VIN_D4 B4U Video Input Data[ 4] I GenioMis[20] B
185 GPIO_4 B4U G eneral Purpose IO [4] B
2
186 SCL B4U I
187 SDA B4U I
188 GPIO_7 B4U G eneral Purpose IO [7] B
189 VIN_D5 B4U Video Input Data[ 5] I GenioMis[21] B
190 GPIO_8 B4U G eneral Purpose IO [8] B
191 AUD_XCLK B4U Audio 256x/384x Clock B General Purpose IO[9] B
192 GPIO_10 B4U General Purpose IO[10] B
193 VIN_D6 B4U Video Input Data[ 6] I GenioMis[22] B
194 GPIO_11 B4U General Purpos e IO[11] B
195 GPIO_12 B4U General Purpose IO[12] B
196 GPIO_13 B4U General Purpose IO[13] B
197 GPIO_14 B4U General Purpose IO[14] B
198 VIN_D7 B4U Video Input Data[ 7] I GenioMis[23] B
C Clock B General Purpose IO[5] B
2
C Data B General Purpose IO[6] B
Table 6. Pin assignments (Continued)
18
CLK is driven by the system clock. All SDRAM input signals are
nal burst
CKE activates(HIGH) and deactivates(LOW) the CLK signal. If
up and hold time same as other
the next clock cycle and the state of output and burst address is frozen as long as the CKE remains low. When all banks are in the idle state, deactivating the clock controls the entry to the Power
ter the device enters Power Down and Self Refresh modes, where CKE becomes asynchronous until exiting the same mode. The input buffers, including CLK, are disabled during Power Down and Self Refresh modes, providing low
A11 are sampled during the BankActivate command (row
A7 with A10 defining Auto Precharge) to select one location out of the 2M available in the respective bank. During a Precharge command, A10 is sampled to determine if
dress inputs also provide
CS# enables (sampled LOW) and disables (sampled HIGH) the
command decoder. All commands are masked when CS# is sampled HIGH.
lection on systems with multiple banks. It is
The RAS# signal defines the operation commands in
conjunction with the CAS# and WE# signals and is latched at the positive edges
RAS# and CS# are asserted "LOW" and CAS# is asserted "HIGH," either the BankActivate command or the Precharge command is selected by the WE# signal. When the WE# is asserted "HIGH," the
ned on to the active state. When the WE# is asserted "LOW," the Precharge command is selected and the bank designated by BS is switched to the idle state after the
n commands in conjunction with the RAS# and WE# signals and is latched at the positive edges of CLK. When RAS# is held "HIGH" and CS# is asserted "LOW," the column access is started by asserting CAS# "LOW." Then, the Read or Write command
EM638165
Pin Descriptions
Symbol Type Description
CLK Input
CKE Input
BA0,BA1 Input
Table 1. Pin Details of EM638165
Clock:
sampled on the positive edge of CLK. CLK also increments the inter counter and controls the output registers.
Clock Enable:
CKE goes low synchronously with clock(set­inputs), the internal clock is suspended from
Down and Self Refresh modes. CKE is synchronous except af
standby power.
Bank Select:
BA0,BA1 input select the bank for operation.
BA1 BA0 Select Bank
0 0 BANK #A 0 1 BANK #B 1 0 BANK #C 1 1 BANK #D
A0-A11 Input
CS# Input
RAS# Input
CAS# Input
Address Inputs:
address A0-A11) and Read/Write command (column address A0-
all banks are to be precharged (A10 = HIGH). The ad the op-code during a Mode Register Set command.
Chip Select:
CS# provides for external bank se considered part of the command code.
Row Address Strobe:
of CLK. When
BankActivate command is selected and the bank designated by BS is tur
precharge operation.
Column Address Strobe:
is selected by asserting WE# "LOW" or "HIGH."
A0-
The CAS# signal defines the operatio
19
CLK is driven by the system clock. All SDRAM input signals are
nal burst
CKE activates(HIGH) and deactivates(LOW) the CLK signal. If
up and hold time same as other
the next clock cycle and the state of output and burst address is frozen as long as the CKE remains low. When all banks are in the idle state, deactivating the clock controls the entry to the Power
ter the device enters Power Down and Self Refresh modes, where CKE becomes asynchronous until exiting the same mode. The input buffers, including CLK, are disabled during Power Down and Self Refresh modes, providing low
A11 are sampled during the BankActivate command (row
A7 with A10 defining Auto Precharge) to select one location out of the 2M available in the respective bank. During a Precharge command, A10 is sampled to determine if
dress inputs also provide
CS# enables (sampled LOW) and disables (sampled HIGH) the
command decoder. All commands are masked when CS# is sampled HIGH.
lection on systems with multiple banks. It is
The RAS# signal defines the operation commands in
conjunction with the CAS# and WE# signals and is latched at the positive edges
RAS# and CS# are asserted "LOW" and CAS# is asserted "HIGH," either the BankActivate command or the Precharge command is selected by the WE# signal. When the WE# is asserted "HIGH," the
ned on to the active state. When the WE# is asserted "LOW," the Precharge command is selected and the bank designated by BS is switched to the idle state after the
n commands in conjunction with the RAS# and WE# signals and is latched at the positive edges of CLK. When RAS# is held "HIGH" and CS# is asserted "LOW," the column access is started by asserting CAS# "LOW." Then, the Read or Write command
EM638165
Pin Descriptions
Symbol Type Description
CLK Input
CKE Input
BA0,BA1 Input
Table 1. Pin Details of EM638165
Clock:
sampled on the positive edge of CLK. CLK also increments the inter counter and controls the output registers.
Clock Enable:
CKE goes low synchronously with clock(set­inputs), the internal clock is suspended from
Down and Self Refresh modes. CKE is synchronous except af
standby power.
Bank Select:
BA0,BA1 input select the bank for operation.
BA1 BA0 Select Bank
0 0 BANK #A 0 1 BANK #B 1 0 BANK #C 1 1 BANK #D
A0-A11 Input
CS# Input
RAS# Input
CAS# Input
Address Inputs:
address A0-A11) and Read/Write command (column address A0-
all banks are to be precharged (A10 = HIGH). The ad the op-code during a Mode Register Set command.
Chip Select:
CS# provides for external bank se considered part of the command code.
Row Address Strobe:
of CLK. When
BankActivate command is selected and the bank designated by BS is tur
precharge operation.
Column Address Strobe:
is selected by asserting WE# "LOW" or "HIGH."
A0-
The CAS# signal defines the operatio
20
EM638165
Operation Mode
Fully synchronous operations are performed to latch the commands at the positive edges of CLK.
Table 2 shows the truth table for the operation commands.
Table 2. Truth Table (Note (1), (2) )
BankActivate BankPrecharge PrechargeAll Write Write and AutoPrecharge Read Read and Autoprecharge Mode Register Set No-Operation Burst Stop Device Deselect AutoRefresh SelfRefresh Entry SelfRefresh Exit
Clock Suspend Mode Entry Power Down Mode Entry
Clock Suspend Mode Exit Power Down Mode Exit
Data Write/Output Enable Data Mask/Output Disable
Command State CKE
(3)
Idle
H X X V Row address L L H H Any H X X V L X L L H L Any H X X X H
(3)
Active Active Active Active
H X X V L L H L L
(3)
H X X V H
(3)
H X X V L L H L H
(3)
H X X V H
Idle H X X OP code L L L L
Any H X X X X
(4)
Active
H X X X X Any H X X X X
Idle H H X X X Idle H L X X X Idle L H X X X
(SelfRefresh)
Active
(5)
Any
H L X X X
H L X X X
Active
L H X X X Any L H X X X
(PowerDown)
Active Active
H X L X X
H X H X X
n-1
CKE
DQM BA
n
0,1
A
A
10
0-9,11
X L L H L
Column address
(A0 ~ A7)
Column address
(A0 ~ A7)
X L H H H X L H H L X H X L L L H X L L L H X H
X X X H
X X X H
X X X X
CS# RAS# CAS# WE#
L H L L
L H L H
X X X
X X X
L H H H
X X X X X X
L H H H
X X X X X X
L H H H
X X X X X X
Note:
1. V=Valid X=Don't Care L=Low level H=High level
2. CKEn signal is input level when commands are provided. CKE
signal is input level one clock cycle before the commands are provided.
n-1
3. These are states of bank designated by BS signal.
4. Device state is 1, 2, 4, 8, and full page burst operation.
5. Power Down Mode can not enter in the burst operation.
When this command is asserted in the burst cycle, device state is clock suspend mode.
21
EM638165
Commands
1 BankActivate (RAS# = "L", CAS# = "H", WE# = "H", BAs = Bank, A0-A11 = Row Address)
The BankActivate command activates the idle bank designated by the BA0,1 signals. By
latching the row address on A0 to A11 at the time of this command, the selected row access is initiated. The read or write operation in the same bank can occur after a time delay of t from the time of bank activation. A subsequent BankActivate command to a different row in the same bank can only be issued after the previous active row has been precharged (refer to the following figure). The minimum time interval between successive BankActivate commands to the same bank is defined by tRC(min.). The SDRAM has four internal banks on the same chip and shares part of the internal circuitry to reduce chip area; therefore it restricts the back-to-back activation of the four banks. t different banks. After this command is used, the Write command and the Block Write command perform the no mask write operation.
(min.) specifies the minimum time required between activating
RRD
T0 T 1 T2 T3 Tn+3 Tn+4 Tn+5 T n+6
RCD
(min.)
CLK
ADDRESS
COMM A ND
Bank A
Row Addr.
Bank A
Activate
RAS# - CAS# delay (tRCD)
: "H" or "L"
BankActivate Command Cycle
2 BankPrecharge command
(RAS# = "L", CAS# = "H", WE# = "L", BAs = Bank, A10 = "L", A0-A9 and A11 = Don't care)
The BankPrecharge command precharges the bank disignated by BA signal. The precharged bank is switched from the active state to the idle state. This command can be asserted anytime after t
(min.) is satisfied from the BankActivate command in the desired bank. The maximum time any
RAS
bank can be active is specified by t in any active bank within t state and is ready to be activated again.
3 PrechargeAll command
(RAS# = "L", CAS# = "H", WE# = "L", BAs = Don’t care, A10 = "H", A0 -A9 and A11 = Don't care)
The PrechargeAll command precharges all banks simultaneously and can be issued even if all banks are not in the active state. All banks are then switched to the idle state.
NOP
..............
NOP
Bank A
Col Addr.
R/W A with
AutoPrecharge
RAS# Cycle time (tRC)
..............
..............
(Burst Length = n, CAS# Latency = 3)
(max.). Therefore, the precharge function must be performed
RAS
(max.). At the end of precharge, the precharged bank is still in the idle
RAS
Bank B
Row Addr.
Bank B
Activate
AutoPrecharge
Begin
RAS# - RAS# delay time (tRRD)
NOP
NOP
Bank A
Row Addr.
Bank A
Activate
4 Read command
(RAS# = "H", CAS# = "L", WE# = "H", BAs = Bank, A10 = "L", A0-A7 = Column Address)
The Read command is used to read a burst of data on consecutive clock cycles from an active row in an active bank. The bank must be active for at least t issued. During read bursts, the valid data-out element from the starting column address will be available following the CAS# latency after the issue of the Read command. Each subsequent data­out element will be valid by the next positive clock edge (refer to the following figure). The DQs go into high-impedance at the end of the burst unless other command is initiated. The burst length, burst sequence, and CAS# latency are determined by the mode register, which is already programmed. A full-page burst will continue until terminated (at the end of the page it will wrap to column 0 and continue).
222324252627282930
(min.) before the Read command is
RCD
Loading...
+ 68 hidden pages