Badger Meter Vortex Meters User Manual

RUN PROGRAM RELAY 1 RELAY 2
RNL Vortex Insertion Liquid Flow Meter
Installation & Operation Manual09-VRX-UM-00408 (July 2012)
2
09-VRX-UM-00408 07/12
TABLE OF CONTENTS
Mechanical Installation ...........................................................................................................................5
Installation Location ............................................................................................................................................................... 5
Back Pressure Calculations .....................................................................................................................7
Electrical Installation ...............................................................................................................................9
Wiring ........................................................................................................................................................................................10
Pulse Output ........................................................................................................................................................................... 11
Cable Installation ................................................................................................................................................................... 11
+ 4-20 mA Terminals ............................................................................................................................................................. 11
Basic Programming Mode .....................................................................................................................13
Additional Scaling Parameters .............................................................................................................15
Totalizer Functions ................................................................................................................................17
APPENDIX ........................................................................................................................20
Additional Installation Requirements ...................................................................................................20
Introduction ............................................................................................................................................................................20
Turbulence ...............................................................................................................................................................................20
Swirl ............................................................................................................................................................................................20
Sonic Noise ..............................................................................................................................................................................21
Velocity Pro le for RNL Insertion Meters ....................................................................................................................... 21
Straight-Run Piping Considerations ................................................................................................................................21
Temperature and Pressure Tap Locations .....................................................................................................................22
RNL Insertion Style Meter Installation ............................................................................................................................22
Hot Tap Insertion Flow Meter Installation ............................................................................................22
Maximum Fluid Velocity ......................................................................................................................................................23
Flow Pro ling .........................................................................................................................................25
Reducing the Pipe Diameter ..................................................................................................................26
PIPE TABLES .....................................................................................................................28
WARRANTY ......................................................................................................................33
09-VRX-UM-00408 07/12
3
FIGURES
FIGURE 1  VON KARMAN VORTEX STREET ............................................................................................4
FIGURE 2  BACK PRESSURE CALCULATIONS .........................................................................................7
FIGURE 3  OUTLINE DIMENSIONS FOR RNL SERIES .............................................................................8
FIGURE 4  FLOW METER TERMINAL FUNCTIONS .................................................................................9
FIGURE 5  LOAD RESISTANCE VS. SUPPLY VOLTAGE ..........................................................................10
FIGURE 6  DEDICATED POWER SUPPLY HOOKUP ..............................................................................11
FIGURE 7  LOOP POWER HOOKUP .......................................................................................................12
FIGURE 8  RNL SEPARATE POWER AND RECEIVER HOOKUP ............................................................12
FIGURE 9  420 mA TEST SETUP ............................................................................................................15
FIGURE 10  PROGRAMMING MENU MAP .............................................................................................19
FIGURE A1  TURBULENCE ......................................................................................................................20
FIGURE A2  SWIRL ..................................................................................................................................20
FIGURE A3  SONIC NOISE ......................................................................................................................21
FIGURE A4  HOT TAP CUTAWAY ............................................................................................................22
FIGURE A5  HOT TAP DIMENSIONS ......................................................................................................23
FIGURE A6  INSERTION DEPTH .............................................................................................................24
FIGURE A7  MAKING REDUCTIONS OR ENLARGEMENTS ..................................................................26
TABLES
TABLE 1  MINIMUM PIPING REQUIREMENTS ........................................................................................6
TABLE 2  FLOW RANGES ..........................................................................................................................6
TABLE 3  LINE RESISTANCE FOR CURRENT LINES ...............................................................................10
TABLE 4  EXPONENT MULTIPLIERS ......................................................................................................14
TABLE A1  INSERTION DEPTH ...............................................................................................................24
TABLE A2  FLOW PROFILE RAW DATA ...............................................................................................25
TABLE A3  FLOW PROFILE NORMALIZED DATA ................................................................................25
TABLE A4  STEEL, STAINLESS STEEL, P.V.C. PIPE STANDARD CLASSES .........................................28
TABLE A5  CAST IRON PIPE STANDARD CLASSES ............................................................................30
TABLE A6  DUCTILE IRON PIPE STANDARD CLASSES ......................................................................31
TABLE A7  TUBING SCHEDULES ...........................................................................................................32
4
09-VRX-UM-00408 07/12
INTRODUCTION
The RNL vortex shedding  ow meters are designed to provide accurate and repeatable liquid  ow measurements in a variety of common  ow measurement applications. The  ow meters employ a patented ultrasonic technique to measure a form of turbulence created in the  ow stream. This turbulence, know as a Von Karman Vortex Street, is related to the volumetric  ow through a full pipe.
An everyday example of a vortex shedding phenomenon is a  ag waving in the breeze: the  ag waves due to the vortices shed by air moving across the  agpole.
Within the  ow meter, as a  uid moves across a strut or “blu body”, vortices are also shed but on a smaller scale. The vortices form alternately, from one side to the other, causing pressure  uctuations. The alternating pressure changes are detected by the piezoelectric crystals in the sensor tube, and are converted to an analog signal or pulse output. The frequency of the vortices is directly proportional to the  ow. This results in extremely accurate and repeatable measurements with no troublesome moving parts (see Figure 1).
Bluff
Body
Ultrasonic
Beam
Transmitter
T
R
Receiver
FIGURE 1  VON KARMAN VORTEX STREET
Counter
The  ow meters primary output is a 4-20 milliampere (mA) current. The value of the current output is proportional to the  ow rate. The secondary output is a pulse train whose frequency is directly proportional to the  ow.
Each RNL  ow meter is calibrated against  ow standards traceable to NIST (National Institute of Standards and Technology).
The RNL  ow meter is an insertion style retractable  ow meter, for pipe sizes 4 inches (102 mm) and larger. The meter is usually installed through a 2 inch full port isolation valve (See Figure A4), which permits the meter to be retracted or inserted without shutting down the system.
The RNL series  ow meters are calibrated in actual volumetric  ow rates, such as gallons per minute (GPM) and comes with a standard rate and total display.
09-VRX-UM-00408 07/12
5
INSTALLATION
MECHANICAL INSTALLATION
The  ow meter is shipped completely assembled, tested and ready to install and operate in its permanent location. See Figure 3 for the applicable outline dimensions for the  ow meter. See the Appendix for additional installation information.
Installation Location
The RNL series  ow meters use a combination of ultrasonic and vortex shedding technologies to measure volumetric  ow. An ultrasonic noise source can interfere with this technique, therefore the meter should not be installed near high intensity ultrasonic noise sources. Common ultrasonic noise sources include the following:
» Slightly open valves operating with large pressure drops. » Small pipe leaks in high pressure systems. » Venturis operating at near-sonic  ow rates. » Sonic nozzles.
If these ultrasonic noise sources cannot be eliminated, the meter should be mounted with at least one elbow between the  ow meter and the noise source remembering to keep in mind the straight pipe run requirements as described next.
The sensor should be installed with at least 20 pipe diameters of straight pipe upstream and 10 pipe diameters downstream. This condition provides a fully developed, symmetrical  ow pro le that is necessary to obtain accurate and repeatable results. Shorter upstream/downstream piping may be used, although a shift in calibration may occur. If severe turbulence or distorted  ow pro les are present,  ow straighteners should be used. Consult factory for shorter upstream/downstream con gurations. When installing the  ow meter in a newly constructed process line, a strainer should be installed upstream of the meter to prevent foreign material from damaging the meter strut or obstructing the  ow. Damage to the strut could a ect the accuracy of the meter.
In order to prevent cavitation, it is important that the required back pressure be maintained. The minimum required back pressure varies with temperature. See the back pressure calculations in Figure 2. The sensor should be installed using the minimum piping requirements indicated in Table 1.
Maximum volumetric  ows are determined by the inside diameter of the pipe and the velocity of the  uid being measured.
Calculations of minimum and maximum  ow ranges are based on the pipe being full at all times. See Table 2 for  ow ranges in common pipe sizes.
BACK PRESSURE CALCULATIONS
At high  ow rates, cavitation may occur, causing a  ow meter to be inaccurate. Cavitation can be prevented by increasing the back pressure. The following equation determines the minimum back pressure required to prevent cavitation:
P1 = PVP + 0.03 V
where: P1 = line pressure at the meter PSIA P V = line velocity FPS
EXAMPLE: In water at 65° F  owing with a speed of 25 fps, the vapor pressure is 0.3 PSIA.
P1 = 0.3 + 0.03 (25)2 = 19.05 PSIA If atmospheric pressure is 14.69 PSIA,: Then P1 = 19.05 PSIA - 14.69 PSIA = 4.36 PSIG
= vapor pressure of the liquid PSIA
VP
²
Maintaining a back pressure of 5 PSIG or greater will prevent cavitation.
FIGURE 2  BACK PRESSURE CALCULATIONS
6
09-VRX-UM-00408 07/12
Upstream Obstruction
90° Elbow 10
Two 90° Elbows, Same Plane 15
Two 90° Elbows, Di erent Planes 20
Flow Straightener
(recommended when ever an axial swirl exists in the  ow stream)
Fully Open Shut-o Valve 5
Minimum Required Straight-run Pipe
Diameters Upstream from Meter
10
Downstream Obstruction
Control Valve 5
Minimum Required Straight-run Pipe
Diameters Downstream from Meter
TABLE 1  MINIMUM PIPING REQUIREMENTS
NOMINAL SIZE
INCH (mm)
4.0 (100) 79 635 300 2,403
6.0 (152) 180 1441 682 5,454
8.0 (203) 312 2,495 1,181 9,444
10.0 (254) 492 3,933 1,861 14,886
12.0 (305) 698 5,582 2,641 21,130
14.0 (356) 843 6,746 3,192 25,537
16.0 (406) 1,102 8,813 4,170 33,360
18.0 (457) 1,394 11,155 5,278 42,226
20.0 (508) 1,733 13,864 6,560 52,481
Based on water at 1 centistoke at 73° F, schedule 40 pipe 1 to 20 fps (0.3 to 6 mps). For reference only, consult sizing program for temperature and pressure conditions other than those listed here.
GALLONS PER MINUTE (gpm) LITERS PER MINUTE (lpm)
Minimum Flow Maximum Flow Minimum Flow Maximum Flow
TABLE 2  FLOW RANGES
09-VRX-UM-00408 07/12
7
RUN
R
ELAY
1
7.00"
.75"
RUN PROGRAM RELAY 1 RELAY 2
5.75"
9.75" Maximum at Maximum
Insertion
C Maximum
Retracted
3.93"
4.00" Maximum Retracted
B Maximum
Insertion
4.50"
Maximum
ABC
12.00 (305) 13.125 (333) 18.83 (478)
24.00 (610) 25.125 (638) 30.83 (783)
36.00 (914) 37.125 (943) 42.83 (1088)
All dimensions are in inches (mm)
FIGURE 3  OUTLINE DIMENSIONS FOR RNL SERIES
A
Flow
8
09-VRX-UM-00408 07/12
The RNL Series  ow meters are designed to mount on a standard ANSI 150 lb., 2” pipe  ange. It is recommended that the customer conduct a  ow pro le survey and place the probe at the optimum point. The labeling of the  ow direction on the sensor should be aligned with the  ow in the pipe. Maximum insertion depth is a product of pipe size and  uid velocity, see Appendix Table A1 for Insertion Depth Chart.
CAUTION: Avoid bending the vortex strut or damaging the transducers during installation. The torque value for the Conax  tting is 90-100 ft. lbs.
NOTE: See Appendix for further information on installation.
ELECTRICAL INSTALLATION
TP1
TP2
TP3
TRANSDUCER
CONNECTIONS
White
Green
Black
Green
White
Black
Label Denoting
Receiving
XMIT
RECV
4-20 Pulse
Transducer Cable
PULSE
OUTPUT
LOOP POWER
R
CONNECTIONS
FIGURE 4  FLOW METER TERMINAL FUNCTIONS
Electrical connections for the  ow meter are made using screw-type terminals located inside the electronics enclosure. To expose these terminals, open the cover. The functions of these terminals are illustrated in Figure 4.
09-VRX-UM-00408 07/12
9
Wiring
A two conductor cable of 16 to 24 AWG solid or stranded wire is required to make connections to the  ow meter. It is recommended that a shielded interconnecting cable be used. The maximum cable length for the power depends on the supply voltage lines required to drive the  ow meter and the current meter being used to monitor the current output of the  ow meter. The maximum length of the cable is determined by using Figure 5 to calculate the maximum load (resistance in Ohms) that can be driven using the known power supply voltage. In determining this value the voltage drop across the meter being used to monitor the current output of the  ow meter must be considered. After this value has been found, Table 3 can be used to calculate the resistance in the cable being used and adjust the input voltage as required.
Ohms/Ft Related to Wire Size (AWG)
16 AWG = 0.00420 Ohm/Ft 18 AWG = 0.00651 Ohm/Ft 20 AWG = 0.01035 Ohm/Ft 22 AWG = 0.01310 Ohm/Ft 24 AWG = 0.02620 Ohm/Ft
TABLE 3  LINE RESISTANCE FOR CURRENT LINES
Loop Voltage - 7 VDC
0.02
= Maximum Loop Resistance
1200
1100
1000
900
800
700
600
500
Loop Load (Ohms)
400
300
Operate in the
Shaded Regions
200
100
10 12 14 16 18 20 22 24 26 28 30
Loop Voltage (VDC)
10
FIGURE 5  LOAD RESISTANCE VS. SUPPLY VOLTAGE
09-VRX-UM-00408 07/12
Loading...
+ 22 hidden pages