Datasheet U2896B Datasheet (TEMIC)

查询U2896B-MFCG3供应商
Modulation PLL for GSM, DCS and PCS Systems
Description
The U2896B is a monolithic integrated circuit. It is realized using TEMIC’s advanced silicon bipolar UHF5S technology. The device integrates a mixer, an I/Q modulator, a phase-frequency detector (PFD) with two synchronous programmable dividers, and a charge pump. The U2896B is designed for cellular phones such as GSM900, DCS1800, and PCS1900, applying a transmitter architecture at which the VCO operates at the TX output frequency. No duplexer is needed since the
out-of-band noise is very low. The U2896B exhibits low power consumption. Broadband operation gives high flexibility for multi-band frequency mappings. The IC is available in a shrinked small-outline 36-pin package (SSO36).
Electrostatic sensitive device. Observe precautions for handling.
U2896B
Features
D
Supply voltage range 2.7 V to 5.5 V
D
Current consumption 50 mA
D
Power-down functions
D
High-speed PFD and charge pump (CP)
D
Small CP saturation voltages (0.5/0.6 V)
D
Programmable dividers and CP polarity
D
Low-current standby mode
Block Diagram
I NI Q NQ PU NMIXOMIXO
56
MDLO
NMDLO
MDO
NMDO
VS1 GND1
3 4
7 8
90°
Modulator
LO
Benefits
D
Novel TX architecture saves filter costs
D
Extended battery operating time without duplexer
D
Less board space (few external components)
D
VCO control without voltage doubler
D
Small SSO36 package
D
One device for all GSM bands
PUMIXMIXLO
23353621
V
32 33
Ref
34 25
Mixer
24
31 29
28 30
NMIXLO VS3
RF NRF
GND3
ND
NND
RD
NRD
22 21
15 16
N
1:2
MUX
R
1:2
Mode control
17
MC GND2
PFD
27
VS2
Figure 1. Block diagram
Charge
pump
26
CPCL CPCH
1413
10
11
12
14891
VSP
CPO
GNDP
Rev . A1, 18-Sep-98 1 (13)
Preliminary Information
U2896B
Á
Á
Á
Á
Á
Á
Ordering Information
Extended Type Number Package Remarks
U2896B-MFCG3 SSO36 T aped and reeled
Pin Description
NI
MDLO
NMDLO
GND1
VSI
MDO
NMDO
SUB
VSP
CPO
GNDP
CPCL
CPCH
RD
NRD
MC
n.c.
I
1
2
3
4
5
1)
6
7
8
9
10
11
12
13
14
15
16
17
18 19
Figure 2. Pinning
14892
36
35
34
33
32
31
30
29
28
27
26
25
24
23
22
21
20
Q
NQ
PUMIX
MIXO
NMIXO
1)
VS3
GND3
RF
NRF
1)
VS2
GND2
MIXLO
NMIXLO
PU
ND
NND
n.c.
n.c.
Pin Symbol Function
1 2 3 4 5 6 7 8
9 10 11 12 13
I
NI
MDLO
NMDLO
GND1
1)
VS1
MDO
NMDO
SUB VSP CPO
GNDP
CPCL
In-phase base band-input Complementary to I I/Q-modulator LO input Complementary to MDLO Ground Supply I/Q modulator I/Q modulator Complementary to MDO Substrate, connected to GND Supply charge pump Charge pump output Ground Charge pump current control
GSM1800
14
Á
15 16 17 18 19 20 21 22 23
Á
24 25 26 27 28 29 30 31 32 33 34 35 36
CPCH
ÁÁ
RD
NRD
MC n.c. n.c. n.c.
NND
ND
PU
ÁÁ
NMIXLO
MIXLO
GND2
1)
VS2
NRF
RF
GND3
1)
VS3
NMIXO
MIXO
PUMIX
NQ
Q
Charge pump current control
БББББББББ
GSM900 R-divider input Complementary to RD Mode control Not connected Not connected Not connected Complementary to ND N-divider input Power-up. whole chip, except
mixer
БББББББББ
Complementary to MIXLO Mixer LO input Ground Supply (MISC) Complementary to RF Mixer RF input Ground Supply mixer Complementary to MIXO Mixer output Power-up mixer Complementary to Q Quad-phase base-band input
1)
Between the Pins VS1, VS2 and VS3 the allowed maximum voltage is 200 mV
Preliminary Information
Rev . A1, 18-Sep-982 (13)
Absolute Maximum Ratings
ÁÁÁ
ÁÁÁ
ÁÁÁ
pp y
ÁÁÁ
pp y
ÁÁÁ
ÁÁÁ
pp y
ÁÁÁ
Á
1)
Á
Á
Á
ÁÁÁ
Á
Á
Á
Á
ÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁ
Parameters Symbol Value Unit Supply voltage VS1, VS2, VS3 Supply voltage charge pump VSP Voltage at any input Current at any input / output pin
except CPC CPC output currents Ambient temperature Storage temperature
Operating Range
Parameters Symbol Value Unit Supply voltage Supply voltage Ambient temperature
Thermal Resistance
Parameters Symbol Value Unit Junction ambient SSO36
V
VS#
V
VSP
V
Vi#
| II# | | IO# |
| I
|
CPC
T
amb
T
stg
V
VS#
V
VSP
T
amb
R
thJA
–0.5 v V
–40 to +125
v
V
VSP
5.5 v V
Vi#
2
5
–20 to +85
2.7 to 5.5
2.7 to 5.5
–20 to +85
130
U2896B
+5.5
VS#
mA
mA
°C °C
°C
K/W
V V V
V V
Electrical Characteristics
VS = 2.7 to 5.5 V, T
Parameters T est Conditions / Pin Symbol Min. T yp. Max. Unit
DC supply
Supply voltages VS# Supply voltage VSP Supply current I
Supply current I
Supply current I
Supply current I
ББББББ
N & R divider inputs ND, NND & RD, NRD
N:1 divider frequency R:1 divider frequency Input impedance Input sensitivity Input capacitance
= –20°C to +85°C, final test at 25°C
amb
V
VS1
= V
VS1
Active (VPU = VS)
VS2
= V
Standby (VPU = 0)
VS2
Active (VPU = VS) Standby (VPU = 0)
VS3
VSP
Active (V Standby (V
PUMIX
PUMIX
Active (V
= VS, CPO open)
PU
БББББББ
Standby (VPU = 0)
50-W source 50-W source Active & standby 50-W source Active & standby
VS3
= VS)
= 0)
V
VS#
V
VSP
I
VS1A
I
VS1Y
I
VS2A
I
VS2Y
I
VS3A
I
VS3Y
I
VSPA
ÁÁÁ
I
VSPY
f
ND
f
RD
ZRD, Z
ND
VRD, V
CRD, C
ND
ND
2.7
V
– 0.3
VS#
ÁÁÁ
100 100
1
2)
5
17
17
13
1.4
Á
5.5
5.5 22 20 22 20 17 30
1.8
ÁÁ
20
600 600
200
0.5
V V
mA
m
A
mA
m
A
mA
m
A
mA
ÁÁ
m
A
MHz MHz
k
W
mV
rms
pF
1) Mean value, measured with FND = 151 MHz, FRD = 150 MHz, current vs. time, see page 6, figure 3
2) For optimized noise performance this voltage level may be higher
Rev . A1, 18-Sep-98 3 (13)
Preliminary Information
U2896B
Á
Á
Á
Á
Á
Á
Á
Á
Á
Á
Á
Á
Á
Á
Á
Á
Á
Á
Á
Á
Á
Á
Á
Á
Á
Á
Á
Á
Á
Electrical Characteristics (continued)
VS = 2.7 to 5.5 V, T
Parameters T est Conditions / Pin Symbol Min. T yp. Max. Unit
Phase-frequency detector (PFD)
PFD operation
ББББББ
Frequency comparison
4)
only
I/Q modulator baseband inputs I, NI & Q, NQ
DC voltage
ББББББ
MD_IQ AC voltage
5)
AC voltage
I/Q modulator LO input MDLO
MDLO Input impedance Input level I/Q modulator outputs MDO, NMDO DC current Internal pull-up resistor Voltage compliance MDO output level
ББББББ
(differential) Carrier suppression Sideband suppression IF spurious
Noise
6)
6)
Frequency range
Mixer (900 MHz)
RF input level Output resistance LO-spurious at
RF/NRF port
ББББББ
MIXLO input level MIXO Output level 7) differen-
ББББББ
tial Carrier suppression
= –20°C to +85°C, final test at 25°C
amb
fND = 600 MHz, N = 2
ББББББ
fRD = 600 MHz, R = 2 fND = 600 MHz, N = 2
f
= 450 MHz, R = 2
RD
Referred to GND
ББББББ
Frequency range Referred to GND
Differential (preferres)
Frequency range Active & standby 50-W source
V
, V
MDO
V
, V
MDO
615 W to VS
ББББББ
1.5 pF external load
NMDO
NMDO
6)
= VS
= VC
6)
6)
fLO ± 3 f
mod
@ 400 kHz off carrier
900 MHz
@ P9 @ P9
ББББББ
= –10 dBm
MIXLO
= –15 dBm
RF
0.05 to 2 GHz Frequency range @ P9
ББББББ
@ P9
MIXLO
MIXLO
= –15 dBm
= –15 dBm
f
V
R
R
V
I,
AC
AC
AC
I
MDO MDO MDO
CS
MIXO
P9
P9
CS9
PFD
f
FD
V
NI,
Q,
f
IO
AC
I,
Q, ACNQ
AC
DI,
f
MDLO
Z
MDLO
P
MDLO
, I
NMDO
, R
NMDO
, VC
P
MDO
MDO
SS
MDO
SP
MDO
N
MDO
f
MDO
P9
RF
, R
NMIXO
SP9
RF
MIXLO
f
MIXO
MIXO
MIXO
V
NQ
NI,
DQ
NMDOVS
БББББ
БББББ
VC
БББББ
БББББ
БББББ
50
Á
ÁÁÁÁÁ
300
400
1.35
Á
0
VS1/2
ÁÁ
VS1/2
ÁÁ
+ 0.1
1
200
400
100
450
3
–14
–11
–5
0.8
615 – 0.7 40
Á
–32 –35
ÁÁÁÁÁ
–35
–40
–50
5.5 60
–45
–115
100
–23
450
–17
650
–40
ÁÁÁÁÁÁÁ
–22
50
ÁÁÁÁ
80
–12 450
ÁÁÁÁÁ
–20
MHz
ÁÁ
MHz
V
ÁÁ
MHz
mV
pp
mV
pp
MHz
k
W
dBm
mA
W
V
mV
rms
ÁÁ
dBc dBc dBc
dBc/Hz
MHz
dBm
W
dBm
ÁÁ
dBm MHz
mV
rms
dBc
4)
PFD can be used as a frequency comparator until 300 MHz for loop acquisition
5)
Single-ended operation (complementary baseband input is AC-grounded) leads to reduced linearity (degrading suppression of odd harmonics)
6)
With typical drive levels at MDLO- & I/Q-inputs
7)
–1 dB compression point C = 1.5 pF to GND
Preliminary Information
Rev . A1, 18-Sep-984 (13)
Electrical Characteristics (continued)
Á
Á
Á
Á
Á
Á
Á
Á
Á
Á
pp
Á
Á
Á
Á
Á
Á
Á
Á
Á
Á
Á
Á
Á
Á
Á
Á
Á
Á
Á
Á
Á
Á
Á
Á
Á
Á
Á
Á
Á
Á
VS = 2.7 to 5.5 V, T
Parameters Test Conditions / Pin Symbol Min. Typ. Max. Unit
Mixer (1900 MHz)
Output resistance RF input level LO-spurious at
RF/NRF ports
ББББББ
MIXLO input level MIXO Output level 8) differen-
ББББББ
tial Carrier suppression
Charge-pump output CPO (V
Pump-current pulse
Sensivity to V
ББББББ
V
voltage range
CPO
ББББББ
ББББББ
VSP
Mode control
Sink current Power-up input PU (power-up for all functions, except mixer) Settling time
ББББББ
High level Low level High-level current Low-level current
Power-up input PUMIX (power-up for mixer only)
Settling time
ББББББ
High level Low level High-level current Low-level current
= –20°C to +85°C, final test at 25°C
amb
0.5 to 2 GHz @ P19
@ P19RF = –15 dBm
ББББББ
MIXLO
= –10 dBm
0.05 to 2 GHz
@ P19
ББББББ
@ P19
VSP
R
CPCH
R
CPCL
D
I
CPO
|
I
CPO
| I
CPO
ББББББ
10%
ББББББ
(V
VSP
= –17 dBm
MIXLO
= –17 dBm
MIXLO
= 5 V; V
9)
= 4.7 k
10)
= 2.4 k
||
CPO
D
V
V
| degradation <
= 2.7 V to 5 V)
= 2.5 V)
VSP
VSP
VMC = VS
Output power within 10%
ББББББ
of steady state values Active Standby Active, V Standby , V
Output power within 10%
ББББББ
of steady state values
PUH
PUL
= 2.2 V
= 0.4 V
Active Standby Active, V
PUMIXH
= 2.2 V
Standby , V
PUMIXL
= 0.4 V
R
MIXO
ÁÁÁÁ
P19
P19
ÁÁÁÁ
CS19
| I
| I
ÁÁÁÁ
|
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
V V
I I
, R
P19
RF
SP19
MIXLO
MIXO
MIXO
CPO_H CPO_L
S
ICPO
V
CPO
I
MC
S
PU
V
PUH
V
PUL
I
PUH
I
PUL
t
setl
PUMIXH
PUMIXL
PUMIXH
PUMIXL
NMIXO
RF
| |
U2896B
650
–23
ÁÁÁÁÁÁÁÁ
–22
70
ÁÁÁÁÁ
–20
1.4 3
ÁÁÁÁÁÁÁÁ
0.5
ÁÁ
ÁÁ
2 4
ÁÁ
ÁÁ
60
ÁÁÁÁÁ
5
2.0 0
–1
ÁÁÁÁÁ
5
2.0 0
0.1
–1
–17 –40
–12
ÁÁÁÁÁ
2.6 5
0.1
V
–0.6
VSP
ÁÁ
ÁÁ
10
ÁÁ
0.4
70 20
10
ÁÁ
0.4
70 20
W
dBm dBm
ÁÁ
dBm
mVrms
dBc
mA mA
ÁÁ
V
ÁÁ
ÁÁ
m
A
m
s
ÁÁ
V V
m
A
m
A
m
s
ÁÁ
V V
m
A
m
A
8)
9)
10)
Rev . A1, 18-Sep-98 5 (13)
– 1 dB compression point C = 1.5 pF to GND R
: external resistor to GND for charge-pump current control (MODE 1, 5, only Pin 14 active)
CPCH
R
: external resistor to GND for charge-pump current control (MODE 2, 3, 4, only Pin 13 active)
CPCL
Preliminary Information
U2896B
Supply Current of the Charge Pump I
Due to the pulsed operation of the charge pump, the current into the charge-pump supply pin VSP is not constant. Depending on I (see figure 5) and the phase difference at the phase detector inputs, the current I over time varies. Basically, the total current is the sum of the quiescent current, the charge-/discharge current, and – after each phase comparison cycle – a current spike (see figure 3).
Internal current |I
R
CPC
19.2 k
W
9.6 k
W
4.8 k
W
2.4 k
W
CPC
| vs. R
CPC
|I
CPCO
0.5 mA 1 mA 2 mA 4 mA
|
(typical values)
VSP
vs. Time
VSP
I
VSP
I
CPO
Up
Down
2.5 I
CPCO
1.5 I
CPCO
I
I
CPCO
–I
CPCO
Figure 3. Supply current of the charge pump
t
t
14913
Mode Selection
The device can be programmed to different modes via an external resistor RMODE (including short, open) from Pin MC to VS2. The mode is distinguished from specific N-, R-divider ratios, and the polarity of the charge-pump selection.
Mode Selection N-Divider R-Divider CPO Current Polarity
Mode Resistance
fn < fR
1)
fn > fR between Pin MC and Pin VS2
1 0 (<50 W) 1:1 1:1 sink source t.b.d. x 2 2.7 kW (±5%) 1:1 1:1 source sink t.b.d. x 3 10 kW (±5%) 1:1 2:1 source sink t.b.d. x 4 47 kW (±5%) 2:1 2:1 source sink PCN/ PCS 5 (> MW) 2:1 2:1 sink source GSM
1)
Frequencies referred to PFD input
2)
LO frequencies below VCO frequency
3)
LO frequencies above VCO frequency
4
) Sink current into Pin CPO. Source: current out from Pin CPO.
4)
Application CPCH
1)
3)
CPCL
active
2)
active
x
x
Preliminary Information
Rev . A1, 18-Sep-986 (13)
Equivalent Circuits at the IC’s Pins
I,Q
MDLO
NI, NQ
V
Bias_MDLO
U2896B
2 x 615
W
VS1
MDO NMDO
2230 2230
V
Ref_input
V
Ref_MDLO
V
Baseband inputs LO input Output
Figure 4. I/Q modulator
RF
1 k
V
Bias_RF
890 890 Ω
1 k
V
Bias_LO
1.6 k 1.6 k
650
W
NMIXO
NRF
RF input
V
Ref_RF
MIXLO
V
Ref_LO
LO output
Figure 5. Mixer
Ref_output
Output
650
GND
14893
VS3
W
MIXO
GND
14894
4
VSP
4
I
CPO
I
GNDP
14896
CPCL
CPCH
up
Ref
V
Ref
n
= Transistor with an emitter area–factor of “n”
n
Ref
n
down
Figure 6. Charge pump
Rev . A1, 18-Sep-98 7 (13)
Preliminary Information
U2896B
ND/RD
VS2
NND/NRD
VS2
MC
Figure 7. Dividers
2x
60 µA
2 k 2 kΩ
V
Ref_div
Logic
GND
14897
N–divider
R–divider
MUX
PU, PUMIX
20 k
Figure 8. Power-up
C (U) is a non-linear junction capacitance
Figure 10. ESD-protection diodes
GND
14899
C (U)
0.5 pF @ 2 V
14900
GND
14898
Figure 9. Mode control
Rev . A1, 18-Sep-988 (13)
Preliminary Information
Application Hints
Interfacing
For some of the baseband ICs it may be necessary to reduce the I/Q voltage swing so that it can be handled by the U2896B. In those cases, the following circuitry can be used.
Mode Control
U2896B
U2896B
U2896B
R1
II
R1
Baseband IC
Figure 11. Interfacing the U2896B to I/Q baseband circuits
NI
Q
R1
NQ
R1
R2
R2
C
NI
U2896B
Q
C
NQ
14901
Due to a possible current offset in the differential base­band inputs of the U2896B the best values for the carrier suppression of the I/Q modulator can be achieved with voltage driven I/NI-, and Q/NQ-inputs. A value of R
= R2/2*RS v 1.5 kW should be realized. RS is the
source
sum of R1 (above drawing) and the output resistance of the baseband IC.
VS2
R
Mode
R
Mode1RMode2
MC
a) any single mode b) any 2 modes
U2896B
VS2
R
Mode
R
Mode
MC
c) any mode & mode 5
Figure 12. Application examples for programming
d) mode 5 & mode 3 or mode 4
different modes
36 kΩor 10 k
VS2
MC
U2896B
VS2
MC
14895
Rev . A1, 18-Sep-98 9 (13)
Preliminary Information
U2896B
Test Circuit
V4
1.35V
200MHz
–10dBm
3V, 5V
200.1MHz –15dBm
3V
1.5V
V7
R1
R2
R5
R6
R3
R4
R7
V5
450 mV
C1
C2
C5
C6
pp
C4
C3
10
11
12
13
14
15
16
1
2
3
4
5
6
7
8
9
U2896B
36
35
34
33
32
31
30
29
28
27
26
25
24
23
22
21
V2
450 mV
C14
C16
C7
C8
C10
C11
C13
C15
R11
pp
V3
R12
C9
C12
R13
R14
1.35V
3V
3V
900MHz
–15dBm
3V
1100MHz
–15dBm
3V
200MHz
–15dBm
3V
R8
R9
R10
n.c.
17
n.c.
18 19
Figure 13. Test circuit
20
n.c.
14903
Preliminary Information
Rev . A1, 18-Sep-9810 (13)
Application Circuit for DCS1800 (1710 – 1785 MHz)
U2896B
Baseband
2nd LO
–10dBm
3V
R1
R2
3V, 5V
Tuning voltage
R4
C7
C8
C9
C10
R3
C6
R9
R8
R10
C13
VCO
880 to 915MHz
1710 to 1785MHz
–20dBm
Baseband
3V
3V
C4
C2
C3
C1
1
2
3
4
5
6
7
8
9
36
35
34
33
32
31
30
29
28
C12
C14
C15
U2896B
10
C5
11
12
13
R5
14
R6
15
L2L1
C11
16
27
26
25
24
23
22
21
C17
C18
C19
C20
C16
L3
3V
1st LO
–15dBm
3V
C29
3V
Measurements
R7
17
n.c.
18 19
Figure 14. Application circuit
Modulation Spectrum & Phase Error
14904
20
n.c.
n.c.
CPC: 1 kΩ to GND
Modulation-Loop Settling Time
As valid for all PLL loops the settling time depends on several factors. The following figure is an extraction from measurements performed in an arrangement like the application circuit. It shows that a loop settling time of a few ms can be achieved.
Vertical: VCO tuning voltage 1 V/Div Horizontal: Time 1 ms/Div
Rev . A1, 18-Sep-98 11 (13)
CPC ‘open’
Preliminary Information
U2896B
Package Information
Package SSO36
Dimensions in mm
0.2
0.5
36 19
118
9.6
9.1
8.45
1.3
0.15
0.05
technical drawings according to DIN specifications
5.6
5.2
4.5
4.3
0.12
6.6
6.3
13047
Preliminary Information
Rev . A1, 18-Sep-9812 (13)
U2896B
Ozone Depleting Substances Policy Statement
It is the policy of TEMIC Semiconductor GmbH to
1. Meet all present and future national and international statutory requirements.
2. Regularly and continuously improve the performance of our products, processes, distribution and operating systems with respect to their impact on the health and safety of our employees and the public, as well as their impact on the environment.
It is particular concern to control or eliminate releases of those substances into the atmosphere which are known as ozone depleting substances (ODSs).
The Montreal Protocol ( 1987) and its London Amendments (1990) intend to severely restrict the use of ODSs and forbid their use within the next ten years. Various national and international initiatives are pressing for an earlier ban on these substances.
TEMIC Semiconductor GmbH has been able to use its policy of continuous improvements to eliminate the use of ODSs listed in the following documents.
1. Annex A, B and list of transitional substances of the Montreal Protocol and the London Amendments respectively
2. Class I and II ozone depleting substances in the Clean Air Act Amendments of 1990 by the Environmental Protection Agency (EPA) in the USA
3. Council Decision 88/540/EEC and 91/690/EEC Annex A, B and C (transitional substances) respectively.
TEMIC Semiconductor GmbH can certify that our semiconductors are not manufactured with ozone depleting substances and do not contain such substances.
We reserve the right to make changes to improve technical design and may do so without further notice.
Parameters can vary in different applications. All operating parameters must be validated for each customer
application by the customer. Should the buyer use TEMIC products for any unintended or unauthorized
application, the buyer shall indemnify TEMIC against all claims, costs, damages, and expenses, arising out of,
directly or indirectly, any claim of personal damage, injury or death associated with such unintended or
unauthorized use.
TEMIC Semiconductor GmbH, P.O.B. 3535, D-74025 Heilbronn, Germany
T elephone: 49 (0)7131 67 2594, Fax number: 49 (0)7131 67 2423
Rev . A1, 18-Sep-98 13 (13)
Preliminary Information
Loading...