ATMEL U2896B User Manual

查询U2896B 供应商
Modulation PLL for GSM, DCS and PCS Systems
Description
The U2896B is a monolithic integrated circuit manu­factured using Atmel Wireless & Microcontrollers’ advanced silicon bipolar UHF5S technology. The device integrates a mixer, an I/Q modulator, a phase-frequency detector (PFD) with two synchronous programmable dividers, and a charge pump. The U2896B is designed for cellular phones such as GSM900, DCS1800, and PCS1900, applying a transmitter architecture at which the VCO operates at the TX output frequency. No duplexer
Electrostatic sensitive device. Observe precautions for handling.
U2896B
Features
Supply voltage range 2.7 V to 5.5 VCurrent consumption 40 mAPower-down functionsHigh-speed PFD and charge pump (CP)Small CP saturation voltages (0.5/0.6 V)Programmable LO divider and CP polarityLow-current standby mode
Block Diagram
I NI Q NQ PU NMIXOMIXO
56
M 1:2 1:4
90°
Modulator
MDLO
NMDLO
MDO
NMDO
VS1 GND1
3 4
7 8
LO
Benefits
Novel TX architecture saves filter costsExtended battery operating time without duplexerLess board space (few external components)VCO control without voltage doublerSmall SSO36 packageOne device for all GSM bands
PUMIXMIXLO
32 3323353621
V
Ref
34 25
Mixer
24
31 29
28 30
NMIXLO VS3
RF NRF
GND3
ND
NND
RD
NRD
Rev. A3, 05-Oct-00
22 21
15 16
N
1:2
MUX
R
1:2
Mode control
17
MC GND2
Figure 1. Block diagram
PFD
27
VS2
26
Charge
pump
1413
CPCL CPCH
VSP
10
CPO
11
GNDP
12
PCH
20
1 (13)
U2896B
Ordering Information
Extended Type Number Package Remarks
U2896B-MFCG3 SSO36 Taped and reeled
Pin Description
NI
MDLO
NMDLO
GND1
VSI
MDO
NMDO
SUB
VSP
CPO
GNDP
CPCL
CPCH
RD
NRD
MC
CGNDP
I
1
2
3
4
5
1)
6
7
8
9
10
11
12
13
14
15
16
17
18 19
Figure 2. Pinning
14892
36
35
34
33
32
31
30
29
28
27
26
25
24
23
22
21
20
Q
NQ
PUMIX
MIXO
NMIXO
1)
VS3
GND3
RF
NRF
1)
VS2
GND2
MIXLO
NMIXLO
PU
ND
NND
PCH
CSU
Pin Symbol Function
1 2 3 4 5 6 7 8
9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36
1)
I
In-phase baseband input
NI
MDLO
NMDLO
GND1 VS1
MDO
NMDO
SUB VSP CPO
GNDP
CPCL
CPCH
RD
NRD
MC
CGNDP
CSU PCH
NND
ND
PU
NMIXLO
MIXLO
GND2 VS2
NRF
RF GND3 VS3
NMIXO
MIXO
PUMIX
NQ
Between the Pins VS1, VS2 and VS3 the allowed maximum voltage is 200 mV
Complementary to I I/Q-modulator LO input Complementary to MDLO Ground
1)
Supply I/Q modulator I/Q modulator Complementary to MDO Substrate, connected to GND Supply charge pump Charge-pump output Ground Charge-pump current control GSM1800 Charge-pump current control GSM900 R-divider input Complementary to RD Mode control GND for charge-pump blocking (optional) Charge-pump blocking (optional) Precharge for loop filter (optional) Complementary to ND N-divider input Power-up. whole chip, except mixer Complementary to MIXLO Mixer LO input Ground
1)
Supply (MISC) Complementary to RF Mixer RF input Ground
1)
Supply mixer Complementary to MIXO Mixer output Power-up mixer Complementary to Q
Q
Quad-phase baseband input
2 (13)
Rev. A3, 05-Oct-00
Absolute Maximum Ratings
pp y
VS1
pp y
VS2
pp y
VS3
pp y
VSP
Parameters Symbol Value Unit
Supply voltage VS1, VS2, VS3 Supply voltage charge pump VSP Voltage at any input Current at any input / output pin except CPC CPC output currents Ambient temperature Storage temperature
Operating Range
Parameters Symbol Value Unit
Supply voltage Supply voltage Ambient temperature
V
VS#
V
VSP
V
Vi#
| II# | | IO# |
| I
|
CPC
T
amb
T
stg
V
VS#
V
VSP
T
amb
–0.5 V
–40 to +125
V
VSP
5.5 V
Vi#
2 5
–20 to +85
2.7 to 5.5
2.7 to 5.5
–20 to +85
U2896B
V V
VS#
+0.5
V mA mA
°C °C
V
V
°C
Thermal Resistance
Parameters Symbol Value Unit
Junction ambient SSO36
R
thJA
130
Electrical Characteristics
VS = 2.7 to 5.5 V, T
Parameters Test Conditions / Pin Symbol Min. Typ. Max. Unit
DC supply
Supply voltages VS# Supply voltage VSP Supply current I
Supply current I
Supply current I
Supply current I
N & R divider inputs ND, NND & RD, NRD
N:1 divider frequency R:1 divider frequency Input impedance Input sensitivity (diff.) Input capacitance
= –20°C to +85°C, final test at 25°C
amb
V
VS1
= V
VS1
Active (VPU = VS)
VS2
= V
VS3
Standby (VPU = 0)
VS2
Active (VPU = VS) Standby (VPU = 0)
VS3
VSP
Active (V Standby (V
1)
Active (VPU = VS, CPO open)
PUMIX
PUMIX
= VS)
= 0)
Standby (VPU = 0)
50- source 50- source Active & standby 50- source Active & standby
V
VS#
V
VSP
I
VS1A
I
VS1Y
I
VS2A
I
VS2Y
I
VS3A
I
VS3Y
I
VSPA
I
VSPY
f
ND
f
RD
ZRD, Z
VRD, V
CRD, C
ND
ND
ND
2.7
V
– 0.3
VS#
13
14
11
2.2
100 100
see figure 11
2)
10
5.5
5.5 21 20 22 20 17 30
2.8 20
600 600
200
0.5
K/W
mA
µA
mA
µA
mA
µA
mA
µA
MHz MHz
mV
V V
rms
pF
Rev. A3, 05-Oct-00
3 (13)
U2896B
Á
Á
Á
Á
Á
Á
Á
Á
Á
Á
Á
Á
Á
Á
Á
Á
Á
Á
Á
Á
Á
Á
Á
Á
Á
Á
Á
Á
Á
Á
Á
Á
Á
Á
Á
Á
Á
Á
Á
Á
Á
Á
Á
Á
Á
Á
Á
Electrical Characteristics (continued)
VS = 2.7 to 5.5 V, T
Parameters Test Conditions / Pin Symbol Min. Typ. Max. Unit
Phase-frequency detector (PFD)
PFD operation
ББББББ
Frequency comparison
4)
only
ББББББ
I/Q modulator baseband inputs I, NI & Q, NQ
DC voltage MD_IQ AC voltage
5)
AC voltage
I/Q modulator LO input MDLO
MDLO Input impedance
ББББББ
Input level
I/Q modulator outputs MDO, NMDO
DC current Internal pull-up resistor Voltage compliance MDO output level
ББББББ
(differential)
ББББББ
Carrier suppression
ББББББ
Sideband suppression
6)
ББББББ
IF spurious Noise
6)
6)
Frequency range
Mixer (900 MHz)
RF input level Output resistance LO spurious at
RF/NRF port
ББББББ
MIXLO input level MIXO
= –20°C to +85°C, final test at 25°C
amb
fND = 600 MHz, N = 2
БББББ
fRD = 600 MHz, R = 2 fND = 600 MHz, N = 2
fRD = 450 MHz, R = 2
БББББ
Referred to GND Frequency range Referred to GND
Differential (preferres)
Frequency range
5a)
@ 900 MHz
БББББ
active & standby 50- source
V
, V
MDO
V
, V
MDO
615 to VS
БББББ
1.5 pF external load Mode 2
БББББ
NMDO
NMDO
6)
= VS
= VC
Mode 1 and 3
6)
Measured differential
БББББ
Pins 7 and 8
Measured differential
БББББ
Pins 7 and 8
fLO ± 3 f
mod
@ 400 kHz off carrier
900 MHz
@P9 @ P9RF = –15 dBm
БББББ
MIXLO
= –10dBm
0.05 to 2 GHz
Frequency range
f
БББББ
БББББ
БББББ
VC
БББББ
БББББ
БББББ
БББББ
БББББ
PFD
f
FD
V
I, VNI, VQ, VNQ
f
IO
AC
AC
I,
Q, ACNQ
AC
DI,
f
MDLO
Z
MDLO
P
MDLO
, I
NMDO
, R
NMDO
, VC
P
MDO
P
MDO
CS
MDO
SS
MDO
SP
MDO
N
MDO
f
MDO
P9
RF
, R
NMIXO
SP9
RF
MIXLO
f
MIXO
NI,
I
R
R
MIXO
AC
AC
MDO MDO MDO
P9
DQ
NMDOVS
50
Á
ÁÁÁÁÁÁ
300
400
ÁÁÁÁÁÁÁÁ
1.35
VS1/2
VS1/2+0.1
0
200
400
100
ÁÁÁÁ
–20
540||1.5
–10
900
ÁÁÁÁÁÁ
0.8
615
– 0.7
Á
113
Á
ÁÁ
ÁÁ
ÁÁÁ
170
ÁÁÁ
57
–32
Á
–35
Á
–35
ÁÁ
–40
ÁÁ
–50
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
–45
–115
100
–23
450
–17
650
–40
ÁÁÁÁÁÁÁÁ
–22
50
–12 450
1
–5
5.5
85
MHz
ÁÁ
MHz
ÁÁ
V
MHz
mV
mV
MHz
Ω||pF
dBm
mA
V
ÁÁ
mV
ÁÁ
mV
dBc
dBc
dBc
dBc/Hz
MHz
dBm
dBm
ÁÁ
dBm MHz
pp
pp
pp pp
4 (13)
Rev. A3, 05-Oct-00
U2896B
Á
Á
Á
Á
Á
Á
Á
Á
Á
Á
Á
Á
Á
Á
Á
Á
Á
Á
Á
Á
Á
Á
Á
Á
Á
Á
Á
Á
Á
Á
Á
Á
Á
Á
Á
Á
Á
Á
Á
Á
Á
Á
Á
Á
Á
Á
Á
Á
Á
Á
Á
Á
Á
Á
Á
Á
Á
Á
Á
Á
Á
Á
Á
Á
Á
Á
Á
Á
Á
Electrical Characteristics (continued)
VS = 2.7 to 5.5 V, T
Parameters Test Conditions / Pin Symbol Min. Typ. Max. Unit
Output level 7)
ББББББ
differential
ББББББ
Carrier suppression
Mixer (1900 MHz)
Output resistance RF input level LO spurious at
ББББББ
RF/NRF ports MIXLO input level
MIXO
Output level 8) differen-
ББББББ
tial
ББББББ
Carrier suppression
Charge-pump output CPO (V
Pump-current pulse Pump-current pulse Sensivity to V
ББББББ
V
voltage range
CPO
ББББББ
ББББББ
VSP
Mode control
Mode 3 Mode 2 Mode 1 Power-up input PU (power-up for all functions, except mixer) Settling time
ББББББ
High level Low level High-level current Low-level current
Power-up input PUMIX (power-up for mixer only)
Settling time
ББББББ
High level Low level High-level current Low-level current
ББББББ
= –20°C to +85°C, final test at 25°C
amb
@P9
ББББББ
ББББББ
@P9
= –15dBm
MIXLO
IF = 200 MHz IF = 400 MHz
= –15dBm
MIXLO
0.5 to 2 GHz @ P19
ББББББ
@ P19RF = –15 dBm
MIXLO
= –10 dBm
0.05 to 2 GHz
@ P19
ББББББ
ББББББ
@ P19
VSP
R
CPCH
R
CPCL
I
CPO
|
I
CPO
| I
|
CPO
ББББББ
degradation < 10% (V
ББББББ
VSP
= –17 dBm
MIXLO
IF = 200 MHz IF = 400 MHz
= –17 dBm
MIXLO
= 5 V; V
9)
= 2.4 k
10)
= 4.7 k
||
CPO
V
V
VSP
= 2.7 V to 5 V)
= 2.5 V)
VSP
|
VMC < 0.5 V VMC = VS – 1 V VMC = VS
Output power within 10% of steady state values
ББББББ
Active Standby Active, V Standby, V
PUH
PUL
= 2.2 V
= 0.4 V
Output power within 10% of steady state values
ББББББ
Active Standby Active, V
PUMIXH
= 2.2 V
Standby,
ББББББ
V
PUMIXL
= 0.4 V
ÁÁÁÁ
P9
MIXO
P9
ÁÁÁÁ
MIXO
CS9
MIXO
R
, R
MIXO
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
P19
SP19
P19
P19 P19
CS19
| I
CPO_H
| I
CPO_L
S
V
I I I
S
V V
I I
t
V
PUMIXH
V
PUMIXL
I
PUMIXH
I
PUMIXL
NMIXO
RF
RF
MIXLO
MIXO MIXO
MIXO
|
|
ICPO
CPO
MC MC MC
PU
PUH
PUL PUH PUL
setl
ÁÁ
ÁÁ
ÁÁ
226 113
ÁÁ
ÁÁ
ÁÁ
–20
650
–23
–17 –40
ÁÁÁÁÁÁÁÁ
–22
ÁÁ
ÁÁ
ÁÁ
226
ÁÁ
113
–12
ÁÁ
ÁÁ
–20
3.0
1.4
ÁÁÁÁÁÁÁÁ
0.5
ÁÁ
ÁÁ
4.0
2.0
ÁÁ
ÁÁ
–30
V
VSP
ÁÁ
ÁÁ
–200 10 10
5
ÁÁÁÁÁ
ÁÁ
2.0 0
–1
5
ÁÁÁÁÁ
ÁÁ
2.0 0
0.1
–1
ÁÁ
ÁÁÁÁÁ
5.0
2.6
0.1
20 20
10
0.4 70 20
10
0.4 70 20
–0.6
ÁÁ
mV
pp
mV
ÁÁ
pp
dBc
dBm dBm
ÁÁ
dBm
ÁÁ
mV
pp
ÁÁ
mV
pp
dBc
mA mA
ÁÁ
V
ÁÁ
ÁÁ
µA µA µA
µs
ÁÁ
V V
µA µA
µs
ÁÁ
V V
µA µA
ÁÁ
Rev. A3, 05-Oct-00
5 (13)
U2896B
1)
Mean value, measured with FND = 151 MHz, FRD = 150 MHz, current vs. time, figure 3
2)
For optimized noise performance this voltage level may be higher
4)
PFD can be used as a frequency comparator up to 300 MHz for loop acquisition
5)
Single-ended operation (complementary baseband input is AC-grounded) leads to reduced linearity (degrading suppression of odd harmonics)
5a)
For all 3 active modes and standby, measured at Pin 3 at 900 MHz with Pin 4 AC gounded
6)
I/Q baseband input: differential sin and cos signals with 200 mV amplitude (400 mVpp) and 100 kHz frequency from a low-ohmic source (< 1 k). MDLO drive power is – 10 dBm, available power from a 50- generator. No DC offset between I and NI (or Q and NQ) is allowed and no amplitude differences between I/NI and Q/NQ. For nonideal IQ-input signals an application note is available on request.
7)
At 1 dB input compression point (–17 dBm) and output loaded with C = 1.5 pF to GND
8)
– 1 dB compression point C = 1.5 pF to GND
9)
R
: external resistor to GND for charge-pump current control (MODE 3 only Pin 14 active)
10)
CPCH
R
: external resistor to GND for charge-pump current control (MODE 1 and 2 only Pin 13 active)
CPCL
Supply Current of the Charge Pump I
Due to the pulsed operation of the charge pump, the current into the charge-pump supply Pin VSP is not constant. Depending on I (see figure 6) and the phase difference at the phase-detector inputs, the current I over time varies. Basically, the total current is the sum of the quiescent current, the charge-/discharge current, and – after each phase comparison cycle – a current spike (see
VSP
vs. Time
VSP
I
VSP
2.5 I
1.5 I
Up
Down
CPCO CPCO
figure 3).
Table 1. Internal current |I
R
CPC
CPC
| vs. R
(typical values)
CPC
|I
CPCO
19.2 k 0.5 mA
9.6 k 1 mA
4.8 k 2 mA
I
I
CPCO
I
|
CPO
–I
CPCO
Figure 3. Supply current of the charge pump
t
t
14913
2.4 k 4 mA
Mode Selection
The device can be programmed to different modes via an external resistor RMODE (including short, open) from Pin MC to VS2. The mode is distinguished from specific N-, R-divider ratios, and the polarity of the charge-pump selection.
Table 2. Mode selection
Mode Selection
1 VMC = VS2 + 0 V/ – 0.2 V 1:2 1:2 1:2 Source Sink GSM1900 x 2 VMC = (VS2 – 1 V) +/ – 0.2 V 1:2 1:2 1:4 Source Sink GSM1800 x 3 VMC < 0.5 V 1:2 1:2 1:2 Sink Source GSM900 x
1)
Divider CPO Current Polarity Application CPCH
N R M fn < fR
2)
fn > f
R
Active
CPCL
Active
1)
See figure 13
2)
Frequencies referred to PDF input
6 (13)
Rev. A3, 05-Oct-00
Equivalent Circuits at the IC’s Pins
U2896B
I,Q
NI, NQ
V
Bias_MDLO
2230 2230
MDLO
V
Ref_input
V
Ref_MDLO
V
Baseband inputs LO input Output
Figure 4. I/Q modulator
RF
1 k
V
Bias_RF
890 890
1 k
V
Bias_LO
1.6 k 1.6 k
650
NMIXO
NRF
MIXLO
2 x 615
VS1
MDO NMDO
Ref_output
GND
14893
VS3
650
MIXO
CPCL CPCH
V
Ref_RF
V
Ref_LO
GND
RF input
LO output
Output
14894
Figure 5. Mixer
4
VSP
4
up
Ref
V
Ref
n
= Transistor with an emitter-area factor of “n”
n
Ref
n
down
I
CPO
I
GNDP
14896
Figure 6. Charge pump
Rev. A3, 05-Oct-00
7 (13)
U2896B
ND/RD
NND/NRD
VS2
2 k 2 k
V
Figure 7. Dividers
Ref_div
Logic
VS2
GND
14897
M-divider
MUX
PU, PUMIX
20 k
Figure 9. Power-up
C (U) is a non-linear junction capacitance
Figure 10. ESD-protection diodes
R
c
RD / ND
C
R
d
c
C
d
R
c
NRD / NND
GND
14899
C (U)
0.5 pF @ 2 V
14900
MC
GND
18 k
Figure 8. Mode control
C
c
Cc = 0.6 pF Rc = 4.5 k / [1 + (f (MHz) / 600)3] Cd = 1.3 pF Rd = 7.0 k / [1 + (f (MHz) / 600)3]
Model valid up to 1.5 GHz
Figure 11. Smal signal equivalent circuit for the R- and
N-dividers (Pins 15/16 and 21/22)
8 (13)
Rev. A3, 05-Oct-00
Application Hints
Interfacing
U2896B
Precharge (Optional)
For some baseband ICs it may be necessary to reduce the I/Q voltage swing so that it can be handled by the U2896B. In those cases, the following circuitry can be used.
R1
II
R1
Baseband IC
Figure 12. Interfacing the U2896B to I/Q baseband circuits
NI
Q
R1
NQ
R1
R2
R2
C
NI
U2896B
Q
C
NQ
14901
Due to a possible current offset in the differential base­band inputs of the U2896B the best values for the carrier suppression of the I/Q modulator can be achieved with voltage driven I/NI-, and Q/NQ-inputs. A value of R
= R2/2 parallel to RS should be realized that is
source
below 1.5 kΩ. RS is the sum of R1 (above drawing) and the output resistance of the baseband IC. This results in R
= (R2 × RS) / (2 RS + R2).
source
Charge-Pump Blocking (Optional)
A capacitor of 100 pF – 1 nF may be connected between CSU (charge-pump supply) and CGNDP (internal GND of charge pump).
By applying a “high” signal to PCH (Pin 20) the loop filter at CPO is precharged to approximately V
Supply
/2.
Mode Control
VS2
18k
Mode 1
Mode 2
Mode 3
Figure 13. Application examples for programming
2.8 V
2.8 V
2.8 V
different modes
10k
MC
GND
VS2
10k
MC
18k
GND
VS2
MC
18k
GND
16605
Rev. A3, 05-Oct-00
9 (13)
U2896B
Test Circuit
V4
1.35V
200MHz
–10dBm
3V, 5V
200.1MHz –15dBm
3V
1.5V
V7
R1
R2
R5
R6
R3
R4
R7
V5
450 mV
C1
C2
C5
C6
pp
C4
C3
10
11
12
13
14
15
16
V2
450 mV
1
2
3
4
5
6
7
8
9
36
35
34
33
32
31
30
29
28
C7
C8
C10
C11
R11
pp
V3
R12
C9
1.35V
3V
3V
900MHz
–15dBm
U2896B
27
C12
3V
26
25
C13
C14
R13
1100MHz
–15dBm
24
23
C15
3V
22
200MHz
–15dBm
21
C16
R14
10 (13)
MC
Mode 1: 2.7 V Mode 2: 1.7 V Mode 3: 0 V
MC
17
n.c.
18 19
Figure 14. Test circuit
20
n.c.
n.c.
Rev. A3, 05-Oct-00
Application Circuit for DCS1800 (1710 – 1785 MHz)
U2896B
Baseband
2nd LO
–10dBm
3V
Tuning voltage
3V, 5V
C8
R1
R2
R4
C7
C9
C10
R3
C6
L2L1
R5
R6
C4
C2
C3
C5
C1
C11
10
11
12
13
14
15
16
1
2
3
4
5
6
7
8
9
36
35
34
33
32
31
30
29
28
C12
C14
C15
R9
R8
R10
C13
VCO
880 to 915MHz
1710 to 1785MHz
–20dBm
Baseband
3V
3V
U2896B
27
C16
3V
26
25
24
23
22
21
C17
C18
C19
C20
L3
1st LO
–15dBm
3V
C29
VS2
10k
18k
17
18
Figure 15. Application circuit
Measurements
Modulation-Loop Settling Time
As valid for all PLL loops, the settling time depends on several factors. Figure 16 is an extraction from measurements performed in an arrangement like the application circuit. It shows that a loop settling time of a few µs can be achieved.
Rev. A3, 05-Oct-00
20
PCH
19
C21 (optional, 100 pF – 1nF)
Modulation Spectrum & Phase Error
CPC: 1 k to GND
CPC ‘open’
Vertical: VCO tuning voltage 1 V/Div Horizontal: Time 1µs/Div
Figure 16.
14904
11 (13)
U2896B
Package Information
Package SSO36
Dimensions in mm
0.2
0.5
36 19
118
9.6
9.1
8.45
1.3
0.15
0.05
technical drawings according to DIN specifications
5.6
5.2
4.5
4.3
0.12
6.6
6.3
13047
12 (13)
Rev. A3, 05-Oct-00
U2896B
Ozone Depleting Substances Policy Statement
It is the policy of Atmel Germany GmbH to
1. Meet all present and future national and international statutory requirements.
2. Regularly and continuously improve the performance of our products, processes, distribution and operating systems with respect to their impact on the health and safety of our employees and the public, as well as their impact on the environment.
It is particular concern to control or eliminate releases of those substances into the atmosphere which are known as ozone depleting substances (ODSs).
The Montreal Protocol (1987) and its London Amendments (1990) intend to severely restrict the use of ODSs and forbid their use within the next ten years. Various national and international initiatives are pressing for an earlier ban on these substances.
Atmel Germany GmbH has been able to use its policy of continuous improvements to eliminate the use of ODSs listed in the following documents.
1. Annex A, B and list of transitional substances of the Montreal Protocol and the London Amendments respectively
2. Class I and II ozone depleting substances in the Clean Air Act Amendments of 1990 by the Environmental Protection Agency (EPA) in the USA
3. Council Decision 88/540/EEC and 91/690/EEC Annex A, B and C (transitional substances) respectively.
Atmel Germany GmbH can certify that our semiconductors are not manufactured with ozone depleting substances and do not contain such substances.
9.
We reserve the right to make changes to improve technical design and may do so without further notice.
Parameters can vary in different applications. All operating parameters must be validated for each customer
application by the customer. Should the buyer use Atmel Wireless & Microcontrollers products for any unintended
or unauthorized application, the buyer shall indemnify Atmel Wireless & Microcontrollers against all claims,
costs, damages, and expenses, arising out of, directly or indirectly, any claim of personal damage, injury or death
associated with such unintended or unauthorized use.
Data sheets can also be retrieved from the Internet: http://www.atmel–wm.com
Rev. A3, 05-Oct-00
Atmel Germany GmbH, P.O.B. 3535, D-74025 Heilbronn, Germany
Telephone: 49 (0)7131 67 2594, Fax number: 49 (0)7131 67 2423
13 (13)
Loading...