The U2896B is a monolithic integrated circuit. It is
realized using TEMIC’s advanced silicon bipolar UHF5S
technology. The device integrates a mixer, an I/Q
modulator, a phase-frequency detector (PFD) with two
synchronous programmable dividers, and a charge pump.
The U2896B is designed for cellular phones such as
GSM900, DCS1800, and PCS1900, applying a
transmitter architecture at which the VCO operates at the
TX output frequency. No duplexer is needed since the
out-of-band noise is very low. The U2896B exhibits low
power consumption. Broadband operation gives high
flexibility for multi-band frequency mappings. The IC is
available in a shrinked small-outline 36-pin package
(SSO36).
Electrostatic sensitive device.
Observe precautions for handling.
U2896B
Features
D
Supply voltage range 2.7 V to 5.5 V
D
Current consumption 50 mA
D
Power-down functions
D
High-speed PFD and charge pump (CP)
D
Small CP saturation voltages (0.5/0.6 V)
D
Programmable dividers and CP polarity
D
Low-current standby mode
Block Diagram
I NIQ NQPU NMIXOMIXO
56
MDLO
NMDLO
MDO
NMDO
VS1 GND1
3
4
7
8
90°
Modulator
LO
Benefits
D
Novel TX architecture saves filter costs
D
Extended battery operating time without duplexer
D
Less board space (few external components)
D
VCO control without voltage doubler
D
Small SSO36 package
D
One device for all GSM bands
PUMIXMIXLO
23353621
V
3233
Ref
3425
Mixer
24
31
29
28
30
NMIXLO
VS3
RF
NRF
GND3
ND
NND
RD
NRD
22
21
15
16
N
1:2
MUX
R
1:2
Mode control
17
MCGND2
PFD
27
VS2
Figure 1. Block diagram
Charge
pump
26
CPCLCPCH
1413
10
11
12
14891
VSP
CPO
GNDP
Rev . A1, 18-Sep-981 (13)
Preliminary Information
U2896B
Á
Á
Á
Á
Á
Á
Ordering Information
Extended Type NumberPackageRemarks
U2896B-MFCG3SSO36T aped and reeled
Pin Description
NI
MDLO
NMDLO
GND1
VSI
MDO
NMDO
SUB
VSP
CPO
GNDP
CPCL
CPCH
RD
NRD
MC
n.c.
I
1
2
3
4
5
1)
6
7
8
9
10
11
12
13
14
15
16
17
1819
Figure 2. Pinning
14892
36
35
34
33
32
31
30
29
28
27
26
25
24
23
22
21
20
Q
NQ
PUMIX
MIXO
NMIXO
1)
VS3
GND3
RF
NRF
1)
VS2
GND2
MIXLO
NMIXLO
PU
ND
NND
n.c.
n.c.
PinSymbolFunction
1
2
3
4
5
6
7
8
9
10
11
12
13
I
NI
MDLO
NMDLO
GND1
1)
VS1
MDO
NMDO
SUB
VSP
CPO
GNDP
CPCL
In-phase base band-input
Complementary to I
I/Q-modulator LO input
Complementary to MDLO
Ground
Supply I/Q modulator
I/Q modulator
Complementary to MDO
Substrate, connected to GND
Supply charge pump
Charge pump output
Ground
Charge pump current control
GSM1800
14
Á
15
16
17
18
19
20
21
22
23
Á
24
25
26
27
28
29
30
31
32
33
34
35
36
CPCH
ÁÁ
RD
NRD
MC
n.c.
n.c.
n.c.
NND
ND
PU
ÁÁ
NMIXLO
MIXLO
GND2
1)
VS2
NRF
RF
GND3
1)
VS3
NMIXO
MIXO
PUMIX
NQ
Q
Charge pump current control
БББББББББ
GSM900
R-divider input
Complementary to RD
Mode control
Not connected
Not connected
Not connected
Complementary to ND
N-divider input
Power-up. whole chip, except
mixer
БББББББББ
Complementary to MIXLO
Mixer LO input
Ground
Supply (MISC)
Complementary to RF
Mixer RF input
Ground
Supply mixer
Complementary to MIXO
Mixer output
Power-up mixer
Complementary to Q
Quad-phase base-band input
1)
Between the Pins VS1, VS2 and VS3 the allowed
maximum voltage is ≤ 200 mV
Preliminary Information
Rev . A1, 18-Sep-982 (13)
Absolute Maximum Ratings
ÁÁÁ
ÁÁÁ
ÁÁÁ
ppy
ÁÁÁ
ppy
ÁÁÁ
ÁÁÁ
ppy
ÁÁÁ
Á
1)
Á
Á
Á
ÁÁÁ
Á
Á
Á
Á
ÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁ
ParametersSymbolValueUnit
Supply voltage VS1, VS2, VS3
Supply voltage charge pump VSP
Voltage at any input
Current at any input / output pin
except CPC
CPC output currents
Ambient temperature
Storage temperature
Operating Range
ParametersSymbolValueUnit
Supply voltage
Supply voltage
Ambient temperature
Thermal Resistance
ParametersSymbolValueUnit
Junction ambient SSO36
V
VS#
V
VSP
V
Vi#
| II# | | IO# |
| I
|
CPC
T
amb
T
stg
V
VS#
V
VSP
T
amb
R
thJA
–0.5 v V
–40 to +125
v
V
VSP
5.5
v V
Vi#
2
5
–20 to +85
2.7 to 5.5
2.7 to 5.5
–20 to +85
130
U2896B
+5.5
VS#
mA
mA
°C
°C
°C
K/W
V
V
V
V
V
Electrical Characteristics
VS = 2.7 to 5.5 V, T
ParametersT est Conditions / PinSymbolMin.T yp.Max.Unit
DC supply
Supply voltages VS#
Supply voltage VSP
Supply current I
Supply current I
Supply current I
Supply current I
ББББББ
N & R divider inputs ND, NND & RD, NRD
N:1 divider frequency
R:1 divider frequency
Input impedance
Input sensitivity
Input capacitance
= –20°C to +85°C, final test at 25°C
amb
V
VS1
= V
VS1
Active (VPU = VS)
VS2
= V
Standby (VPU = 0)
VS2
Active (VPU = VS)
Standby (VPU = 0)
VS3
VSP
Active (V
Standby (V
PUMIX
PUMIX
Active
(V
= VS, CPO open)
PU
БББББББ
Standby (VPU = 0)
50-W source
50-W source
Active & standby
50-W source
Active & standby
VS3
= VS)
= 0)
V
VS#
V
VSP
I
VS1A
I
VS1Y
I
VS2A
I
VS2Y
I
VS3A
I
VS3Y
I
VSPA
ÁÁÁ
I
VSPY
f
ND
f
RD
ZRD, Z
ND
VRD, V
CRD, C
ND
ND
2.7
V
– 0.3
VS#
ÁÁÁ
100
100
1
2)
5
17
17
13
1.4
Á
5.5
5.5
22
20
22
20
17
30
1.8
ÁÁ
20
600
600
200
0.5
V
V
mA
m
A
mA
m
A
mA
m
A
mA
ÁÁ
m
A
MHz
MHz
k
W
mV
rms
pF
1)Mean value, measured with FND = 151 MHz, FRD = 150 MHz, current vs. time, see page 6, figure 3
2)For optimized noise performance this voltage level may be higher
Rev . A1, 18-Sep-983 (13)
Preliminary Information
U2896B
Á
Á
Á
Á
Á
Á
Á
Á
Á
Á
Á
Á
Á
Á
Á
Á
Á
Á
Á
Á
Á
Á
Á
Á
Á
Á
Á
Á
Á
Electrical Characteristics (continued)
VS = 2.7 to 5.5 V, T
ParametersT est Conditions / PinSymbolMin.T yp.Max.Unit
Phase-frequency detector (PFD)
PFD operation
ББББББ
Frequency comparison
4)
only
I/Q modulator baseband inputs I, NI & Q, NQ
DC voltage
ББББББ
MD_IQ
AC voltage
5)
AC voltage
I/Q modulator LO input MDLO
MDLO
Input impedance
Input level
I/Q modulator outputs MDO, NMDO
DC current
Internal pull-up resistor
Voltage compliance
MDO output level
ББББББ
(differential)
Carrier suppression
Sideband suppression
IF spurious
Noise
6)
6)
Frequency range
Mixer (900 MHz)
RF input level
Output resistance
LO-spurious at
RF/NRF port
ББББББ
MIXLO input level
MIXO
Output level 7) differen-
ББББББ
tial
Carrier suppression
= –20°C to +85°C, final test at 25°C
amb
fND = 600 MHz, N = 2
ББББББ
fRD = 600 MHz, R = 2
fND = 600 MHz, N = 2
f
= 450 MHz, R = 2
RD
Referred to GND
ББББББ
Frequency range
Referred to GND
Differential (preferres)
Frequency range
Active & standby
50-W source
V
, V
MDO
V
, V
MDO
615 W to VS
ББББББ
1.5 pF external load
NMDO
NMDO
6)
= VS
= VC
6)
6)
fLO ± 3 f
mod
@ 400 kHz off carrier
900 MHz
@ P9
@ P9
ББББББ
= –10 dBm
MIXLO
= –15 dBm
RF
0.05 to 2 GHz
Frequency range
@ P9
ББББББ
@ P9
MIXLO
MIXLO
= –15 dBm
= –15 dBm
f
V
R
R
V
I,
AC
AC
AC
I
MDO
MDO
MDO
CS
MIXO
P9
P9
CS9
PFD
f
FD
V
NI,
Q,
f
IO
AC
I,
Q, ACNQ
AC
DI,
f
MDLO
Z
MDLO
P
MDLO
, I
NMDO
, R
NMDO
, VC
P
MDO
MDO
SS
MDO
SP
MDO
N
MDO
f
MDO
P9
RF
, R
NMIXO
SP9
RF
MIXLO
f
MIXO
MIXO
MIXO
V
NQ
NI,
DQ
NMDOVS
БББББ
БББББ
VC
БББББ
БББББ
БББББ
50
Á
ÁÁÁÁÁ
300
400
1.35
Á
0
VS1/2
ÁÁ
VS1/2
ÁÁ
+ 0.1
1
200
400
100
450
3
–14
–11
–5
0.8
615
– 0.7
40
Á
–32
–35
ÁÁÁÁÁ
–35
–40
–50
5.5
60
–45
–115
100
–23
450
–17
650
–40
ÁÁÁÁÁÁÁ
–22
50
ÁÁÁÁ
80
–12
450
ÁÁÁÁÁ
–20
MHz
ÁÁ
MHz
V
ÁÁ
MHz
mV
pp
mV
pp
MHz
k
W
dBm
mA
W
V
mV
rms
ÁÁ
dBc
dBc
dBc
dBc/Hz
MHz
dBm
W
dBm
ÁÁ
dBm
MHz
mV
rms
dBc
4)
PFD can be used as a frequency comparator until 300 MHz for loop acquisition
5)
Single-ended operation (complementary baseband input is AC-grounded) leads to reduced linearity
(degrading suppression of odd harmonics)
Sink current
Power-up input PU (power-up for all functions, except mixer)
Settling time
ББББББ
High level
Low level
High-level current
Low-level current
Power-up input PUMIX (power-up for mixer only)
Settling time
ББББББ
High level
Low level
High-level current
Low-level current
= –20°C to +85°C, final test at 25°C
amb
0.5 to 2 GHz
@ P19
@ P19RF = –15 dBm
ББББББ
MIXLO
= –10 dBm
0.05 to 2 GHz
@ P19
ББББББ
@ P19
VSP
R
CPCH
R
CPCL
D
I
CPO
|
I
CPO
| I
CPO
ББББББ
10%
ББББББ
(V
VSP
= –17 dBm
MIXLO
= –17 dBm
MIXLO
= 5 V; V
9)
= 4.7 kΩ
10)
= 2.4 kΩ
||
CPO
D
V
V
| degradation <
= 2.7 V to 5 V)
= 2.5 V)
VSP
VSP
VMC = VS
Output power within 10%
ББББББ
of steady state values
Active
Standby
Active, V
Standby , V
Output power within 10%
ББББББ
of steady state values
PUH
PUL
= 2.2 V
= 0.4 V
Active
Standby
Active, V
PUMIXH
= 2.2 V
Standby ,
V
PUMIXL
= 0.4 V
R
MIXO
ÁÁÁÁ
P19
P19
ÁÁÁÁ
CS19
| I
| I
ÁÁÁÁ
|
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
V
V
I
I
, R
P19
RF
SP19
MIXLO
MIXO
MIXO
CPO_H
CPO_L
S
ICPO
V
CPO
I
MC
S
PU
V
PUH
V
PUL
I
PUH
I
PUL
t
setl
PUMIXH
PUMIXL
PUMIXH
PUMIXL
NMIXO
RF
|
|
U2896B
650
–23
ÁÁÁÁÁÁÁÁ
–22
70
ÁÁÁÁÁ
–20
1.4
3
ÁÁÁÁÁÁÁÁ
0.5
ÁÁ
ÁÁ
2
4
ÁÁ
ÁÁ
60
ÁÁÁÁÁ
5
2.0
0
–1
ÁÁÁÁÁ
5
2.0
0
0.1
–1
–17
–40
–12
ÁÁÁÁÁ
2.6
5
0.1
V
–0.6
VSP
ÁÁ
ÁÁ
10
ÁÁ
0.4
70
20
10
ÁÁ
0.4
70
20
W
dBm
dBm
ÁÁ
dBm
mVrms
dBc
mA
mA
–
ÁÁ
V
ÁÁ
ÁÁ
m
A
m
s
ÁÁ
V
V
m
A
m
A
m
s
ÁÁ
V
V
m
A
m
A
8)
9)
10)
Rev . A1, 18-Sep-985 (13)
– 1 dB compression point C = 1.5 pF to GND
R
: external resistor to GND for charge-pump current control (MODE 1, 5, only Pin 14 active)
CPCH
R
: external resistor to GND for charge-pump current control (MODE 2, 3, 4, only Pin 13 active)
CPCL
Preliminary Information
U2896B
Supply Current of the Charge Pump I
Due to the pulsed operation of the charge pump, the
current into the charge-pump supply pin VSP is not
constant. Depending on I (see figure 5) and the phase
difference at the phase detector inputs, the current I
over time varies. Basically, the total current is the sum of
the quiescent current, the charge-/discharge current, and
– after each phase comparison cycle – a current spike (see
figure 3).
Internal current |I
R
CPC
19.2 k
W
9.6 k
W
4.8 k
W
2.4 k
W
CPC
| vs. R
CPC
|I
CPCO
0.5 mA
1 mA
2 mA
4 mA
|
(typical values)
VSP
vs. Time
VSP
I
VSP
I
CPO
Up
Down
2.5 I
CPCO
1.5 I
CPCO
I
I
CPCO
–I
CPCO
Figure 3. Supply current of the charge pump
t
t
14913
Mode Selection
The device can be programmed to different modes via an external resistor RMODE (including short, open) from Pin
MC to VS2. The mode is distinguished from specific N-, R-divider ratios, and the polarity of the charge-pump selection.
Mode SelectionN-Divider R-DividerCPO Current Polarity
)Sink current into Pin CPO. Source: current out from Pin CPO.
4)
ApplicationCPCH
1)
3)
CPCL
active
2)
active
x
x
Preliminary Information
Rev . A1, 18-Sep-986 (13)
Equivalent Circuits at the IC’s Pins
I,Q
MDLO
NI, NQ
V
Bias_MDLO
U2896B
2 x 615
W
VS1
MDO
NMDO
2230 Ω2230 Ω
V
Ref_input
V
Ref_MDLO
V
Baseband inputsLO inputOutput
Figure 4. I/Q modulator
RF
1 kΩ
V
Bias_RF
890 Ω890 Ω
1 kΩ
V
Bias_LO
1.6 kΩ1.6 kΩ
650
W
NMIXO
NRF
RF input
V
Ref_RF
MIXLO
V
Ref_LO
LO output
Figure 5. Mixer
Ref_output
Output
650
GND
14893
VS3
W
MIXO
GND
14894
4
VSP
4
I
CPO
I
GNDP
14896
CPCL
CPCH
up
Ref
V
Ref
n
= Transistor with an emitter area–factor of “n”
n
Ref
n
down
Figure 6. Charge pump
Rev . A1, 18-Sep-987 (13)
Preliminary Information
U2896B
ND/RD
VS2
NND/NRD
VS2
MC
Figure 7. Dividers
2x
60 µA
2 kΩ2 kΩ
V
Ref_div
Logic
GND
14897
N–divider
R–divider
MUX
PU, PUMIX
20 kΩ
Figure 8. Power-up
C (U) is a non-linear junction capacitance
Figure 10. ESD-protection diodes
GND
14899
≅
C (U)
0.5 pF @ 2 V
14900
GND
14898
Figure 9. Mode control
Rev . A1, 18-Sep-988 (13)
Preliminary Information
Application Hints
Interfacing
For some of the baseband ICs it may be necessary to
reduce the I/Q voltage swing so that it can be handled by
the U2896B. In those cases, the following circuitry can be
used.
Mode Control
U2896B
U2896B
U2896B
R1
II
R1
Baseband IC
Figure 11. Interfacing the U2896B to I/Q baseband circuits
NI
Q
R1
NQ
R1
R2
R2
C
NI
U2896B
Q
C
NQ
14901
Due to a possible current offset in the differential baseband inputs of the U2896B the best values for the carrier
suppression of the I/Q modulator can be achieved with
voltage driven I/NI-, and Q/NQ-inputs. A value of
R
= R2/2*RS v 1.5 kW should be realized. RS is the
source
sum of R1 (above drawing) and the output resistance of
the baseband IC.
VS2
R
Mode
R
Mode1RMode2
MC
a) any single modeb) any 2 modes
U2896B
VS2
R
Mode
R
Mode
MC
c) any mode
& mode 5
Figure 12. Application examples for programming
d) mode 5 & mode 3 or mode 4
different modes
36 kΩor
10 kΩ
VS2
MC
U2896B
VS2
MC
14895
Rev . A1, 18-Sep-989 (13)
Preliminary Information
U2896B
Test Circuit
V4
1.35V
200MHz
–10dBm
3V, 5V
200.1MHz
–15dBm
3V
1.5V
V7
R1
R2
R5
R6
R3
R4
R7
V5
450 mV
C1
C2
C5
C6
pp
C4
C3
10
11
12
13
14
15
16
1
2
3
4
5
6
7
8
9
U2896B
36
35
34
33
32
31
30
29
28
27
26
25
24
23
22
21
V2
450 mV
C14
C16
C7
C8
C10
C11
C13
C15
R11
pp
V3
R12
C9
C12
R13
R14
1.35V
3V
3V
900MHz
–15dBm
3V
1100MHz
–15dBm
3V
200MHz
–15dBm
3V
R8
R9
R10
n.c.
17
n.c.
1819
Figure 13. Test circuit
20
n.c.
14903
Preliminary Information
Rev . A1, 18-Sep-9810 (13)
Application Circuit for DCS1800 (1710 – 1785 MHz)
U2896B
Baseband
2nd LO
–10dBm
3V
R1
R2
3V, 5V
Tuning voltage
R4
C7
C8
C9
C10
R3
C6
R9
R8
R10
C13
VCO
880 to 915MHz
1710 to 1785MHz
–20dBm
Baseband
3V
3V
C4
C2
C3
C1
1
2
3
4
5
6
7
8
9
36
35
34
33
32
31
30
29
28
C12
C14
C15
U2896B
10
C5
11
12
13
R5
14
R6
15
L2L1
C11
16
27
26
25
24
23
22
21
C17
C18
C19
C20
C16
L3
3V
1st LO
–15dBm
3V
C29
3V
Measurements
R7
17
n.c.
1819
Figure 14. Application circuit
Modulation Spectrum & Phase Error
14904
20
n.c.
n.c.
CPC: 1 kΩ to GND
Modulation-Loop Settling Time
As valid for all PLL loops the settling time depends on
several factors. The following figure is an extraction from
measurements performed in an arrangement like the
application circuit. It shows that a loop settling time of a
few ms can be achieved.
Vertical: VCO tuning voltage 1 V/Div
Horizontal: Time 1 ms/Div
Rev . A1, 18-Sep-9811 (13)
CPC ‘open’
Preliminary Information
U2896B
Package Information
Package SSO36
Dimensions in mm
0.2
0.5
3619
118
9.6
9.1
8.45
1.3
0.15
0.05
technical drawings
according to DIN
specifications
5.6
5.2
4.5
4.3
0.12
6.6
6.3
13047
Preliminary Information
Rev . A1, 18-Sep-9812 (13)
U2896B
Ozone Depleting Substances Policy Statement
It is the policy of TEMIC Semiconductor GmbH to
1. Meet all present and future national and international statutory requirements.
2. Regularly and continuously improve the performance of our products, processes, distribution and operating systems
with respect to their impact on the health and safety of our employees and the public, as well as their impact on
the environment.
It is particular concern to control or eliminate releases of those substances into the atmosphere which are known as
ozone depleting substances (ODSs).
The Montreal Protocol ( 1987) and its London Amendments (1990) intend to severely restrict the use of ODSs and
forbid their use within the next ten years. Various national and international initiatives are pressing for an earlier ban
on these substances.
TEMIC Semiconductor GmbH has been able to use its policy of continuous improvements to eliminate the use of
ODSs listed in the following documents.
1. Annex A, B and list of transitional substances of the Montreal Protocol and the London Amendments respectively
2. Class I and II ozone depleting substances in the Clean Air Act Amendments of 1990 by the Environmental
Protection Agency (EPA) in the USA
3. Council Decision 88/540/EEC and 91/690/EEC Annex A, B and C (transitional substances) respectively.
TEMIC Semiconductor GmbH can certify that our semiconductors are not manufactured with ozone depleting
substances and do not contain such substances.
We reserve the right to make changes to improve technical design and may do so without further notice.
Parameters can vary in different applications. All operating parameters must be validated for each customer
application by the customer. Should the buyer use TEMIC products for any unintended or unauthorized
application, the buyer shall indemnify TEMIC against all claims, costs, damages, and expenses, arising out of,
directly or indirectly, any claim of personal damage, injury or death associated with such unintended or