Agilent Technologies E1465A User Manual

Agilent Technologies E1465A/E1466A/E1467A Relay Matrix Switch Modules User’s Manual
Manual Part Number: E1465-90013
Printed in U.S.A. E0301

Contents

Front Matter....................................................................................................................... 7
Agilent Technologies Warranty Statement ................................................................... 7
U.S. Government Restricted Rights ............................................................................. 7
Safety Symbols ............................................................................................................ 8
Warnings ...................................................................................................................... 8
Documentation History................................................................................................. 8
Declaration Of Conformity ............................................................................................ 9
Chapter 1 - Getting Started ........................................................................................... 11
Using This Chapter .................................................................................................... 11
Matrix Modules Description ........................................................................................ 11
Programming the Matrix Modules .............................................................................. 15
Addressing the Modules ..................................................................................... 15
Example: Closing Relays (BASIC) ..................................................................... 16
Example: Closing Relays (Turbo C) ................................................................... 17
Chapter 2 - Configuring the Matrix Modules ............................................................... 19
Using This Chapter .................................................................................................... 19
WARNINGS and CAUTIONS..................................................................................... 19
Configuring the Switch Module .................................................................................. 20
Switch Module Connectors ................................................................................. 20
Setting the Logical Address Switch .................................................................... 21
Setting the Interrupt Level .................................................................................. 21
Installing the Switch Module in a Mainframe ...................................................... 23
Configuring the Terminal Modules.............................................................................. 24
Terminal Module Connectors .............................................................................. 24
Wiring the Terminal Modules .............................................................................. 27
Attaching the Terminal Modules to the Switch Module ....................................... 29
Configuring Larger Matrixes....................................................................................... 30
Creating Larger Matrixes .................................................................................... 30
Creating a 32x32 Matrix ..................................................................................... 30
Creating a 4x256 Matrix ..................................................................................... 32
Creating an 8x96 Matrix ..................................................................................... 33
Creating Larger Matrixes with Multiple Mainframes ........................................... 34
Chapter 3 - Using the Matrix Modules ......................................................................... 35
Using This Chapter .................................................................................................... 35
Matrix Modules Commands ....................................................................................... 35
Power-on and Reset Conditions ................................................................................ 36
Matrix Modules Identification...................................................................................... 36
Example: Matrix Module Identification (BASIC) .................................................. 36
Example: Matrix Module Identification (TURBO C) ............................................ 37
Switching Channels ................................................................................................... 38
Example: Opening/Closing Channels (BASIC) ................................................... 38
Example: Channel Sequencing (BASIC) ............................................................ 38
3
Scanning Channels .................................................................................................... 39
Example: Scanning Channels Using TTL Triggers (BASIC) ............................... 39
Example: Scanning Using Trig In/Out Ports (BASIC) ........................................ 41
Querying Matrix Modules ........................................................................................... 42
Example: Querying Channel Closure (BASIC) ................................................... 42
Using the Scan Complete Bit ..................................................................................... 42
Example: Using the Scan Complete Bit (BASIC) ............................................... 43
Saving and Recalling States ...................................................................................... 44
Example: Saving and Recalling States (BASIC) ................................................. 44
Detecting Error Conditions ......................................................................................... 45
Example: Detecting Error Conditions (BASIC) ................................................... 45
Example: Detecting Error Conditions (TURBO C) .............................................. 45
Synchronizing Matrix Modules ................................................................................... 46
Example: Synchronizing a Matrix Module (BASIC) ............................................ 46
Understanding Matrix Modules .................................................................................. 47
Advantages of Latching Relays .......................................................................... 47
Matrix Module Operations .................................................................................. 47
Chapter 4 - Matrix Modules Command Reference ...................................................... 49
Using This Chapter .................................................................................................... 49
Command Types........................................................................................................ 49
Common Command Format ............................................................................... 49
SCPI Command Format ..................................................................................... 49
SCPI Command Reference ................................................................................. 51
ABORt ........................................................................................................................ 52
ARM ........................................................................................................................... 53
ARM:COUNt ....................................................................................................... 53
ARM:COUNt? ..................................................................................................... 54
DISPlay ...................................................................................................................... 55
DISPlay:MONitor:CARD ..................................................................................... 55
DISPlay:MONitor[:STATe] ................................................................................... 56
INITiate....................................................................................................................... 57
INITiate:CONTinuous ......................................................................................... 57
INITiate:CONTinuous? ....................................................................................... 58
INITiate[:IMMediate] ........................................................................................... 58
OUTPut ...................................................................................................................... 59
OUTPut:EXTernal[:STATe] .................................................................................. 59
OUTPut:EXTernal[:STATe]? ................................................................................ 60
OUTPut[:STATe] ................................................................................................. 60
OUTPut[:STATe]? ............................................................................................... 61
OUTPut:TTLTrgn[:STATe] ................................................................................... 61
OUTPut:TTLTrgn[:STATe]? ................................................................................. 62
[ROUTe:] .................................................................................................................... 63
[ROUTe:]CLOSe ................................................................................................. 63
[ROUTe:]CLOSe? ............................................................................................... 64
[ROUTe:]OPEN ................................................................................................... 65
[ROUTe:]OPEN? ................................................................................................. 66
[ROUTe:]SCAN ................................................................................................... 66
STATus....................................................................................................................... 68
STATus:OPERation:CONDition? ........................................................................ 70
STATus:OPERation:ENABle ............................................................................... 70
STATus:OPERation:ENABle? ............................................................................. 70
4
STATus:OPERation[:EVENt]? ............................................................................ 71
STATus:PRESet ................................................................................................. 71
SYSTem ..................................................................................................................... 72
SYSTem:CDEScription? ..................................................................................... 72
SYSTem:CPON .................................................................................................. 73
SYSTem:CTYPe? ............................................................................................... 73
SYSTem:ERRor? ................................................................................................ 74
TRIGger ..................................................................................................................... 75
TRIGger[:IMMediate] .......................................................................................... 75
TRIGger:SOURce ............................................................................................... 76
TRIGger:SOURce? ............................................................................................. 77
SCPI Commands Quick Reference............................................................................ 78
IEEE 488.2 Common Commands Reference ............................................................ 79
Appendix A - Matrix Modules Specifications .............................................................. 81
Appendix B - Register-Based Programming ............................................................... 83
About This Appendix .................................................................................................. 83
Register Programming vs. SCPI Programming.......................................................... 83
Addressing the Registers ........................................................................................... 83
The Base Address .............................................................................................. 84
Register Offset .................................................................................................... 84
Register Descriptions ................................................................................................. 86
Reading and Writing to the Registers ................................................................. 86
Manufacturer Identification Register ................................................................... 86
Device Type Register ......................................................................................... 86
Status/Control Register ....................................................................................... 86
Relay Control Register ....................................................................................... 88
Programming Examples ............................................................................................. 90
Example: Reading the Registers (BASIC) .......................................................... 90
Example: Reading the Registers (C/HP-UX) ...................................................... 91
Example: Making Measurements (BASIC) ......................................................... 92
Example: Making Measurements (C/HP-UX) ..................................................... 93
Example: Scanning Channels (BASIC) .............................................................. 95
Example: Scanning Channels (C/HP-UX) .......................................................... 96
Appendix C - Matrix Modules Error Messages ........................................................... 99
Error Types ................................................................................................................ 99
Error Messages........................................................................................................ 100
Appendix D - Relay Life .............................................................................................. 101
Replacement Strategy.............................................................................................. 101
Relay Life Factors .................................................................................................... 101
End-of-Life Determination ........................................................................................ 101
Index ............................................................................................................................. 103
5
6

AGILENT TECHNOLOGIES WARRANTY STATEMENT

AGILENT PRODUCT: E1465A/E1466A/E1467A Relay Matrix Switch Modules DURATION OF WARRANTY: 3 years
1. Agilent Technologies warrants Agilent hardware, accessories and supplies against defects in materials and workmanship for the period specified above. If Agilent receives notice of such defects during the warranty period, Agilent will, at its option, either repair or replace products which prove to be defective. Replacement products may be either new or like-new.
2. Agilent warrants that Agilent software will not fail to execute its programming instructions, for the period specified above, due to defects in material and workmanship when properly installed and used. If Agilent receives notice of such defects during the warranty period, Agilent will replace software media which does not execute its programming instructions due to such defects.
3. Agilent does not warrant that the operation of Agilent products will be interrupted or error free. If Agilent is unable, within a reasonable time, to repair or replace any product to a condition as warranted, customer will be entitled to a refund of the purchase price upon prompt return of the product.
4. Agilent products may contain remanufactured parts equivalent to new in performance or may have been subject to incidental use.
5. The warranty period begins on the date of delivery or on the date of installation if installed by Agilent. If customer schedules or delays Agilent installation more than 30 days after delivery, warranty begins on the 31st day from delivery.
6. Warranty does not apply to defects resulting from (a) improper or inadequate maintenance or calibration, (b) software, interfacing, parts or supplies not supplied by Agilent, (c) unauthorized modification or misuse, (d) operation outside of the published environmental specifications for the product, or (e) improper site preparation or maintenance.
7. TO THE EXTENT ALLOWED BY LOCAL LAW, THE ABOVE WARRANTIES ARE EXCLUSIVE AND NO OTHER WARRANTY OR CONDITION, WHETHER WRITTEN OR ORAL, IS EXPRESSED OR IMPLIED AND AGILENT SPECIFICALLY DISCLAIMS ANY IMPLIED WARRANTY OR CONDITIONS OF MERCHANTABILITY, SATISFACTORY QUALITY, AND FITNESS FOR A PARTICULAR PURPOSE.
8. Agilent will be liable for damage to tangible property per incident up to the greater of $300,000 or the actual amount paid for the product that is the subject of the claim, and for damages for bodily injury or death, to the extent that all such damages are determined by a court of competent jurisdiction to have been directly caused by a defective Agilent product.
9. TO THE EXTENT ALLOWED BY LOCAL LAW, THE REMEDIES IN THIS WARRANTY STATEMENT ARE CUSTOMER’S SOLE AND EXLUSIVE REMEDIES. EXCEPT AS INDICATED ABOVE, IN NO EVENT WILL AGILENT OR ITS SUPPLIERS BE LIABLE FOR LOSS OF DATA OR FOR DIRECT, SPECIAL, INCIDENTAL, CONSEQUENTIAL (INCLUDING LOST PROFIT OR DATA), OR OTHER DAMAGE, WHETHER BASED IN CONTRACT, TORT, OR OTHERWISE.
FOR CONSUMER TRANSACTIONS IN AUSTRALIA AND NEW ZEALAND: THE WARRANTY TERMS CONTAINED IN THIS STATEMENT, EXCEPT TO THE EXTENT LAWFULLY PERMITTED, DO NOT EXCLUDE, RESTRICT OR MODIFY AND ARE IN ADDITION TO THE MANDATORY STATUTORY RIGHTS APPLICABLE TO THE SALE OF THIS PRODUCT TO YOU.

U.S. Government Restricted Rights

The Software and Documentation have been developed entirely at private expense. They are delivered and licensed as "commercial computer software" as defined in DFARS 252.227- 7013 (Oct 1988), DFARS 252.211-7015 (May 1991) or DFARS 252.227-7014 (Jun
1995), as a "commercial item" as defined in FAR 2.101(a), or as "Restricted computer software" as defined in FAR 52.227-19 (Jun
1987)(or any equivalent agency regulation or contract clause), whichever is applicable. You have only those rights provided for such Software and Documentation by the applicable FAR or DFARS clause or the Agilent standard software agreement for the product involved.
E1465A/E1466A/E1467A Relay Matrix Switch Modules User’s Manual
Copyright © 1991, 1993, 1995, 1996, 2001 Agilent Technologies, Inc. All rights reserved.
Edition 7
7

Documentation History

All Editions and Updates of this manual and their creation date are listed below. The first Edition of the manual is Edition 1. The Edition number increments by 1 whenever the manual is revised. Updates, which are issued between Editions, contain replacement pages to correct or add additional information to the current Edition of the manual. Whenever a new Edition is created, it will contain all of the Update information for the previous Edition. Each new Edition or Update also includes a revised copy of this documentation history page.
Edition 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . July, 1991
Edition 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . July, 1993
Edition 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . June, 1995
Edition 4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . January, 1996
Edition 5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . May, 1996
Edition 6 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . November, 1996
Edition 7 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . March, 2001

Safety Symbols

Instruction manual symbol affixed to
Instruction manual symbol affixed to product. Indicates that the user must refer to
product. Indicates that the user must refer to the manual for specific WARNING or
the manual for specific WARNING or CAUTION information to avoid personal
CAUTION information to avoid personal injury or damage to the product.
injury or damage to the product.
Indicates the field wiring terminal that must be connected to earth ground before operating the equipment — protects against electrical shock in case of fault.
WARNING
Alternating current (AC)
Direct current (DC).
Warning. Risk of electrical shock.
Calls attention to a procedure, practice, or condition that could cause bodily injury or death.
or
Frame or chassis ground terminal—typically connects to the equipment's metal frame.
CAUTION
Calls attention to a procedure, practice, or condition that could possibly cause damage to equipment or permanent loss of data.

WARNINGS

The following general safety precautions must be observed during all phases of operation, service, and repair of this product. Failure to comply with these precautions or with specific warnings elsewhere in this manual violates safety standards of design, manufacture, and intended use of the product. Agilent Technologies assumes no liability for the customer's failure to comply with these requirements.
Ground the equipment: For Safety Class 1 equipment (equipment having a protective earth terminal), an uninterruptible safety earth ground must be provided from the mains power source to the product input wiring terminals or supplied power cable.
DO NOT operate the product in an explosive atmosphere or in the presence of flammable gases or fumes.
For continued protection against fire, replace the line fuse(s) only with fuse(s) of the same voltage and current rating and type. DO NOT use repaired fuses or short-circuited fuse holders.
Keep away from live circuits: Operating personnel must not remove equipment covers or shields. Procedures involving the removal of covers or shields are for use by service-trained personnel only. Under certain conditions, dangerous voltages may exist even with the equipment switched off. To avoid dangerous electrical shock, DO NOT perform procedures involving cover or shield removal unless you are qualified to do so.
DO NOT operate damaged equipment: Whenever it is possible that the safety protection features built into this product have been impaired, either through physical damage, excessive moisture, or any other reason, REMOVE POWER and do not use the product until safe operation can be verified by service-trained personnel. If necessary, return the product to Agilent for service and repair to ensure that safety features are maintained.
DO NOT service or adjust alone: Do not attempt internal service or adjustment unless another person, capable of rendering first aid and resuscitation, is present.
DO NOT substitute parts or modify equipment: Because of the danger of introducing additional hazards, do not install substitute parts or perform any unauthorized modification to the product. Return the product to Agilent for service and repair to ensure that safety features are maintained.
8

DECLARATION OF CONFORMITY

According to ISO/IEC Guide 22 and CEN/CENELEC EN 45014
Manufacturer’s Name: Agilent Technologies, Inc. Manufacturer’s Address: Basic, Emerging and Systems Technologies Product Generation Unit
815 14
Loveland, CO 80537 USA
Declares, that the product
Product Name: Relay Matrix Switch Modules Model Number: E1465A/E1466A/E1467A Product Options: This declaration includes all options of the above product(s).
Conforms with the following European Directives:
The product herewith complies with the requirements of the Low Voltage Directive 73/23/EEC and the EMC Directive 89/336/EEC and carries the CE Marking accordingly.
Conforms with the following product standards:
EMC Standard Limit
IEC 61326-1:1997 + A1:1998 / EN 61326-1:1997 + A1:1998
CISPR 11:1997 + A1:1997 / EN 55011-1991 Group 1, Class A IEC 61000-4-2:1995+A1998 / EN 61000-4-2:1995 4 kV CD, 8 kV AD IEC 61000-4-3:1995 / EN 61000-4-3:1995 3 V/m, 80-1000 MHz IEC 61000-4-4:1995 / EN 61000-4-4:1995 0.5 kV signal lines, 1 kV power lines IEC 61000-4-5:1995 / EN 61000-4-5:1995 0.5 kV line-line, 1 kV line-ground IEC 61000-4-6:1996 / EN 61000-4-6:1996 3 V, 0.15-80 MHz IEC 61000-4-11:1994 / EN 61000-4-11:1994 1 cycle, 100%
th
Street S.W.
[1]
Canada: ICES-001:1998 Australia/New Zealand: AS/NZS 2064.1
Safety IEC 61010-1:1990+A1:1992+A2:1995 / EN 61010-1:1993+A2:1995
Canada: CSA C22.2 No. 1010.1:1992 UL 3111-1
Supplemental Information:
[1] The product was tested in a typical configuration with Agilent Technologies test systems.
September 5, 2000
Date Name
Quality Manager
Title
Authorized EU-representative: Agilent Technologies Deutschland GmbH, Herrenberger Stra>e 130, D 71034 Böblingen, Germany
For further information, please contact your local Agilent Technologies sales office, agent or distributor.
Revision: A.03 Issue Date: 09/05/00
9
Notes:
10

Using This Chapter

This chapter gives guidelines to get started using the E1465A, E1466A, and E1467 Relay Matrix Switch Modules (matrix modules), including:
Matrix Modules Description . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
Programming the Matrix Modules . . . . . . . . . . . . . . . . . . . . . . .15

Matrix Modules Description

The E1465A, E1466A, and E1467A Relay Matrix Switch modules are VXIbus C-Size register-based modules that can operate with a command module, such as an E1406A. Four 4x16 submatrixes are implemented on the PC board with 256 latching relays. Terminal modules convert the sub­matrixes into 4x64 (E1466A), 8x32 (E1467A), or 16x16 (E1465A) matrixes.
Agilent plug-in modules installed in an mainframe or used with a command module are treated as independent instruments, each having a unique secondary GPIB address. Each instrument is assigned a dedicated error queue, input and output buffers, status registers, and if applicable, dedicated mainframe/command module memory space for readings or data. An instrument may be composed of a single plug-in module or multiple plug-in modules.
Chapter 1
Getting Started
NOTE The matrix model number is determined by the terminal module connected
to the PC board. If no terminal module is connected, the relay matrix switch module defaults to an E1466A. To program the E1465A and E1467A, make certain the terminal module is connected.
E1465A Relay Matrix module (Figure 1-1) provides a 16x16 two-wire
The crosspoint matrix. This 16x16 matrix is created by connecting the terminal module. The terminal module connects the columns of the submatrixes of A, B, C, and D.
The
E1466A Relay Matrix module (Figure 1-2) provides a 4x64 two-wire
crosspoint matrix. This 4x64 matrix is created by connecting the terminal module. The terminal module connects the rows of submatrixes A, B, C, and D.
The
E1467A Relay Matrix module (Figure 1-3) provides an 8x32 two-wire
crosspoint matrix. This 8x32 matrix is created by connecting the terminal module. The terminal module connects the rows of submatrixes A and C, and rows of submatrixes B and D. The columns of submatrixes A and B, and columns of submatrixes C and D are also connected.
Getting Started 11Chapter 1
TERMINAL MODULEMATRIX MODULE
A
B
C
D
Figure 1-1. E1465A 16x16 Relay Matrix Module
12 Getting Started Chapter 1
TERMINAL MODULEMATRIX MODULE
A
B
C
D
Figure 1-2. E1466A 4x64 Relay Matrix Module
Getting Started 13Chapter 1
TERMINAL MODULEMATRIX MODULE
A
B
C
D
Figure 1-3. E1467A 8x32 Relay Matrix Module
14 Getting Started Chapter 1

Programming the Matrix Modules

There are several ways you can program the matrix modules. One way is to write directly to the registers. This method can provide better throughput speed, but requires more knowledge of the matrix design. See Appendix B for information on register-based programming.
Another way to program the matrix module is to use a command module and Standard Commands for Programmable Instruments (SCPI). With SCPI commands, the command module parses the commands and writes to the appropriate relay module register. The examples in this manual use the SCPI programming language. See Appendix B for examples on writing directly to the registers.
Addressing the
Modules
Channel List The channel_list is a combination of the card number and the channel
Card Number The card number (ss of the channel_list) identifies the switch module
To address specific channels (relays) within a matrix module, you specify the SCPI command and matrix module channel list. The following are the most commonly used SCPI commands:
CLOSe channel_list Closes the relays specified
OPEN channel_list Opens the relays specified
SCAN channel_list Closes the relays specified, one at a time
numbers. The channel_list takes the form of @ssrrcc where ss = matrix module card number (00-99), rr = row number of the matrix module, and cc = column number of the matrix module.
within a switchbox. The card number assigned depends on the switch configuration used. Leading zeroes can be ignored for the card number.
For a single-module switchbox configuration, the card number is always 01. For a multiple-module switchbox configuration, multiplexer modules are set to successive logical addresses. The multiplexer module with the lowest logical address is always card number 01. The card number with the next successive logical address is 02, etc.
Figure 1-4 illustrates card numbers and logical addresses of a typical multiple-module switchbox configuration. Chapter 2 shows an example of addressing a switchbox configuration.
Channel Addresses The channel address is the rrcc of the channel_list. This address determines
which relay will be addressed. Use a comma (,) to form a channe list or use a colon (:) to form a channel range. You can address single channels (@ssrrcc), multiple channels (@ssrrcc,ssrrcc,...), sequential channels (@ssrrcc:ssrrcc), groups of sequential channels (@ssrrcc:ssrrcc, ssrrcc:ssrrcc), or any combination.
Only valid channels can be accessed in a channel list or channel range. Also, the channel range must be from a lower channel number to a higher channel number. For example, CLOS (@10000:20303) is acceptable, but CLOS (@20303:10000) generates an error. Table 1-1 shows the matrix modules channel numbers for the three matrix modules.
Getting Started 15Chapter 1
Command
Module
Table 1-1. Matrix Modules Channel Numbers
Matrix Module Rows (rr) Columns (cc)
E1465A 16x16 Relay Matrix Switch 00 - 15 00 - 15
E1466A 4x64 Relay Matrix Switch 00 - 03 00 - 63
E1467A 8x32 Relay Matrix Switch 00 - 07 00 - 31
Multiple-Module Switchbox Card Numbers
Card Number 01
Multiplexer Module
Logical Address = 120
1
4
8
6
2
2
1
2
1
2
4
1
3
6
2
4
8
6
4
3
6
1
4
8
2
6
4
3
1
6
Secondary Address = 15
8 2 1
Card Number 02
Multiplexer Module
Logical Address = 121
8 2 1
Card Number 03
Multiplexer Module
Logical Address = 122
8 2 1
Example: Closing
Relays (BASIC)
Note: Physical placement of the Module in the Logical Address
order is not required, but is recommended.
Figure 1-4. Card Numbers in a Multiple-Module Switchbox
This example assumes a PC running BASIC and a GPIB interface. The program closes row 03, column 12 of an E1465A 16x16 matrix module at logical address 120 (secondary address = 120/8 = 15) and queries the result. The result is returned to the controller and displayed (1 = relay closed, 0 = relay open). See Chapter 4 for information on the SCPI commands.
10 OUTPUT 70915; "*RST" 20 OUTPUT 70915; "CLOS (@10312)"
! Resets the module ! Closes row 03, column 12 on
module number 1
30 OUTPUT 70915; "CLOS? (@10312)" 40 ENTER 70915; Value 50 PRINT Value
! Query channel 10312 ! Enter result into variable Value ! Print results (should print "1"
to indicate that the channel is closed)
60 END
! Terminate program
16 Getting Started Chapter 1
Example: Closing
Relays (Turbo C)
This example assumes a PC with a GPIB Interface card (with command library) running Borland Turbo C. The program closes row 03, column 12 of an E1465A 16x16 matrix module at logical address 120 (secondary address = 120/8 = 15) and queries the result. The result is returned to the controller and displayed (1 = relay closed, 0 = relay open). See Chapter 4 for
information on the SCPI commands.
#include <stdio.h> #include <chpib.h> /*Include file for GPIB*/
#define ISC 7L #define MATRIX 70915L /*Matrix default address*/ #define TASK1 "*RST" /*Reset*/ #define TASK2 "CLOS (@10312)" /*Close row 3, column 12*/ #define TASK3 "CLOS? (@10312)" /*Query row 3, column 12*/
main() {
char into[257]; int length = 256;
/*Output commands to matrix module*/ error_handler (IOTIMEOUT (7L,5.0), "TIMEOUT"); error_handler (IOOUTPUTS (MATRIX, TASK1, 4), "OUTPUT command"); error_handler (IOOUTPUTS (MATRIX, TASK2, 15), "OUTPUT
command");
error_handler (IOOUTPUTS (MATRIX, TASK3, 15), "OUTPUT
command");
/*Enter from matrix*/
error_handler (IOENTERS (MATRIX, into, &length), "ENTER command"); printf("Now let's see if the switch is closed: %s",into);
return; } int error_handler (int error, char *routine) {
char ch;
if (error != NOERR)
{
printf ("\n Error %d %s \n", error, errstr(error)); printf (" in call to GPIB function %s \n\n", routine); printf ("Press 'Enter' to exit: "); scanf ("%c", &ch);
exit(0); } return 0;
}
Getting Started 17Chapter 1
Notes:
18 Getting Started Chapter 1
Configuring the Matrix Modules

Using This Chapter

This chapter gives guidelines to connect external wiring to the E1465A, E1466A, and E1467A Relay Matrix Switch modules (matrix module) and shows how to connect multiple modules together to form larger matrixes. This chapter includes:
WARNINGS and CAUTIONS . . . . . . . . . . . . . . . . . . . . . . . . . .19
Configuring the Switch Module . . . . . . . . . . . . . . . . . . . . . . . . .20
Configuring the Terminal Modules . . . . . . . . . . . . . . . . . . . . . .24
Configuring Larger Matrixes . . . . . . . . . . . . . . . . . . . . . . . . . . .30

WARNINGS and CAUTIONS

WARNING SHOCK HAZARD. Only service-trained personnel who are
aware of the hazards involved should install, remove, or configure matrix modules. Remove all power sources from the mainframe and installed modules before installing or removing a module.
Chapter 2
CAUTION MAXIMUM INPUTS. The maximum voltage that can be applied to
any terminal is 200 Vdc/170 Vrms. The maximum current that can be applied to any row or column is 1 A dc or ac peak. The maximum power that can be applied to any terminal is 30 W or 62.5 VA (resistive).
CAUTION STATIC ELECTRICITY. Static electricity is a major cause of
component failure. To prevent damage to the electrical components in a matrix module, observe anti-static techniques when removing or installing the module or when working on the module.
Configuring the Matrix Modules 19Chapter 2

Configuring the Switch Module

This section gives guidelines to configure the E1465A/E1466A/E1467A switch module, including:

Switch Module Connectors

Setting the Logical Address Switch
Setting the Interrupt Level
Installing the Switch Module in a Mainframe
Switch Module
Connectors
Figure 2-1 shows the front panel of the E1465/66/67A switch module and the connector pin-out that mates to the terminal module.
Bank
Row/Column
L=Low
02H 02L 05H 05L 08H 08L 11H 11L 14H 14L 01H 01L 04H 04L 07H 07L 10H 10L 13H 13L
00H
03H
06LCOL 09H 09L 12H 12L 15H 15L 02H 02L 05H 05L 08H 08L 11H 11L 14H 14L
H=High
Pin
GND
64
GND
A
0H 0L 3H 3L 2H 2L
2H 2L
ROW
A
ROW1H1L
0H
ROW
B
ROW
B B
A A A A A A
A A A A A B B B B B B B B B
Pin
B
33
Pin
C
64
CCCOL C C C C C C C D D D D D D D D D D D D CCROW
C C D D
3H
ROW ROW
COL
00H
COL
00L COL 03H
COL
03L
COL
06H
COL
06L
COL
09HCOLA
09L
COL
12H
COL COL
12L 15H
COL
15L
COL
02H
COL
02L
COL COL
05H
COL
05L 08H
COL COL
08L
COL
11H 11L
COL COL
14H
COL
14L
COL
01H
COL
01L 04H 04L
COL
07H
COL
07L
COL
10H
COL
10L
COL
13H
COL
13L
COL
00H
COL
00L
COL
03H
COL
03L
COL
06H
COL
06L
COL
09H
COL
09L
COL
12H
COL
12L
COL
15H
COL
15L
COL
ROW0H0L
3H
ROW ROW
2H
ROW ROW
Pin
GND
96
GND
ROW ROW ROW ROW
COL
COL COL COL COL COLA COL COL COL COL COL COL COL COL COL COL COL COL COL COL COL
COL COL
COL COL COL COL COL COL COL COL COL COL COL COL COL COL COL COL COL
ROW ROW ROW ROW ROW ROW
01H 01L 04H 04L 07H 07L 10H 10L 13H 13L 00H 00L 03H 03L 06H 06L 09H 09L 12H 12L 15H 15L
02H 02L 05H 05L 08H 08L 11H 11L 14H 14L 01H 01L 04H 04L 07H 07L 10H 10L 13H 13L
2H
2L 1H 1L
1H 1L 0H
0L 3H
3L
A A
0L
3L
3L
2L
B B NC NC A A A A A A
A A A B B B B B B B B B B B
Pin
B
65
Pin
C
96
CCCOL C C C C C C C D D D D D D D D D D NC NC C C D D D D
Pin
32
Pin
Pin
32
1
GND GND
ROW
A
ROW
A
ROW
A
ROW
A
ROWB
BNCROW
NC AACOL
COL
AACOL
COL
AACOL
COL COL
A A
COL
A
COL
A
COL
B
COL
B
COL
B
COL
B
COL
B
COL
B
COL
B
COL
B
COL
BBCOL
COL
CCOL C
COL 00L CCOL C
COL 03L C
COL 06H C C
COL C
COL C
COL C
COL
COL CCCOL D
COL D
COL D
COL
COL
D D
COL D
COL D
COL D
COL D
COL D
COL NC NC C
ROW
C
ROW
D
ROW
D
ROW1H1L
GND
Pin
CF(10)
1
CF(13)
Pin
CF(11)
33
GND
Pin
CF(12)
65
Figure 2-1. Relay Matrix Switch Module Pin-out
20 Configuring the Matrix Modules Chapter 2
Setting the Logical
Address Switch
NOTE The address switch selected value must be a multiple of 8 if the module is
The logical address switch (LADDR) factory setting is 120. Valid address values are from 1 to 255. The matrix module can be configured as a single instrument or as a switchbox. See Figure 2-2 for switch position information.
the first module in a switchbox used with a VXIbus command module and is being instructed by SCPI commands.
Logical Address = 120
Setting the Interrupt
Level
8+16+32+64=120
128
64
32
16
8
4
2
1
N
D E P O
CLOSED = Switch Set To 1 (ON)
E
S
OPEN = Switch Set To 0 (OFF)
O
L
C
Logical Address Switch Location
Figure 2-2. Setting the Module Logical Address
The matrix module generates an interrupt after a channel has been closed. These interrupts are sent to, and acknowledgements are received from, the command module (such as an E1406A) via the VXIbus backplane interrupt lines. For applications where the matrix module is installed in a C-Size mainframe and is a servant of the command module, the interrupt line jumper does not have to be moved. See Figure 2-3 to change the interrupt line.
You can select seven different interrupt line levels. Line X disables the interrupt and should not be used. The module's factory setting is line 1. To change the setting, remove the four-pin jumper (part number 1258-0247) from the old line location and reinstall the jumper in the new line location.
If you are setting the interrupt line to something other than 1, see the E1406A Command Module User's Manual for additional information. If the four-pin jumper is not used, the two jumper locations must have the same interrupt line selected.
Configuring the Matrix Modules 21Chapter 2
NOTE When the E1406A Command Module is the resource manager, the
interrupt line jumper must be installed in position 1. However, if you are using an embedded computer with the E1406A Command Module, interrupt line 2 should be selected. The Level X interrupt line should not be used under normal operating conditions.
Using 2-Pin
IRQ
7 6
5
4 3 2
1
X
Using 4-Pin
JumperJumper
IRQ
7 6 5 4 3 2 1 X
Figure 2-3. Setting the Interrupt Level
Logical Address Switch Location
Interrupt
Priority
Location
22 Configuring the Matrix Modules Chapter 2
Installing the
Switch Module in a
Mainframe
Set the extraction levers out.
1
Extraction
Levers
E1465/66/67A Relay Matrix Switch modules may be installed in any slot (except slot 0) in a C-size VXIbus mainframe. See Figure 2-4 to install the module in a mainframe.
2
Slide the module into any slot (except slot 0) until the backplane connectors touch.
4
Tighten the top and bottom screws to secure the module to the mainframe.
NOTE: The extraction levers will not seat the backplane connectors on older VXIbus mainframes. You must manually seat the connectors by pushing in the module until the module's front panel is flush with the front of the mainframe. The extraction levers may be used to guide or remove the switch module.
To remove the module from the mainframe, reverse the procedure.
3
Seat the module into the mainframe by pushing in the extraction levers.
Figure 2-4. Installing the Switch Module in a VXIbus Mainframe
Configuring the Matrix Modules 23Chapter 2

Configuring the Terminal Modules

This section gives guidelines to configure the E1465A/E1466A/E1467A terminal modules, including:

Terminal Module Connectors

Wiring Terminal Modules
Connecting Terminal Modules to the Switch Module
Terminal Module
Connectors
Figure 2-5 shows the E1465A terminal module connectors and associated row/column designators. Figure 2-6 shows the E1466A terminal module connectors and associated row/column designators. Figure 2-7 shows the E1467A terminal module connectors and associated row/column designators.
Rows
(00-07)
Daisy Chain
Row (00-07)
Column (00-07)
Daisy Chain
Column (00-07)
Rows
(08-15)
Daisy Chain
Coumn (08-15)
Daisy Chain
Row (08-15)
Column
(08-15)
Figure 2-5. E1465A Terminal Module
24 Configuring the Matrix Modules Chapter 2
Rows
(00-03)
Daisy Chain Rows
for Expansion
Columns
(00-31)
Columns
(32-63)
Figure 2-6. E1466A Terminal Module
Configuring the Matrix Modules 25Chapter 2
Rows (00-07)
Columns (00-15)
Columns (16-31)
Daisy Chain Rows
for Expansion
Figure 2-7. E1467A Terminal Module
26 Configuring the Matrix Modules Chapter 2
Wiring the Terminal
Modules
Remove clear cover.1 Remove and retain wiring exit panel.2
Figures 2-8 and 2-9 give guidelines to connect user wiring to the terminal module assembly. Expansion connectors allow you to create larger matrixes. See "Configuring Larger Matrixes" for details.
User wiring to the matrix modules is to the High (H) and Low (L) terminal connections. Maximum terminal wire size is No. 16 AWG. Wire ends should be stripped 6 mm (0.25 in.) and tinned. When wiring all channels, use a smaller gauge wire (No. 20 - 22 AWG).
A. Release screws.
B. Press tab forward
and release.
Tab
Make connections.3 Route wiring.4
Screw type
Use wire
size 16-26
AWG
5mm
0.2"
VW1 Flammability
Rating
Remove 1 of the 3
wire exit panels.
Tighten wraps to
secure wires.
Insert wire into terminal. Tighten screw.
Figure 2-8. Wiring the Terminal Module
Continued on next page
Configuring the Matrix Modules 27Chapter 2
5
Replace wiring exit panel.
Replace clear cover.6
A. Hook in the top cover tabs
onto the fixture.
B. Press down and
tighten screws.
Cut required
holes in panels.
for wire exit
Keep wiring exit panel hole as small as possible.
Figure 2-9. Wiring the Terminal Module
Continued from previous page
28 Configuring the Matrix Modules Chapter 2
Attaching the
Terminal Modules
to the Switch
Module
Figure 2-10 shows how to attach the E1465A, E1466A, or E1467A terminal modules to the switch module.
Extend the extraction levers on the terminal13 module.
2
Align the terminal module connectors to the Relay Marix Switch Module.
Extraction Lever
Use small screwdriver
to release the two
extraction levers
E1466A
Module
Extraction Lever
Apply gentle pressure to attach the terminal module to the Relay Matrix Switch Module.
4
Push in the extraction levers to lock the terminal module onto the Relay Matrix Switch Module.
Extraction
Levers
To remove the terminal module from the Relay Matrix Switch Module, use a small screw­driver to release the two extraction levers and push both levers out simultaneously to free it from the Relay Matrix Switch Module.
Figure 2-10. Attaching the Terminal Modules to the Switch Module
Configuring the Matrix Modules 29Chapter 2

Configuring Larger Matrixes

This section gives guidelines to create larger matrixes, including:

Creating Larger Matrixes

Creating a 32x32 Matrix

Creating a 4x256 Matrix
Creating an 8x96 Matrix
Creating Larger Matrixes with Multiple Mainframes
Creating Larger
Matrixes
Creating a 32x32
Matrix
You can create larger matrixes with the matrix modules by using the E1466-80002 Daisy Chain Expansion cable. With larger matrixes, more crosspoints become available. A C-Size mainframe can have up to 3,072 two-wire crosspoints. You can make a larger matrix by connecting the rows or columns of one terminal module to the corresponding rows or columns of the next terminal module. Only the E1465A has a column expansion. You can also create larger matrixes by connecting multiple mainframes together.
When using multiple modules, the modules should be configured as a switchbox. That is, the first switch card (module) has a logical address that is a multiple of 8 and succeeding switch cards have sequential logical addresses. For example, if you use the matrix default address of 120 for the first card, the remaining cards in the switchbox would have logical addresses of 121, 122, 123, etc.
When using multiple modules configured as a switchbox, you must address the modules as a switchbox. For example, if you want to close row 00, column 05 on the second card, use CLOSe @20005).
Figure 2-11 shows how to connect four E1465A 16x16 modules to create a 32-row by 32-column matrix. This configuration requires 16 E1466-80002 Daisy Chain Expansion cables. The daisy chain rows of modules 1 and 3 are connected to the rows of cards 2 and 4 to increase the number of columns.
The daisy chain columns of cards 1 and 3 are connected together and the daisy chain columns of cards 2 and 4 are connected together. For example, to connect row 16 to column 15 use CLOSe (@30015). This command will close the relay on card 3, row 00, column 15. The following table shows which cards support applicable rows and columns.
Cards (Modules) Rows/Columns
Cards 1 and 2 Rows 00 - 15
Cards 3 and 4 Rows 16 - 31
Cards 1 and 3 Columns 00 - 15
Cards 2 and 4 Columns 16 - 31
30 Configuring the Matrix Modules Chapter 2
Loading...
+ 75 hidden pages