3B Scientific Force Table User Manual [en, de, es, fr, it]

3B SCIENTIFIC
Bedienungsanleitung
®
PHYSICS
Kräftetisch U52004
1 Fuß 2 Klemmen mit Umlenkrollen 3 Mittelstab 4 Halterung für Schnüre 5 Arbeitsplatte 6 Gewichtaufhänger mit Schlitz-
gewichten
1. Beschreibung
Der Kräftetisch dient zum Nachweis, dass die Kraft eine vektorielle Größe ist sowie zur quantitativen Untersuchung der Zusammensetzung und Zerle­gung von Kräften.
Der Kräftetisch besteht aus einer kreisförmigen Arbeitsplatte auf stabilem Fuß mit doppelter Ska­lierung der Winkeleinteilung. Über drei Umlenkrol­len mit Befestigungsklammern werden Gewichte an Schnüren mit Haken aufgehängt. Die drei Schlitz­gewichtsätze aus Messing bestehen aus je 2x 5 g, 2x 10 g, 2x 20 g und 2x 50 g Gewichten sowie einem 50 g Gewichtaufhänger.
2. Technische Daten
Abmessungen: ca. 300 mm x 390 mm Ø Skala: 0 bis 360° mit 1° Teilung Masse: ca. 3 kg
3. Prinzip
Kräfte sind vektorielle Größen. Deshalb kann die resultierende Ersatzkraft zweier auf einen Punkt wirkender Kräfte nicht allein aus ihren Größen bestimmt werden sondern es muss auch ihre Rich­tung Berücksichtigung finden. Die Resultierende
1
zweier oder mehrerer in einer Ebene auf einen
A
r
A
Punkt wirkender Kräfte ist eine einzelne Kraft in der gleichen Ebene, die die gleiche Wirkung her­vorruft, wie die Kombination der individuellen Kräfte. Hat eine Kraft also die gleiche Größe wie die Resultierende, wirkt aber entgegengesetzt in der Richtung, so befindet sich der Körper im Gleichge­wichtszustand. Die Resultierende kann analytisch oder mit graphischen Methoden mittels verschie­dener Gesetze (Kräfteparallelogramm, Kräftedrei­eck, Kräftepolygon) bestimmt werden.
Nach dem Gesetz des Kräfteparallelogramms wer­den zwei Kräfte, die gleichzeitig auf einen Körper wirken, in ihrer Größe und in ihrer Richtung durch zwei aneinander liegenden Seiten eines Parallelo­gramms repräsentiert. Die Resultierende ergibt sich sowohl in Größe als auch in Richtung aus der Dia­gonalen, die ihren Ausgang im gleichen Punkt hat.
Daraus ergibt sich, dass sich ein Körper im Gleich­gewicht befindet, wenn drei Kräfte auf ihn wirken, die durch die Seiten eines Dreiecks repräsentiert werden.
Wirken mehr als zwei Kräfte gleichzeitig auf einen Körper, findet das Gesetz des Kräftepolygons seine Anwendung. Danach werden mehrere Kräfte mit gemeinsamem Angriffspunkt in ihrer Größe und in ihrer Richtung durch ein offenes Polygon repräsen­tiert, bei denen die Seiten den gleichen Richtungs­sinn haben. Die resultierende Ersatzkraft ergibt sich aus der Seite, die das Polygon schließt im ent­gegengesetzten Richtungssinn wie die anderen Seiten.
Dieser Satz lässt sich mathematisch folgenderma­ßen ausdrücken. Wenn zwischen zwei Kräften
r
und
B
, die auf einen Körper wirken, der Winkel θ
liegt, ergibt sich die Resultierende
22
Ist α der Winkel zwischen der Resultierenden und der Kraft
r
, so ist
tan
=α
r
R
aus:
θ++= cosABBAR 2
θ
sinB
θ+
cosBA
Nach dem Gesetz des Kräftedreiecks werden zwei Kräfte, die gleichzeitig auf einen Körper wirken, in ihrer Größe und in ihrer Richtung durch zwei Sei­ten eines Dreiecks repräsentiert, die den gleichen Richtungssinn haben. Die Resultierende ergibt sich sowohl in Größe als auch in Richtung aus der drit­ten Seite im entgegengesetzten Richtungssinn wie die ersten beiden Seiten.
Daher befindet sich ein Körper, auf den mehrere Kräfte wirken, im Gleichgewicht, wenn sich die Kräfte als geschlossenes Polygon darstellen lassen. Die Vektorsumme der individuellen Kräfte ist gleich Null und deshalb ist die Resultierende auch Null.
Eine nähere Betrachtung dieses Sachverhalts zeigt, dass das Gesetz des Kräftepolygons nur eine einfa­che Erweiterung des Gesetzes des Kräftedreiecks ist.
Der Kräftetisch ist ein geeignetes Instrument zur Demonstration der Vektoraddition und des Gleich­gewichts von Kräften sowie zur Bestätigung der graphischen und analytischen Methoden. Der Gleichgewichtszustand zwischen zwei oder drei Kräften lässt sich demonstrieren und sowohl die Größe als auch die Richtung jeder Kraft einfach bestimmen.
2
4. Bedienung
4.1 Aufbau des Geräts
Fuß auf ebene Fläche stellen.
Mittelstab senkrecht im Fuß festschrauben.
Arbeitsplatte mit Kraft auf den Mittelstab auf-
drücken.
Unterlegscheibe auf die Mittelbohrung aufle-
gen und Halterung für Schnüre einschrauben.
Umlenkrollen mit Klemmen an den 0°, 120°
und 240° Markierungen der Arbeitsplatte an­bringen.
Ring über die Halterung im Mittelpunkt der
Arbeitsplatte legen.
Schnüre über die Umlenkrollen legen, Ge-
wichtaufhänger anhängen und gleiche Schlitz­gewichte auflegen.
Ring sollte sich im Gleichgewicht befinden.
4.2 Versuchsbeispiel: Vektor Addition
Kräftetisch wie oben beschrieben aufbauen.
Eine 20 g und eine 50 g Masse auf je einen
Gewichtsanhänger bei 0° und 120° auflegen.
Durch Auflegen von Massen auf den dritten
Gewichtsanhänger und Wahl eines geeignetes Winkels Gleichgewicht herstellen. Zur Überprü­fung Ring anheben und fallen lassen. Fällt der Ring zurück ins Zentrum, ist ein Gleichge­wichtszustand erreicht. Falls nicht, müssen weitere Justierungen vorgenommen werden.
Größe und Richtung der Kraft berechnen, die
nötig ist ein Gleichgewicht zu erreichen. Ver­gleich der theoretischen Größe mit dem expe­rimentell gewonnenen Wert.
Die verschiedenen Kräfte in Richtung und
Größe maßstabgerecht zeichnen; Bestätigung des Gesetzes des Kräftedreiecks.
Versuch mit verschiedenen Massen und Win-
keln wiederholen.
3B Scientific GmbH • Rudorffweg 8 • 21031 Hamburg • Deutschland • www.3bscientific.com
Technische Änderungen vorbehalten
© Copyright 2010 3B Scientific GmbH
3B SCIENTIFIC
Instruction sheet
®
PHYSICS
Force Table U52004
1 Base 2 Clamps with pulleys 3 Centre rod 4 Mount for cords 5 Work disc 6 Weight holder with slotted
weights
1. Description
The force table serves to prove that force is a vector quantity. It is also used for quantitative investiga­tion of how forces combine and resolve.
The force table consists of a circular work disc on a stable base with a dual angle scale. Weights are attached to three pulleys with securing clamps. The three sets of brass weights consist of 2x 5 g, 2x 10 g, 2x 20 g and 2x 50 g weights and weight holders weighing 50 g.
2. Technical data
Dimensions: 300 mm x 390 mm dia. approx. Scale: 0 to 360° with 1° resolution Weight: 3 kg approx.
3. Principle
Forces are vector quantities. This means that the resultant of two forces working at a single point is not simply the sum of the forces but is dependent
1
on the direction in which the forces act. The resul-
A
r
r
A
r
tant of two forces acting at the same point in a single plane is defined as that force which, acting alone in the same plane, would have the same effect as the combination of the two forces. A force of equal magnitude to the resultant but acting in the opposite direction therefore maintains the body in equilibrium. The resultant can be obtained by analysis or by graphical means using various laws (parallelogram of forces, triangle of forces, polygon of forces).
A parallelogram of forces represents two forces acting simultaneously on a body as two adjacent sides of a parallelogram. The magnitude and direc­tion of their resultant is then given by the diagonal originating from the same point.
From this it can be determined that a body is in equilibrium if three forces are acting upon it, which can be represented by the three sides of a triangle.
If more than two forces act on a body at once, the law of the polygon of forces is used. This represents several forces acting at the same point as following sides of a polygon where one side remains open. As for the triangle, following the side that closes the polygon in the opposite direction gives the resul­tant force.
This theorem can be expressed mathematically as follows: When two forces
and Br acting on a
body with an angle θ between them, the resultant
R
is given by:
22
θ++= cosABBAR 2
If α is the angle between the resultant and force then:
θ
sinB
tan
=α
θ+
cosBA
With the law of the triangle of forces, two forces acting simultaneously on a body are represented in terms of magnitude and direction by two following sides of a triangle. The magnitude and direction of the resultant is then given by following the third side of the triangle in the opposite direction.
Therefore a body is in equilibrium when several forces act upon it that can be represented as a closed polygon. The vector sum of the individual forces is equal to zero and so is the resultant force. On closer observation, this law can be seen to be a simple extension of the law of the triangle of forces. The force table is suitable for demonstrating vector addition and equilibrium of forces and for confirming the graphic and analytical methods. The equilibrium between two or three forces can be demonstrated and the magnitude and direction of each force easily determined.
4. Operation
4.1 Equipment Setup
Place the base on an even surface.
Screw the centre rod vertically into the base.
2
Press the work disc with force onto the centre
rod.
Place the washer onto the central bore and
screw in the mount for cords.
Attach the pulleys with clamps at the positions
on the work disc marked 0°, 120° and 240°.
Place the ring above the mount in the centre of
the work disc.
Run the cords over the pulleys, suspend the
weight holders and attach the slotted weights.
The ring should be in a state of equilibrium.
4.2 Sample experiment: Vector Addition
Set up the force table as above.
Add a 20 g mass to one weight holder and a
50 g mass to another at 0° and 120°.
By adding weights to a third weight holder and
selecting a suitable angle it is possible to estab­lish equilibrium. To check the equilibrium, lift the ring and let it drop. If it falls back to the centre, equilibrium has been attained. If not, then further adjustments are necessary.
Calculate the magnitude and direction of the
forces required to attain equilibrium. Compare the values obtained in the experiment to those determined by the theory.
Draw the forces to scale showing their magni-
tude and direction to confirm the law of the triangle of forces.
Repeat the experiment with different masses
and angles.
3B Scientific GmbH • Rudorffweg 8 • 21031 Hamburg • Germany • www.3bscientific.com
Subject to technical amendments
© Copyright 2010 3B Scientific GmbH
Loading...
+ 16 hidden pages