ZiLOG Z86E30, Z86E31, Z86E40 PRODUCT SPECIFICATION

1
Z8
FEATURES
ROM
Device
Z86E30 4 237 24 16 Z86E31 2 125 24 16 Z86E40 4 236 32 16
Note: *General-Purpose
Standard Temperature (V
Extended Temperature (V
Available Packages: 28-Pin DIP/SOIC/PLCC OTP (Z86E30/31 only) 40-Pin DIP OTP (Z86E40 only) 44-Pin PLCC/QFP OTP (Z86E40 only)
(KB)
RAM*
(Bytes)
= 3.5V to 5.5V)
CC
= 4.5V to 5.5V)
CC
I/O
Lines
Speed
(MHz)
RELIMINARY
P
RODUCT
Z86E30/E31/E40
4K OTP M
Programmable OTP Options: RC Oscillator EPROM Protect Auto Latch Disable Permanently Enabled WDT Crystal Oscillator Feedback Resistor Disable RAM Protect
Low-Power Consumption: 60 mW Fast Instruction Pointer: 0.75 µ s
Two Standby Modes: STOP and HALT
Digital Inputs CMOS Levels, Schmitt-Triggered
Software Programmable Low EMI Mode
ICROCONTROLLER
S
PECIFICATION
1
Software Enabled Watch-Dog Timer (WDT)
Push-Pull/Open-Drain Programmable on Port 0, Port 1, and Port 2
24/32 Input/Output Lines
Auto Latches
Auto Power-On Reset (POR)
GENERAL DESCRIPTION
The Z86E30/E31/E40 8-Bit One-Time Programmable (OTP) Microcontrollers are members of Zilog's single-chip
®
Z8
MCU family featuring enhanced wake-up circuitry, programmable Watch-Dog Timers, Low Noise EMI op­tions, and easy hardware/software system expansion ca­pability.
Four basic address spaces support a wide range of mem­ory configurations. The designer has access to three addi­tional control registers that allow easy access to register mapped peripheral and I/O circuits.
Two Programmable 8-Bit Counter/Timers Each with a 6-Bit Programmable Prescaler
Six Vectored, Priority Interrupts from Six Different Sources
Two Comparators
On-Chip Oscillator that Accepts a Crystal, Ceramic Resonator, LC, RC, or External Clock Drive
For applications demanding powerful I/O capabilities, the Z86E30/E31 have 24 pins, and the Z86E40 has 32 pins of dedicated input and output. These lines are grouped into four ports, eight lines per port, and are configurable under software control to provide timing, status signals, and par­allel I/O with or without handshake, and address/data bus for interfacing external memory.
Notes: All signals with a preceding front slash, “/”, are
active Low. For example, B/W (BYTE is active Low, only).
(WORD is active Low); B/W
DS97Z8X0502
P R E L I M I N A R Y
1
2
Z86E30/E31/E40 Z8 4K OTP Microcontroller Zilog
Power connections follow conventional descriptions be­low:
Connection Circuit Device
Power V
CC
Ground GND V
V
DD SS
(E40 Only)
Output Input
Port 3
Counter/
Timers (2)
Interrupt
Control
T wo Analog
Comparators
V
CC
ALU
FLAGS
Register
Pointer
Register File
GND
XTAL
AS DS R/W RESET
Machine Timing
Instruction Control
RESET
WDT, POR
OTP
Program
Counter
&
Port 2
I/O
(Bit Programmable)
Figure 1. Z86E30/E31/E40 Functional Block Diagram
Port 0
44
Address or I/O
(Nibble Programmable)
P R E L I M I N A R Y
Port 1
8
Address/Data or I/O
(Byte Programmable)
(E40 Only)
DS97Z8X0502
1
Z86E30/E31/E40
Zilog Z8 4K OTP Microcontroller
D7 - 0
AD 11- 0
Z8 MCU
AD 11- 0
MSN
Port 3
Z8
Port 0
AD 11- 0
PGM + Test Mode Logic
EPM
P32
CE
XT1
PGM
P30
Address
MUX
EPROM
TEST ROM
OTP
Options
V
PP
P33
D7 - 0
Data MUX
D7 - 0
Z8
Port 2
OE
P31
Figure 2. EPROM Programming Block Diagram
DS97Z8X0502
P R E L I M I N A R Y
3
4
Z86E30/E31/E40 Z8 4K OTP Microcontroller Zilog
PIN IDENTIFICATION
Table 1. 40-Pin DIP Pin Identification
Standard Mode
R/W
P25 P26 P27 P04 P05 P06 P14 P15 P07 V
P16
P17 XTAL2 XTAL1
P31
P32
P33
P34
Figure 3. 40-Pin DIP Pin Configuration
1
40-Pin DIP
CC
20 21
AS
Standard Mode
40
DS P24 P23 P22 P21 P20 P03 P13 P12 GND P02 P11 P10 P01 P00 P30 P36 P37 P35 RESET
Pin # Symbol Function Direction
1 R/W
Read/Write Output 2–4 P25–P27 Port 2, Pins 5,6,7 In/Output 5–7 P04–P06 Port 0, Pins 4,5,6 In/Output 8–9 P14–P15 Port 1, Pins 4,5 In/Output 10 P07 Port 0, Pin 7 In/Output 11 V
CC
Power Supply 12–13 P16–P17 Port 1, Pins 6,7 In/Output
14 XTAL2 Crystal Oscillator Output 15 XTAL1 Crystal Oscillator Input 16–18 P31–P33 Port 3, Pins 1,2,3 Input 19 P34 Port 3, Pin 4 Output 20 AS Address Strobe Output 21 RESET Reset Input 22 P35 Port 3, Pin 5 Output 23 P37 Port 3, Pin 7 Output 24 P36 Port 3, Pin 6 Output 25 P30 Port 3, Pin 0 Input 26–27 P00–P01 Port 0, Pins 0,1 In/Output 28–29 P10–P11 Port 1, Pins 0,1 In/Output 30 P02 Port 0, Pin 2 In/Output 31 GND Ground 32–33 P12–P13 Port 1, Pins 2,3 In/Output 34 P03 Port 0, Pin 3 In/Output 35–39 P20–P24 Port 2, Pins 0,1,2,3,4 In/Output 40 DS Data Strobe Output
P R E L I M I N A R Y
DS97Z8X0502
1
Z86E30/E31/E40
Zilog Z8 4K OTP Microcontroller
P20
P03
P13
P12
GND
GND
P02
P11
P10
P01
P21 P22 P23 P24
DS
NC
R/W
P25 P26 P27 P04
7
17
6
P05
P06
P14
1
44-Pin PLCC
CCVCC
P15
P07
V
P16
40
29
2818
P17
XTAL2
Figure 4. 44-Pin PLCC Pin Configuration
Standard Mode
P00
39
XTAL1
P30 P36 P37 P35 RESET R/RL AS P34 P33 P32 P31
Table 2. 44-Pin PLCC Pin Identification
Pin # Symbol Function Direction
1–2 GND Ground 3–4 P12–P13 Port 1, Pins 2,3 In/Output 5 P03 Port 0, Pin 3 In/Output 6–10 P20–P24 Port 2, Pins 0,1,2,3,4 In/Output 11 DS
Data Strobe Output 12 NC No Connection 13 R/W Read/Write Output 14–16 P25–P27 Port 2, Pins 5,6,7 In/Output 17–19 P04–P06 Port 0, Pins 4,5,6 In/Output 20–21 P14–P15 Port 1, Pins 4,5 In/Output 22 P07 Port 0, Pin 7 In/Output 23–24 V
CC
Power Supply 25–26 P16–P17 Port 1, Pins 6,7 In/Output
27 XTAL2 Crystal Oscillator Output 28 XTAL1 Crystal Oscillator Input 29–31 P31–P33 Port 3, Pins 1,2,3 Input 32 P34 Port 3, Pin 4 Output
Table 2. 44-Pin PLCC Pin Identification
Pin # Symbol Function Direction
33 AS Address Strobe Output 34 R/RL ROM/ROMless select Input 35 RESET Reset Input 36 P35 Port 3, Pin 5 Output 37 P37 Port 3, Pin 7 Output 38 P36 Port 3, Pin 6 Output 39 P30 Port 3, Pin 0 Input 40–41 P00–P01 Port 0, Pins 0,1 In/Output 42–43 P10–P11 Port 1, Pins 0,1 In/Output 44 P02 Port 0, Pin 2 In/Output
DS97Z8X0502
P R E L I M I N A R Y
5
6
Z86E30/E31/E40 Z8 4K OTP Microcontroller Zilog
PIN IDENTIFICATION (Continued)
P20
P03
P13
P12
GND
GND
P02
P11
P10
P01
P00
2333
11
22
12
P30 P36 P37 P35 RESET R/RL AS P34 P33 P32 P31
P21 P22 P23 P24
DS NC
R/W
P25 P26 P27 P04
34
44-Pin QFP
44
1
P05
P06
P14
Figure 5. 44-Pin QFP Pin Configuration
Standard Mode
Table 3. 44-Pin QFP Pin Identification
Pin # Symbol Function Direction
1–2 P05–P06 Port 0, Pins 5,6 In/Output 3–4 P14–P15 Port 1, Pins 4,5 In/Output 5 P07 Port 0, Pin 7 In/Output 6–7 V
CC
Power Supply
8–9 P16–P17 Port 1, Pins 6,7 In/Output 10 XTAL2 Crystal Oscillator Output 11 XTAL1 Crystal Oscillator Input 12–14 P31–P33 Port 3, Pins 1,2,3 Input 15 P34 Port 3, Pin 4 Output 16 AS
Address Strobe Output 17 R/RL ROM/ROMless select Input 18 RESET Reset Input 19 P35 Port 3, Pin 5 Output 20 P37 Port 3, Pin 7 Output 21 P36 Port 3, Pin 6 Output 22 P30 Port 3, Pin 0 Input 23–24 P00–P01 Port 0, Pin 0,1 In/Output 25–26 P10–P11 Port 1, Pins 0,1 In/Output
P15
CCVCC
P07
P16
V
P17
XTAL2
XTAL1
Table 3. 44-Pin QFP Pin Identification
Pin # Symbol Function Direction
27 P02 Port 0, Pin 2 In/Output 28–29 GND Ground 30–31 P12–P13 Port 1, Pins 2,3 In/Output 32 P03 Port 0, Pin 3 In/Output 33–37 P20–4 Port 2, Pins 0,1,2,3,4 In/Output 38 DS Data Strobe Output 39 NC No Connection 40 R/W Read/Write Output 41–43 P25–P27 Port 2, Pins 5,6,7 In/Output 44 P04 Port 0, Pin 4 In/Output
P R E L I M I N A R Y
DS97Z8X0502
1
Z86E30/E31/E40
Zilog Z8 4K OTP Microcontroller
Table 4. 40-Pin DIP Package Pin Identification
EPROM Mode
1
NC
D5 D6 D7
A4 A5
A6 NC NC
A7
V
CC
NC NC NC
CE
OE
EPM
V
PP
A8 NC
40-Pin DIP
20 21
40
NC D4 D3 D2 D1 D0 A3 NC NC GND A2 NC NC A1 A0 PGM A10 A11 A9 NC
Pin # Symbol Function Direction
1 NC No Connection 2–4 D5–D7 Data 5,6,7 In/Output 5–7 A4–A6 Address 4,5,6 Input 8–9 NC No Connection 10 A7 Address 7 Input 11 V
CC
Power Supply
12–14 NC No Connection 15 CE Chip Select Input 16 OE Output Enable Input 17 EPM EPROM Prog. Mode Input 18 V
PP
Prog. Voltage Input
19 A8 Address 8 Input 20–21 NC No Connection 22 A9 Address 9 Input 23 A11 Address 11 Input 24 A10 Address 10 Input
Figure 6. 40-Pin DIP Pin Configuration
EPROM Mode
25 PGM 26–27 A0–A1 Address 0,1 Input 28–29 NC No Connection
Prog. Mode Input
30 A2 Address 2 Input 31 GND Ground 32–33 NC No Connection 34 A3 Address 3 Input 35–39 D0–D4 Data 0,1,2,3,4 In/Output 40 NC No Connection
DS97Z8X0502
P R E L I M I N A R Y
7
8
Z86E30/E31/E40 Z8 4K OTP Microcontroller Zilog
PIN IDENTIFICATION (Continued)
D1 D2 D3
D4 NC NC NC
D5
D6
D7
A4
D0A3NCNCGND
6
7
17
A5
A6
NC
GNDA2NCNCA1
1
44-Pin PLCC
CCVCC
A7
NC
V
40
2818
NCNCNC
A0
39
29
CE
Figure 7. 44-Pin PLCC Pin Configuration
EPROM Programming Mode
PGM A10 A11 A9 NC NC NC A8 V
PP
EPM OE
Table 5. 44-Pin PLCC Pin Configuration
EPROM Programming Mode
Pin # Symbol Function Direction
1–2 GND Ground 3–4 NC No Connection 5 A3 Address 3 Input 6–10 D0–D4 Data 0,1,2,3,4 In/Output 11–13 NC No Connection 14–16 D5–D7 Data 5,6,7 In/Output 17–19 A4–A6 Address 4,5,6 Input 20–21 NC No Connection 22 A7 Address 7 Input 23–24 V
CC
Power Supply
25–27 NC No Connection 28 CE
Chip Select Input 29 OE Output Enable Input 30 EPM EPROM Prog.
Input
Mode
Table 5. 44-Pin PLCC Pin Configuration
EPROM Programming Mode
Pin # Symbol Function Direction
31 V
PP
Prog. Voltage Input
32 A8 Address 8 Input 33–35 NC No Connection 36 A9 Address 9 Input 37 A11 Address 11 Input 38 A10 Address 10 Input 39 PGM
Prog. Mode Input 40–41 A0,A1 Address 0,1 Input 42–43 NC No Connection 44 A2 Address 2 Input
P R E L I M I N A R Y
DS97Z8X0502
1
Z86E30/E31/E40
Zilog Z8 4K OTP Microcontroller
D1 D2 D3
D4 NC NC NC
D5
D6
D7
A4
D0A3NCNCGND
34
44
1
A5
A6
NCNCNC
44 -Pin QFP
GNDA2NCNCA1
CCVCC
A7
NC
V
2333
12
11
NC
Figure 8. 44-Pin QFP Pin Configuration
EPROM Programming Mode
A0
22
CE
PGM A10 A11 A9 NC NC NC A8 V
PP
EPM OE
Table 6. 44-Pin QFP Pin Identification
EPROM Programming Mode
Pin # Symbol Function Direction
1–2 A5–A6 Address 5,6 Input 3–4 NC No Connection 5 A7 Address 7 Input 6–7 V
CC
Power Supply
8–10 NC No Connection 11 CE
Chip Select Input 12 OE Output Enable Input 13 EPM EPROM Prog.
Input
Mode 14 V
PP
Prog. Voltage Input 15 A8 Address 8 Input
16–18 NC No Connection 19 A9 Address 9 Input 20 A11 Address 11 Input 21 A10 Address 10 Input 22 PGM
Prog. Mode Input
Table 6. 44-Pin QFP Pin Identification
EPROM Programming Mode
Pin # Symbol Function Direction
23–24 A0,A1 Address 0,1 Input 25–26 NC No Connection 27 A2 Address 2 Input 28–29 GND Ground 30–31 NC No Connection 32 A3 Address 3 Input 33–37 D0–D4 Data 0,1,2,3,4 In/Output 38–40 NC No Connection 41–43 D5–D7 Data 5,6,7 In/Output 44 A4 Address 4 Input
DS97Z8X0502
P R E L I M I N A R Y
9
Z86E30/E31/E40
D5 D6 D7 A4 A5 A6 A7
V
CC
NC CE OE
EPM
V
PP
A8
D4 D3 D2 D1 D0 A3 V
SS
A2 A1 A0 PGM A10 A11 A9
28
28-Pin DIP
1
14 15
25
19
5
11
18
12
264
28-Pin PLCC
1
XXX XXX XXX XXX XXX XXX XXX
XXX XXX XXX XXX XXX XXX XXX
P21 P20 P03 V
SS
P02 P01 P00
P05 P06 P07 V
CC
XT2 XT1 P31
P04
P27
P26
P25
P24
P23
P22
P32
P33
P34
P35
P37
P36
P30
Z8 4K OTP Microcontroller Zilog
PIN IDENTIFICATION (Continued)
P25 P26 P27 P04 P05 P06 P07 V
XTAL2 XTAL1
P31 P32 P33 P34
28-Pin DIP/SOIC Pin Configuration
1
28-Pin DIP
CC
14 15
Figure 9. Standard Mode
28
P24 P23 P22 P21 P20 P03 V
SS
P02 P01 P00 P30 P36 P37 P35
Figure 10. EPROM Programming Mode
28-Pin DIP/SOIC Pin Configuration
Table 7. 28-Pin DIP/SOIC/PLCC
Pin Identification*
Pin # Symbol Function Direction
1–3 P25–P27 Port 2, Pins 5,6, In/Output 4–7 P04–P07 Port 0, Pins 4,5,6,7 In/Output 8VCCPower Supply
9 XTAL2 Crystal Oscillator Output 10 XTAL1 Crystal Oscillator Input 11–13 P31–P33 Port 3, Pins 1,2,3 Input 14–15 P34–P35 Port 3, Pins 4,5 Output 16 P37 Port 3, Pin 7 Output 17 P36 Port 3, Pin 6 Output 18 P30 Port 3, Pin 0 Input 19–21 P00–P02 Port 0, Pins 0,1,2 In/Output 22 V
23 P03 Port 0, Pin 3 In/Output 24–28 P20–P24 Port 2, Pins
10 P R E L I M I N A R Y DS97Z8X0502
SS
Ground
0,1,2,3,4
In/Output
Figure 11. Standard Mode
28-Pin PLCC Pin Configuration
Z86E30/E31/E40
1
Zilog Z8 4K OTP Microcontroller
Table 8. 28-Pin EPROM
Pin Identification
Pin # Symbol Function Direction
1–3 D5–D7 Data 5,6,7 In/Output 4–7 A4–A7 Address 4,5,6,7 Input 8VCCPower Supply
9 NC No connection 10 CE
Chip Select Input 11 OE Output Enable Input 12 EPM EPROM Prog.
Input
Mode 13 V
PP
Prog. Voltage Input 14–15 A8–A9 Address 8,9 Input
16 A11 Address 11 Input 17 A10 Address 10 Input 18 PGM
Prog. Mode Input
XXX
A5
XXX
A6
XXX
A7
XXX
VCC
XXX
NC
XXX
CE
XXX
OE
A4D7D6D5D4D3D2
1
5
28-Pin PLCC
11
12
PP
A8
A9
V
EPM
A11
264
18
A10
25
19
PGM
XXX
D1 XXX
D0 XXX
A3 XXX
V
SS
XXX
A2 XXX
A1 XXX
A0
19–21 A0–A2 Address 0,1,2 Input
Figure 12. EPROM Programming Mode
28-Pin PLCC Pin Configuration
22 V
SS
Ground 23 A3 Address 3 Input
24–28 D0–D4 Data 0,1,2,3,4 In/Output
DS97Z8X0502 P R E L I M I N A R Y 11
Z86E30/E31/E40 Z8 4K OTP Microcontroller Zilog
ABSOLUTE MAXIMUM RATINGS
Parameter Min Max Units
Ambient Temperature under Bias –40 +105 C Storage Temperature –65 +150 C Voltage on any Pin with Respect to V
Voltage on V Voltage on XTAL1 and RESET
Pin with Respect to V
DD
Pins with Respect to VSS [Note 2] –0.6 VDD+1 V
Total Power Dissipation 1.21 W Maximum Allowable Current out of V
Maximum Allowable Current into V Maximum Allowable Current into an Input Pin [Note 3] –600 +600 µA
Maximum Allowable Current into an Open-Drain Pin [Note 4] –600 +600 µA Maximum Allowable Output Current Sinked by Any I/O Pin 25 mA Maximum Allowable Output Current Sourced by Any I/O Pin 25 mA Maximum Allowable Output Current Sinked by RESET
Notes:
1. This applies to all pins except XTAL pins and where otherwise noted.
2. There is no input protection diode from pin to V
3. This excludes XTAL pins.
4. Device pin is not at an output Low state.
[Note 1] –0.6 +7 V
SS
SS
SS
DD
–0.3 +7 V
220 mA 180 mA
Pin 3 mA
.
DD
Stresses greater than those listed under Absolute Maxi­mum Ratings may cause permanent damage to the de­vice. This is a stress rating only; functional operation of the device at any condition above those indicated in the oper­ational sections of these specifications is not implied. Ex­posure to absolute maximum rating conditions for an ex­tended period may affect device reliability.
STANDARD TEST CONDITIONS
The characteristics listed below apply for standard test conditions as noted. All voltages are referenced to Ground. Positive current flows into the referenced pin (Test Load).
Total power dissipation should not exceed 1.2 W for the package. Power dissipation is calculated as follows:
Total Power Dissipation = VDD x [ IDD – (sum of IOH) ] + sum of [ (VDD – VOH) x IOH ] + sum of (V0L x I0L)
From Output
Under Test
150 pF
Figure 13. Test Load Diagram
12 P R E L I M I N A R Y DS97Z8X0502
Z86E30/E31/E40
1
Zilog Z8 4K OTP Microcontroller
CAPACITANCE
TA = 25°C, VCC = GND = 0V, f = 1.0 MHz; unmeasured pins returned to GND.
Parameter Min Max
Input capacitance 0 12 pF Output capacitance 0 12 pF I/O capacitance 0 12 pF
DC ELECTRICAL CHARACTERISTICS
V
CC
Sym Parameter
V
CH
V
CL
V
IH
V
IL
V
OH
Clock Input High Voltage 3.5V
Clock Input Low Voltage 3.5V
Input High Voltage 3.5V
Input Low Voltage 3.5V
Output High Voltage Low EMI Mode
V
V
OH1
OL
Output High Voltage 3.5V
Output Low Voltage Low EMI Mode
V
V
V
OL1
OL2
RH
Output Low Voltage 3.5V
Output Low Voltage 3.5V
Reset Input High Voltage
V
V
RL
OLR
Reset Input Low Voltage 3.5V
Reset Output Low Voltage
V
OFFSET
Comparator Input Offset Voltage
V
ICR
Input Common Mode Voltage Range
I
IL
I
OL
I
IR
Input Leakage 3.5V
Output Leakage 3.5V
Reset Input Current 3.5V
Note [3] Min Max
5.5V
4.5V
5.5V
5.5V
3.5V
5.5V
5.5V
3.5V
4.5V
4.5V
4.5V
3.5V
5.5V
5.5V
3.5V
5.5V
3.5V
4.5V
3.5V
5.5V
4.5V
4.5V
4.5V
TA= 0 °C to +70 °C
0.7 V
CC
0.7 V
CC
GND -0.3 GND -0.3
0.7 V
CC
0.7 V
CC
GND -0.3 GND -0.3
VCC+0.3 V
CC
0.2 V
0.2 V
VCC+0.3 V
CC
0.2 V
0.2 V
VCC -0.4 V
-0.4
CC
VCC -0.4 V
-0.4
CC
.8 V
CC
.8 V
CC
GND -0.3 GND -0.3
0 0
0.2 V
0.2 V
VCC -1.0V V
CC
-1
-1
-1
-1
-20
-20
+0.3
+0.3
0.4
0.4
0.4
0.4
1.2
1.2
V
CC
V
CC
0.6
0.6 25
25
-1.0V 2
2 2
2
-130
-180
Typical @ 25°C Units Conditions Notes
CC CC
CC CC
1.8
2.5
0.9
1.5
2.5
2.5
1.5
1.5
3.3
VVDriven by External
Clock Generator
VVDriven by External
Clock Generator
V V
V V
VVI
= – 0.5 mA
OH
4.8 = -2.0 mA
OH
I
= -2.0 mA
OH
I
= 1.0 mA
OL
I
= + 4.0 mA
OL
I
= + 12 mA
OL
I
= 1.0 mA
OL
CC CC
3.3
4.8
0.2
0.2
0.1
0.1
0.5
0.5
1.7
2.1
1.3
1.7
0.3
0.2
10 10
VVI
VVIOL = 1.0 mA
VVIOL = + 4.0 mA
VVIOL = + 12 mA
V V
V V
VVIOL = 1.0 mA
mV mV
V V
0.032
0.032
0.032
0.032
-65
-112
µAµAVIN = 0V, V
VIN = 0V, V
µAµAVIN = 0V, V
VIN = 0V, V
µA µA
CC CC
CC CC
8 8
8 8
13
10 10
DS97Z8X0502 P R E L I M I N A R Y 13
Z86E30/E31/E40 Z8 4K OTP Microcontroller Zilog
DC ELECTRICAL CHARACTERISTICS (Continued)
TA= 0 °C to +70 °C
V
CC
Sym Parameter
I
CC
Supply Current 3.5V
Note [3] Min Max
5.5V
I
CC1
Standby Current Halt Mode
3.5V
5.5V
3.5V
5.5V
I
CC2
Standby Current Stop Mode
3.5V
5.5V
3.5V
5.5V
I
ALL
I
ALH
T
POR
V
LV
Notes:
1. Device does function down to the Auto Reset voltage.
2. GND=0V
3. The V
4. All outputs unloaded, I/O pins floating, inputs at rail.
5. CL1= CL2 = 22 pF
6. Same as note [4] except inputs at V
7. Max. temperature is 70°C.
8. STD Mode (not Low EMI Mode)
9. Auto Latch (mask option) selected
10. For analog comparator inputs when analog comparators are
11. Clock must be forced Low, when XTAL1 is clock driven and XTAL2
12. Typicals are at V
13. Z86E40 only
14. WDT running
Auto Latch Low Current
Auto Latch High Current
Power On Reset 3.5V
3.5V
5.5V
3.5V
5.5V
5.5V
0.7
1.4
-0.6
-1
3.0
2.0
Auto Reset Voltage 2.3 3.1 2.9 V 1,7
voltage specification of 5.5V guarantees 5.0V ± 0.5V and
CC
the V
enabled. is floating.
voltage specification of 3.5V guarantees only 3.5V.
CC
CC.
= 5.0V and VCC = 3.5V
CC
20 25
8 8
7.0
7.0 10
10
800 800
8
15
-5
-8
24 13
Typical @ 25°C Units Conditions Notes
7
20
3.7
3.7
2.9
2.9 2
3
600 600
mAmA@ 16 MHz
@ 16 MHz
mAmAVIN = 0V, VCC
@ 16 MHz
mAmAClock Divide by
16 @ 16 MHz
µA
VIN = 0V, VCC
µA
V
= 0V, V
µA µA
IN
VIN = 0V, V VIN = 0V, V
CC CC CC
4,5 4,5
4,5 4,5
4,5 4,5
6,11 6,11
6,11,1
4
6,11,1
4
2.4
4.7
-1.8
-3.8 7
4
µAµA0V <VIN<V
0V <VIN<V
µAµA0V<VIN<V
0V<VIN<V
ms ms
CC CC
CC CC
9 9
9 9
14 P R E L I M I N A R Y DS97Z8X0502
Z86E30/E31/E40
1
Zilog Z8 4K OTP Microcontroller
TA=–40 °C to +105 °C
Sym Parameter
V
CH
Clock Input High Voltage
V
CL
Clock Input Low Voltage
V
IH
V
IL
V
OH
Input High Voltage 4.5V
Input Low Voltage 4.5V
Output High Voltage Low EMI Mode
V
V
OH1
OL
Output High Voltage 4.5V
Output Low Voltage Low EMI Mode
V
V
V
OL1
OL2
RH
Output Low Voltage 4.5V
Output Low Voltage 4.5V
Reset Input High Voltage
V
OLR
Reset Output Low Voltage
V
OFFSET
Comparator Input Offset V oltage
V
ICR
Input Common Mode V oltage Range
I
IL
I
OL
I
IR
I
CC
I
CC1
Input Leakage 4.5V
Output Leakage 4.5V
Reset Input Current 4.5V
Supply Current 4.5V
Standby Current Halt Mode
V
CC
Note [3] Min Max
4.5V
5.5V
4.5V
5.5V
5.5V
5.5V
4.5V
5.5V
0.7 V
CC
0.7 V
CC
GND-0.3 GND-0.3
0.7 V
CC
0.7 V
CC
GND-0.3 GND-0.3
VCC -0.4 V
-0.4
CC
VCC+0.3 V
+0.3
CC
0.2 V
0.2 V
VCC+0.3 V
+0.3
CC
0.2 V
0.2 V
VCC -0.4
4.5V
4.5V
5.5V
V
-0.4
CC
0.4
0.4
0.4
5.5V
0.4
1.2
5.5V
3.5V
5.5V
3.5V
5.5V
4.5V
5.5V
4.5V
5.5V
5.5V
5.5V
5.5V
.8 V .8 V
-18
-18
CC CC
0 0
-1
-1
-1
-1
1.2
V
CC
V
CC
0.6
0.6 25
25
VCC-1.5V V
-1.5V
CC
2 2
2 2
-180
-180 25
5.5V
4.5V
5.5V
25
8 8
CC CC
CC CC
Typical @ 25°C Units Conditions Notes
2.5
2.5
1.5
1.5
2.5
2.5
1.5
1.5
4.8
4.8
4.8
4.8
0.2
0.2
0.1
0.1
0.5
0.5
1.7
2.1
0.3
0.2
10 10
<1 <1
<1 <1
-112
-112 20
20
3.7
VVDriven by External
Clock Generator
VVDriven by External
Clock Generator
V V
V V
VVI
VVI
= – 0.5 mA
OH
I
= – 0.5 mA
OH
= -2.0 mA
OH
I
= -2.0 mA
OH
VVIOL = 1.0 mA
I
= 1.0 mA
OL
VVIOL = + 4.0 mA
I
= +4.0 mA
OL
VVIOL = + 12 mA
I
= + 12 mA
OL
V V
VVIOL = 1.0 mA
I
= 1.0 mA
OL
mV mV
V V
µAµAVIN = 0V, V
VIN = 0V, V
µAµAVIN = 0V, V
VIN = 0V, V
CC CC
CC CC
µA µA
mAmA@ 16 MHz
@ 16 MHz
mAmAVIN = 0V, VCC
13 13
13 13
10 10
4,5 4,5
4,5
@ 16 MHz
3.7
V
= 0V, VCC
IN
4,5
8 8
8 8
8 8
8 8
@ 16 MHz
I
CC2
I
ALL
Standby Current (Stop Mode)
Auto Latch Low Current
4.5V
5.5V
4.5V
5.5V
1.4
1.4
10 10
20 20
2 3
4.7
4.7
µAµAVIN = 0V, VCC
V
= 0V, V
IN
µAµA0V < VIN < V
0V < VIN < V
CC
CC CC
6,11,14 6,11,14
9 9
DS97Z8X0502 P R E L I M I N A R Y 15
Z86E30/E31/E40 Z8 4K OTP Microcontroller Zilog
DC ELECTRICAL CHARACTERISTICS (Continued)
TA=–40 °C to +105 °C
V
CC
Sym Parameter
I
ALH
Auto Latch High Current
T
POR
V
LV
1. Device does function down to the Auto Reset voltage.
2. GND=0V
3. The V
4. All outputs unloaded, I/O pins floating, inputs at rail.
5. CL1= CL2 = 22 pF
6. Same as note [4] except inputs at VCC.
7. Maximum temperature is 70°C
8. STD Mode (not Low EMI Mode)
9. Auto Latch (mask option) selected
10. For analog comparator inputs when analog comparators are
11. Clock must be forced Low, when XTAL1 is clock driven and XTAL2
12. Typicals are at V
13. Z86E40 only
14. WDT is not running.
Power On Reset 4.5V
Auto Reset Voltage 2.0 3.3 2.9 V 1
voltage specification of 5.5V guarantees 5.0V ± 0.5V.
CC
enabled. is floating.
= 5.0V
CC
Note [3] Min Max
4.5V
5.5V
5.5V
-1.0
-1.0
2.0
2.0
-10
-10 14
14
Typical @ 25°C Units Conditions Notes
-3.8
-3.8 4
4
µAµA0V < VIN < V
0V < VIN < V
mS mS
CC CC
9 9
16 P R E L I M I N A R Y DS97Z8X0502
Z86E30/E31/E40
1
Zilog Z8 4K OTP Microcontroller
R/W , DM
Port 0
Port 1
AS
DS
(Read)
Port1
12
18 3
A7 - A0 D7 - D0 IN
21
4
5
17
13 19
16
8 11
6
20
9
10
D7 - D0 OUTA7 - A0
DS
(Write)
14
7
Figure 14. External I/O or Memory Read/Write Timing
Z86E40 Only
15
DS97Z8X0502 P R E L I M I N A R Y 17
Z86E30/E31/E40 Z8 4K OTP Microcontroller Zilog
DC ELECTRICAL CHARACTERISTICS (Continued)
TA = 0°C to 70°C
16 MHz
Note [3]
No Symbol Parameter
1 TdA(AS) Address Valid to AS Rise
Delay
2 TdAS(A) AS Rise to Address Float
Delay
3 TdAS(DR) AS Rise to Read Data Req’d
V alid
4 TwAS AS Low Width 3.5V
5 TdAS(DS) Address Float to DS Fall 3.5V
6 TwDSR DS (Read) Low Width 3.5V
7 TwDSW DS (Write) Low Width 3.5V
8 TdDSR(DR) DS Fall to Read Data Req’d
Valid
9 ThDR(DS) Read Data to DS Rise Hold
Time
10 TdDS(A) DS Rise to Address Active
Delay
11 TdDS(AS) DS Rise to AS Fall Delay 3.5V
12 TdR/W(AS) R/W Valid to AS Rise Delay 3.5V
13 TdDS(R/W) DS Rise to R/W Not Valid 3.5V
14 TdDW(DSW) Write Data Valid to DS Fall
(Write) Delay
15 TdDS(DW) DS Rise to Write Data Not
Valid Delay
16 TdA(DR) Address Valid to Read Data
Req’d Valid
17 TdAS(DS) AS Rise to DS Fall Delay 3.5V
18 TdDM(AS) DM Valid to AS Fall Delay 3.5V
20 ThDS(AS) DS Valid to Address Valid
Hold Time
Notes:
1. When using extended memory timing, add 2 TpC.
2. Timing numbers given are for minimum TpC.
3. The V the V
Standard Test Load
All timing references use 0.7 V For Standard Mode (not Low-EMI Mode for outputs) with SMR D1 = 0, D0 = 0.
voltage specification of 5.5V guarantees 5.0V ±0.5V and
CC
voltage specification of 3.5V guarantees only 3.5V
CC
for a logic 1 and 0.2 VCC for a logic 0.
CC
V
CC
3.5V
5.5V
3.5V
5.5V
3.5V
5.5V
5.5V
5.5V
5.5V
5.5V
3.5V
5.5V
3.5V
5.5V
3.5V
5.5V
5.5V
5.5V
5.5V
3.5V
5.5V
3.5V
5.5V
3.5V
5.5V
5.5V
5.5V
3.5V
5.5V
Min Max Units Notes
25 25
35 35
40 40
0 0
135 135
80 80
0 0
50 50
35 35
25 25
35 35
55 55
35 35
45 45
30 30
35 35
180 180
75 75
25 25
230 230
ns ns
ns ns
ns ns
ns ns
ns ns
ns ns
ns ns
ns ns
ns ns
ns ns
ns ns
ns ns
ns ns
ns ns
ns ns
ns ns
ns ns
ns ns
ns ns
2
2
1,2
2
1,2
1,2
1,2
2
2
2
2
2
2
2
1,2
2
2
18 P R E L I M I N A R Y DS97Z8X0502
Z86E30/E31/E40
1
Zilog Z8 4K OTP Microcontroller
TA = -40°C to 105°C
16 MHz
Note [3]
No Symbol Parameter
1 TdA(AS) Address Valid to AS Rise
Delay
2 TdAS(A) ASAS Rise to Address Float
Delay
3 TdAS(DR) AS Rise to Read Data Req’d
V alid
4 TwAS AS Low Width 4.5V
5 TdAS(DS) Address Float to DS Fall 4.5V
6 TwDSR DS (Read) Low Width 4.5V
7 TwDSW DS (Write) Low Width 4.5V
8 TdDSR(DR) DS Fall to Read Data Req’d
Valid
9 ThDR(DS) Read Data to DS Rise Hold
Time
10 TdDS(A) DS Rise to Address Active
Delay
11 TdDS(AS) DS Rise to AS Fall Delay 4.5V
12 TdR/W(AS) R/W Valid to AS Rise Delay 4.5V
13 TdDS(R/W) DS Rise to R/W Not Valid 4.5V
14 TdDW(DSW) Write Data Valid to DS Fall
(Write) Delay
15 TdDS(DW) DS Rise to Write Data Not
Valid Delay
16 TdA(DR) Address Valid to Read Data
Req’d Valid
17 TdAS(DS) AS Rise to DS Fall Delay 4.5V
18 TdDM(AS) /DM Valid to AS Fall Delay 4.5V
20 ThDS(AS) DS Valid to Address Valid
Hold Time
Notes:
1. When using extended memory timing, add 2 TpC.
2. Timing numbers given are for minimum TpC.
3. The V the V
Standard Test Load
All timing references use 0.7 V For Standard Mode (not Low-EMI Mode for outputs) with SMR, D1 = 0, D0 = 0.
voltage specification of 5.5V guarantees 5.0V ±0.5V and
CC
voltage specification of 3.5V guarantees only 3.5V
CC
for a logic 1 and 0.2 VCC for a logic 0.
CC
V
CC
4.5V
5.5V
4.5V
5.5V
4.5V
5.5V
5.5V
5.5V
5.5V
5.5V
4.5V
5.5V
4.5V
5.5V
4.5V
5.5V
5.5V
5.5V
5.5V
4.5V
5.5V
4.5V
5.5V
4.5V
5.5V
5.5V
5.5V
4.5V
5.5V
Min Max Units Notes
25 25
35 35
40 40
0 0
135 135
80 80
0 0
50 50
35 35
25 25
35 35
55 55
35 35
45 45
30 30
35 35
180 180
75 75
25 25
230 230
ns ns
ns ns
ns ns
ns ns
ns ns
ns ns
ns ns
ns ns
ns ns
ns ns
ns ns
ns ns
ns ns
ns ns
ns ns
ns ns
ns ns
ns ns
ns ns
2
2
1,2
2
1,2
1,2
1,2
2
2
2
2
2
2
2
1,2
2
2
DS97Z8X0502 P R E L I M I N A R Y 19
Z86E30/E31/E40 Z8 4K OTP Microcontroller Zilog
DC ELECTRICAL CHARACTERISTICS (Continued)
Clock
TIN
IRQN
Clock
Setup
Stop
Mode
Recovery
Source
7 7
8
1
2 2 3
4
5
6
9
10
3
11
Figure 15. Additional Timing Diagram
20 P R E L I M I N A R Y DS97Z8X0502
Z86E30/E31/E40
1
Zilog Z8 4K OTP Microcontroller
Additional Timing Table (Divide-By-One Mode)
TA = 0 °C to +70 °C TA = -40 °C to +105 °C
4 MHz 4 MHz
V
CC
No Symbol Parameter
1 TpC Input Clock Period 3.5V
2 T rC ,TfC Clock Input Rise &
Fall Times
3 TwC Input Clock Width 3.5V
4 TwTinL Timer Input Low
Width
5 TwTinH Timer Input High
Width
6 TpTin Timer Input Period 3.5V
7 TrTin, TfTin Timer Input Rise
& Fall Timer
8A TwIL Int. Request Low
Time
8B TwIL Int. Request Low
Time
9 TwIH Int. Request Input
High Time
10 Twsm STOP Mode
Recovery Width Spec
11 Tost Oscillator Startup
Time
Notes:
1. Timing Reference uses 0.7 V
2. Interrupt request via Port 3 (P31–P33).
3. Interrupt request via Port 3 (P30).
4. SMR-D5 = 1, POR STOP Mode Delay is on.
5. Reg. WDTMR.
6. The V the V
7. SMR D1 = 0.
8. Maximum frequency for internal system clock is 4 MHz when using XTAL divide-by-one mode.
9. For RC and LC oscillator, and for oscillator driven by clock driver.
voltage specification of 5.5V guarantees 5.0V ± 0.5V and
CC
voltage specification of 3.5V guarantees 3.5V only.
CC
for a logic 1 and 0.2 VCC for a logic 0.
CC
Note [6] Min Max Min Max Units Notes
5.5V
3.5V
5.5V
5.5V
3.5V
5.5V
3.5V
5.5V
5.5V
3.5V
5.5V
3.5V
5.5V
3.5V
5.5V
3.5V
5.5V
3.5V
5.5V
3.5V
5.5V
250 250
100 100
100
70
5TpC 5TpC
8TpC 8TpC
100
70
5TpC 5TpC
5TpC 5TpC
12 12
DC DC
25 25
100 100
5TpC 5TpC
250 250
100 100
100
70
5TpC 5TpC
8TpC 8TpC
100
70
5TpC 5TpC
5TpC 5TpC
12 12
DC DC
25 25
ns ns
ns ns
ns ns
ns ns
1,7,8 1,7,8
1,7,8 1,7,8
1,7,8 1,7,8
1,7,8 1,7,8
1,7,8 1,7,8
1,7,8 1,7,8
100 100
ns
ns ns
ns
1,7,8 1,7,8
1,2,7,8 1,2,7,8
1,3,7,8 1,3,7,8
1,2,7,8 1,2,7,8
ns ns
4,8 4,8
5TpC 4,8,9
DS97Z8X0502 P R E L I M I N A R Y 21
Z86E30/E31/E40 Z8 4K OTP Microcontroller Zilog
DC ELECTRICAL CHARACTERISTICS (Continued)
Handshake Timing Diagrams
Data In
DAV
(Input)
RDY
(Output)
Data Out
Data In Valid
1
7
Next Data In Valid
2
3
Delayed DAV
4 5 6
Delayed RDY
Figure 16. Input Handshake Timing
Data Out Valid
Next Data Out Valid
DAV
(Output)
RDY
(Input)
8 9
10
Figure 17. Output Handshake Timing
Delayed DAV
11
Delayed RDY
22 P R E L I M I N A R Y DS97Z8X0502
Z86E30/E31/E40
1
Zilog Z8 4K OTP Microcontroller
Additional Timing Table
TA = -40 °C to +105 °C
16 MHz
V
CC
No Symbol Parameter
1 TpC Input Clock Period 3.5V
2 TrC,TfC Clock Input Rise &
Fall Times
3 TwC Input Clock Width 3.5V
4 TwTinL Timer Input Low
Width
5 TwTinH Timer Input High
Width
6 TpTin Timer Input Period 3.5V
7 TrTin, TfTin Timer Input Rise
& Fall Timer
8A TwIL Int. Request Low
Time
8B TwIL Int. Request Low
Time
9 TwIH Int. Request Input
High Time
10 Twsm STOP Mode
Recovery Width Spec
11 Tost Oscillator Startup
Time
12 T wdt Watch-Dog Timer
Delay Time Before Timeout
Notes:
1. Timing Reference uses 0.7 V
2. Interrupt request via Port 3 (P31–P33)
3. Interrupt request via Port 3 (P30)
4. SMR-D5 = 1, POR STOP Mode Delay is on
5. Reg. WDTMR
6. The V
7. SMR D1 = 0
8. Maximum frequency for internal system clock is 4 MHz when using XTAL divide-by-one mode.
9. For RC and LC oscillator, and for oscillator driven by clock driver.
10. Standard Mode (not Low EMI output ports)
11. Using internal RC
voltage spec. of 5.5V guarantees 5.0V ± 0.5V.
CC
for a logic 1 and 0.2 VCC for a logic 0.
CC
Note [6] Min Max Units Conditions Notes
5.5V
3.5V
5.5V
5.5V
3.5V
5.5V
3.5V
5.5V
5.5V
3.5V
5.5V
3.5V
5.5V
3.5V
5.5V
3.5V
62.5
62.5
31 31
70 70
5TpC 5TpC
8TpC
8TpC
70 70
5TpC 5TpC
5TpC 1,2,7,8
DC DC
15
15
100 100
ns ns
ns ns
ns ns
ns ns
ns ns
ns ns
1,7,8 1,7,8
1,7,8 1,7,8
1,7,8 1,7,8
1,7,8 1,7,8
1,7,8 1,7,8
1,7,8 1,7,8
1,7,8 1,7,8
1,2,7,8 1,2,7,8
1,3,7,8 1,3,7,8
5.5V
3.5V
5.5V
3.5V
5.5V
3.5V
5.5V
3.5V
5.5V
3.5V
5.5V
3.5V
5.5V
12 12
10
5
20
10
40
20
160
80
5TpC 5TpC
ns ns
ms ms
ms ms
ms ms
ms ms
D0 = 0 D1 = 0
D0 = 1 D1 = 0
D0 = 0 D1 = 1
D0 = 1 D1 = 1
4,8 4,8
4,8 4,8
5,11 5,11
5,11 5,11
5,11 5,11
5,11 5,11
DS97Z8X0502 P R E L I M I N A R Y 23
Z86E30/E31/E40 Z8 4K OTP Microcontroller Zilog
PIN FUNCTIONS
R/W
EPROM Programming Mode
D7–D0 Data Bus. The data can be read from or written to
external memory through the data bus. A11–A0 Address Bus. During programming, the EPROM
address is written to the address bus.
VCC Power Supply. This pin must supply 5V during the
EPROM read mode and 6V during other modes. CE Chip Enable (active Low). This pin is active during
EPROM Read Mode, Program Mode, and Program Verify Mode.
OE Output Enable (active Low). This pin drives the direc­tion of the Data Bus. When this pin is Low, the Data Bus is output, when High, the Data Bus is input.
EPM EPROM Program Mode. This pin controls the differ­ent EPROM Program Mode by applying different voltages.
Program Voltage. This pin supplies the program volt-
V
PP
age. PGM Program Mode (active Low). When this pin is Low,
the data is programmed to the EPROM through the Data Bus.
Application Precaution
The production test-mode environment may be enabled accidentally during normal operation if excessive noise surges above VCC occur on pins XTAL1 and RESET.
In addition, processor operation of Z8 OTP devices may be affected by excessive noise surges on the VPP, CE, EPM, OE pins while the microcontroller is in Standard Mode.
Recommendations for dampening voltage surges in both test and OTP mode include the following:
Read/Write (output, write Low). The R/W signal is Low when the CCP is writing to the external program or data memory (Z86E40 only).
RESET Reset (input, active Low). Reset will initialize the MCU. Reset is accomplished either through Power-On, Watch-Dog Timer reset, STOP-Mode Recovery, or exter­nal reset. During Power-On Reset and Watch-Dog Timer Reset, the internally generated reset drives the reset pin low for the POR time. Any devices driving the reset line must be open-drain in order to avoid damage from a pos­sible conflict during reset conditions. Pull-up is provided in­ternally. After the POR time, RESET input.
To avoid asynchronous and noisy reset problems, the Z86E40 is equipped with a reset filter of four external clocks (4TpC). If the external reset signal is less than 4TpC in duration, no reset occurs. On the fifth clock after the re­set is detected, an internal RST signal is latched and held for an internal register count of 18 external clocks, or for the duration of the external reset, whichever is longer. Dur­ing the reset cycle, DS is held active Low while AS cycles at a rate of TpC/2. Program execution begins at location 000CH, 5–10 TpC cycles after RESET is released. For Power-On Reset, the reset output time is 5 ms. The Z86E40 does not reset WDTMR, SMR, P2M, and P3M registers on a STOP-Mode Recovery operation.
ROMless (input, active Low). This pin, when connected to GND, disables the internal ROM and forces the device to function as a Z86C90/C89 ROMless Z8. (Note that, when left unconnected or pulled High to VCC, the device func­tions normally as a Z8 ROM version).
Note: When using in ROM Mode in High EMI (noisy) envi­ronment, the ROMless pins should be connected directly to VCC.
is a Schmitt-triggered
Using a clamping diode to V
Adding a capacitor to the affected pin
CC
Standard Mode
XTAL Crystal 1 (time-based input). This pin connects a
parallel-resonant crystal, ceramic resonator, LC, RC net­work, or external single-phase clock to the on-chip oscilla­tor input.
XTAL2 Crystal 2 (time-based output). This pin connects a parallel-resonant crystal, ceramic resonator, LC, or RC network to the on-chip oscillator output.
24 P R E L I M I N A R Y DS97Z8X0502
Z86E30/E31/E40
1
Zilog Z8 4K OTP Microcontroller Port 0 (P07–P00). Port 0 is an 8-bit, bidirectional, CMOS-
compatible I/O port. These eight I/O lines can be config­ured under software control as a nibble I/O port, or as an address port for interfacing external memory. The input buffers are Schmitt-triggered and nibble programmed. Ei­ther nibble output that can be globally programmed as push-pull or open-drain. Low EMI output buffers can be globally programmed by the software. Port 0 can be placed under handshake control. In Handshake Mode, Port 3 lines P32 and P35 are used as handshake control lines. The handshake direction is determined by the configura­tion (input or output) assigned to Port 0's upper nibble. The lower nibble must have the same direction as the upper nibble.
For external memory references, Port 0 provides address bits A11–A8 (lower nibble) or A15–A8 (lower and upper
4
nibble) depending on the required address space. If the address range requires 12 bits or less, the upper nibble of Port 0 can be programmed independently as I/O while the lower nibble is used for addressing. If one or both nibbles are needed for I/O operation, they must be configured by writing to the Port 0 mode register. In ROMless mode, after a hardware reset, Port 0 is configured as address lines A15–A8, and extended timing is set to accommodate slow memory access. The initialization routine can include re­configuration to eliminate this extended timing mode. In ROM mode, Port 0 is defined as input after reset.
Port 0 can be set in the High-Impedance Mode if selected as an address output state, along with Port 1 and the con­trol signals AS
Port 0 (I/O)
, DS, and R/W (Figure 18).
Open-Drain
OEN
Out
In
4
Handshake Controls /DAV0 and RDY0 (P32 and P35)
PAD
1.5 2.3V Hysteresis
Auto Latch
R 500 k
Figure 18. Port 0 Configuration
DS97Z8X0502 P R E L I M I N A R Y 25
Z86E30/E31/E40 Z8 4K OTP Microcontroller Zilog
PIN FUNCTIONS (Continued)
Port 1 (P17–P10). Port 1 is an 8-bit, bidirectional, CMOS-
compatible port with multiplexed Address (A7–A0) and Data (D7–D0) ports. These eight I/O lines can be pro­grammed as inputs or outputs or can be configured under software control as an Address/Data port for interfacing external memory. The input buffers are Schmitt-triggered and the output buffers can be globally programmed as ei­ther push-pull or open-drain. Low EMI output buffers can be globally programmed by the software. Port 1 can be placed under handshake control. In this configuration, Port 3, lines P33 and P34 are used as the handshake controls
MCU
RDY1 and /DAV1 (Ready and Data Available). To inter­face external memory, Port 1 must be programmed for the multiplexed Address/Data mode. If more than 256 external locations are required, Port 0 outputs the additional lines (Figure 19).
Port 1 can be placed in the high-impedance state along with Port 0, AS, DS, and R/W, allowing the Z86E40 to share common resources in multiprocessor and DMA ap­plications.
Port 2 (I/O)
Handshake Controls DAV1 and RDY1 (P33 and P34)
Open-Drain
OEN
Out
In
PAD
1.5 2.3V Hysteresis
Auto Latch
R 500 k
Figure 19. Port 1 Configuration (Z86E40 Only)
26 P R E L I M I N A R Y DS97Z8X0502
Z86E30/E31/E40
1
Zilog Z8 4K OTP Microcontroller Port 2 (P27–P20). Port 2 is an 8-bit, bidirectional, CMOS-
compatible I/O port. These eight I/O lines can be config­ured under software control as an input or output, indepen­dently. All input buffers are Schmitt-triggered. Bits pro­grammed as outputs can be globally programmed as either push-pull or open-drain. Low EMI output buffers can
Z86E40
MCU
be globally programmed by the software. When used as an I/O port, Port 2 can be placed under handshake control.
In Handshake Mode, Port 3 lines P31 and P36 are used as handshake control lines. The handshake direction is deter­mined by the configuration (input or output) assigned to bit 7 of Port 2 (Figure 20).
Port 2 (I/O)
Handshake Controls DAV2 and RDY2 (P31 and P36)
Open-Drain
OEN
Out
In
PAD
TTL Level Shifter
Auto Latch
R 500 K
Figure 20. Port 2 Configuration
DS97Z8X0502 P R E L I M I N A R Y 27
Z86E30/E31/E40 Z8 4K OTP Microcontroller Zilog
PIN FUNCTIONS (Continued)
Port 3 (P37–P30). Port 3 is an 8-bit, CMOS-compatible
port with four fixed inputs (P33–P30) and four fixed outputs (P37–P34). These eight lines can be configured by soft­ware for interrupt and handshake control functions. Port 3, Pin 0 is Schmitt- triggered. P31, P32, and P33 are stan­dard CMOS inputs with single trip point (no Auto Latches) and P34, P35, P36, and P37 are push-pull output lines. Low EMI output buffers can be globally programmed by the software. Two on-board comparators can process an­alog signals on P31 and P32 with reference to the voltage on P33. The analog function is enabled by setting the D1 of Port 3 Mode Register (P3M). The comparator output can be outputted from P34 and P37, respectively, by setting PCON register Bit D0 to 1 state. For the interrupt function, P30 and P33 are falling edge triggered interrupt inputs. P31 and P32 can be programmed as falling, rising or both edges triggered interrupt inputs (Figure 21). Access to Counter/Timer 1 is made through P31 (T (T
). Handshake lines for Port 0, Port 1, and Port 2 are
OUT
) and P36
IN
also available on Port 3 (Table 9).
Note: When enabling/ or disabling analog mode, the fol­lowing is recommended:
1. Allow two NOP delays before reading this comparator
output.
2. Disable global interrupts, switch to analog mode, clear
interrupts, and then re-enable interrupts.
3. IRQ register bits 3 to 0 must be cleared after enabling
analog mode.
Note: P33–P30 differs from the Z86C30/C31/C40 in that there is no clamping diode to V
due to the EPROM high-
CC
voltage circuits. Exceeding the VIH maximum specification during standard operating mode may cause the device to enter EPROM mode.
28 P R E L I M I N A R Y DS97Z8X0502
Z86E30/E31/E40
1
Zilog Z8 4K OTP Microcontroller
P30
P31 (AN1)
P32 (AN2)
P33 (REF)
Z86E40
+
-
+
-
MCU
R247 = P3M
DIG.
AN.
R 500 K
D1
Port 3 (I/O or Control)
Auto Latch
P30 Data Latch IRQ3
1 = Analog 0 = Digital
IRQ2, Tin, P31 Data Latch
IRQ0, P32 Data Latch
From Stop Mode Recovery Source
IRQ1, P33 Data Latch
Figure 21. Port 3 Configuration
Table 9. Port 3 Pin Assignments
Pin I/O CTC1 Analog Interrupt P0 HS P1 HS P2 HS Ext
P30 IN IRQ3 P31 IN T
IN
AN1 IRQ2 D/R
P32 IN AN2 IRQ0 D/R P33 IN REF IRQ1 D/R P34 OUT AN1-Out R/D /DM P35 OUT R/D P36 OUT T
OUT
R/D
P37 OUT An2-Out
DS97Z8X0502 P R E L I M I N A R Y 29
Z86E30/E31/E40 Z8 4K OTP Microcontroller Zilog
PIN FUNCTIONS (Continued)
Comparator Inputs. Port 3, P31, and P32, each have a
comparator front end. The comparator reference voltage P33 is common to both comparators. In analog mode, P31 and P32 are the positive input of the comparators and P33 is the reference voltage of the comparators.
Auto Latch. The Auto Latch puts valid CMOS levels on all CMOS inputs (except P33–P31) that are not externally driven. Whether this level is 0 or 1, cannot be determined. A valid CMOS level, rather than a floating node, reduces excessive supply current flow in the input buffer. Auto Latches are available on Port 0, Port 2, and P30. There are no Auto Latches on P31, P32, and P33.
Low EMI Emission. The Z86E40 can be programmed to operate in a low EMI Emission Mode in the PCON register. The oscillator and all I/O ports can be programmed as low EMI emission mode independently. Use of this feature re­sults in:
The pre-drivers slew rate reduced to 10 ns typical.
Low EMI output drivers have resistance of 200 Ohms
(typical).
Low EMI Oscillator.
Internal SCLK/TCLK= XTAL operation limited to a
maximum of 4 MHz – 250 ns cycle time, when Low EMI Oscillator is selected and system clock (SCLK = XTAL, SMR Reg. Bit D1 =1).
Note for emulation only:
Do not set the emulator to emulate Port 1 in low EMI mode. Port 1 must always be configured in Standard Mode.
30 P R E L I M I N A R Y DS97Z8X0502
Z86E30/E31/E40
1
Zilog Z8 4K OTP Microcontroller
FUNCTIONAL DESCRIPTION
The MCU incorporates the following special functions to enhance the standard Z8 architecture to provide the user with increased design flexibility.
RESET. The device is reset in one of three ways:
1. Power-On Reset
2. Watch-Dog Timer
3. STOP-Mode Recovery Source Note: Having the Auto Power-On Reset circuitry built-in,
the MCU does not need to be connected to an external power-on reset circuit. The reset time is 5 ms (typical). The MCU does not reinitialize WDTMR, SMR, P2M, and P3M registers to their reset values on a STOP-Mode Recovery operation.
65535
4096 4095
On-Chip One Time PROM
EPROM ROMless
External
ROM and RAM
Note: The device VCC must rise up to the operating V
CC
specification before the TPOR expires. Program Memory. The MCU can address up to 4 KB of
Internal Program Memory (Figure 22). The first 12 bytes of program memory are reserved for the interrupt vectors. These locations contain six 16-bit vectors that correspond to the six available interrupts. For EPROM mode, byte 12 (000CH) to address 4095 (0FFFH) consists of program­mable EPROM. After reset, the program counter points at the address 000CH, which is the starting address of the user program.
In ROMless mode, the Z86E40 can address up to 64 KB of External Program Memory. The ROM/ROMless option is only available on the 44-pin devices.
External
ROM and RAM
Location of
First Byte of
Instruction
Executed
After RESET
Interrupt
Vector
(Lower Byte)
Interrupt
Vector
(Upper Byte)
12 11 10
IRQ5
IRQ5 9 8 7 6 5 4 3 2 1 0
IRQ4
IRQ4
IRQ3
IRQ3
IRQ2
IRQ2
IRQ1
IRQ1
IRQ0
IRQ0
Figure 22. Program Memory Map
(ROMless Z86E40 Only)
EPROM Protect. When in ROM Protect Mode, and exe-
cuting out of External Program Memory, instructions LDC, LDCI, LDE, and LDEI cannot read Internal Program Mem­ory.
IRQ5 IRQ5 IRQ4 IRQ4 IRQ3 IRQ3 IRQ2 IRQ2 IRQ1 IRQ1 IRQ0 IRQ0
When in ROM Protect Mode and executing out of Internal Program Memory, instructions LDC, LDCI, LDE, and LDEI can read Internal Program Memory.
DS97Z8X0502 P R E L I M I N A R Y 31
Z86E30/E31/E40 Z8 4K OTP Microcontroller Zilog
FUNCTIONAL DESCRIPTION (Continued)
Data Memory (DM). In EPROM Mode, the Z86E40 can
address up to 60 KB of external data memory beginning at location 4096. In ROMless mode, the Z86E40 can address up to 64 KB of data memory. External data memory may be included with, or separated from, the external program memory space. DM, an optional I/O function that can be
EPROM ROMless
65535
External
Data
Memory
programmed to appear on pin P34, is used to distinguish between data and program memory space (Figure 23). The state of the DM signal is controlled by the type of in­struction being executed. An LDC opcode references PROGRAM (DM inactive) memory, and an LDE instruction references data (DM active Low) memory.
External
Data
Memory
4096 4095
Not Addressable
0
Figure 23. Data Memory Map
32 P R E L I M I N A R Y DS97Z8X0502
Z86E30/E31/E40
1
Zilog Z8 4K OTP Microcontroller Register File. The register file consists of three I/O port
registers, 236/125 general-purpose registers, 15 control and status registers, and three system configuration regis­ters in the expanded register group. The instructions can access registers directly or indirectly through an 8-bit ad­dress field. This allows a short 4-bit register address using the Register Pointer (Figure 24). In the 4-bit mode, the reg­ister file is divided into 16 working register groups, each
R253 RP
D7 D6 D5 D4 D3 D2 D1 D0
Default setting after RESET = 00000000
Figure 24. Register Pointer Register
Expanded Register File (ERF). The register file has been
expanded to allow for additional system control registers, mapping of additional peripheral devices and input/output ports into the register address area. The Z8 register ad­dress space R0 through R15 is implemented as 16 groups of 16 registers per group (Figure 26). These register groups are known as the Expanded Register File (ERF).
occupying 16 continuous locations. The Register Pointer addresses the starting location of the active working-regis­ter group.
Note: Register Bank E0–EF can only be accessed through working register and indirect addressing modes. (This bank is available in Z86E30/E40 only.)
Expanded Register Group Working Register Group
The low nibble (D3–D0) of the Register Pointer (RP) select the active ERF group, and the high nibble (D7–D4) of reg­ister RP select the working register group. Three system configuration registers reside in the Expanded Register File at bank FH: PCON, SMR, and WDTMR. The rest of the Expanded Register is not physically implemented and is reserved for future expansion.
DS97Z8X0502 P R E L I M I N A R Y 33
Z86E30/E31/E40 Z8 4K OTP Microcontroller Zilog
FUNCTIONAL DESCRIPTION (Continued)
r7 r6 r5 r4 R253
r3 r2 r1 r0
The upper nibble of the register file address provided by the register pointer specifies the active working-register group.
FF
Register Group F
F0 EF
80
7F
70 6F
60 5F
50 4F
40 3F
30 2F
20 1F
10 0F
Specified Working
Register Group
Register Group 1
Register Group 0
(Register Pointer)
Note: Registers 80H through EFH are available in the Z86C30 only.
The lower nibble of the register file address provided by the instruction points to the specified register.
R15 to R0
R15 to R4*
00
* Expanded Register Group (0) is selected in this figure by handling bits D3 to D0 as "0" in Register R253 (RP).
I/O Ports
Figure 25. Register Pointer
R3 to R0*
34 P R E L I M I N A R Y DS97Z8X0502
Z86E30/E31/E40
1
Zilog Z8 4K OTP Microcontroller
®
STANDARD CONTROL REGISTERS
Z8
RESET CONDITION
D7 D6 D5 D4 D3 D2 D1 D0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
U
U
U
U
U
U
U
U
U
U
U
U
U
0
0
0
0
0
0
0
0
U
U
U
U
U
U
U
0
1
1
0
0
1
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
U
U
U
U
U
U
U
U
U
U
U
U
U
U
0
U
U
U
U
U
U
U
U
U
U
U
U
U
0
0
0
0
0
0
0
0 0 0 U U 0 U 1 0 1 0 U 0 U 0
Working Register
Group Pointer
%FF %FO
REGISTER POINTER
7
6543210
Z8 Reg. File
Z86E30/E40 Only
Expanded Register
Group Pointer
REGISTER
% FF % FE % FD % FC % FB % FA % F9
% F8
% F7
*
% F6
*
% F5 % F4 % F3 % F2 % F1 % F0
SPL SPH
RP FLAGS IMR IRQ IPR P01M P3M P2M PRE0 T0 PRE1 T1 TMR Reserved
%7F
%0F
%00
Notes:
U = Unknown
For Z86E40 (ROMless) reset condition: "10110110" Will not be reset with a STOP Mode Recovery
*
Will not be reset with a STOP Mode Recovery, except Bit D0.
**
Z86E30/E40 Only
Reserved
EXPANDED REG. GROUP (F)
REGISTER
% (F) 0F
*
% (F) 0E % (F) 0D
*
% (F) 0C
**
% (F) 0B % (F) 0A % (F) 09 % (F) 08 % (F) 07 % (F) 06 % (F) 05 % (F) 04 % (F) 03 % (F) 02 % (F) 01 % (F) 00
WDTMR Reserved SMR2 Reserved SMR Reserved Reserved Reserved Reserved Reserved Reserved Reserved Reserved Reserved Reserved PCON
EXPANDED REG. GROUP (0)
REGISTER
% (0) 03 P3
*
% (0) 02 P2
*
% (0) 01 P1 % (0) 00
P0
RESET CONDITION
UUU0 11 0 1
UUUUUU00
0010 000 0
1111 111 0
RESET CONDITION
1111UUUU UUUUUUUU UUUUUUUU
UUUUUUUU
Figure 26. Expanded Register File Architecture
DS97Z8X0502 P R E L I M I N A R Y 35
Z86E30/E31/E40 Z8 4K OTP Microcontroller Zilog
FUNCTIONAL DESCRIPTION (Continued)
General-Purpose Registers (GPR). These registers are
undefined after the device is powered up. The registers keep their last value after any reset, as long as the reset occurs in the VCC voltage-specified operating range. The register R254 is general-purpose on Z86E30/E31. R254 and R255 are set to 00H after any reset or STOP-Mode Recovery.
RAM Protect. The upper portion of the RAM's address spaces 80H to EFH (excluding the control registers) can be protected from reading and writing. This option can be selected during the EPROM Programming Mode. After this option is selected, the user can activate this feature from the internal EPROM. D6 of the IMR control register (R251) is used to turn off/on the RAM protect by loading a 0 or 1, respectively. A “1” in D6 indicates RAM Protect enabled. RAM Protect is not available on the Z86E31.
Stack. The Z86E40 external data memory or the internal register file can be used for the stack. The 16-bit Stack Pointer (R254–R255) is used for the external stack, which can reside anywhere in the data memory for ROMless mode, but only from 4096 to 65535 in ROM mode. An 8-bit Stack Pointer (R255) is used for the internal stack on the Z86E30/E31/E40 that resides within the 236 general-pur­pose registers (R4–R239). SPH (R254) can be used as a general-purpose register when using internal stack only. R254 and R255 are set to 00H after any reset or Stop­Mode Recovery.
Counter/Timers. There are two 8-bit programmable counter/timers (T0 and T1), each driven by its own 6-bit programmable prescaler. The T1 prescaler is driven by in­ternal or external clock sources; however, the T0 prescaler is driven by the internal clock only (Figure 27).
The 6-bit prescalers can divide the input frequency of the clock source by any integer number from 1 to 64. Each prescaler drives its counter, which decrements the value (1 to 256), that has been loaded into the counter. When the counter reaches the end of count, a timer interrupt request, IRQ4 (T0) or IRQ5 (T1), is generated.
The counters can be programmed to start, stop, restart to continue, or restart from the initial value. The counters can also be programmed to stop upon reaching zero (single pass mode) or to automatically reload the initial value and continue counting (modulo-n continuous mode).
The counters, but not the prescalers, can be read at any time without disturbing their value or count mode. The clock source for T1 is user-definable and can be either the internal microprocessor clock divided by four, or an exter­nal signal input through Port 3. The Timer Mode register configures the external timer input (P31) as an external clock, a trigger input that can be retriggerable or non-retrig­gerable, or as a gate input for the internal clock. Port 3 line P36 serves as a timer output (T or the internal clock can be output. The counter/timers can be cascaded by connecting the T0 output to the input of T1.
) through which T0, T1,
OUT
36 P R E L I M I N A R Y DS97Z8X0502
Z86E30/E31/E40
1
Zilog Z8 4K OTP Microcontroller
OSC
D1 (SMR)
D0 (SMR)
÷ 2
÷ 16
Clock
Logic
Internal Clock
External Clock
÷4
Internal Data Bus
Write Write Read
÷4
PRE0
Initial Value
Register
6-Bit
Down
Counter
6-Bit
Down
Counter
T0
Initial Value
Register
8-bit
Down
Counter
8-Bit
Down
Counter
Current Value
Register
÷2
T0
IRQ4
TOUT P36
IRQ5
TIN P31
Internal Clock Gated Clock Triggered Clock
PRE1
Initial Value
Register
Write Write Read
T1
Initial Value
Register
Internal Data Bus
Figure 27. Counter/Timer Block Diagram
T1
Current Value
Register
DS97Z8X0502 P R E L I M I N A R Y 37
Z86E30/E31/E40 Z8 4K OTP Microcontroller Zilog
FUNCTIONAL DESCRIPTION (Continued)
Interrupts. The MCU has six different interrupts from six
different sources. The interrupts are maskable and priori­tized (Figure 28). The six sources are divided as follows: four sources are claimed by Port 3 lines P33–P30) and two
in counter/timers. The Interrupt Mask Register globally or individually enables or disables the six interrupt requests (Table 10).
IRQ0 IRQ2
IRQ1, 3, 4, 5
Interrupt
Edge
Select
IRQ
IMR
IRQ (D6, D7)
6
Global
Interrupt
Enable
Interrupt Request
IPR
Priority
Logic
Vector Select
Figure 28. Interrupt Block Diagram
Table 10. Interrupt Types, Sources, and Vectors
Name Source Vector Location Comments
IRQ0 DAV0, IRQ0 0, 1 External (P32), Rising/Falling Edge Triggered IRQ1 IRQ1 2, 3 External (P33), Falling Edge Triggered IRQ2 DAV2, IRQ2, T
IN
4, 5 External (P31), Rising/Falling Edge Triggered
IRQ3 IRQ3 6, 7 External (P30), Falling Edge Triggered IRQ4 T0 8, 9 Internal IRQ5 TI 10, 11 Internal
38 P R E L I M I N A R Y DS97Z8X0502
Z86E30/E31/E40
1
Zilog Z8 4K OTP Microcontroller
When more than one interrupt is pending, priorities are re­solved by a programmable priority encoder that is con­trolled by the Interrupt Priority Register (IPR). An interrupt machine cycle is activated when an interrupt request is granted. Thus, disabling all subsequent interrupts, saves the Program Counter and Status Flags, and then branches to the program memory vector location reserved for that in­terrupt. All interrupts are vectored through locations in the program memory. This memory location and the next byte contain the 16-bit starting address of the interrupt service routine for that particular interrupt request.
To accommodate polled interrupt systems, interrupt inputs are masked and the interrupt request register is polled to determine which of the interrupt requests need service.
An interrupt resulting from AN1 is mapped into IRQ2, and an interrupt from AN2 is mapped into IRQ0. Interrupts IRQ2 and IRQ0 may be rising, falling or both edge trig­gered, and are programmable by the user. The software may poll to identify the state of the pin.
Programming bits for the Interrupt Edge Select are located in bits D7 and D6 of the IRQ Register (R250). The configuration is shown in Table 11.
Table 11. IRQ Register Configuration
IRQ Interrupt Edge
D7 D6 P31 P32
00FF 01FR 10RF 1 1 R/F R/F
Notes:
F = Falling Edge R = Rising Edge
Clock. The on-chip oscillator has a high-gain, parallel-res­onant amplifier for connection to a crystal, RC, ceramic resonator, or any suitable external clock source (XTAL1 = Input, XTAL2 = Output). The crystal should be AT cut, 10 KHz to 16 MHz max, with a series resistance (RS) less than or equal to 100 Ohms.
The crystal should be connected across XTAL1 and XTAL2 using the vendor's recommended capacitor values from each pin directly to device pin Ground. The RC oscil­lator option can be selected in the programming mode. The RC oscillator configuration must be an external resis­tor connected from XTAL1 to XTAL2, with a frequency-set­ting capacitor from XTAL1 to Ground (Figure 29).
XTAL1
C1
XTAL2
C2
Ceramic Resonator or Crystal C1, C2 = 47 pF TYP * F = 8 MHz
* Typical value including pin parasitics
C1
C2
LC C1, C2 = 22 pF
L = 130 µH * F = 3 MHz *
Figure 29. Oscillator Configuration
XTAL1
C1
LR
XTAL2
RC @ 5V Vcc (TYP)
C1 = 100 pF R = 2K F = 6 MHz
XTAL1
XTAL2
External Clock
XTAL1
XTAL2
DS97Z8X0502 P R E L I M I N A R Y 39
Z86E30/E31/E40 Z8 4K OTP Microcontroller Zilog
FUNCTIONAL DESCRIPTION (Continued)
Power-On Reset (POR). A timer circuit clocked by a ded-
icated on-board RC oscillator is used for the Power-On Re­set (POR) timer function. The POR timer allows VCC and the oscillator circuit to stabilize before instruction execu­tion begins.
The POR timer circuit is a one-shot timer triggered by one of three conditions:
1. Power fail to Power OK status
2. Stop-Mode Recovery (if D5 of SMR=0)
3. WDT time-out The POR time is a nominal 5 ms. Bit 5 of the STOP mode
Register (SMR) determines whether the POR timer is by­passed after STOP-Mode Recovery (typical for an external clock and RC/LC oscillators with fast start up times).
HALT. Turns off the internal CPU clock, but not the XTAL oscillation. The counter/timers and external interrupt IRQ0, IRQ1, and IRQ2 remain active. The device is recovered by interrupts, either externally or internally generated. An in­terrupt request must be executed (enabled) to exit HALT Mode. After the interrupt service routine, the program con­tinues from the instruction after the HALT.
In order to enter STOP or HALT Mode, it is necessary to first flush the instruction pipeline to avoid suspending exe­cution in mid-instruction. To do this, the user must execute a NOP (Opcode=FFH) immediately before the appropriate sleep instruction, that is:
FF NOP ; clear the pipeline
6F STOP ; enter STOP Mode
or
FF NOP ; clear the pipeline
7F HALT ; enter HALT Mode
STOP. This instruction turns off the internal clock and ex­ternal crystal oscillation and reduces the standby current to 10 microamperes or less. STOP Mode is terminated by one of the following resets: either by WDT time-out, POR, a Stop-Mode Recovery Source, which is defined by the SMR register or external reset. This causes the processor to restart the application program at address 000CH.
Port Configuration Register (PCON). The PCON regis­ter configures the ports individually; comparator output on Port 3, open-drain on Port 0 and Port 1, low EMI on Ports 0, 1, 2 and 3, and low EMI oscillator. The PCON register is located in the expanded register file at Bank F, location 00 (Figure 30).
PCON (FH) 00H
D7 D6 D5 D4 D3 D2 D1 D0
* Default Setting After Reset
Figure 30. Port Configuration Register (PCON)
(Write Only)
Comparator Output Port 3 0 P34, P37 Standard Output*
1 P34, P37 Comparator Output
0 Port 1 Open Drain 1 Port 1 Push-pull Active*
0 Port 0 Open Drain 1 Port 0 Push-pull Active*
0 Port 0 Low EMI 1 Port 0 Standard*
0 Port 1 Low EMI 1 Port 1 Standard*
0 Port 2 Low EMI 1 Port 2 Standard*
0 Port 3 Low EMI 1 Port 3 Standard*
Low EMI Oscillator 0 Low EMI 1 Standard*
40 P R E L I M I N A R Y DS97Z8X0502
Z86E30/E31/E40
1
Zilog Z8 4K OTP Microcontroller Comparator Output Port 3 (D0). Bit 0 controls the com-
parator output in Port 3. A “1” in this location brings the comparator outputs to P34 and P37, and a “0” releases the Port to its standard I/O configuration. The default value is 0.
Port 1 Open-Drain (D1). Port 1 can be configured as an open-drain by resetting this bit (D1=0) or configured as push-pull active by setting this bit (D1=1). The default val­ue is 1.
Port 0 Open-Drain (D2). Port 0 can be configured as an open-drain by resetting this bit (D2=0) or configured as push-pull active by setting this bit (D2=1). The default val­ue is 1.
Low EMI Port 0 (D3). Port 0 can be configured as a Low EMI Port by resetting this bit (D3=0) or configured as a Standard Port by setting this bit (D3=1). The default value is 1.
Low EMI Port 1 (D4). Port 1 can be configured as a Low EMI Port by resetting this bit (D4=0) or configured as a Standard Port by setting this bit (D4=1). The default value is 1. Note: The emulator does not support Port 1 low EMI mode and must be set D4 = 1.
Low EMI Port 3 (D6). Port 3 can be configured as a Low EMI Port by resetting this bit (D6=0) or configured as a Standard Port by setting this bit (D6=1). The default value is 1.
Low EMI OSC (D7). This bit of the PCON Register con­trols the low EMI noise oscillator. A “1” in this location con­figures the oscillator with standard drive. While a “0” con­figures the oscillator with low noise drive, however, it does not affect the relationship of SCLK and XTAL. The low EMI mode will reduce the drive of the oscillator (OSC). The de­fault value is 1. Note: 4 MHz is the maximum external clock frequency when running in the low EMI oscillator mode.
Stop-Mode Recovery Register (SMR). This register selects the clock divide value and determines the mode of Stop-Mode Recovery (Figure 31). All bits are Write Only except bit 7 which is a Read Only. Bit 7 is a flag bit that is hardware set on the condition of STOP Recovery and reset by a power-on cycle. Bit 6 controls whether a low or high level is required from the recovery source. Bit 5 controls the reset delay after recovery. Bits 2, 3, and 4 of the SMR register specify the Stop-Mode Recovery Source. The SMR is located in Bank F of the Expanded Register Group at address 0BH.
Low EMI Port 2 (D5). Port 2 can be configured as a Low EMI Port by resetting this bit (D5=0) or configured as a Standard Port by setting this bit (D5=1). The default value is 1.
DS97Z8X0502 P R E L I M I N A R Y 41
Z86E30/E31/E40 Z8 4K OTP Microcontroller Zilog
FUNCTIONAL DESCRIPTION (Continued)
SMR (F) 0B
D7 D6 D5 D4 D3 D2 D1 D0
SCLK/TCLK Divide by 16 0 OFF 1 ON
External Clock Divide by 2 0 SCLK/TCLK =XTAL/2* 1 SCLK/TCLK =XTAL
Stop Mode Recovery Source 000 POR and/or External Reset 001 P30 010 P31 011 P32 100 P33 101 P27 110 P2 NOR 0:3 111 P2 NOR 0:7
Stop Delay 0 OFF 1 ON
Stop Recovery Level 0 Low 1 High
Stop Flag 0 POR 1 Stop Recovery
* Default setting after RESET.
** Default setting after RESET and STOP-Mode Recovery.
**
*
*
*
*
Figure 31. STOP-Mode Recovery Register
(Write-Only Except Bit D7, Which is Read-Only)
42 P R E L I M I N A R Y DS97Z8X0502
Z86E30/E31/E40
1
Zilog Z8 4K OTP Microcontroller SCLK/TCLK Divide-by-16 Select (D0). This bit of the
SMR controls a divide-by-16 prescaler of SCLK/TCLK. The purpose of this control is to selectively reduce device power consumption during normal processor execution (SCLK control) and/or HALT mode (where TCLK sources counter/timers and interrupt logic).
External Clock Divide-by-Two (D1). This bit can elimi­nate the oscillator divide-by-two circuitry. When this bit is 0, the System Clock (SCLK) and Timer Clock (TCLK) are equal to the external clock frequency divided by two. The SCLK/TCLK is equal to the external clock frequency when this bit is set (D1=1). Using this bit together with D7 of
SMR2 D1 D0
0 0
VDD
PCON further helps lower EMI (i.e., D7 (PCON) = 0, D1 (SMR) = 1). The default setting is zero.
STOP-Mode Recovery Source (D2, D3, and D4). These three bits of the SMR register specify the wake up source of the STOP-Mode Recovery (Figure 32). Table 12 shows the SMR source selected with the setting of D2 to D4. P33–P31 cannot be used to wake up from STOP mode when programmed as analog inputs. When the STOP­Mode Recovery sources are selected in this register then SMR2 register bits D0, D1 must be set to zero.
Note: If the Port2 pin is configured as an output, this output level will be read by the SMR circuitry.
P20
P23
SMR2 SMR2D1 D0
0 1
P20
P27
D1 D0 1 0
SMR D4 D3 D2
0 0 0
VDD
Stop-Mode Recovery Edge Select (SMR)
P33 From Pads
Digital/Analog Mode Select (P3M)
SMR SMR SMRD4 D3 D2
P30 P31 P32
0 0 1 0 1 0 0 1 1
P33 P27
D4 D3 D2 1 0 0
D4 D3 D2 1 0 1
P20
P23
SMR SMRD4 D3 D2
1 1 0
Figure 32. Stop-Mode Recovery Source
D4 D3 D2 1 1 1
P20
P27
To POR RESET
To P33 Data Latch and IRQ1
MUX
DS97Z8X0502 P R E L I M I N A R Y 43
Z86E30/E31/E40 Z8 4K OTP Microcontroller Zilog
FUNCTIONAL DESCRIPTION (Continued)
Table 12. Stop-Mode Recovery Source
D4 D3 D2 SMR Source selection
0 0 0 POR recovery only 0 0 1 P30 transition 0 1 0 P31 transition (Not in analog
mode)
0 1 1 P32 transition (Not in analog
mode)
1 0 0 P33 transition (Not in analog
mode) 1 0 1 P27 transition 1 1 0 Logical NOR of P ort 2 bits 0–3 1 1 1 Logical NOR of P ort 2 bits 0–7
Stop-Mode Recovery Delay Select (D5). The 5 ms RE­SET delay after Stop-Mode Recovery is disabled by pro­gramming this bit to a zero. A “1” in this bit will cause a 5 ms RESET delay after Stop-Mode Recovery. The default condition of this bit is 1. If the fast wake up mode is select­ed, the Stop-Mode Recovery source needs to be kept ac­tive for at least 5TpC.
Stop-Mode Recovery Level Select (D6). A “1” in this bit defines that a high level on any one of the recovery sourc­es wakes the MCU from STOP Mode. A 0 defines low level recovery. The default value is 0.
Cold or Warm Start (D7). This bit is set by the device upon entering STOP Mode. A “0” in this bit indicates that the device has been reset by POR (cold). A “1” in this bit indicates the device was awakened by a SMR source (warm).
Stop-Mode Recovery Register 2 (SMR2). This register contains additional Stop-Mode Recovery sources. When the Stop-Mode Recovery sources are selected in this reg­ister then SMR Register. Bits D2, D3, and D4 must be 0.
SMR:10 Operation
D1 D0 Description of Action
0 0 POR and/or external reset recovery 0 1 Logical AND of P20 through P23 1 0 Logical AND of P20 through P27
Watch-Dog Timer Mode Register (WDTMR). The WDT is a retriggerable one-shot timer that resets the Z8 if it reaches its terminal count. The WDT is disabled after Pow­er-On Reset and initially enabled by executing the WDT in­struction and refreshed on subsequent executions of the WDT instruction. The WDT is driven either by an on-board RC oscillator or an external oscillator from XTAL1 pin. The
POR clock source is selected with bit 4 of the WDT regis­ter.
Note: Execution of the WDT instruction affects the Z (Ze­ro), S (Sign), and V (Overflow) flags.
WDT Time-Out Period (D0 and D1). Bits 0 and 1 control a tap circuit that determines the time-out periods that can be obtained (Table 13). The default value of D0 and D1 are 1 and 0, respectively.
Table 13. Time-out Period of WDT
Time-out of the Internal
D1 D0
0 0 5 ms 128 SCLK 0 1 10 ms* 256 SCLK* 1 0 20 ms 512 SCLK 1 1 80 ms 2048 SCLK
Notes:
*The default setting is 10 ms.
WDT During HALT Mode (D2). This bit determines whether or not the WDT is active during HALT Mode. A “1” indicates that the WDT is active during HALT. A “0” dis­ables the WDT in HALT Mode. The default value is “1”.
WDT During STOP Mode (D3). This bit determines whether or not the WDT is active during STOP mode. A “1” indicates active during STOP. A “0” disables the WDT dur­ing STOP Mode. This is applicable only when the WDT clock source is the internal RC oscillator.
Clock Source For WDT (D4). This bit determines which oscillator source is used to clock the internal POR and WDT counter chain. If the bit is a 1, the internal RC oscil­lator is bypassed and the POR and WDT clock source is driven from the external pin, XTAL1, and the WDT is stopped in STOP Mode. The default configuration of this bit is 0, which selects the RC oscillator.
Permanent WDT. When this feature is enabled, the WDT is enabled after reset and will operate in Run and Halt Mode. The control bits in the WDTMR do not affect the WDT operation. If the clock source of the WDT is the inter­nal RC oscillator, then the WDT will run in STOP mode. If the clock source of the WDT is the XTAL1 pin, then the WDT will not run in STOP mode.
Note: WDT time-out in STOP Mode will not reset SMR,SMR2,PCON, WDTMR, P2M, P3M, Ports 2 & 3 Data Registers.
WDTMR Register Accessibility. The WDTMR register is accessible only during the first 60 internal system clock
RC OSC
Time-out of
the System
Clock
44 P R E L I M I N A R Y DS97Z8X0502
Z86E30/E31/E40
1
g
Zilog Z8 4K OTP Microcontroller
cycles from the execution of the first instruction after Power-On Reset, Watch-Dog reset or a STOP-Mode Recovery (Figures 33 and 34). After this point, the register cannot be modified by any means, intentional or
WDTMR (F) 0F
D7 D6 D5 D4 D3 D2 D1 D0
* Default settin
after RESET
otherwise. The WDTMR cannot be read and is located in Bank F of the Expanded Register Group at address location 0FH.
WDT TAP INT RC OSC System Clock 00 5 ms 128 SCLK 01 10 ms 256 SCLK
*
10 20 ms 512 SCLK 11 80 ms 2048 SCLK
WDT During HALT 0 OFF
*
1 ON WDT During STOP
0 OFF 1 ON
*
XTAL1/INT RC Select for WDT 0 On-Board RC 1 XTAL
Reserved (Must be 0)
*
Figure 33. Watch-Dog Timer Mode Register
Write Only
DS97Z8X0502 P R E L I M I N A R Y 45
Z86E30/E31/E40 Z8 4K OTP Microcontroller Zilog
FUNCTIONAL DESCRIPTION (Continued)
Reset
WDT Select
(WDTMR)
CLK Source
Select
(WDTMR)
XTAL
VDD
VLV
WDT
4 Clock
Filter
Internal RC OSC.
2V Operating Voltage Det.
+
-
Clear CLK
M U
X
5ms POR 5ms
CK
18 Clock RESET
Generator
WDT TAP SELECT
15ms
WDT/POR Counter Chain
CLR
RESET
Internal RESET
25ms 100ms
From Stop
Mode
Recovery
Source
Stop Delay
Select (SMR)
Figure 34. Resets and WDT
46 P R E L I M I N A R Y DS97Z8X0502
Z86E30/E31/E40
1
Zilog Z8 4K OTP Microcontroller Auto Reset Voltage. An on-board Voltage Comparator
checks that VCC is at the required level to ensure correct operation of the device. Reset is globally driven if VCC is below VLV (Figure 35).
VCC
(Volts)
3.7
3.5
3.3
3.1
2.9
2.7
2.5
Note: VCC must be in the allowed operating range prior to the minimum Power-On Reset time-out (T
POR
).
2.3
-60 -40 -20 0 20 40 60 80 100 120 140
Temperature
Figure 35. Typical Z86E40 VLV V oltage vs. T emperature
(°C)
DS97Z8X0502 P R E L I M I N A R Y 47
Z86E30/E31/E40 Z8 4K OTP Microcontroller Zilog
FUNCTIONAL DESCRIPTION (Continued)
EPROM MODE
Table 14 shows the programming voltages of each pro­gramming mode. Table 15, and figures that follow show the programming timing of each programming mode. Fig­ure 38 shows the circuit diagram of a Z86E40 program­ming adapter, which adapts from 2764A to Z86E40 and Figure 39 shows the Z86E30/E31 Programming Adapter Circuitry. Figure 40 shows the flowchart of an Intelligent Programming Algorithm, which is compatible with 2764A EPROM (Z86E40 is 4K EPROM, 2764A is 8K EPROM). Since the EPROM size of Z86E30/E31/E40 differs from 2764A, the programming address range has to be set from 0000H to 0FFFH for the Z86E30/E40 and 0000H to 07FFH for Z86E31. Otherwise, the upper portion of EPROM data will overwrite the lower portion of EPROM data. Figure 39 shows the adaptation from the 2764A to Z86E30/E31.
Note: EPROM Protect feature allows the LDC, LDCI, LDE, and LDEI instructions from internal program memory. A ROM lookup table can be used with this feature.
During programming, the V gramming voltage and current to the EPROM. This pin is also used to latch which EPROM mode is to be used (R/W EPROM or R/W Option bits). The mode is set by placing the correct mode number on the least significant bits of the address and raising the EPM pin above V. After a setup time, the VPP pin can then be raised or lowered. The latched EPROM mode will remain until the EPM pin is re­duced below VH.
input pin supplies the pro-
PP
EPROM R/W mode allows the programming of the user mode program ROM.
Option Bit R/W allows the programming of the Z8 option bits. When the device is latched into Option Bit R/W mode, the address must then be changed to 63 decimals (000000111111 Binary). The Options are mapped into this address as follows:
Bit Option
7 Unused 6 Unused 5 32 KHz XTAL Option 4 Permanent WDT 3 Auto Latch Disable 2 RC Oscillator Option 1 RAM Protect 0 ROM Protect
Table 14 gives the proper conditions for EPROM R/W op­erations, once the mode is latched.
Mode Name Mode # LSB Addr
EPROM R/W 0 0000 Option Bit R/W 3 0011
48 P R E L I M I N A R Y DS97Z8X0502
Z86E30/E31/E40
1
Zilog Z8 4K OTP Microcontroller
Table 14. EPROM Programming Table
Programming
Modes
V
PP
EPM CE OE PGM ADDR DATA
EPROM READ1 X V EPROM READ2 X V PROGRAM V PROGRAM
PP
V
PP
H H
V
H
V
H
V
IL
V
IL
V
IL
V
IL
V
IL
V
IL
V
IH
V
IL
V
IH
V
IH
V
IL
V
IH
ADDR Out 4.5V† ADDR Out 5.5V† ADDR In 6.4V ADDR Out 6.0V
*
V
CC
VERIFY OPTION BIT PGM V
PP
OPTION BIT READ X V
Notes:
V
= 13.0 V ± 0.1 V
H
= As per specific Z8 DC specification
V
IH
VIL= As per specific Z8 DC specification X=Not used, but must be set to V
NU = Not used, but must be set to either V
during programming = 40 mA maximum.
I
PP
during programming, verify, or read = 40 mA maximum.
I
CC
has a tolerance of ±0.25V.
*V
CC
† Zilog recommends an EPROM read at V
ensure proper device operations during the V but V
= 5.0 V is acceptable.
CC
, VIH, or VIL level.
H
V
H H
or VIL level.
IH
= 4.5 V and 5.5 V to
CC
V V
after programming,
CC
IL IL
V
IH
V
IL
V
IL
V
IH
63 IN 6.4V 63 OUT 6.0V
Table 15. EPROM Programming Timing
Parameters Name Min Max Units
1 Address Setup Time 2 µs 2 Data Setup Time 2 µs 3V
4V
Setup 2 µs
PP
Setup Time 2 µs
CC
5 Chip Enable Setup Time 2 µs 6 Program Pulse Width 0.95 1.05 ms 7 Data Hold Time 2 µs 8OE
Setup Time 2 µs
9 Data Access Time 200 ns 10 Data Output Float Time 100 ns 11 Overprogram Pulse
2.85 ms Width/Option Program Pulse Width
12 EPM Setup Time 2 µs 13 PGM Setup Time 2 µs 14 Address to OE Setup Time 2 µs 15 OE Width 250 ns 16 Address to OE Low 125 ns
DS97Z8X0502 P R E L I M I N A R Y 49
Z86E30/E31/E40 Z8 4K OTP Microcontroller Zilog
FUNCTIONAL DESCRIPTION (Continued)
VIH
Address
Data
VPP
EPM
V
CC
CE
OE
PGM
VIL
VIH
VIL
VH
VIL
VH
VIL
4.5V
VIH
VIL
VIH
VIL
VIH
VIL
Address Stable
16
Invalid Valid Invalid Valid
9
12
5
15
3
15
Address Stable
5.5V
15
Figure 36. EPROM Read Mode Timing Diagram
50 P R E L I M I N A R Y DS97Z8X0502
Z86E30/E31/E40
1
Zilog Z8 4K OTP Microcontroller
Z86E40 TIMING DIAGRAMS
Address
Data
V
PP
EPM
V
CC
CE
VIH
VIL
VIH
VIL
VH VIH
VH VIL
6V
4.5V
VIH
VIL
Address Stable
1
Data Stable Data Out Valid
2 109
3
4
7
OE
PGM
VIH
VIL VIH
VIL
5
6 8
11
Program Cycle Verify Cycle
Figure 37. Timing Diagram of EPROM Program and Verify Modes
15
DS97Z8X0502 P R E L I M I N A R Y 51
Z86E30/E31/E40 Z8 4K OTP Microcontroller Zilog
Z86E40 TIMING DIAGRAMS (Continued)
A0 A1 A2
A3 A4 A5
A6 A7
GND
D0 D1
D2 D3 D4
D5 D6 D7
20 40
21
A0 A1 A2 A3 A4 A5 A6 A7
A8 A9
A10 A11 A12
PGM
CS
OE
2764 Pins
U2
00 01 02 03
04 05 06 07
GND
V
CC
V
PP
11 12 13 15 16 17 18 19
14
28
D0 D1 D2 D3 D4 D5 D6 D7
GND
VCC
1
C1
VPP
2
0.01µF
1
GND
U1
35
P20
36
P21
37
P22
38
P23
39
P24
2
P25
3
P26
4
P27
26
P00
27
P01
30
P02
34
P03
5
P04
6
P05
7
P06
10
P07
1
R/W AS DS RESET
XTAL1 XTAL2
P10 P11 P12 P13 P14 P15 P16 P17
P30 P31
P32 P33 P34 P35
P36 P37
28 29
32 33
8
9 12 13
25 PGM
16 OE
EPM
17
V
18
A8
19
A9
22
A10
24
A11
23
GND
31
V
11
15
CE
14
A8 A9
A10 A11
PP
1 KOhm
1 KOhm
CC
R2
12
R1
12
A0 A1
A2 A3 A4
A5 A6 A7
10
9 8
7 6 5
4
3 25 24
21 23
2
27
20
22
Z86E40
40-Pin DIP
Socket
12.5V 16 X1
4X3
GND
VCC
15
IX1
4
S2
X
5
S4
X
10
IX2
X
R4
12
1 KOhm
2
C2
1
U3
IH5043
VCC
D1
D3
D2
D4 6
1
3
3
X
X
5.0 V
EPM
12.5V
0.1µF
GND
Figure 38. Z86E40 Z8 OTP Programming Adapter
For use with Standard EPROM Programmers
5.0V
GND
1
1N5243
GND
1N5231
2
R3
12
10 KOhm
D1
P1
R5
12
1 KOhm
1
D2
2
12.5 Volt
12
52 P R E L I M I N A R Y DS97Z8X0502
Z86E30/E31/E40
1
Zilog Z8 4K OTP Microcontroller
A0 A1 A2 A3 A4 A5 A6 A7
A8 A9
A10 A11 A12 PGM
CS
OE
U2
00 01 02 03
04 05 06 07
GND
V
CC
V
PP
11 12 13 15 16 17 18 19
14
28
D0 D1 D2 D3 D4 D5 D6 D7
GND
V
CC
1
V
PP
A0 A1 A2
A3 A4 A5
A6 A7
D0 D1
D2 D3 D4
D5 D6 D7
24 25
26 27 28
19 20 21
23
U1
10
P20 P21 P22 P23 P24
1
P25
2
P26
3
P27
18 11 12 13 14
15 17 16
PGM
OE
EPM
V
A8 A9
A10 A11
PP
1 KOhm
1 KOhm
P00 P01 P02 P03
4
P04
5
P05
6
P06
7
P07
P30 P31
P32 P33 P34 P35
P36 P37
A0 A1
A2 A3 A4
A5 A6 A7
A4 A5
A6 A7
R2
12
R1
12
9 8
7 6 5
4
3 25 24
21 23
2
27
20
22
12.5V 16 X1
4X3
GND
V
15
CC
10
IX1
4
S2
X
5
S4
X
IX2
X
XTAL1 XTAL2
Z86E30/31 28-Pin DIP
Socket
U3
IH5043
D1
D3
D2
D4 6
VCC
10
9
1
3
3
X
X
5.0 V
CE
EPM
2764 Pins
C1
12.5V
0.1µF
GND
C2
2
1
R4
12
1 KOhm
1N5243
R3
12
10 KOhm
1
D1
2
GND
12
P1
R5
5.0V
1
2
1N5231
GND
Note: The programming address must be set to 0000H - 0FFFH (Lower 4K Byte Memory). For Z86E30 0000H - 07FFH (Lower 2K Byte Memory). For Z86E31
12
1 KOhm
D2
2
0.01µF
1
GND
12.5 Volt
Figure 39. Z86E30/E31 Programming Adapter Circuitry
DS97Z8X0502 P R E L I M I N A R Y 53
Z86E30/E31/E40
1
Zilog Z8 4K OTP Microcontroller
Start
Fail
Addr =
First Location
Vcc = 6.0V
Vpp = 12.5V
N = 0
Program
1 ms Pulse
Increment N
N = 25 ?
No
Verify
One Byte
Pass
Yes
Verify Byte
Fail
Pass
Increment
Address
Note:
* To ensure proper operaton, Zilog recommends Vcc range of the device Vcc specification, But Vcc = 5.0V is acceptable.
Prog. One Pulse 3xN ms Duration
No
Last Addr ?
Yes
Vcc = Vpp = 4.5V *
Verify All
Bytes
Pass
Vcc = Vpp = 5.5V *
Verify All
Bytes
Pass
Device Passed
Fail
Device Failed
Fail
Figure 40. Z86E40 Programming Algorithm
DS97Z8X0502 P R E L I M I N A R Y 55
Z86E30/E31/E40 Z8 4K OTP Microcontroller Zilog
EXPANDED REGISTER FILE CONTROL REGISTERS
PCON (FH) 00H
D7 D6 D5 D4 D3 D2 D1 D0
* Default Setting After Reset † Must Be 1 for Z86E30/E31
Figure 41. Port Configuration Register
Write Only
Comparator Output Port 3 0 P34, P37 Standard* 1 P34, P37 Comparator Output
0 Port 1 Open-Drain 1 Port 1 Push-Pull Active*†
0 Port 0 Open-Drain 1 Port 0 Push-pull Active*
0 Port 0 Low EMI 1 Port 0 Standard*
0 Port 1 Low EMI 1 Port 1 Standard*†
0 Port 2 Low EMI 1 Port 2 Standard*
0 Port 3 Low EMI 1 Port 3 Standard*
Low EMI Oscillator 0 Low EMI 1 Standard*
WDTMR (F) 0F
D7 D6 D5 D4 D3 D2 D1 D0
WDT TAP INT RC OSC System Clock 00 5 ms 128 SCLK 01 10 ms 256 SCLK
*
10 20 ms 512 SCLK 11 80 ms 2048 SCLK
WDT During HALT 0 OFF
*
1 ON WDT During STOP
0 OFF 1 ON
*
XTAL1/INT RC Select for WDT 0 On-Board RC 1 XTAL
Reserved (Must be 0)
* Default setting after RESET
Figure 43. Watch-Dog Timer Mode Register
Write Only
SMR2 (0F) DH
D7 D6 D5 D4 D3 D2 D1 D0
*
SMR (FH) 0B
D7 D6 D5 D4 D3 D2 D1 D0
SCLK/TCLK Divide-by-16 0 OFF
**
1 ON External Clock Divide by 2
0 SCLK/TCLK =XTAL/2* 1 SCLK/TCLK =XTAL
Stop Mode Recovery Source
000 POR Only and/or External Reset* 001 P30 010 P31 011 P32 100 P33 101 P27 110 P2 NOR 0-3 111 P2 NOR 0-7
Stop Delay 0 OFF 1 ON*
Stop Recovery Level 0 Low* 1 High
Stop Flag 0 POR*
* Default setting after RESET.
** Default setting after RESET and STOP-Mode Recovery.
1 Stop Recovery
Figure 42. STOP-Mode Recovery Register
Write Only Except Bit D7, Which is Read Only
Stop-Mode Recovery Source 2 00 POR only* 01 AND P20,P21,P22,P23 10 AND P20,P21,P22,P23,P24, P25,P26,P27
Reserved (Must be 0)
Note: Not used in conjunction with SMR Source
Figure 44. STOP-Mode Recovery Register 2
Write Only
56 P R E L I M I N A R Y DS97Z8X0502
Z86E30/E31/E40
1
Zilog Z8 4K OTP Microcontroller
Z8 CONTROL REGISTER DIAGRAMS
R240
D7 D6 D5 D4 D3 D2 D1 D0
Figure 45. Reserved
R241 TMR
D7 D6 D5 D4 D3 D2 D1 D0
Reserved (Must be 0)
0 No Function* 1 Load T0
0 Disable T0 Count* 1 Enable T0 Count
0 No Function* 1 Load T1
0 Disable T1 Count* 1 Enable T1 Count
TIN Modes 00 External Clock Input* 01 Gate Input 10 Trigger Input (Non-retriggerable) 11 Trigger Input (Retriggerable)
R243 PRE1
D7 D6 D5 D4 D3 D2 D1 D0
*Default After Reset
Figure 48. Prescaler 1 Register
F3H: Write Only
R244 T0
D7 D6 D5 D4 D3 D2 D1 D0
Count Mode 0 T1 Single Pass* 1 T1 Modulo N
Clock Source 1 T1 Internal 0 T1 External Timing Input (TIN Mode)
Prescaler Modulo (Range: 1-64 Decimal 01-00 HEX)
T0 Initial Value (When Written) (Range: 1-256 Decimal 01-00 HEX) T0 Current Value (When Read)
Default After Reset = 00H
Figure 46. Timer Mode Register
F1H: Read/Write
R242 T1
D7 D6 D5 D4 D3 D2 D1 D0
Figure 47. Counter/Timer 1 Register
F2H: Read/Write
TOUT Modes 00 Not Used* 01 T0 Out 10 T1 Out 11 Internal Clock Out
T1 Initial Value (When Written) (Range: 1-256 Decimal 01-00 HEX) T1 Current Value (When Read)
Figure 49. Counter/Timer 0 Register
F4H; Read/Write
R245 PRE0
D7 D6 D5 D4 D3 D2 D1 D0
Count Mode 0 T1 Single Pass 1 T1 Modulo N
Reserved (Must be 0) Prescaler Modulo
(Range: 1-64 Decimal 01-00 HEX)
Figure 50. Prescaler 0 Register
F5H: Write Only
DS97Z8X0502 P R E L I M I N A R Y 57
Z86E30/E31/E40 Z8 4K OTP Microcontroller Zilog
Z8 CONTROL REGISTER DIAGRAMS (Continued)
R246 P2M
D7 D6 D5 D4 D3 D2 D1 D0
* Default After Reset
Figure 51. Port 2 Mode Register
F6H: Write Only
R247 P3M
D7 D6 D5 D4 D3 D2 D1 D0
Default After Reset = 00H † Z86E30/E31 Must Be 00
Figure 52. Port 3 Mode Register
F7H: Write Only
P20 - P27 I/O Definition 0 Defines Bit as Output 1 Defines Bit as Input*
0 Port 2 Open-Drain 1 Port 2 Push-pull Active
0 P31, P32 Digital Mode 1 P31, P32 Analog Mode
0 P32 = Input P35 = Output 1 P32 = DAV0/RDY0 P35 = RDY0/DAV0
00 P33 = Input P34 = Output
01 P33 = Input 10 P34 = DM 11 P33 = DAV1/RDY1 P34 = RDY1/DAV1
0 P31 = Input (TIN) P36 = Output (TOUT) 1 P31 = DAV2/RDY2 P36 = RDY2/DAV2
0 P30 = Input P37 = Output
Reserved (Must be 0)
R248 P01M
D7 D6 D5 D4 D3 D2 D1 D0
P03 – P00 Mode 00 Output 01 Input 1X A11–A8
Stack Selection 0 External 1 Internal
P17 – P10 Mode 00 Byte Output† 01 Byte Input 10 AD7–AD0 11 High-Impedance AD7–AD0, AS, DS, R/W, A11–A8, A15–A12, If Selected
External Memory Timing 0 Normal 1 Extended
P07 – P04 Mode 00 Output 01 Input
Reset Condition = 0100 1101B For ROMless Condition = 1011 0110B † Z86E30/E31 Must be 00
1X A15 - A12
Figure 53. Port 0 and 1 Mode Register
F8H: Write Only
R249 IPR
D7 D6 D5 D4 D3 D2 D1 D0
Z86E30/E31 Only
Interrupt Group Priority
000 Reserved 001 C > A > B 010 A > B > C 011 A > C > B 100 B > C > A 101 C > B > A 110 B > A > C 111 Reserved
IRQ1, IRQ4 Priority (Group C)
0 IRQ1 > IRQ4 1 IRQ4 > IRQ1
IRQ0, IRQ2 Priority (Group B)
0 IRQ2 > IRQ0 1 IRQ0 > IRQ2
IRQ3, IRQ5 Priority (Group A)
0 IRQ5 > IRQ3 1 IRQ3 > IRQ5
Reserved (Must be 0)
Figure 54. Interrupt Priority Register
F9H: Write Only
58 P R E L I M I N A R Y DS97Z8X0502
Z86E30/E31/E40
1
Zilog Z8 4K OTP Microcontroller
R250 IRQ
D7 D6 D5 D4 D3 D2 D1 D0
Default After Reset = 00H
Figure 55. Interrupt Request Register
FAH: Read/Write
R251 IMR
D7 D6 D5 D4 D3 D2 D1 D0
† This option must be selected when ROM code is submitted for ROM Masking, otherwise this control bit is disabled permanently.
IRQ0 = P32 Input IRQ1 = P33 Input IRQ2 = P31 Input IRQ3 = P30 Input IRQ4 = T0 IRQ5 = T1
Inter Edge P31 P32 = 00 P31 P32 = 01 P31 P32 = 10 P31 ↑↓ P32 ↑↓ = 11
1 Enables IRQ5-IRQ0 (D0 = IRQ0)
1 Enables RAM Protect † 1 Enables Interrupts
R253 RP
D7 D6 D5 D4 D3 D2 D1 D0
Default After Reset = 00H
Figure 58. Register Pointer
FDH: Read/Write
R254 SPH
D7 D6 D5 D4 D3 D2 D1 D0
Figure 59. Stack Pointer High
FEH: Read/Write
R255 SPL
Expanded Register File Working Register Pointer
(Z86E40) Stack Pointer Upper
Byte (SP8 - SP15) (Z86E30/E31)
0 = 0 State 1 = 1 State
Figure 56. Interrupt Mask Register
FBH: Read/Write
R252 FLAGS
D7 D6 D5 D4 D3 D2 D1 D0
Figure 57. Flag Register
FCH: Read/Write
D7 D6 D5 D4 D3 D2 D1 D0
Stack Pointer Lower Byte (SP0 - SP7)
Figure 60. Stack Pointer Low
FFH: Read/Write
User Flag F1 User Flag F2 Half Carry Flag Decimal Adjust Flag Overflow Flag Sign Flag Zero Flag Carry Flag
DS97Z8X0502 P R E L I M I N A R Y 59
Z86E30/E31/E40 Z8 4K OTP Microcontroller Zilog
PACKAGE INFORMATION (Continued)
PACKAGE INFORMATION
Figure 61. 40-Pin DIP Package Diagram
60 P R E L I M I N A R Y DS97Z8X0502
Z86E30/E31/E40
1
Zilog Z8 4K OTP Microcontroller
Figure 62. 44-Pin PLCC Package Diagram
Figure 63. 44-Pin QFP Package Diagram
DS97Z8X0502 P R E L I M I N A R Y 61
Z86E30/E31/E40 Z8 4K OTP Microcontroller Zilog
Figure 64. 28-Pin DIP Package Diagram
Figure 65. 28-Pin SOIC Package Diagram
62 P R E L I M I N A R Y DS97Z8X0502
Z86E30/E31/E40
1
Zilog Z8 4K OTP Microcontroller
Figure 66. 28-Pin PLCC Package Diagram
DS97Z8X0502 P R E L I M I N A R Y 63
Z86E30/E31/E40 Z8 4K OTP Microcontroller Zilog
ORDERING INFORMATION Z86E40 (16 MHz)
40-Pin DIP 44-Pin PLCC 44-Pin QFP
Z86E4016PSC Z86E4016VSC Z86E4016FSC Z86E4016PEC Z86E4016VEC Z86E4016FEC
Z86E30 (16 MHz)
28-Pin DIP 28-Pin SOIC 28-Pin PLCC
Z86E3016PSC Z86E3016SSC Z86E3016VSC Z96E3016PEC Z86E3016SEC Z86E3016VEC
Z86E31 (16 MHz)
28-Pin DIP 28-Pin SOIC 28-Pin PLCC
Z86E3116PSC Z86E3116SSC Z86E3116VSC Z86E3116PEC Z86E3116SEC Z86E3116VEC
For fast results, contact your local Zilog sales office for assistance in ordering the part desired.
Package
P = Plastic DIP V = Plastic Leaded Chip Carrier
Temperature
S = 0 °C to +70 °C E = -40 °C to +105 °C
Speed
F = Plastic Quad Flat Pack S = SOIC (Small Outline Integrated Circuit)
16 = 16 MHz
Environmental
C= Plastic Standard E = Hermetic Standard
Example:
Z 86E40 16 P S C
is a Z86E40, 16 MHz, DIP, 0°C to +70°C, Plastic Standard Flow Environmental Flow
Temperature Package Speed Product Number Zilog Prefix
64 P R E L I M I N A R Y DS97Z8X0502
Z86E30/E31/E40
1
Zilog Z8 4K OTP Microcontroller
© 1998 by Zilog, Inc. All rights reserved. No part of this document may be copied or reproduced in any form or by any means without the prior written consent of Zilog, Inc. The information in this document is subject to change without notice. Devices sold by Zilog, Inc. are covered by warranty and patent indemnification provisions appearing in Zilog, Inc. Terms and Conditions of Sale only.
ZILOG, INC. MAKES NO WARRANTY, EXPRESS, STATUTORY, IMPLIED OR BY DESCRIPTION, REGARDING THE INFORMATION SET FORTH HEREIN OR REGARDING THE FREEDOM OF THE DESCRIBED DEVICES FROM INTELLECTUAL PROPERTY INFRINGEMENT. ZILOG, INC. MAKES NO WARRANTY OF MERCHANTABILITY OR FITNESS FOR ANY PURPOSE.
Zilog, Inc. shall not be responsible for any errors that may appear in this document. Zilog, Inc. makes no commitment to update or keep current the information contained in this document.
Zilog’s products are not authorized for use as critical components in life support devices or systems unless a specific written agreement pertaining to such intended use is executed between the customer and Zilog prior to use. Life support devices or systems are those which are intended for surgical implantation into the body, or which sustains life whose failure to perform, when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in significant injury to the user.
Zilog, Inc. 210 East Hacienda Ave. Campbell, CA 95008-6600 Telephone (408) 370-8000 FAX 408 370-8056 Internet: http://www.zilog.com
DS97Z8X0502 P R E L I M I N A R Y 65
Loading...