ZiLOG Z86E04, Z86E08 PROCUREMENT SPECIFICATION

Page 1
1
RELIMINARY
P
RODUCT
S
PECIFICATION
Z86E04/E08
CMOS Z8 OTP M
PRODUCT DEVICES
Part Oscillator Operating Operating ROM Number Type
Z86E0412PEC Crystal 4.5V–5.5V –40 ° C/105 ° C 1 18-Pin DIP Z86E0412PSC1866 Crystal 4.5V–5.5V 0 ° C/70 ° C 1 18-Pin DIP Z86E0412PSC1903 RC 4.5V–5.5V 0 ° C/70 ° C 1 18-Pin DIP Z86E0412PEC1903 RC 4.5V–5.5V –40 ° C/105 ° C 1 18-Pin DIP Z86E0412SEC Crystal 4.5V–5.5V –40 ° C/105 ° C 1 18-Pin SOIC Z86E0412SSC1866 Crystal 4.5V–5.5V 0 ° C/70 ° C 1 18-Pin SOIC Z86E0412SSC1903 RC 4.5V–5.5V 0 ° C/70 ° C 1 18-Pin SOIC Z86E0412SEC1903 RC 4.5V–5.5V –40 ° C/105 ° C 1 18-Pin SOIC Z86E0812PEC Crystal 4.5V–5.5V –40 ° C/105 ° C 2 18-Pin DIP Z86E0812PSC1866 Crystal 4.5V–5.5V 0 ° C/70 ° C 2 18-Pin DIP Z86E0812PSC1903 RC 4.5V–5.5V 0 ° C/70 ° C 2 18-Pin DIP Z86E0812PEC1903 RC 4.5V–5.5V –40 ° C/105 ° C 2 18-Pin DIP Z86E0812SEC Crystal 4.5V–5.5V –40 ° C/105 ° C 2 18-Pin SOIC Z86E0812SSC1866 Crystal 4.5V–5.5V 0 ° C/70 ° C 2 18-Pin SOIC Z86E0812SSC1903 RC 4.5V–5.5V 0 ° C/70 ° C 2 18-Pin SOIC Z86E0812SEC1903 RC 4.5V–5.5V –40 ° C/105 ° C 2 18-Pin SOIC
V
CC
Temperature (KB) Package
ICROCONTROLLERS
1
Several key product features of the extensive family of Zilog Z86E04/E08 CMOS OTP microcontrollers are presented in the above table. This table enables the user to identify which of the E04/E08 product variants most closely match the us­er’s application requirements.
DS97Z8X1104
P R E L I M I N A R Y
1
Page 2
2
Z86E04/E08 CMOS Z8 OTP Microcontrollers Zilog
FEATURES
14 Input/Output Lines Six Vectored, Prioritized Interrupts
(3 falling edge, 1 rising edge, 2 timers)
Two Analog Comparators
Program Options: – Low Noise
ROM Protect – Auto Latch – Watch-Dog Timer (WDT) – EPROM/Test Mode Disable
GENERAL DESCRIPTION
Zilog's Z86E04/E08 Microcontrollers (MCU) are One-Time Programmable (OTP) members of Zilog’s single-chip Z8 MCU family that allow easy software development, debug, prototyping, and small production runs not economically desirable with masked ROM versions.
For applications demanding powerful I/O capabilities, the Z86E04/E08's dedicated input and output lines are grouped into three ports, and are configurable under soft­ware control to provide timing, status signals, or parallel I/O.
Two Programmable 8-Bit Counter/Timers, Each with 6-Bit Programmable Prescaler
WDT/ Power-On Reset (POR)
On-Chip Oscillator that Accepts XTAL, Ceramic Resonance, LC, RC, or External Clock
Clock-Free WDT Reset Low-Power Consumption (50 mw typical)
Fast Instruction Pointer (1 µ s @ 12 MHz)
RAM Bytes (125)
Note: All Signals with an overline, “
®
example: B/W
(WORD is active Low); B/W (BYTE is active
”, are active Low, for
Low, only). Power connections follow conventional descriptions be-
low:
Connection Circuit Device
Power
V
CC
Ground GND
V
DD
V
SS
Two on-chip counter/timers, with a large number of user selectable modes, offload the system of administering real-time tasks such as counting/timing and I/O data com­munications.
P R E L I M I N A R Y
DS97Z8X1104
Page 3
1
Z86E04/E08
Zilog CMOS Z8 OTP Microcontrollers
Input
Port 3
Counter/
Timers (2)
Interrupt
Control
T wo Analog
Comparators
Vcc GND
ALU
FLAG
Register
Pointer
General-Purpose
Register File
XTAL
Machine
Timing & Inst.
Control
OTP
Program
Counter
Port 2
I/O
(Bit Programmable)
Port 0
I/O
Figure 1. Functional Block Diagram
DS97Z8X1104
P R E L I M I N A R Y
3
Page 4
4
Z86E04/E08 CMOS Z8 OTP Microcontrollers Zilog
GENERAL DESCRIPTION (Continued)
D7–0
AD 10–0
Z8 MCU
Address
MUX
AD 10–0
Clear
P00
Clock
P01
Address Counter
PGM
Mode Logic
EPM
P32
CE
XT1
D7–0
AD 10–0
3 bits
PGM
P30
EPROM
ROM PROT
Low Noise
VPP P33
Figure 2. EPROM Programming Mode Block Diagram
Data MUX
D7–0
Z8
Port 2
OE
P31
P R E L I M I N A R Y
DS97Z8X1104
Page 5
1
P24 P25 P26 P27
V
CC
XTAL2 XTAL1
P31 P32
P23 P22 P21 P20 GND P02 P01 P00 P33
18
1
910
Z86E04/E08
Zilog CMOS Z8 OTP Microcontrollers
PIN DESCRIPTION
1
D4 D5 D6 D7
V
CC
NC
CE
OE
EPM
910
18
D3 D2 D1 D0 GND PGM CLOCK CLEAR V
PP
Figure 3. 18-Pin EPROM Mode Configuration
Table 1. 18-Pin DIP Pin Identification
EPROM Programming Mode Pin # Symbol Function Direction
1–4 D4–D7 Data 4, 5, 6, 7 In/Output 5V
CC
Power Supply
6 NC No Connection 7CE
Chip Enable Input 8OEOutput Enable Input 9 EPM EPROM Prog Mode Input 10 V
PP
Prog V oltage Input
11 Clear Clear Clock Input 12 Clock Address Input 13 PGM
Prog Mode Input 14 GND Ground 15–18 D0–D3 Data 0,1, 2, 3 In/Output
Figure 4. 18-Pin DIP/SOIC Mode Configuration
Table 2. 18-Pin DIP/SOIC Pin Identification
Standard Mode Pin # Symbol Function Direction
1–4 P24–P27 Port 2, Pins 4,5,6,7 In/Output 5V
CC
Power Supply
6 XTAL2 Crystal Osc. Clock Output 7 XTAL1 Crystal Osc. Clock Input 8 P31 Port 3, Pin 1, AN1 Input 9 P32 Port 3, Pin 2, AN2 Input 10 P33 Port 3, Pin 3, REF Input 11–13 P00–P02 Port 0, Pins 0,1,2 In/Output 14 GND Ground 15–18 P20–P23 Port 2, Pins 0,1,2,3 In/Output
DS97Z8X1104
P R E L I M I N A R Y
5
Page 6
6
)
Z86E04/E08 CMOS Z8 OTP Microcontrollers Zilog
ABSOLUTE MAXIMUM RATINGS
Stresses greater than those listed under Absolute Maxi­mum Ratings may cause permanent damage to the de-
dissipation should not exceed 462 mW for the package.
Power dissipation is calculated as follows: vice. This is a stress rating only; functional operation of the device at any condition above those indicated in the oper­ational sections of these specifications is not implied. Ex­posure to absolute maximum rating conditions for an ex­tended period may affect device reliability. Total power
Total Power Dissipation = V
x [I
DD
–(sum of I
DD
+ sum of [(V + sum of (V
)]
OH
–V
) x I
DD
OH
x I
0L
0L
OH
]
Parameter Min Max Units Note
Ambient Temperature under Bias –40 +105 C Storage Temperature –65 +150 C Voltage on any Pin with Respect to V
Voltage on V
Pin with Respect to V
DD
SS SS
Voltage on Pins 7, 8, 9, 10 with Respect to V
–0.6 V
SS
–0.7 +12 V 1 –0.3 +7 V
+1 V 2
DD
Total Power Dissipation 1.65 W Maximum Allowable Current out of V
Maximum Allowable Current into V
DD
SS
300 mA 220 mA
Maximum Allowable Current into an Input Pin –600 +600 µA3 Maximum Allowable Current into an Open-Drain Pin –600 +600 µA4 Maximum Allowable Output Current Sinked by Any I/O Pin 25 mA Maximum Allowable Output Current Sourced by Any I/O Pin 25 mA Total Maximum Output Current Sinked by a Port 60 mA Total Maximum Output Current Sourced by a Port 45 mA
Notes:
1. This applies to all pins except where otherwise noted. Maximum current into pin must be ± 600 µA.
2. There is no input protection diode from pin to V
3. This excludes Pin 6 and Pin 7.
4. Device pin is not at an output Low state.
(not applicable to EPROM Mode).
DD
P R E L I M I N A R Y
DS97Z8X1104
Page 7
Z86E04/E08
1
From Output
Under Test
150 pF
Zilog CMOS Z8 OTP Microcontrollers
STANDARD TEST CONDITIONS
The characteristics listed below apply for standard test conditions as noted. All voltages are referenced to Ground. Positive current flows into the referenced pin (Fig­ure 5).
Figure 5. Test Load Diagram
CAPACITANCE
= 25°C, VCC = GND = 0V, f = 1.0 MHz, unmeasured pins returned to GND.
T
A
Parameter Min Max
Input capacitance 0 10 pF Output capacitance 0 20 pF I/O capacitance 0 25 pF
DS97Z8X1104 P R E L I M I N A R Y 7
Page 8
Z86E04/E08 CMOS Z8 OTP Microcontrollers Zilog
DC ELECTRICAL CHARACTERISTICS
Standard Temperature
Sym Parameter
V
INMAX
V
CH
Max Input Voltage 4.5V 12 V IIn<250 µA 1
Clock Input High Voltage
V
CL
Clock Input Low Voltage
V
IH
V
IL
V
OH
V
OL1
V
OL2
V
OFFSET
Input High Voltage 4.5V
Input Low Voltage 4.5V
Output High Voltage 4.5V VCC–0.4 4.8 V IOH = –2.0 mA 5
Output Low Voltage 4.5V 0.8 0.1 V IOL = +4.0 mA 5
Output Low Voltage 4.5V 0.8 0.8 V IOL = +12 mA, 5
Comparator Input Offset V oltage
V
LV
VCC Low Voltage Auto Reset
I
IL
Input Leakage (Input Bias Current of Comparator)
TA = 0°C to +70°C
V
CC
[4]
Min Max @ 25°C Units Conditions Notes
Typical
5.5V 12 V IIn<250 µA 1
4.5V 0.8 V
VCC+0.3 2.8 V Driven by External
CC
Clock Generator
5.5V 0.8 V
VCC+0.3 2.8 V Driven by External
CC
Clock Generator
4.5V VSS–0.3 0.2 V
CC
1.7 V Driven by External Clock Generator
5.5V VSS–0.3 0.2 V
CC
1.7 V Driven by External Clock Generator
5.5V
5.5V
0.7 V
0.7 V
VSS–0.3 VSS–0.3
CC CC
VCC+0.3 VCC+0.3
0.2 V
CC
0.2 V
CC
2.8
2.8
1.5
1.5
V V
V V
5.5V VCC–0.4 4.8 V IOH = –2.0 mA 5
4.5V VCC–0.4 4.8 V Low Noise @ IOH = –0.5 mA
5.5V VCC–0.4 4.8 V Low Noise @ IOH = –0.5 mA
5.5V 0.4 0.1 V IOL = +4.0 mA 5
4.5V 0.4 0.1 V Low Noise @ IOL = 1.0 mA
5.5V 0.4 0.1 V Low Noise @ I
= 1.0 mA
OL
5.5V 0.8 0.8 V IOL = +12 mA, 5
4.5V 25.0 10.0 mV
5.5V 25.0 10.0 mV
2.2 3.0 2.8 V @ 6 MHz Max. Int. CLK Freq.
4.5V –1.0 1.0 µAVIN = 0V, V
5.5V –1.0 1.0 µAVIN = 0V, V
CC CC
I
OL
V
ICR
Output Leakage 4.5V –1.0 1.0 µAVIN = 0V, V
5.5V –1.0 1.0 µAVIN = 0V, V
Comparator Input
0V
–1.0 V
CC
CC CC
Common Mode Voltage Range
8 P R E L I M I N A R Y DS97Z8X1104
Page 9
Z86E04/E08
1
Zilog CMOS Z8 OTP Microcontrollers
Sym Parameter
I
CC
I
CC1
I
CC
Supply Current 4.5V 11.0 6.8 mA All Output and I/O Pins
Standby Current 4.5V 4.0 2.5 mA HALT Mode VIN = 0V,
Supply Current (Low Noise Mode)
TA = 0°C to +70°C
V
CC
[4]
Min Max @ 25°C Units Conditions Notes
Typical
Floating @ 2 MHz
5.5V 11.0 6.8 mA All Output and I/O Pins Floating @ 2 MHz
4.5V 15.0 8.2 mA All Output and I/O Pins Floating @ 8 MHz
5.5V 15.0 8.2 mA All Output and I/O Pins Floating @ 8 MHz
4.5V 20.0 12.0 mA All Output and I/O Pins Floating @ 12 MHz
5.5V 20.0 12.0 mA All Output and I/O Pins Floating @ 12 MHz
VCC @ 2 MHz
5.5V 4.0 2.5 mA HALT Mode VIN = 0V, VCC @ 2 MHz
4.5V 5.0 3.0 mA HALT Mode VIN = 0V, VCC @ 8 MHz
5.5V 5.0 3.0 mA HALT Mode VIN = 0V, VCC @ 8 MHz
4.5V 7.0 4.0 mA HALT Mode VIN = 0V, VCC @ 12 MHz
5.5V 7.0 4.0 mA HALT Mode V
= 0V,
IN
VCC @ 12 MHz
4.5V 11.0 6.8 mA All Output and I/O Pins Floating @ 1 MHz
5.5V 11.0 6.8 mA All Output and I/O Pins Floating @ 1 MHz
4.5V 13.0 7.5 mA All Output and I/O Pins Floating @ 2 MHz
5.5V 13.0 7.5 mA All Output and I/O Pins Floating @ 2 MHz
4.5V 15.0 8.2 mA All Output and I/O Pins Floating @ 4 MHz
5.5V 15.0 8.2 mA All Output and I/O Pins Floating @ 4 MHz
5,7
5,7
5,7
5,7
5,7
5,7
5,7
5,7
5,7
5,7
5,7
5,7
7
7
7
7
7
7
DS97Z8X1104 P R E L I M I N A R Y 9
Page 10
Z86E04/E08 CMOS Z8 OTP Microcontrollers Zilog
DC ELECTRICAL CHARACTERISTICS (Continued)
Sym Parameter
I
Standby Current
CC1
TA = 0°C to +70°C
V
CC
[4]
Min Max @ 25°C Units Conditions Notes
4.5V 4.0 2.5 mA HALT Mode V
Typical
(Low Noise Mode)
5.5V 4.0 2.5 mA HALT Mode VIN = 0V,
4.5V 4.5 2.8 mA HALT Mode VIN = 0V,
5.5V 4.5 2.8 mA HALT Mode VIN = 0V,
4.5V 5.0 3.0 mA HALT Mode VIN = 0V,
5.5V 5.0 3.0 mA HALT Mode VIN = 0V,
Standby Current 4.5V 10.0 1.0 µA STOP Mode VIN = 0V, V
I
CC2
5.5V 10.0 1.0 µA STOP Mode VIN = 0V,VCC
I
Auto Latch Low
ALL
Current
I
Auto Latch High
ALH
Current
Notes:
1. Port 2 and Port 0 only
2. V
= 0V = GND
SS
3. The device operates down to V the voltage VLV at the ambient temperature. The VLV increases as the temperature decreases.
4. V
= 4.5 to 5.5V, typical values measured at VCC = 5.0V.
CC
The V
5. Standard Mode (not Low EMI Mode)
6. Z86E08 only
7. All outputs unloaded and all inputs are at V
8. If analog comparator is selected, then the comparator inputs must be at V
voltage specification of 5.5 V guarantees 5.0 V ± 0.5V with typical values measured at VCC = 5.0V.
CC
4.5V 32.0 16 µA 0V < VIN < V
5.5V 32.0 16 µA 0V < VIN < V
4.5V –16.0 –8.0 µA 0V < VIN < V
5.5V –16.0 –8.0 µA 0V < VIN < V
of the specified frequency for VLV . The minimum operational VCC is determined on the value of
LV
or VSS level.
CC
level.
CC
= 0V,
IN
@ 1 MHz
V
CC
VCC @ 1 MHz
VCC @ 2 MHz
VCC @ 2 MHz
VCC @ 4 MHz
VCC @ 4 MHz
WDT is not Running
WDT is not Running
CC CC CC CC
CC
7
7
7
7
7
7
7,8
7,8
10 P R E L I M I N A R Y DS97Z8X1104
Page 11
Z86E04/E08
1
Zilog CMOS Z8 OTP Microcontrollers
DC ELECTRICAL CHARACTERISTICS
Extended Temperature
Sym Parameter
V
INMAX
V
CH
Max Input Voltage 4.5V 12.0 V IIN < 250 µA1
Clock Input High Voltage
V
CL
Clock Input Low Voltage
V
IH
V
IL
V
OH
V
OL1
V
OL2
V
OFFSET
Input High Voltage 4.5V 0.7 V
Input Low Voltage 4.5V VSS–0.3 0.2 V
Output High Voltage 4.5V VCC–0.4 4.8 V IOH = –2.0 mA 5
Output Low Voltage 4.5V 0.4 0.1 V IOL = +4.0 mA 5
Output Low Voltage 4.5V 1.0 0.3 V IOL = +12 mA, 5
Comparator Input Offset V oltage
V
LV
VCC Low Voltage Auto Reset
I
IL
Input Leakage (Input Bias Current of Comparator)
I
OL
V
ICR
Output Leakage 4.5V –1.0 1.0 µAVIN = 0V, V
Comparator Input Common Mode Voltage Range
TA = –40°C to
+105°C Typical
V
CC
[4]
Min Max @ 25°C Units Conditions Notes
5.5V 12.0 V IIN < 250 µA1
4.5V 0.8 V
CCVCC
+0.3 2.8 V Driven by External
Clock Generator
5.5V 0.8 V
CCVCC
+0.3 2.8 V Driven by External
Clock Generator
4.5V VSS–0.3 0.2 V
CC
1.7 V Driven by External Clock Generator
5.5V VSS–0.3 0.2 V
CC
1.7 V Driven by External Clock Generator
CCVCC
5.5V 0.7 V
CCVCC
5.5V VSS–0.3 0.2 V
+0.3 2.8 V +0.3 2.8 V
CC CC
1.5 V
1.5 V
5.5V VCC–0.4 4.8 V IOH = –2.0 mA 5
4.5V VCC–0.4 V Low Noise @ IOH = –0.5 mA
5.5V VCC–0.4 V Low Noise @ IOH = –0.5 mA
5.5V 0.4 0.1 V I
= +4.0 mA 5
OL
4.5V 0.4 0.1 V Low Noise @ IOL = 1.0 mA
5.5V 0.4 0.1 V Low Noise @ IOL = 1.0 mA
5.5V 1.0 0.3 V IOL = +12 mA, 5
4.5V 25.0 10.0 mV
5.5V 25.0 10.0 mV
1.8 3.8 2.8 V @ 6 MHz Max. Int.
3
CLK Freq.
4.5V –1.0 1.0 µAVIN = 0V, V
5.5V –1.0 1.0 µAVIN = 0V, V
5.5V –1.0 1.0 µAVIN = 0V, V
CC CC
CC CC
0 VCC –1.5 V
DS97Z8X1104 P R E L I M I N A R Y 11
Page 12
Z86E04/E08 CMOS Z8 OTP Microcontrollers Zilog
DC ELECTRICAL CHARACTERISTICS (Continued)
T
= –40°C to
A
+105°C Typical
V
Sym Parameter
I
CC
I
CC1
I
CC
Supply Current 4.5V 11.0 6.8 mA All Output and I/O Pins
Standby Current 4.5V 5.0 2.5 mA HALT Mode VIN = 0V,
Supply Current (Low Noise Mode)
CC
[4]
Min Max @ 25°C Units Conditions Notes
Floating @ 2 MHz
5.5V 11.0 6.8 mA All Output and I/O Pins Floating @ 2 MHz
4.5V 15.0 8.2 mA All Output and I/O Pins Floating @ 8 MHz
5.5V 15.0 8.2 mA All Output and I/O Pins Floating @ 8 MHz
4.5V 20.0 12.0 mA All Output and I/O Pins Floating @ 12 MHz
5.5V 20.0 12.0 mA All Output and I/O Pins Floating @ 12 MHz
VCC @ 2 MHz
5.5V 5.0 2.5 mA HALT Mode VIN = 0V, VCC @ 2 MHz
4.5V 5.0 3.0 mA HALT Mode VIN = 0V, VCC @ 8 MHz
5.5V 5.0 3.0 mA HALT Mode VIN = 0V, VCC @ 8 MHz
4.5V 7.0 4.0 mA HALT Mode VIN = 0V, VCC @ 12 MHz
5.5V 7.0 4.0 mA HALT Mode VIN = 0V,
@ 12 MHz
V
CC
4.5V 11.0 6.8 mA All Output and I/O Pins Floating @ 1 MHz
5.5V 11.0 6.8 mA All Output and I/O Pins Floating @ 1 MHz
4.5V 13.0 7.5 mA All Output and I/O Pins Floating @ 2 MHz
5.5V 13.0 7.5 mA All Output and I/O Pins Floating @ 2 MHz
4.5V 15.0 8.2 mA All Output and I/O Pins Floating @ 4 MHz
5.5V 15.0 8.2 mA All Output and I/O Pins Floating @ 4 MHz
5,7
5,7
5,7
5,7
5,7
5,7
5,7
5,7
5,7
5,7
5,7
5,7
7
7
7
7
7
7
12 P R E L I M I N A R Y DS97Z8X1104
Page 13
Z86E04/E08
1
Zilog CMOS Z8 OTP Microcontrollers
Sym Parameter
I
CC1
Standby Current (Low Noise Mode)
TA = –40°C to +105°C
VCC [4]
Min Max @ 25°C Units Conditions Notes
4.5V 4.0 2.5 mA HALT Mode V
Typical
@ 1 MHz
V
CC
= 0V,
IN
5.5V 4.0 2.5 mA HALT Mode VIN = 0V, VCC @ 1 MHz
4.5V 4.5 2.8 mA HALT Mode VIN = 0V, VCC @ 2 MHz
5.5V 4.5 2.8 mA HALT Mode VIN = 0V, VCC @ 2 MHz
4.5V 5.0 3.0 mA HALT Mode VIN = 0V, VCC @ 4 MHz
5.5V 5.0 3.0 mA HALT Mode VIN = 0V, VCC @ 4 MHz
I
CC2
Standby Current 4.5V 20 1.0 µA STOP Mode VIN = 0V, VCC
7,8
WDT is not Running
5.5V 20 1.0 µA STOP Mode VIN = 0V, VCC
7,8
WDT is not Running
I
ALL
I
ALH
Notes:
1. Port 2 and Port 0 only
2. V
3. The device operates down to VLV of the specified frequency for VLV . The minimum operational VCC is determined on the value of
4. V
5. Standard Mode (not Low EMI Mode)
6. Z86E08 only
7. All outputs unloaded and all inputs are at V
8. If analog comparator is selected, then the comparator inputs must be at V
Auto Latch Low Current
Auto Latch High Current
= 0V = GND
SS
the voltage V
= 4.5V to 5.5V, typical values measured at VCC = 5.0V
CC
at the ambient temperature. The VLV increases as the temperature decreases.
LV
4.5V 40 16 µA 0V < VIN < V
5.5V 40 16 µA 0V < VIN < V
4.5V –20.0 –8.0 µA 0V < VIN < V
5.5V –20.0 –8.0 µA 0V < VIN < V
or VSS level.
CC
CC
CC CC CC CC
level.
7
7
7
7
7
7
DS97Z8X1104 P R E L I M I N A R Y 13
Page 14
Z86E04/E08 CMOS Z8 OTP Microcontrollers Zilog
AC ELECTRICAL CHARACTERISTICS
Clock
T
IN
IRQ
1
2
7
N
7
4
8
5
6
9
3
2
3
Figure 6. AC Electrical Timing Diagram
14 P R E L I M I N A R Y DS97Z8X1104
Page 15
Z86E04/E08
1
Zilog CMOS Z8 OTP Microcontrollers
AC ELECTRICAL CHARACTERISTICS
Timing Table (Standard Mode for SCLK/TCLK = XTAL/2) Standard Temperature
15
8 MHz 12 MHz
No Symbol Parameter
1 TpC Input Clock Period 4.5V 125 DC 83 DC ns 1
2 TrC,TfC Clock Input Rise
and Fall Times
3 TwC Input Clock Width 4.5V 62 41 ns 1
4 TwTinL Timer Input Low Width 4.5V 100 100 ns 1
5 TwTinH Timer Input High Width 4.5V 5TpC 5TpC 1
6 TpTin Timer Input Period 4.5V 8TpC 8TpC 1
7 TrTin,
TtTin
8 TwIL Int. Request Input
9 TwIH Int. Request Input
10 Twdt Watch-Dog Timer
11 Tpor
Notes:
1. Timing Reference uses 0.7 V
2. Interrupt request through Port 3 (P33–P31).
Timer Input Rise and Fall Time
Low Time
High Time
Delay Time for Timeout Power-On Reset Time 4.5V 20 80 20 80 ms 1
for a logic 1 and 0.2 VCC for a logic 0.
CC
V
CC
5.5V 125 DC 83 DC ns 1
4.5V 25 15 ns 1
5.5V 25 15 ns 1
5.5V 62 41 ns 1
5.5V 70 70 ns 1
5.5V 5TpC 5TpC 1
5.5V 8TpC 8TpC 1
4.5V 100 100 ns 1
5.5V 100 100 ns 1
4.5V 70 70 ns 1,2
5.5V 70 70 ns 1,2
4.5V 5TpC 5TpC 1,2
5.5V 5TpC 5TpC 1,2
4.5V 12 12 ms 1
5.5V 12 12 ms 1
5.5V 20 80 20 80 ms 1
TA= 0 °C to +70 °C
Min Max Min Max Units Notes
DS97Z8X1104 P R E L I M I N A R Y 15
Page 16
Z86E04/E08 CMOS Z8 OTP Microcontrollers Zilog
AC ELECTRICAL CHARACTERISTICS
Timing Table (Standard Mode for SCLK/TCLK = XTAL/2) Extended Temperature
TA= –40 °C to +105 °C
8 MHz 12 MHz
No Symbol Parameter
V
CC
1 TpC Input Clock Period 4.5V 125 DC 83 DC ns 1
5.5V 125 DC 83 DC ns 1
2 TrC,TfC Clock Input Rise
and Fall Times
4.5V 25 15 ns 1
5.5V 25 15 ns 1
3 TwC Input Clock Width 4.5V 62 41 ns 1
5.5V 62 41 ns 1
4 TwTinL Timer Input Low Width 4.5V 70 70 ns 1
5.5V 70 70 ns 1
5 TwTinH Timer Input High Width 4.5V 5TpC 5TpC 1
5.5V 5TpC 5TpC 1
6 TpTin Timer Input Period 4.5V 8TpC 8TpC 1
5.5V 8TpC 8TpC 1
7 TrTin,
TtTin
8 TwIL Int. Request Input
9 TwIH Int. Request Input
10 T wdt Watch-Dog Timer
11 Tpor
Notes:
1. Timing Reference uses 0.7 V
2. Interrupt request made through Port 3 (P33–P31).
Timer Input Rise and Fall Time
4.5V 100 100 ns 1
5.5V 100 100 ns 1
4.5V 70 70 ns 1,2
Low Time
5.5V 70 70 ns 1,2
4.5V 5TpC 5TpC 1,2
High Time
5.5V 5TpC 5TpC 1,2
4.5V 10 10 ms 1
Delay Time for Timeout
5.5V 10 10 ms 1
Power-On Reset Time 4.5V 12 100 12 100 ms 1
5.5V 12 100 12 100 ms 1
for a logic 1 and 0.2 VCC for a logic 0.
CC
Min Max Min Max Units Notes
16 P R E L I M I N A R Y DS97Z8X1104
Page 17
Z86E04/E08
1
Zilog CMOS Z8 OTP Microcontrollers
AC ELECTRICAL CHARACTERISTICS
Low Noise Mode, Standard Temperature
TA= 0 °C to +70 °C
1 MHz 4 MHz
No Symbol Parameter
1 TPC Input Clock Period 4.5V 1000 DC 250 DC ns 1
2TrC
TfC
3 TwC Input Clock Width 4.5V 500 125 ns 1
4. TwTinL Timer Input Low Width 4.5V 70 70 ns 1
5 TwTinH Timer Input High Width 4.5V 2.5TpC 2.5TpC 1
6 TpTin Timer Input Period 4.5V 4TpC 4TpC 1
7 TrTin,
TtTin
8 TwIL
Low Time
9 TwIH
High Time
10 T wdt Watch-Dog Timer
Notes:
1. Timing Reference uses 0.7 V
2. Interrupt request through Port 3 (P33–P31).
Clock Input Rise and Fall Times
Timer Input Rise and Fall Time
Int. Request Input 4.5V 70 70 ns 1,2
Int. Request Input 4.5V 2.5TpC 2.5TpC 1,2
Delay Time for Timeout
for a logic 1 and 0.2 VCC for a logic 0.
CC
V
CC
5.5V 1000 DC 250 DC ns 1
4.5V 25 25 ns 1
5.5V 25 25 ns 1
5.5V 500 125 ns 1
5.5V 70 70 ns 1
5.5V 2.5TpC 2.5TpC 1
5.5V 4TpC 4TpC 1
4.5V 100 100 ns 1
5.5V 100 100 ns 1
5.5V 70 70 ns 1,2
5.5V 2.5TpC 2.5TpC 1,2
4.5V 12 12 ms 1
5.5V 12 12 ms 1
Min Max Min Max Units Notes
DS97Z8X1104 P R E L I M I N A R Y 17
Page 18
Z86E04/E08 CMOS Z8 OTP Microcontrollers Zilog
AC ELECTRICAL CHARACTERISTICS (Continued)
Low Noise Mode, Extended Temperature
TA= –40 °C to +105 °C
1 MHz 4 MHz
No Symbol Parameter
1 TPC Input Clock Period 4.5V 1000 DC 250 DC ns 1
2TrC
TfC
Clock Input Rise and Fall Times
3 TwC Input Clock Width 4.5V 500 125 ns 1
4. TwTinL Timer Input Low Width 4.5V 70 70 ns 1
5 TwTinH Timer Input High Width 4.5V 2.5TpC 2.5TpC 1
6 TpTin Timer Input Period 4.5V 4TpC 4TpC 1
7 TrTin,
TtTin
Timer Input Rise and Fall Time
8 TwIL Int. Request Input
Low Time
9 TwIH Int. Request Input
High Time
10 T wdt Watch-Dog Timer
Delay Time for Timeout
Notes:
1. Timing Reference uses 0.7 V
2. Interrupt request through Port 3 (P33–P31).
for a logic 1 and 0.2 VCC for a logic 0.
CC
V
CC
Min Max Min Max Units Notes
5.5V 1000 DC 250 DC ns 1
4.5V 25 25 ns 1
5.5V 25 25 ns 1
5.5V 500 125 ns 1
5.5V 70 70 ns 1
5.5V 2.5TpC 2.5TpC 1
5.5V 4TpC 4TpC 1
4.5V 100 100 ns 1
5.5V 100 100 ns 1
4.5V 70 70 ns 1,2
5.5V 70 70 ns 1,2
4.5V 2.5TpC 2.5TpC 1,2
5.5V 2.5TpC 2.5TpC 1,2
4.5V 10 10 ms 1
5.5V 10 10 ms 1
18 P R E L I M I N A R Y DS97Z8X1104
Page 19
Z86E04/E08
1
Zilog CMOS Z8 OTP Microcontrollers
LOW NOISE VERSION Low EMI Emission
The Z86E04/E08 can be programmed to operate in a Low EMI Emission Mode by means of a mask ROM bit option. Use of this feature results in:
All pre-driver slew rates reduced to 10 ns typical.
Internal SCLK/TCLK operation limited to a maximum of
4 MHz–250 ns cycle time.
PIN FUNCTIONS OTP Programming Mode
D7–D0
EPROM through this data bus.
VCC
Mode and 6.4V during the other modes (Program, Pro­gram Verify, and so on).
CE
EPROM Read Mode, Program Mode, and Program Verify Mode.
OE Bus direction. When this pin is Low, the Data Bus is output. When High, the Data Bus is input.
EPM ent EPROM Program Modes by applying different voltages.
Data Bus.
Power Supply.
Chip Enable
Output Enable
Data can be read from, or written to, the
It is typically 5V during EPROM Read
(active Low). This pin is active during
(active Low). This pin drives the Data
EPROM Program Mode.
This pin controls the differ-
Output drivers have resistances of 500 Ohms (typical).
Oscillator divide-by-two circuitry eliminated.
The Low EMI Mode is mask-programmable to be selected by the customer at the time the ROM code is submitted.
Clock
Address Clock.
address counter increases by one with one clock cycle. PGM
Program Mode
programs the data to the EPROM through the Data Bus.
This pin is a clock input. The internal
(active Low). A Low level at this pin
Application Precaution
The production test-mode environment may be enabled accidentally during normal operation if surges above VCC occur on the XTAL1 pin.
In addition, processor operation of Z8 OTP devices may be affected by OE pins while the microcontroller is in Standard Mode.
Recommendations for dampening voltage surges in both test and OTP Mode include the following:
Using a clamping diode to V
excessive noise
surges on the VPP, CE, EPM,
CC
excessive noise
.
V
Program Voltage.
PP
age. Clear
Clear
(active High). This pin resets the internal ad-
dress counter at the High Level.
This pin supplies the program volt-
Adding a capacitor to the affected pin.
Note: Programming the EPROM/Test Mode Disable option will prevent accidental entry into EPROM Mode or Test Mode.
DS97Z8X1104 P R E L I M I N A R Y 19
Page 20
Z86E04/E08 CMOS Z8 OTP Microcontrollers Zilog
PIN FUNCTIONS (Continued)
XTAL1, XTAL2
and output, respectively). These pins connect a parallel­resonant crystal, LC, or an external single-phase clock (8 MHz or 12 MHz max) to the on-chip clock oscillator and buffer.
Port 0, P02–P00. Port 0 is a 3-bit bidirectional, Schmitt­triggered CMOS-compatible I/O port. These three I/O lines can be globally configured under software control to be in­puts or outputs (Figure 7).
Crystal In, Crystal Out
(time-based input
Z8
Auto Latch. The Auto Latch puts valid CMOS levels on all CMOS inputs (except P33, P32, P31) that are not external­ly driven. A valid CMOS level, rather than a floating node, reduces excessive supply current flow in the input buffer. On Power-up and Reset, the Auto Latch will set the ports to an undetermined state of 0 or 1. Default condition is Auto Latches enabled.
Port 0 (I/O)
OE
Out
In
1.5 2.3 Hysteresis
Figure 7. Port 0 Configuration
V @ 5.0V
CC
R 500 k
PAD
Auto Latch Option
20 P R E L I M I N A R Y DS97Z8X1104
Page 21
Z86E04/E08
1
Zilog CMOS Z8 OTP Microcontrollers Port 2, P27–P20. Port 2 is an 8-bit, bit programmable, bi-
directional, Schmitt-triggered CMOS-compatible I/O port. These eight I/O lines can be configured under software
Z8
control to be inputs or outputs, independently. Bits pro­grammed as outputs can be globally programmed as ei­ther push-pull or open-drain (Figure 8).
Port 2 (I/O)
Open-Drain
/OE
Out
In
1.5 2.3 Hysteresis
Figure 8. Port 2 Configuration
PAD
VCC @ 5.0V
Auto Latch Option
R 500 k
DS97Z8X1104 P R E L I M I N A R Y 21
Page 22
Z86E04/E08 CMOS Z8 OTP Microcontrollers Zilog
PIN FUNCTIONS (Continued)
Port 3, P33–P31. Port 3 is a 3-bit, CMOS-compatible port
with three fixed input (P33–P31) lines. These three input lines can be configured under software control as digital Schmitt-trigger inputs or analog inputs.
Z86E04
and
Z8
Z86E08
R247 = P3M
0 = Digital 1 = Analog
D1
These three input lines are also used as the interrupt sources IRQ0–IRQ3, and as the timer input signal TIN (Fig­ure 9).
Port 3
PAD
PAD
PAD
P31 (AN1)
P32 (AN2)
P33 (REF)
TIN
DIG.
P31 Data Latch IRQ2
+
AN.
­IRQ3
P32 Data Latch IRQ0
+
-
P33 Data Latch
V
cc
IRQ1
IRQ 0,1,2 = Falling Edge Detection IRQ3 = Rising Edge Detection
Figure 9. Port 3 Configuration
22 P R E L I M I N A R Y DS97Z8X1104
Page 23
Z86E04/E08
1
Zilog CMOS Z8 OTP Microcontrollers Comparator Inputs. Two analog comparators are added
to input of Port 3, P31, and P32, for interface flexibility. The comparators reference voltage P33 (REF) is common to both comparators.
Typical applications for the on-board comparators; Zero crossing detection, A/D conversion, voltage scaling, and threshold detection. In Analog Mode, P33 input functions serve as a reference voltage to the comparators.
The dual comparator (common inverting terminal) features a single power supply which discontinues power in STOP
FUNCTIONAL DESCRIPTION
The following special functions have been incorporated into the Z8 devices to enhance the standard Z8 core archi­tecture to provide the user with increased design flexibility.
INT OSC XTAL OSC
Mode. The common voltage range is 0–4 V when the V
CC
is 5.0V; the power supply and common mode rejection ra­tios are 90 dB and 60 dB, respectively.
Interrupts are generated on either edge of Comparator 2's output, or on the falling edge of Comparator 1's output. The comparator output is used for interrupt generation, Port 3 data inputs, or TIN through P31. Alternatively, the comparators can be disabled, freeing the reference input (P33) for use as IRQ1 and/or P33 input.
RESET. This function is accomplished by means of a Pow­er-On Reset or a Watch-Dog Timer Reset. Upon power­up, the Power-On Reset circuit waits for T
ms, plus 18
POR
clock cycles, then starts program execution at address 000C (Hex) (Figure 10). The Z8 control registers' reset val­ue is shown in Table 3.
POR
(Cold Start)
Delay Line
TPOR msec
P27
(Stop Mode)
Figure 10. Internal Reset Configuration
Power-On Reset (POR). A timer circuit clocked by a ded-
icated on-board RC oscillator is used for a POR timer func­tion. The POR time allows VCC and the oscillator circuit to stabilize before instruction execution begins. The POR timer circuit is a one-shot timer triggered by one of the four following conditions:
Power-bad to power-good status
Stop-Mode Recovery
WDT time-out
18 CLK
Reset Filiter
Chip Reset
Watch-Dog Timer Reset. The WDT is a retriggerable one-shot timer that resets the Z8 if it reaches its terminal count. The WDT is initially enabled by executing the WDT instruction and is retriggered on subsequent execution of the WDT instruction. The timer circuit is driven by an on­board RC oscillator.
WDH time-out
DS97Z8X1104 P R E L I M I N A R Y 23
Page 24
Z86E04/E08 CMOS Z8 OTP Microcontrollers Zilog
FUNCTIONAL DESCRIPTION (Continued)
Table 3. Control Registers
Reset Condition
Addr. Reg. D7 D6 D5 D4 D3 D2 D1 D0 Comments
FF SPL 0 0 0 0 0 0 0 0 FD RP 0 0 0 0 0 0 0 0 FC FLAGS U U U U U U U U FB IMR 0 U U U U U U U FA IRQ U U 0 0 0 0 0 0 IRQ3 is used for positive edge
detection F9 IPR U U U U U U U U F8* P01M U U U 0 U U 0 1 F7* P3M U U U U U U 0 0 F6* P2M 1 1 1 1 1 1 1 1 Inputs after reset F5 PRE0 U U U U U U U 0 F4 T0 U U U U U U U U F3 PRE1 U U U U U U 0 0 F2 T1 U U U U U U U U F1 TMR 0 0 0 0 0 0 0 0
Note: *Registers are not reset after a STOP-Mode Recovery using P27 pin. A subsequent reset will cause these control registers to be reconfigured as shown in Table 4 and the user must avoid bus contention on the port pins or it may affect device reliability.
24 P R E L I M I N A R Y DS97Z8X1104
Page 25
Z86E04/E08
1
Zilog CMOS Z8 OTP Microcontrollers Program Memory. The Z86E04/E08 addresses up to
1K/2KB of Internal Program Memory (Figure 11). The first 12 bytes of program memory are reserved for the interrupt vectors. These locations contain six 16-bit vectors that cor­respond to the six available interrupts. Bytes 0–1024/2048 are on-chip one-time programmable ROM.
1023/2047
Location of
First Byte of
Instruction
Executed
After RESET
Interrupt
Vector
(Lower Byte)
Interrupt
Vector
(Upper Byte)
12
10
On-Chip
ROM
11
9 8
7 6
5 4
3 2
1 0
IRQ5 IRQ5 IRQ4 IRQ4 IRQ3 IRQ3 IRQ2 IRQ2 IRQ1 IRQ1 IRQ0 IRQ0
Identifiers
3FH/7FFH
3FFH/7FFH
0CH 0BH
0AH
09H 08H
07H 06H
05H 04H
03H 02H
01H 00H
Register File. The Register File consists of three I/O port registers, 124 general-purpose registers, and 14 control and status registers R0–R3, R4–R127 and R241–R255, respectively (Figure 12). General-purpose registers occu­py the 04H to 7FH address space. I/O ports are mapped as per the existing CMOS Z8.
Location
255 (FFH) 254 (FE) 253 (FD)
252 (FC) 251 (FB)
250 (FA) 249 (F9)
248 (F8) 247 (F7)
246 (F6) 245 (F5) 244 (F4) 243 (F3) 242 (F2)
241 (F1H)
General-Purpose Register
Register Pointer
Program Control Flags
Interrupt Mask Register
Interrupt Request Register
Interrupt Priority Register
Ports 0-1 Mode
Port 3 Mode Port 2 Mode
T0 Prescaler
Timer/Counter 0
T1 Prescaler
Timer/Counter 1
Timer Mode
Identifiers SPLStack Pointer (Bits 7-0)
GPR RP FLAGS
IMR IRQ IPR P01M P3M P2M PRE0 T0 PRE1 T1 TMR
Figure 11. Program Memory Map
128
127 (7FH)
4 3 2 1
0 (00H)
Not Implemented
General-Purpose
Registers
Port 3 Port 2
Reserved
Port 0
Figure 12. Register File
P3 P2 P1 P0
DS97Z8X1104 P R E L I M I N A R Y 25
Page 26
Z86E04/E08 CMOS Z8 OTP Microcontrollers Zilog
FUNCTIONAL DESCRIPTION (Continued)
The Z8 instructions can access registers directly or indi­rectly through an 8-bit address field. This allows short 4-bit register addressing using the Register Pointer.
In the 4-bit mode, the register file is divided into eight work­ing register groups, each occupying 16 continuous loca­tions. The Register Pointer (Figure 13) addresses the starting location of the active working-register group.
r7 r6 r5 r4 R253
The upper nibble of the register file address provided by the register pointer specifies the active working-register group.
FF
F0
7F
70 6F
60 5F
50 4F
40 3F
30 2F
20 1F
10 0F
00
*Expanded Register Group (0) is selected in this figure by handling bits D3 to D0 as "0" in Register R253(RP).
Register Group F
Specified Working
Register Group
Register Group 1
Register Group 0
I/O Ports
r3 r2 r1 r0
(Register Pointer)
R15 to R0
The lower nibble of the register file address provided by the instruction points to the specified register.
R15 to R0
R15 to R4* R3 to R0
Stack Pointer. The Z8 has an 8-bit Stack Pointer (R255) used for the internal stack that resides within the 124 gen­eral-purpose registers.
General-Purpose Registers (GPR). These registers are undefined after the device is powered up. The registers keep their last value after any reset, as long as the reset occurs in the VCC voltage-specified operating range. Note: Register R254 has been designated as a general-purpose register and is set to 00 Hex after any reset or Stop-Mode Recovery.
Counter/Timer. There are two 8-bit programmable counter/timers (T0 and T1), each driven by its own 6-bit programmable prescaler. The T1 prescaler is driven by in­ternal or external clock sources; however, the T0 can be driven by the internal clock source only (Figure 14).
The 6-bit prescalers divide the input frequency of the clock source by any integer number from 1 to 64. Each prescaler drives its counter, which decrements the value (1 to 256) that has been loaded into the counter. When both counter and prescaler reach the end of count, a timer interrupt re­quest IRQ4 (T0) or IRQ5 (T1) is generated.
The counter can be programmed to start, stop, restart to continue, or restart from the initial value. The counters are also programmed to stop upon reaching zero (Single-Pass Mode) or to automatically reload the initial value and con­tinue counting (Modulo-N Continuous Mode).
The counters, but not the prescalers, are read at any time without disturbing their value or count mode. The clock source for T1 is user-definable and is either the internal mi­croprocessor clock divided by four, or an external signal in­put through Port 3. The Timer Mode register configures the external timer input (P31) as an external clock, a trigger in­put that is retriggerable or non-retriggerable, or used as a gate input for the internal clock.
Figure 13. Register Pointer
26 P R E L I M I N A R Y DS97Z8X1104
Page 27
Z86E04/E08
1
Zilog CMOS Z8 OTP Microcontrollers
Internal Data Bus
OSC
÷ 2
Clock Logic
TIN P31
*
Internal Clock
External Clock
÷ 4
Internal Clock Gated Clock Triggered Clock
Write Write Read
PRE0
Initial Value
Register
6-Bit
÷ 4
Write Write Read
Down
Counter
6-Bit
Down
Counter
PRE1
Initial Value
Register
T0
Initial Value
Register
8-bit
Down
Counter
8-Bit
Down
Counter
T1
Initial Value
Register
T0
Current Value
Register
IRQ4
IRQ5
T1
Current Value
Register
* Note: By passed, if Low EMI Mode is selected.
Figure 14. Counter/Timers Block Diagram
Internal Data Bus
DS97Z8X1104 P R E L I M I N A R Y 27
Page 28
Z86E04/E08 CMOS Z8 OTP Microcontrollers Zilog
FUNCTIONAL DESCRIPTION (Continued)
Interrupts. The Z8 has six interrupts from six different
sources. These interrupts are maskable and prioritized (Figure 15). The sources are divided as follows: the falling edge of P31 (AN1), P32 (AN2), P33 (REF), the rising edge of P32 (AN2), and two counter/timers. The Interrupt Mask Register globally or individually enables or disables the six interrupt requests (Table 4).
When more than one interrupt is pending, priorities are re­solved by a programmable priority encoder that is con­trolled by the Interrupt Priority register. All Z8 interrupts are vectored through locations in program memory. When an Interrupt machine cycle is activated, an Interrupt Request is granted. This disables all subsequent interrupts, saves the Program Counter and Status Flags, and then branches to the program memory vector location reserved for that in­terrupt. This memory location and the next byte contain the 16-bit starting address of the interrupt service routine for that particular interrupt request.
To accommodate polled interrupt systems, interrupt inputs are masked and the interrupt request register is polled to determine which of the interrupt requests needs service.
Note: User must select any Z86E08 mode in Zilog's C12 ICEBOX™ emulator. The rising edge interrupt is not sup­ported on the CCP emulator (a hardware/software workaround must be employed).
Table 4. Interrupt Types, Sources, and Vectors
Vector
Name Source Location Comments
IRQ0 AN2(P32) 0,1 External (F)Edge IRQ1 REF(P33) 2,3 External (F)Edge IRQ2 AN1(P31) 4,5 External (F)Edge IRQ3 AN2(P32) 6,7 External (R)Edge IRQ4 T0 8,9 Internal IRQ5 T1 10,11 Internal
Notes:
F = Falling edge triggered R = Rising edge triggered
Interrupt
Request
Global
Interrupt
Enable
IRQ0 - IRQ5
IRQ
IMR
6
IPR
PRIORITY
LOGIC
Vector Select
Figure 15. Interrupt Block Diagram
28 P R E L I M I N A R Y DS97Z8X1104
Page 29
Z86E04/E08
1
Zilog CMOS Z8 OTP Microcontrollers Clock. The Z8 on-chip oscillator has a high-gain, parallel-
resonant amplifier for connection to a crystal, LC, RC, ce­ramic resonator, or any suitable external clock source (XTAL1 = INPUT, XTAL2 = OUTPUT). The crystal should be AT cut, up to 12 MHz max., with a series resistance (RS) of less than or equal to 100 Ohms.
XTAL1
C1
*
XTAL2
C2
*
Ceramic Resonator or Crystal C1, C2 = 47 pF TYP * F = 8 MHz
C1
*
C2
*
LC
XTAL1
L
XTAL2
The crystal should be connected across XTAL1 and XTAL2 using the vendors crystal recommended capacitors from each pin directly to device ground pin 14 (Figure 16). Note that the crystal capacitor loads should be connected to VSS, Pin 14 to reduce Ground noise injection.
XTAL1
XTAL2
External Clock
C1
*
RC @ 5V Vcc (TYP)
C1 = 100 pF R = 2K F = 6 MHz
XTAL1
R
XTAL2
* Typical value including pin parasitics
Figure 16. Oscillator Configuration
DS97Z8X1104 P R E L I M I N A R Y 29
Page 30
Z86E04/E08 CMOS Z8 OTP Microcontrollers Zilog
FUNCTIONAL DESCRIPTION (Continued)
Table 5. Typical Frequency vs. RC Values
VCC = 5.0V @ 25°C
Load Capacitor
33 pFd 56 pFd 100 pFd 0.00 1µFd
Resistor (R)
1.0M 33K 31K 20K 20K 12K 11K 1.4K 1.4K 560K 56K 52K 34K 32K 20K 19K 2.5K 2.4K 220K 144K 130K 84K 78K 48K 45K 6K 6K 100K 315K 270K 182K 164K 100K 95K 12K 12K 56K 552K 480K 330K 300K 185K 170K 23K 22K 20K 1.4M 1M 884K 740K 500K 450K 65K 61K 10K 2.6M 2M 1.6M 1.3M 980K 820K 130K 123K 5K 4.4M 3M 2.8M 2M 1.7K 1.3M 245K 225K 2K 8M 5M 6M 4M 3.8K 2.7M 600K 536K 1K 12M 7M 8.8M 6M 6.3K 4.2M 1.0M 950K
Notes:
A = STD Mode Frequency. B = Low EMI Mode Frequency.
A(Hz) B(Hz) A(Hz) B(Hz) A(Hz) B(Hz) A(Hz) B(Hz)
Table 6. Typical Frequency vs. RC Values
V
= 3.3V @ 25°C
CC
Load Capacitor
Resistor (R) 33 pFd 56 pFd 100 pFd 0.00 1µFd
A(Hz) B(Hz) A(Hz) B(Hz) A(Hz) B(Hz) A(Hz) B(Hz)
1.0M 18K 18K 12K 12K 7.4K 7.7K 1K 1K 560K 30K 30K 20K 20K 12K 12K 1.6K 1.6K 220K 70K 70K 47K 47K 30K 30K 4K 4K 100K 150K 148K 97K 96K 60K 60K 8K 8K 56K 268K 250K 176K 170K 100K 100K 15K 15K 20K 690M 600K 463K 416K 286K 266K 40K 40K 10K 1.2M 1M 860K 730K 540K 480K 80K 76K 5K 2M 1.7M 1.5M 1.2M 950K 820K 151K 138K 2K 4.6M 3M 3.3M 2.4M 2.2M 1.6M 360K 316K 1K 7M 4.6M 5M 3.6M 3.6K 2.6M 660K 565K
Notes:
A = STD Mode Frequency. B = Low EMI Mode Frequency.
30 P R E L I M I N A R Y DS97Z8X1104
Page 31
Z86E04/E08
1
Zilog CMOS Z8 OTP Microcontrollers HALT Mode. This instruction turns off the internal CPU
clock but not the crystal oscillation. The counter/timers and external interrupts IRQ0, IRQ1, IRQ2 and IRQ3 remain ac­tive. The device is recovered by interrupts, either external­ly or internally generated. An interrupt request must be ex­ecuted (enabled) to exit HALT Mode. After the interrupt service routine, the program continues from the instruction after the HALT.
Note: On the C12 ICEBOX, the IRQ3 does not wake the device out of HALT Mode.
STOP Mode. This instruction turns off the internal clock and external crystal oscillation and reduces the standby current to 10 µA. The STOP Mode is released by a RESET through a Stop-Mode Recovery (pin P27). A Low input condition on P27 releases the STOP Mode. Program exe­cution begins at location 000C(Hex). However, when P27 is used to release the STOP Mode, the I/O port Mode reg­isters are not reconfigured to their default power-on condi­tions. This prevents any I/O, configured as output when the STOP instruction was executed, from glitching to an un­known state. To use the P27 release approach with STOP Mode, use the following instruction:
Watch-Dog Timer (WDT). The Watch-Dog Timer is en­abled by instruction WDT. When the WDT is enabled, it cannot be stopped by the instruction. With the WDT in­struction, the WDT is refreshed when it is enabled within every 1 Twdt period; otherwise, the controller resets itself, The WDT instruction affects the flags accordingly; Z=1, S=0, V=0.
WDT = 5F (Hex)
Opcode WDT (5FH). The first time Opcode 5FH is execut­ed, the WDT is enabled and subsequent execution clears the WDT counter. This must be done at least every T otherwise, the WDT times out and generates a reset. The generated reset is the same as a power-on reset of T plus 18 XTAL clock cycles. The software enabled WDT does not run in STOP Mode.
Opcode WDH (4FH). When this instruction is executed it enables the WDT during HALT. If not, the WDT stops when entering HALT. This instruction does not clear the counters, it just makes it possible to have the WDT running during HALT Mode. A WDH instruction executed without executing WDT (5FH) has no effect.
WDT
POR
; ,
LD P2M, #1XXX XXXXB NOP STOP
X = Dependent on user's application.
Note: A low level detected on P27 pin will take the device out of STOP Mode even if configured as an output.
In order to enter STOP or HALT Mode, it is necessary to first flush the instruction pipeline to avoid suspending exe­cution in mid-instruction. To do this, the user executes a NOP (opcode=FFH) immediately before the appropriate SLEEP instruction, such as:
FF NOP ; clear the pipeline 6F STOP ; enter STOP Mode
or FF NOP ; clear the pipeline 7F HALT ; enter HALT Mode
Permanent WDT. Selecting the hardware enabled Perma­nent WDT option, will automatically enable the WDT upon exiting reset. The permanent WDT will always run in HALT Mode and STOP Mode, and it cannot be disabled.
Auto Reset Voltage (VLV). The Z8 has an auto-reset built- in. The auto-reset circuit resets the Z8 when it detects the VCC below VLV.
Figure 17 shows the Auto Reset Voltage versus tempera­ture. If the VCC drops below the VCC operating voltage range, the Z8 will function down to the VLV unless the inter­nal clock frequency is higher than the specified maximum VLV frequency.
DS97Z8X1104 P R E L I M I N A R Y 31
Page 32
Z86E04/E08 CMOS Z8 OTP Microcontrollers Zilog
FUNCTIONAL DESCRIPTION (Continued)
Vcc
(Volts)
2.9
2.8
2.7
2.6
2.5
2.4
2.3
–40°C
–20°C0°C20°C
Figure 17. Typical Auto Reset Voltage
(VLV) vs. Temperature
40°C
60°C80°C
Temp
100°C
32 P R E L I M I N A R Y DS97Z8X1104
Page 33
Z86E04/E08
1
Zilog CMOS Z8 OTP Microcontrollers
Low EMI Emission
The Z8 can be programmed to operate in a low EMI Emis­sion (Low Noise) Mode by means of an EPROM program­mable bit option. Use of this feature results in:
Less than 1 mA consumed during HALT Mode.
All drivers slew rates reduced to 10 ns (typical).
Internal SCLK/TCLK = XTAL operation limited to a
maximum of 4 MHz–250 ns cycle time.
Output drivers have resistances of 500 ohms (typical).
Oscillator divide-by-two circuitry eliminated.
In addition to VDD and GND (VSS), the Z8 changes all its pin functions in the EPROM Mode. XTAL2 has no function, XTAL1 functions as CE tions as EPM, P33 functions as VPP, and P02 functions as PGM.
, P31 functions as OE, P32 func-
ROM Protect. ROM Protect fully protects the Z8 ROM code from being read externally. When ROM Protect is se­lected, the instructions LDC and LDCI are supported (Z86E04/E08 and Z86C04/C08 do not support the instruc­tions of LDE and LDEI). When the device is programmed for ROM Protect, the Low Noise feature will not automati­cally be enabled.
Please note that when using the device in a noisy environ­ment, it is suggested that the voltages on the EPM and CE pins be clamped to VCC through a diode to VCC to prevent accidentally entering the OTP Mode. The VPP requires both a diode and a 100 pF capacitor.
Auto Latch Disable. Auto Latch Disable option bit when programmed will globally disable all Auto Latches.
WDT Enable. The WDT Enable option bit, when pro­grammed, will have the hardware enabled Permanent WDT enabled after exiting reset and can not be stopped in Halt or Stop Mode.
EPROM/Test Mode Disable. The EPROM/Test Mode Disable option bit, when programmed, will disable the EPROM Mode and the Factory Test Mode. Reading, veri­fying, and programming the Z8 will be disabled. To fully verify that this mode is disabled, the device must be power cycled.
Table 7. OTP Programming Table
Programming Modes
V
PP
EPM CE OE PGM ADDR DATA
EPROM READ NU V PROGRAM V PROGRAM VERIFY V EPROM PROTECT V LOW NOISE SELECT V AUTO LATCH DISABLE V WDT ENABLE V EPROM/TEST MODE V
Notes:
1. V
=12.75V ± 0.25 VDC .
H
2. V
= As per specific Z8 DC specification.
IH
3. V
= As per specific Z8 DC specification.
IL
4. X = Not used, but must be set to V
5. NU = Not used, but must be set to either V
6. I
during programming = 40 mA maximum.
PP
7. I
during programming, verify, or read = 40 mA maximum.
CC
8. * V
has a tolerance of ±0.25V.
CC
H H H H H H H
or VIH level.
H
IH
H
V
IH
V
IH
V
H
V
IH
V
IH
V
IL
V
IL
or VIL level.
User Modes. Table 7 shows the programming voltage of each mode.
V
IL
V
IL
V
IL
V
H
V
H
V
H
V
H
V
H
V
IL
V
IH
V
IL
V
IH
V
IH
V
IL
V
IH
V
IL
V
IH
V
IL
V
IH
V
IL
V
IL
V
IL
V
IL
V
IL
ADDR Out 5.0V ADDR In 6.4V ADDR Out 6.4V
NU NU 6.4V NU NU 6.4V NU NU 6.4V NU NU 6.4V NU NU 6.4V
VCC*
DS97Z8X1104 P R E L I M I N A R Y 33
Page 34
Z86E04/E08 CMOS Z8 OTP Microcontrollers Zilog
FUNCTIONAL DESCRIPTION (Continued)
Internal Address Counter. The address of Z8 is generat-
ed internally with a counter clocked through pin P01 (Clock). Each clock signal increases the address by one
Programming Waveform. Figures 19, 20, 21 and 22 show the programming waveforms of each mode. Table 8
shows the timing of programming waveforms. and the “high” level of pin P00 (Clear) will reset the ad­dress to zero. Figure 18 shows the setup time of the serial address input.
Programming Algorithm. Figure 23 shows the flow chart
of the Z8 programming algorithm.
Table 8. Timing of Programming Waveforms
Parameters Name Min Max Units
1 Address Setup Time 2 µs 2 Data Setup Time 2 µs 3V
4V
Setup 2 µs
PP
Setup Time 2 µs
CC
5 Chip Enable Setup Time 2 µs 6 Program Pulse Width 0.95 ms 7 Data Hold Time 2 µs 8OE Setup Time 2 µs
9 Data Access Time 188 ns 10 Data Output Float Time 100 ns 11 Overprogram Pulse Width 2.85 ms 12 EPM Setup Time 2 µs 13 PGM Setup Time 2 µs 14 Address to OE Setup Time 2 µs 15 Option Program Pulse Width 78 ms 16 OE Width 250 ns 17 Address Valid to OE Low 125 ns
34 P R E L I M I N A R Y DS97Z8X1104
Page 35
Z86E04/E08
1
Zilog CMOS Z8 OTP Microcontrollers
T2
P0 1 = C lock
P0 0 = C lear
Vp p/ EPM
Interna l
Ad dr es s
Data
Vih
Vil
T4
T3
T1
T6
T5
Invalid Valid
0 Min
Invalid V alid
9
Legend: T1 Reset Clock Width
T2 Input Clock High T3 Input Clock Period
T4 Input Clock Low T5 C l oc k t o Ad dr es s Counter Out Delay T6 Epm/ Vpp Set up Time
Figure 18. Z86E04/E08 Address Counter Waveform
30 ns Min 100 ns Min
200 ns Min 100 ns Min
15 ns Max 40 µs Min
DS97Z8X1104 P R E L I M I N A R Y 35
Page 36
Z86E04/E08 CMOS Z8 OTP Microcontrollers Zilog
FUNCTIONAL DESCRIPTION (Continued)
VIH
Ad dr es s
Data
V
PP
EP M
V
CC
CE
VIL
VIH
VIL
VI H
VI L
VH
VI L
5. 0V
VI H
VI L
Ad dres s Stable
17
Ad dres s Sta bl e
Invalid Valid Invalid Valid
9
12
OE
PG M
VI H
VI L
VI H
VI L
5
16 16
13
Figure 19. Z86E04/E08 Programming Waveform
(EPROM Read)
36 P R E L I M I N A R Y DS97Z8X1104
Page 37
Z86E04/E08
1
Zilog CMOS Z8 OTP Microcontrollers
V
IH
Address
Data
VIL
V
VIL
IH
1
Data
Stable
2 109
Address
Stable
Data Out
Valid
VH
VPP
VIH
3
VH
EPM
VIL
6V
VCC
5.0V
CE
OE
PGM
VIH
VIL
VIH
VIL VIH
VIL
4
5
13
6 8
11
Program
Cycle
7
Figure 20. Z86E04/E08 Programming Waveform
(Program and Verify)
16
Verify Cycle
DS97Z8X1104 P R E L I M I N A R Y 37
Page 38
Z86E04/E08 CMOS Z8 OTP Microcontrollers Zilog
FUNCTIONAL DESCRIPTION (Continued)
V
IH
Address
Data
V
V
CE
OE
PP
CC
V
IL
V
IH
V
IL
V
H
V
IH
6V
5.0V
V
H
V
IH
V
IH
V
IL
3
4
5
EPM
PGM
V
H
V
IH
V
IL
V
IH
V
IL
12 13
15
EPROM Protect
V
IH
12 13
15
Low Noise Program
Figure 21. Z86E04/E08 Programming Options Waveform
(EPROM Protect and Low Noise Program)
38 P R E L I M I N A R Y DS97Z8X1104
Page 39
Z86E04/E08
1
Zilog CMOS Z8 OTP Microcontrollers
V
IH
Address
Data
VPP
V
CC
CE
OE
V
IL
V
IH
V
IL
V
H
V
IH
6V
5.0V
V
H
V
IH
V
IL
3
4
V
5
IH
12 12
13 13
EPM
PGM
V
IH
V
IL
V
IH
V
IL
12 13
Auto Latch WDT
12 13
1515
15
EPROM/Test Mode Disabl e
Figure 22. Z86E04/E08 Programming Options Waveform
(Auto Latch Disable, Permanent WDT Enable and
EPROM/Test Mode Disable)
DS97Z8X1104 P R E L I M I N A R Y 39
Page 40
Z86E04/E08 CMOS Z8 OTP Microcontrollers Zilog
FUNCTIONAL DESCRIPTION (Continued)
Start
Addr =
First Location
V = 6.4V
CC
V = 13.0V
PP
N = 0
Program
1 ms Pulse
Increment N
Increment
Address
Fail
One Byte
Pass
Prog. One Pulse 3xN ms Duration
No
Last Addr ? Yes
V = V = 5.0V
CC
Pass
N = 25 ?
No
Verify
PP
Verify All
Bytes
Yes
Fail
Verify
Byte
Device
Failed
Fail
Pass
Device
Passed
Figure 23. Z86E04/E08 Programming Algorithm
40 P R E L I M I N A R Y DS97Z8X1104
Page 41
Z86E04/E08
1
7
0
Zilog CMOS Z8 OTP Microcontrollers
Z8 CONTROL REGISTERS
R241 TMR
D7 D6 D5 D4 D3 D2 D1 D0
0 No Function 1 Load T0
0 Disable T0 Count 1 Enable T0 Count
0 No Function 1 Load T1
0 Disable T1 Count 1 Enable T1 Count
TIN Modes 00 External Clock Input 01 Gate Input 10 Trigger Input (Non-retriggerable) 11 Trigger Input (Retriggerable)
Reserved (Must be 0)
Figure 24. Timer Mode Register (F1H: Read/Write)
R242 T1
D7 D6 D5 D4 D3 D2 D1 D0
R244 T0
D7 D6 D5 D4 D3 D2 D1 D0
Figure 27. Counter/Timer 0 Register
(F4H: Read/Write)
R245 PRE0
D7 D6 D5 D4 D3 D2 D1 D0
T Initial Value
0
(When Written) (Range: 1-256 Decimal 01-00 HEX)
T Current Value
0
(When READ)
Count Mode 0 T0 Single Pass 1 T0 Modulo N
Reserved (Must be 0)
Prescaler Modulo (Range: 1-64 Decimal 01-00 HEX)
T Initial Value
1
(When Written) (Range 1-256 Decimal
01-00 HEX) T Current Value
1
(When READ)
Figure 25. Counter Timer 1 Register (F2H: Read/Write)
R243 PRE1
D7 D6 D5 D4 D3 D2 D1 D0
Count Mode
0 = T Single Pass
1
1 = T Modulo N
1
Clock Source
1 = T Internal
1
0 = T External Timing Input
1
(T ) Mode
IN
Prescaler Modulo (Range: 1-64 Decimal 01-00 HEX)
Figure 26. Prescaler 1 Register (F3H: Write Only)
Figure 28. Prescaler 0 Register (F5
R246 P2M
D7 D6 D5 D4 D3 D2 D1 D0
P2 - P2 I/O Definition 0 Defines Bit as OUTPUT
1 Defines Bit as INPUT
Figure 29. Port 2 Mode Register (F6
R247 P3M
D7 D6 D5 D4 D3 D2 D1 D0
0 Port 2 Open-Drain 1 Port 2 Push-pull
Port 3 Inputs 0 Digital Mode
1 Analog Mode
Reserved (Must be 0)
: Write Only)
H
: Write Only)
H
Figure 30. Port 3 Mode Register (F7H: Write Only)
DS97Z8X1104 P R E L I M I N A R Y 41
Page 42
Z86E04/E08
)
r
CMOS Z8 OTP Microcontrollers Zilog
Z8 CONTROL REGISTERS (Continued)
R248 P01M
D7 D6 D5 D4 D3 D2 D1 D0
Figure 31. Port 0 and 1 Mode Register
(F8H: Write Only)
R249 IPR
D7 D6 D5 D4 D3 D2 D1 D0
Interrupt Group Priority
IRQ1, IRQ4 Priority (Group C)
IRQ0, IRQ2 Priority (Group B)
IRQ3, IRQ5 Priority (Group A)
Reserved (Must be 0.
P02-P00 Mode 00 = Output 01 = Input
Reserved (Must be 1.) Reserved (Must be 0.)
Reserved = 000 C > A > B = 001 A > B > C = 010 A > C > B = 011 B > C > A = 100 C > B > A = 101 B > A > C = 110 Reserved = 111
0 = IRQ1 > IRQ4 1 = IRQ4 > IRQ1
0 = IRQ2 > IRQ0 1 = IRQ0 > IRQ2
0 = IRQ5 > IRQ3 1 = IRQ3 > IRQ5
R251 IMR
D7 D6 D5 D4 D3 D2 D1 D0
Figure 34. Interrupt Mask Register
(FBH: Read/Write)
R252 Flags
D7 D6 D5 D4 D3 D2 D1 D0
Figure 35. Flag Register
(FCH: Read/Write)
R253 RP
D7 D6 D5 D4 D3 D2 D1 D0
1 Enables IRQ0-IRQ5 (D = IRQ0)
0
Reserved (Must be 0.)
1 Enables Interrupts
User Flag F1 User Flag F2
Half Carry Flag Decimal Adjust Flag Overflow Flag Sign Flag
Zero Flag Carry Flag
Figure 32. Interrupt Priority Register
(F9H: Write Only)
R250 IRQ
D7 D6 D5 D4 D3 D2 D1 D0
IRQ0 = P32 Input IRQ1 = P33 Input IRQ2 = P31 Input IRQ3 = P32 Input IRQ4 = T0 IRQ5 = T1
Reserved (Must be 0)
Default After Reset = 00H
Figure 36. Register Pointer
(FDH: Read/Write)
R255 SPL
D7 D6 D5 D4 D3 D2 D1 D0
Expanded Register File Working Register Pointer
Stack Pointer Lowe Byte (SP - SP )
07
Figure 33. Interrupt Request Register
(FAH: Read/Write)
Figure 37. Stack Pointer
(FFH: Read/Write)
42 P R E L I M I N A R Y DS97Z8X1104
Page 43
Z86E04/E08
1
Zilog CMOS Z8 OTP Microcontrollers
PACKAGE INFORMATION
18-Pin DIP Package Diagram
18-Pin SOIC Package Diagram
DS97Z8X1104 P R E L I M I N A R Y 43
Page 44
Z86E04/E08 CMOS Z8 OTP Microcontrollers Zilog
ORDERING INFORMATION
Z86E04 Z86E08
Standard T emperature
18-Pin DIP 18-Pin SOIC
Z86E0412PSC Z86E0412SSC Z86E0412PEC Z86E0412SEC
For fast results, contact your local Zilog sales office for assistance in ordering the part(s) desired.
18-Pin DIP 18-Pin SOIC
Z86E0812PSC Z86E0812SSC Z86E0812PEC Z86E0812SEC
Standard T emperature
Codes
Preferred Package
P = Plastic DIP
Longer Lead Time
S = SOIC
Preferred Temperature
S = 0°C to +70°C E = –40°C to +105°C
Speeds
12 =12 MHz
Environmental
C = Plastic Standard
Example:
Z 86E04 12 P S C
is a Z86E04, 12 MHz, DIP, 0°C to +70°C, Plastic Standard Flow Environmental Flow
Temperature Package Speed Product Number Zilog Prefix
© 1998 by Zilog, Inc. All rights reserved. No part of this document may be copied or reproduced in any form or by any means without the prior written consent of Zilog, Inc. The information in this document is subject to change without notice. Devices sold by Zilog, Inc. are covered by warranty and patent indemnification provisions appearing in Zilog, Inc. Terms and Conditions of Sale only.
ZILOG, INC. MAKES NO WARRANTY, EXPRESS, STATUTORY, IMPLIED OR BY DESCRIPTION, REGARDING THE INFORMATION SET FORTH HEREIN OR REGARDING THE FREEDOM OF THE DESCRIBED DEVICES FROM INTELLECTUAL PROPERTY INFRINGEMENT. ZILOG, INC. MAKES NO WARRANTY OF MERCHANTABILITY OR FITNESS FOR ANY PURPOSE.
44 P R E L I M I N A R Y DS97Z8X1104
Zilog, Inc. shall not be responsible for any errors that may appear in this document. Zilog, Inc. makes no commitment to update or keep current the information contained in this document.
Zilog’s products are not authorized for use as critical components in life support devices or systems unless a specific written agreement pertaining to such intended use is executed between the customer and Zilog prior to use. Life support devices or systems are those which are intended for surgical implantation into the body, or which sustains life whose failure to perform, when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in significant injury to the user.
Zilog, Inc. 210 East Hacienda Ave. Campbell, CA 95008-6600 Telephone (408) 370-8000 FAX 408 370-8056 Internet: http://www.zilog.com
Loading...