Yokogawa digitalYEWFLODY User Manual

INSTRUCTION MANUAL
Model YF100 Vortex Flowmeter
(Integral Type, Remote Type)
Model YFA11 Vortex Flow Converter
(Remote Type)
(Style E)
IM 1F2B4-01-YIA
1st Edition, March 1998
Printed in U.S.A.
TABLE OF CONTENTS
I. INTRODUCTION ....................................................................................................... 1
1.1 General Overview ............................................................................................. 1
1.2 Principle of Operation ....................................................................................... 1
1.2.1 Vortex shedding .................................................................................... 1
1.2.2 K-factor................................................................................................ 2
1.2.3 Qmin .................................................................................................... 3
1.2.4 Uniquely vortex .................................................................................... 3
1.2.5 Vortex frequency .................................................................................. 3
1.2.6 Available outputs .................................................................................. 3
1.3 Standard Specifications ..................................................................................... 4
1.4 Basic Sizing...................................................................................................... 7
1.4.1 Flowmeter sizing .................................................................................. 7
1.5 Model and Suffix Codes ................................................................................... 9
II. QUICK START ......................................................................................................... 22
2.1 Parameter Setting in BRAIN Communications................................................ 22
2.2 YEWFLO Setup ............................................................................................. 25
2.2.1 Liquid, gas or steam in mass flow units .............................................. 26
2.2.2 Steam flow in energy units ................................................................. 28
2.2.3 Gas volumetric referenced to standard conditions............................... 30
2.2.4 Liquid, gas, or steam in volumetric units at flowing conditions .......... 32
2.3 Parameter Setting in HART Communications ................................................. 34
2.3.1 Communication Specifications ........................................................... 34
2.3.2 Hardware Recommendations .............................................................. 35
III. INSTALLATION ....................................................................................................... 36
3.1 Piping Requirements ....................................................................................... 36
3.1.1 Pipe schedule ..................................................................................... 37
3.1.2 Flow direction and orientation............................................................ 37
3.1.3 Pressure and temperature taps ............................................................ 37
3.1.4 Flushing the pipe ................................................................................ 38
3.1.5 Gaskets .............................................................................................. 38
3.2 Installing the Vortex Meter .............................................................................. 38
3.2.1 Installing the wafer style vortex meter ................................................ 38
3.2.2 Installing the wafer style vortex meter horizontally ............................ 39
3.2.3 Installing the wafer style vortex meter vertically ................................ 39
3.2.4 Installing the flanged vortex meter ..................................................... 40
3.2.5 Insulating vortex meters with integral converter ................................. 40
3.2.6 Rotating the meter housing ................................................................. 41
3.2.7 Remote converter terminal box rotation.............................................. 41
3.2.8 Integral converter rotation .................................................................. 41
3.2.9 Installing the remote converter ........................................................... 42
3.3 Wiring ........................................................................................................... 43
3.3.1 Cables and wires (analog or pulse output wires only) ......................... 43
3.3.2 Analog output, 2-wire type (4-20 mADC)........................................... 43
3.3.3 Pulse output, 3-wire type .................................................................... 44
3.3.4 Interconnection for remote converter .................................................. 45
3.4 Cable ........................................................................................................... 46
3.4.1 Field terminating the signal cable (YF011-0*E) .................................. 46
3.5 Wiring Cautions.............................................................................................. 49
3.5.1 Flameproof transmitter installation ..................................................... 49
3.5.2 Cautions for insulation and dielectric strength testing......................... 49
3.5.3 Instruction document for FM explosionproof instruments ................... 50
3.5.4 Wiring cautions for CSA intrinsic safety ............................................. 52
3.5.5 Wiring cautions for FM intrinsic safety .............................................. 54
IM 1F2B4-01-YIA
i
TABLE OF CONTENTS
IV. MAINTENANCE ...................................................................................................... 58
4.1 How to ........................................................................................................... 58
4.1.1 Communicating with the YEWFLO remotely ..................................... 59
4.1.2 Adjusting zero and span ..................................................................... 60
4.1.3 Using self-diagnostics ........................................................................ 61
4.1.4 Simulating an output/performing a loop check.................................... 62
4.1.5 Changing the output mode to analog or pulse ..................................... 63
4.1.6 Increasing gas and steam flow measurement accuracy by correcting
for gas expansion ............................................................................... 64
4.1.7 Activating Reynolds number correction .............................................. 65
4.1.8 Activating mismatched pipe schedule (bore) correction...................... 66
4.1.9 Setting up and resetting the internal totalizer ...................................... 67
4.1.10 Scaling the pulse output ..................................................................... 68
4.1.11 Setting up user defined flow units ...................................................... 69
4.1.12 Setting up the local LCD indicator display mode ................................ 70
4.1.13 Setting the low cut flowrate................................................................ 71
4.1.14 Trimming the 4-20 mA analog output ................................................. 72
4.1.15 Using the upload/download feature .................................................... 74
4.2 Disassembly and Reassembly .......................................................................... 75
4.2.1 Indicator/Totalizer removal ................................................................ 75
4.2.2 Amplifier replacement ........................................................................ 75
4.3 Vortex Shedder Assembly Removal ................................................................ 76
4.3.1 Removal of shedder from remote converter type ................................. 76
4.3.2 Removal of the shedder from integral type ......................................... 77
4.4 Reassembly Cautions ...................................................................................... 78
4.4.1 YEWFLO shedder bolt torque procedures .......................................... 78
4.5 YEWFLO Style "E" Amplifier Calibration Procedure ..................................... 81
4.5.1 General amplifier checkout ................................................................ 82
4.5.2 Analog output test .............................................................................. 82
4.5.3 Pulse output test ................................................................................. 83
V. PARAMETER SETTING/CONFIGURATION ....................................................... 84
5.1 Notes on the TBL optional digital display ....................................................... 84
5.1.1 Display contents in display section ..................................................... 85
VI. TROUBLESHOOTING ............................................................................................ 88
6.1 Error Code Listing .......................................................................................... 88
6.2 Operating Procedures ...................................................................................... 89
6.3 Flow Computation .......................................................................................... 92
6.3.1 Variable definitions ............................................................................ 92
6.3.2 Flow conversion factor ....................................................................... 93
6.4 Signal Conditioning ........................................................................................ 94
6.4.1 YEWFLO Style "E" signal adjustment procedure ............................... 94
6.4.2 Problem solving ................................................................................. 94
6.4.3 Piping checkout procedure ................................................................. 94
6.4.4 Noise balance adjustment ................................................................... 95
6.4.5 Noise judge ........................................................................................ 96
6.4.6 TLA adjustment ................................................................................. 96
6.4.7 Low-cut flowrate adjustment .............................................................. 97
6.4.8 High-frequency filter adjustment ........................................................ 97
6.5 Flowcharts ...................................................................................................... 98
6.5.1 No flowmeter output under flowing conditions ................................... 98
6.5.2 Flowmeter output with no flow ......................................................... 100
6.5.3 Large flowmeter errors ..................................................................... 101
6.5.4 Output is unstable when flowrate is low ........................................... 102
IM 1F2B4-01-YIA ii
TABLE OF CONTENTS
VII. GLOSSARY ......................................................................................................... 103
APPENDIXES:
Appendix A: Parameter Details ............................................................................. 107
Appendix B: HART Parameter Details ...................................................................115
Appendix C: Customer Maintenance Parts List Appendix D: Dimensional Diagrams
INDEX
IM 1F2B4-01-YIA
iii
INTRODUCTION
I. INTRODUCTION
1.1 GENERAL OVERVIEW
This manual provides installation, parameter setting, calibration, maintenance and troubleshooting instructions for the YEWFLO Vortex flowmeter. Also included are standard specifications, model code definitions, dimensional drawings and a parts lists.
All YEWFLO’s are shipped pre-configured for your application. Therefore, if you included correct process conditions with your order, no electronic setup or parameter setting is required. For piping and wiring connections, refer to the Installation section.
If your process conditions have changed since your order was placed, please refer to the ‘QUICK START’ section which is designed to simplify configuration of the YEWFLO software parameters. Please refer to the index for immediate access to a specific procedure or the glossary located at the end of this manual for further information on a specific term.
If you have any questions concerning the YEWFLO you received, please contact your local Yokogawa Industrial Automation Representative or our headquarters office in Newnan, GA at 770-254-0400.
If you have technical questions regarding the installation, operation, setup or application of a YEWFLO, please contact our Technical Assistance Center (TAC) at 800-524-SERV.
Yokogawa has manufactured this instrument according to rigorous ISO 9000 quality standards. To ensure quality performance we recommend referencing our YEWFLO sizing program to determine the level at which your application should be run as well as a straight meter run of 20 diameters upstream and 5 diameters downstream. In addition to these suggestions, please follow the instructions in this manual carefully.
We are not responsible for any instrument’s performance, if that instrument has not been properly applied or installed in accordance with this manual, nor can we be responsible for the performance of any instrument which has been modified or repaired by an unauthorized service center.
Note: Existing YEWFLO Style C vortex flowmeters may be upgraded to provide the features and benefits
of the New microprocessor-based Style "E" YEWFLO.
1.2 PRINCIPLE OF OPERATION
1.2.1 Vortex shedding
How many of you have seen a flag flapping in the breeze on a windy day? Everybody has. How many of you have noticed that the flag flaps faster as the wind blows faster? Few haven’t. When you see a flag flapping in the breeze, you are witnessing the same phenomenon that makes a vortex flowmeter work. The flapping frequency is proportional to the velocity of the wind, and it’s linear! The flapping is caused by a vortex alternately being created on either side of the flag, and moving downstream with the wind. The vortex is a swirl of low pressure, like a tornado, that pulls the flag in the direction of the vortex. The passing of alternating vortices down the length of the flag causes it to flap. The faster the wind blows, the faster these vortices are created, and the faster the flag flaps. Frequency is proportional to velocity.
IM 1F2B4-01-YIA
Page 1
INTRODUCTION
The flapping flag is a familiar example of vortex shedding that everyone should be comfortable with. Here’s how it’s used in a vortex flowmeter. A non-streamlined part (bluff body) is inserted in the flow stream, this obstruction in the pipe causes vortices to be alternately created (shed). We call this part the ‘shedder bar’. The shedder bar in a YEWFLO performs two functions, it creates the vortices, and with the addition of our piezoelectric crystals senses them too. The crystals generate an alternating voltage waveform whose frequency is proportional to fluid velocity. The rest of the magic is taken care of in the electronics.
Figure 1.2.1: Karman Vortices
1.2.2 K-factor
The most important fact about vortex shedding is that once the physical geometry, (pipe I.D., shedder bar width, etc.), are fixed, the frequency vs. flowrate (K-factor (pulse/gallon)) is unaffected by changes in viscosity, density or pressure over the operating range of the specific application. To determine the operating range use the YEWFLO Sizing program. On the other hand, an orifice plate is directly affected by changes in any of these parameters. There is a very small temperature effect due to expansion or contraction of the shedder bar width, which is easily compensated. Therefore, the K­factor created in our flow stand (all YEWFLOs are wet flow calibrated) on water, is accurate for gas too! Not so with an orifice plate. The benefit here is simplified calculations, and fewer things that can effect accuracy .
IM 1F2B4-01-YIA Page 2
Figure 1.2.2: Relationship between K-factor and Reynolds Numbers
INTRODUCTION
1.2.3 Qmin
Those of you who haven’t used many vortex flowmeters may be wondering, ‘Why do we need to know viscosity, density, pressure and temperature?’. While the K-factor is unaffected by changes in viscosity, density and pressure, the velocity at which vortices begin to be created and become stable enough to measure accurately will vary. We refer to this velocity as Qmin, stated in desired flow units GPM, SCFH, etc. Here’s an example to help you understand. Let’s go back to the flag example. We’ve all seen the flag flapping in the breeze; however, on some days we can feel the breeze blowing, but the flag isn’t flapping. Why not? For the flag to flap, there must be enough breeze blowing, or energy, to lift the flag and create fully developed vortices. This is the same thing that happens in the vortex flowmeter.
The higher the fluid viscosity, the higher the velocity (more energy) required to start vortex shedding. On the other hand, the higher the density, the lower the velocity needed to start vortex shedding. In gases, viscosity and density can vary with pressure and temperature. Sounds complicated, but compared to an orifice plate it’s quite simple. By using the YEWFLO sizing program, vortex meter selection is simple. Simply enter the process conditions, the program will prompt you for them, and presto, a performance table for all meter sizes is generated. This performance table will help you select the best YEWFLO for the application.
1.2.4 Uniquely vortex
Vortex shedding flowmeters measure flow digitally. This means, amplitude of the vortex signal is unimportant. As long as the flow is above the Qmin threshold, only the presence or absence of a vortex is important. Just like digital electronics, as long as the voltage is above or below a threshold value, it is either on or off. Digital flow measurement means no zero drift or span shift . Orifice plate flowmeters, for example, cannot make this claim, even if they are using microprocessor-based digital D/P transmitters, they still measure the small amplitude of deflection caused by differential pressure, and changes in temperature or pressure can shift zero and span.
1.2.5 Vortex frequency
The YEWFLO uses piezoelectric crystals embedded in the shedder bar . Note that they are 1) hermetically sealed, and 2) surrounded by a heavy wall thickness, to protect them from the
environment and the process. The positioning of the crystals is important. Although one crystal primarily measures flow frequency, it unfortunately picks up some pipe vibration noise. The other crystal is positioned such that it picks up primarily the pipe vibration noise. By electronically subtracting these two signals, we are able to obtain a high signal to noise ratio for the flow signal . The new Style "E" body design also improves the signal to noise ratio, by stiffening the shedder bar mounting in the measurement plane, further isolating it from pipe vibration.
1.2.6 Available outputs
After processing the digital vortex frequency as described above, what outputs can you get? You can select either 4-20 mA output or voltage pulse, digital output. Output is selected by setting jumpers on the amplifier board, and the setting the software for pulse or analog output. Analog output is two­wire, and pulse output is a three-wire connection (for details see the wiring section). The pulse output can be scaled over a range of 0-6000 Hz, down or up to maximize pulse resolution. Scaling up the frequency output can be done to improve resolution. The pulse output is also capable of driving many electromechanical totalizers directly without additional power.
IM 1F2B4-01-YIA
Page 3
INTRODUCTION
1.3 STANDARD SPECIFICATIONS
NOTE: For special applications, please contact your local Yokogawa Industrial Automation representative to
discuss possible enhancements to these standard specifications.
Fluids to be measured: Liquid, gas or steam
Performance specifications:
Repeatability: 0.2% of reading Accuracy and velocity range :
Fluid Accuracy: Pulse Output Accuracy: Analog Output Velocity
Liquid ±0.8% of reading ±0.8% of reading plus up to 32 ft/sec
Gas or ±0.8% of reading ±0.8% of reading plus up to 115 ft/sec Steam ±0.1% of full scale
±1.5% of reading ±1.5% of reading plus from 115 ft/sec
Note: Gas accuracy can be improved to 0.8% over the full range by built-in software compensation. (See
how to section 4.10.)
Output signal:
Analog: 4 to 20 mADC Pulse: Low level 0 to 2 V
High level Vs - 2V ( Vs = input supply voltage) Pulse width 50% duty cycle
±0.1% of full scale
±0.1% of full scale to 262 ft/sec
Ambient temperature limits:
-40º to 175ºF (-40º to 80ºC): standard unit w/o agency approval ratings
-20º to 175ºF (-30º to 80ºC): with optional digital indicator
-40º to 140ºF (-40º to 60ºC): with FM explosion-proof rating
-40º to 120ºF (-40º to 50ºC): with CSA intrinsically safe rating for integral converter
-40º to 175ºF (-40º to 80ºC): with CSA intrinsically safe rating for remote converter
Process temperature limits:
Standard remote converter: -40º to 575ºF (-40º to 300ºC) HPT remote converter: -40º to 755ºF (-40º to 402ºC) Cryogenic remote converter: -320º to 300ºF (-200º to 150ºC) Integral converter: See Figure 1.3.1
Storage temperature limits:
Integral or remote standard unit: -40º to 176ºF (-40º to 80ºC) With integral indicator or totalizer: -22º to 80ºF (-30º to 140ºC)
IM 1F2B4-01-YIA Page 4
INTRODUCTION
Figure 1.3.1: Operating temperature range for integral type converter
Power supply and load resistance:
Analog output: 17 to 42 VDC (see Figure 1.3.2) Pulse output: 14 to 30 VDC
Maximum output wire resistance: 50 ohms Maximum line capacitance: 0.22 microfarad
Ambient humidity limits:
5 to 100% relative humidity
Process pressure limits:
-14.7 psi (full vacuum) to flange rating
Materials of construction: Process wetted parts:
Body: CF8M (ANSI 316 stainless steel) or Hastelloy C (equivalent of
ASTM494, CW12MW)
Shedder bar: Duplex stainless steel (CD4MCU equivalent to ANSI 329 stainless
steel) or Hastelloy C (equivalent of ASTM494, CW12MW)
Non-wetted parts:
Amplifier housing: Aluminum alloy casting Paint: Case - Polyurethane resin baked coating, frosty white
Cover - Polyurethane resin baked coating, deep, sea moss green
IM 1F2B4-01-YIA
Page 5
INTRODUCTION
Analog Output :
Figure 1.3.2: Relationship between power supply voltage and load resistance for analog output version
Pulse Output: Pulse output voltage = Vs-2v-∆v
where v = due to external load resistance
Vs = Power Supply Voltage 2v = 2 volts
IM 1F2B4-01-YIA Page 6
Figure 1.3.3: Load resistance vs. pulse output voltage drop
INTRODUCTION
1.4 BASIC SIZING
Measurable Flow Rates in U.S. gpm
Nominal Size
1.4.1 Flowmeter sizing
LIQUID
Nominal Size Minimum and Maximum
Notes: 1) This table assumes standard
conditions of 59ºF (15ºC).
2) Maximum flowrates are based on 32 ft/sec.
3) These figures are approximations. Refer to the Yewflo sizing program for the exact minimum and maximum for your application.
4) The values shown in parenthesis is the minimum linear flowrate.
5) Proper pipe bracing may be required to obtain minimum
mm inch
15 ½ 1.3 -4.2 and 27 25 1 2 -7.3 and 82 40 5.9 -11.3 and 196 50 2 9.8 -14.5 and 324
80 3 20 and 628 100 4 33 and 1100 150 6 79 and 2400 200 8 150 and 4290 250 10 265 and 6460 300 12 300 and 9260
flowrate.
Table 1.4.1: Water -Flowmeter Range
GAS
Flow Rate Minimum Linear and Maximum Measurable Air Flow Rates in SCFH
(inches) Limits (Standard conditions are 59ºF and 14.7 psia) at process line pressure
0 psig 50 psig 100 psig 150 psig 200 psig 300 psig 400 psig 500 psig
½ min 172 361 500 719 939 1379 1822 2266
max 1700 7492 13302 19128 24967 36692 48454 60266
1 min 400 839 1118 1486 1940 2851 3765 4683
max 5267 23215 41217 59268 77362 113692 150137 186737
min 792 1919 3037 4061 5026 6838 8970 11157
max 1267 55397 98355 141428 184604 271296 358263 445599
2 min 1313 2756 4080 5867 7658 11254 14862 18485
max 20821 91779 162951 234313 305846 449474 593557 738253
3 min 2534 5321 7877 11326 14784 21726 28691 35685
max 40196 177182 314580 452347 590443 867720 1145876 1425214
4 min 4423 10710 16953 22670 28055 38174 50076 62283
max 70157 309249 549061 789516 1030544 1514497 1999984 2487535
6 min 9685 29678 46977 64927 84749 124548 164473 204567
max 153618 677145 1202247 1728757 2256524 3316208 4379250 5446812
8 min 20851 68121 107827 144185 178437 242799 303286 265774
max 274675 1010761 2149664 3091086 4034753 5929510 7830269 9739113
10 min 37370 122437 193804 259153 320716 436397 545115 649056
max 424752 1872295 3324193 4779987 6239253 9169263 12108556 15060351
12 min 53518 175343 277549 371134 459300 624968 780663 929518
max 608291 2681328 4760604 6845457 8935284 13131375 17340759 21568047
1
Notes: 1) Maximum flowrates are based on 262 ft/sec.
Table 1.4.2: Air-Flowmeter Range
2) These figures are approximations. Refer to the sizing program for the exact minimum and maximum flowrates for your application.
IM 1F2B4-01-YIA
Page 7
INTRODUCTION
STEAM
Nominal Size Flow Rate Minimum Linear and Maximum Measurable Saturated Steam Flow Rates in lb/hr
(inches) Limits at process line pressure
½ min 12.8 14.6 18.4 21.5 24.1 26.5 28.7 30.7 32.6 36.6 43.4
1 min 29.7 34 42.8 49.9 56.1 61.6 66.6 71.3 75.7 83.7 91.2
min 58.7 67.3 84.6 98.6 118 137 156 173 191 224 257
2 min 97.5 111 140 164 184 202 219 234 248 298 354
3 min 188 216 271 316 355 390 422 452 480 576 683
4 min 328 376 472 551 659 766 869 967 1065 1251 1434
6 min 719 824 1184 1515 1827 2122 2407 2681 2951 3467 3974
8 min 1549 1885 2720 3477 4193 4872 5525 6153 6773 7958 9122
10 min 2725 3387 4888 6249 7536 8756 9930 11060 12174 14304 16396
12 min 3903 4851 7000 8949 10793 12539 14220 15839 17434 20485 23481
15 psig 25 psig 50 psig 75 psig 100 psig 125 psig 150 psig 175 psig 200 psig 250 psig 300 psig
max 122 161 254 346 437 527 616 705 765 973 1154
max 379 498 788 1071 1353 1632 1910 2185 2464 3014 357
max 905 1188 1879 2554 3228 3894 4557 5215 5879 7192 8530
max 1500 1969 3113 4232 5349 6452 7550 8639 9740 11916 14133
max 2895 3800 6010 8170 10326 12455 14576 16678 18804 23004 27283
max 5054 6633 10490 14260 18023 21739 25440 29109 32820 40150 47620
max 11065 14523 22969 31224 39463 47600 55705 63739 71864 87914 104270
max 19785 25968 41070 55830 70561 85111 99603 113968 128496 157194 186439
max 30596 40157 63509 86334 109114 131614 154024 176238 198703 243081 288305
max 43816 57590 90952 123640 156263 188485 220578 252392 284564 348119 412883
Table 1.4.3: Steam - Flowmeter Range
Notes: 1) Maximum flowrates are based on 262 ft/sec.
2) These figures are approximations. Refer to the sizing program for the exact minimum and maximum flowrates for your applications.
Nominal Size Internal Diameter Cross Sectional Nominal Pulse Rate Nominal K-factor
(inches) (inches) Area (ft2) (Hz/ft/s) Pulse/US gal Pulse/ft
½
1
2 3 4 6
8 10 12
0.57 0.0018 19.1 1423 10645
1.01 0.0056 10.8 259 1940
1.56 0.133 7.05 70.8 530
2.01 0.022 5.59 33.9 253
2.8 0.043 4.02 12.6 94.3
3.69 0.074 3 5.39 40.3
5.46 0.163 2.03 1.67 12.5
7.31 0.291 1.52 0.7 5.24
9.09 0.45 1.23 0.366 2.74
10.9 0.645 1.03 0.213 1.59
Table 1.4.4: Nominal K-factor and general flowmeter information
3
IM 1F2B4-01-YIA Page 8
YEWFLO
B3
ANSI 600 lb Wafer Flanges
*E VORTEX FLOWMETERS
*E
STAINLESS
WAFER
MODEL
CODE
YF101 0.5" I.D. Stainless Steel Wafer YF102 1.0" I.D. Stainless Steel Wafer YF104 1.5" I.D. Stainless Steel Wafer YF105 2.0" I.D. Stainless Steel Wafer YF108 3.0" I.D. Stainless Steel Wafer YF110 4.0" I.D. Stainless Steel Wafer
-AAU Integral, 4-20 mA or pulse
-AAD Integral, 4-20 mA for intrinsic safety
-AAR Integral, pulse output for intrinsic safety
-NNN Remote converter
YEWFLO *E - STAINLESS WAFER
PROCESS CONNECTIONS (wafer style for mounting between)
B1 ANSI 150 lb Wafer Flanges B2 ANSI 300 lb Wafer Flanges
A-S3S3*E Stainless Steel shedder bar & body
/FMF FM explosionproof housing w/FM stamp /FMS FM intrinsic safety w/FM stamp /CSF CSA explosionproof housing w/CSA stamp /CSS CSA intrinsic safety w/CSA stamp
CERTIFICATION
MATERIALS
CERTIFICATION
OPTIONS
/HART HART communications /HPT High temperature /TBL Local interface /EPF Epoxy-coated electronics housing /OSW Oxygen cleaning /BLT 304 SS nuts and bolts /SCT Stainless Steel tags wired into place
IM 1F2B4-01-YIA
Page 9
STAINLESS
FLANGED 150#
*E
YEWFLO
*E VORTEX FLOWMETERS
MODEL
CODE
YF101 0.5" I.D. Stainless Steel 150 lb RF flange YF102 1.0" I.D. Stainless Steel 150 lb RF flange YF104 1.5" I.D. Stainless Steel 150 lb RF flange YF105 2.0" I.D. Stainless Steel 150 lb RF flange YF108 3.0" I.D. Stainless Steel 150 lb RF flange YF110 4.0" I.D. Stainless Steel 150 lb RF flange YF115 6.0" I.D. Stainless Steel 150 lb RF flange YF120 8.0" I.D. Stainless Steel 150 lb RF flange YF125 10.0" I.D. Stainless Steel 150 lb RF flange YF130 12.0" I.D. Stainless Steel 150 lb RF flange
-AAU Integral, 4-20 mA or pulse
-AAD Integral, 4-20 mA for intrinsic safety
-AAR Integral, pulse output for intrinsic safety
-NNN Remote converter
YEWFLO *E - STAINLESS 150# FLANGE
CONFIGURATION
PROCESS CONNECTIONS
A1 ANSI 150 lb RF flanges
A-S3S3*E Stainless Steel shedder bar & body
/FMF FM explosionproof housing w/FM stamp /FMS FM intrinsic safety w/FM stamp /CSF CSA explosionproof housing w/CSA stamp /CSS CSA intrinsic safety w/CSA stamp
/HART HART communications /HPT High temperature /TBL Local interface /EPF Epoxy-coated electronics housing /OSW Oxygen cleaning /SCT Stainless Steel tags wired into place
MATERIALS
CERTIFICATION
OPTIONS
IM 1F2B4-01-YIA Page 10
YEWFLO
*E VORTEX FLOWMETERS
*E
STAINLESS
FLANGED 300#
MODEL
CODE
YF101 0.5" I.D. Stainless Steel 300 lb RF flange YF102 1.0" I.D. Stainless Steel 300 lb RF flange YF104 1.5" I.D. Stainless Steel 300 lb RF flange YF105 2.0" I.D. Stainless Steel 300 lb RF flange YF108 3.0" I.D. Stainless Steel 300 lb RF flange YF110 4.0" I.D. Stainless Steel 300 lb RF flange YF115 6.0" I.D. Stainless Steel 300 lb RF flange YF120 8.0" I.D. Stainless Steel 300 lb RF flange YF125 10.0" I.D. Stainless Steel 300 lb RF flange YF130 12.0" I.D. Stainless Steel 300 lb RF flange
-AAU Integral, 4-20 mA or pulse
-AAD Integral, 4-20 mA for intrinsic safety
-AAR Integral, pulse output for intrinsic safety
-NNN Remote converter
YEWFLO *E - STAINLESS 300# FLANGE
CONFIGURATION
PROCESS CONNECTIONS
A2 ANSI 300 lb RF flanges
A-S3S3*E Stainless Steel shedder bar & body
/FMF FM explosionproof housing w/FM stamp /FMS FM intrinsic safety w/FM stamp /CSF CSA explosionproof housing w/CSA stamp /CSS CSA intrinsic safety w/CSA stamp
/HART HART communications /HPT High temperature /TBL Local interface /EPF Epoxy-coated electronics housing /OSW Oxygen cleaning /SCT Stainless Steel tags wired into place
MATERIALS
CERTIFICATION
OPTIONS
IM 1F2B4-01-YIA
Page 11
STAINLESS
FLANGED 600#
*E
YEWFLO
*E VORTEX FLOWMETERS
MODEL
CODE
YF101 0.5" I.D. Stainless Steel 600 lb RF flange
YF102 1.0" I.D. Stainless Steel 600 lb RF flange
YF104 1.5" I.D. Stainless Steel 600 lb RF flange
YF105 2.0" I.D. Stainless Steel 600 lb RF flange
YF108 3.0" I.D. Stainless Steel 600 lb RF flange
YF110 4.0" I.D. Stainless Steel 600 lb RF flange
YF115 6.0" I.D. Stainless Steel 600 lb RF flange
YF120 8.0" I.D. Stainless Steel 600 lb RF flange
-AAU Integral, 4-20 mA or pulse
-AAD Integral, 4-20 mA for intrinsic safety
-AAR Integral, pulse output for intrinsic safety
-NNN Remote converter
YEWFLO *E - STAINLESS 600# FLANGE
CONFIGURATION
PROCESS CONNECTIONS
A3 ANSI 600 lb RF flanges
A-S3S3*E Stainless Steel shedder bar & body
/FMF FM explosionproof housing w/FM stamp /FMS FM intrinsic safety w/FM stamp /CSF CSA explosionproof housing w/CSA stamp /CSS CSA intrinsic safety w/CSA stamp
/HART HART communications /HPT High temperature /TBL Local interface /EPF Epoxy-coated electronics housing /OSW Oxygen cleaning /SCT Stainless Steel tags wired into place
MATERIALS
CERTIFICATION
OPTIONS
IM 1F2B4-01-YIA Page 12
YEWFLO
B3
ANSI 600 lb RF flanges
*E VORTEX FLOWMETERS
*E
HASTELLOY C
WAFER
MODEL
CODE
YF101 0.5" I.D. Hastelloy C Wafer YF102 1.0" I.D. Hastelloy C Wafer YF104 1.5" I.D. Hastelloy C Wafer YF105 2.0" I.D. Hastelloy C Wafer YF108 3.0" I.D. Hastelloy C Wafer YF110 4.0" I.D. Hastelloy C Wafer
-AAU Integral, 4-20 mA or pulse
-AAD Integral, 4-20 mA for intrinsic safety
-AAR Integral, pulse output for intrinsic safety
-NNN Remote converter
YEWFLO *E - HASTELLOY C WAFER
PROCESS CONNECTIONS (wafer style for mounting between)
B1 ANSI 150 lb RF flanges B2 ANSI 300 lb RF flanges
A-HCHC*E Hastelloy C Shedder wetted parts
CERTIFICATION
MATERIALS
CERTIFICATION
/FMF FM explosionproof housing w/FM stamp /FMS FM intrinsic safety w/FM stamp /CSF CSA explosionproof housing w/CSA stamp /CSS CSA intrinsic safety w/CSA stamp
OPTIONS
/HART HART communications /TBL Local interface /EPF Epoxy-coated electronics housing /OSW Oxygen cleaning /SCT Stainless Steel tags wired into place
IM 1F2B4-01-YIA
Page 13
HASTELLOY C FLANGED 150#
*E
YEWFLO
*E VORTEX FLOWMETERS
MODEL
CODE
YF101 0.5" I.D. Hastelloy C 150 lb RF flange YF102 1.0" I.D. Hastelloy C 150 lb RF flange YF104 1.5" I.D. Hastelloy C 150 lb RF flange YF105 2.0" I.D. Hastelloy C 150 lb RF flange YF108 3.0" I.D. Hastelloy C 150 lb RF flange YF110 4.0" I.D. Hastelloy C 150 lb RF flange YF115 6.0" I.D. Hastelloy C 150 lb RF flange
-AAU Integral, 4-20 mA or pulse
-AAD Integral, 4-20 mA for intrinsic safety
-AAR Integral, pulse output for intrinsic safety
-NNN Remote converter
YEWFLO *E - HASTELLOY C 150# FLANGE
CERTIFICATION
PROCESS CONNECTIONS (wafer style for mounting between)
A1 ANSI 150 lb RF flanges
A-HCHC*E Hastelloy C Shedder wetted parts
/FMF FM explosionproof housing w/FM stamp /FMS FM intrinsic safety w/FM stamp /CSF CSA explosionproof housing w/CSA stamp /CSS CSA intrinsic safety w/CSA stamp
MATERIALS
CERTIFICATION
OPTIONS
/HART HART communications /TBL Local interface /EPF Epoxy-coated electronics housing /OSW Oxygen cleaning /SCT Stainless Steel tags wired into place
IM 1F2B4-01-YIA Page 14
YEWFLO
*E VORTEX FLOWMETERS
*E
HASTELLOY C FLANGED 300#
MODEL
CODE
YF101 0.5" I.D. Hastelloy C 300 lb RF flange YF102 1.0" I.D. Hastelloy C 300 lb RF flange YF104 1.5" I.D. Hastelloy C 300 lb RF flange YF105 2.0" I.D. Hastelloy C 300 lb RF flange YF108 3.0" I.D. Hastelloy C 300 lb RF flange YF110 4.0" I.D. Hastelloy C 300 lb RF flange YF115 6.0" I.D. Hastelloy C 300 lb RF flange
-AAU Integral, 4-20 mA or pulse
-AAD Integral, 4-20 mA for intrinsic safety
-AAR Integral, pulse output for intrinsic safety
-NNN Remote converter
YEWFLO *E - HASTELLOY C 300# FLANGE
CERTIFICATION
PROCESS CONNECTIONS (wafer style for mounting between)
A2 ANSI 300 lb RF flanges
A-HCHC*E Hastelloy C wetted parts
/FMF FM explosionproof housing w/FM stamp /FMS FM intrinsic safety w/FM stamp /CSF CSA explosionproof housing w/CSA stamp /CSS CSA intrinsic safety w/CSA stamp
MATERIALS
CERTIFICATION
OPTIONS
/HART HART communications /TBL Local interface /EPF Epoxy-coated electronics housing /OSW Oxygen cleaning /SCT Stainless Steel tags wired into place
IM 1F2B4-01-YIA
Page 15
NACE MTLS
B3
ANSI 600 lb RF flanges
WAFER
MODEL METER SIZES
CODE
YF101 0.5" I.D. NACE Wafer YF102 1.0" I.D. NACE Wafer YF104 1.5" I.D. NACE Wafer YF105 2.0" I.D. NACE Wafer YF108 3.0" I.D. NACE Wafer
7
*E
*E VORTEX FLOWMETERS
YEWFLO *E - NACE MATERIALS WAFER
CERTIFICATION
-AAU Integral, 4-20 mA or pulse
-AAD Integral, 4-20 mA for intrinsic safety
-AAR Integral, pulse output for intrinsic safety
-NNN Remote converter
PROCESS CONNECTIONS (wafer style for mounting between)
B1 ANSI 150 lb RF flanges B2 ANSI 300 lb RF flanges
YEWFLO
MATERIALS
A-HCS3*E Hastelloy C shedder bar w/stainless steel body
CERTIFICATION
/FMF FM explosionproof housing w/FM stamp /FMS FM intrinsic safety w/FM stamp /CSF CSA explosionproof housing w/CSA stamp /CSS CSA intrinsic safety w/CSA stamp
OPTIONS
/HART HART communications /TBL Local interface /EPF Epoxy-coated electronics housing /OSW Oxygen cleaning /SCT Stainless Steel tags wired into place
IM 1F2B4-01-YIA Page 16
YEWFLO
*E VORTEX FLOWMETERS
*E
NACE MTLS
7
FLANGED 150#
MODEL
CODE
YF101 0.5" I.D. NACE 150 lb RF Flange YF102 1.0" I.D. NACE 150 lb RF Flange YF104 1.5" I.D. NACE 150 lb RF Flange YF105 2.0" I.D. NACE 150 lb RF Flange YF108 3.0" I.D. NACE 150 lb RF Flange
YEWFLO *E - NACE MATERIALS 150# FLANGE
-AAU Integral, 4-20 mA or pulse
-AAD Integral, 4-20 mA for intrinsic safety
-AAR Integral, pulse output for intrinsic safety
-NNN Remote converter
PROCESS CONNECTIONS
A1 ANSI 150 lb RF flanges
A-HCS3*E Hastelloy C shedder bar w/stainless steel body
/FMF FM explosionproof housing w/FM stamp /FMS FM intrinsic safety w/FM stamp /CSF CSA explosionproof housing w/CSA stamp /CSS CSA intrinsic safety w/CSA stamp
CERTIFICATION
MATERIALS
CERTIFICATION
OPTIONS
/HART HART communications /TBL Local interface /EPF Epoxy-coated electronics housing /OSW Oxygen cleaning /SCT Stainless Steel tags wired into place
IM 1F2B4-01-YIA
Page 17
NACE MTLS
7
FLANGED 300#
*E
YEWFLO
*E VORTEX FLOWMETERS
MODEL
CODE
YF101 0.5" I.D. NACE 300 lb RF Flange YF102 1.0" I.D. NACE 300 lb RF Flange YF104 1.5" I.D. NACE 300 lb RF Flange YF105 2.0" I.D. NACE 300 lb RF Flange YF108 3.0" I.D. NACE 300 lb RF Flange
YEWFLO *E - NACE MATERIALS 300# FLANGE
-AAU Integral, 4-20 mA or pulse
-AAD Integral, 4-20 mA for intrinsic safety
-AAR Integral, pulse output for intrinsic safety
-NNN Remote converter
PROCESS CONNECTIONS
A2 ANSI 300 lb RF flanges
A-HCS3*E Hastelloy C shedder bar w/stainless steel body
/FMF FM explosionproof housing w/FM stamp /FMS FM intrinsic safety w/FM stamp /CSF CSA explosionproof housing w/CSA stamp /CSS CSA intrinsic safety w/CSA stamp
CERTIFICATION
MATERIALS
CERTIFICATION
OPTIONS
/HART HART communications /TBL Local interface /EPF Epoxy-coated electronics housing /OSW Oxygen cleaning /SCT Stainless Steel tags wired into place
IM 1F2B4-01-YIA Page 18
YEWFLO
*E VORTEX FLOWMETERS
*E
NACE MTLS
7
FLANGED 600#
MODEL
CODE
YF101 0.5" I.D. NACE 600 lb RF Flange YF102 1.0" I.D. NACE 600 lb RF Flange YF104 1.5" I.D. NACE 600 lb RF Flange YF105 2.0" I.D. NACE 600 lb RF Flange YF108 3.0" I.D. NACE 600 lb RF Flange
YEWFLO *E - NACE MATERIALS 600# FLANGE
-AAU Integral, 4-20 mA or pulse
-AAD Integral, 4-20 mA for intrinsic safety
-AAR Integral, pulse output for intrinsic safety
-NNN Remote converter
PROCESS CONNECTIONS
A3 ANSI 600 lb RF flanges
A-HCS3*E Hastelloy C shedder bar w/stainless steel body
/FMF FM explosionproof housing w/FM stamp /FMS FM intrinsic safety w/FM stamp /CSF CSA explosionproof housing w/CSA stamp /CSS CSA intrinsic safety w/CSA stamp
CERTIFICATION
MATERIALS
CERTIFICATION
OPTIONS
/HART HART communications /TBL Local interface /EPF Epoxy-coated electronics housing /OSW Oxygen cleaning /SCT Stainless Steel tags wired into place
IM 1F2B4-01-YIA
Page 19
REMOTE
CONVERTER
*E
YEWFLO
*E VORTEX FLOWMETERS
MODEL
CODE
YFA11 Remote Converter
-AUPA 4-20 mA or pulse output
-ADPA 4-20 mA for intrinsic safety
-ARPA Pulse output for intrinsic safety
YEWFLO *E - REMOTE CONVERTER
-01*E 0.5" body
-02*E 1.0" body
-04*E 1.5" body
-05*E 2.0" body
-08*E 3.0" body
-10*E 4.0" body
-15*E 6.0" body
-20*E 8.0" body
-25*E 10.0" body
-30*E 12.0" body
CONFIGURATION
METER SIZES
CERTIFICATION
/FMF FM explosionproof housing w/FM stamp /FMS FM intrinsic safety w/FM stamp /CSF CSA explosionproof housing w/CSA stamp /CSS CSA intrinsic safety w/CSA stamp
OPTIONS
/HART HART communications /TBL Local interface /EPF Epoxy-coated electronics housing /SCT Stainless Steel tags wired into place /Z Additional cable, per foot
IM 1F2B4-01-YIA Page 20
YEWFLO
*E VORTEX FLOWMETERS
CABLE TYPE, *E
YF011 Remote meter interconnecting cable
CONFIGURATION
-1 Terminated ends
-0010F 10 feet
-0015F 15 feet
-0030F 30 feet
-0050F 50 feet
-0065F 65 feet
METER SIZES
CERTIFICATION
*E Style E
*E
PARTS
METERS
CABLE
IM 1F2B4-01-YIA
Page 21
QUICK START USING THE BT100/200
II. QUICK START
BT100/BT200 HANDHELD TERMINAL
Note: If you specified the correct process conditions on your order, these parameters have been preset at the
factory; therefore, there is no need to re-enter the data.
The Style E YEWFLO is a smart communicating device with microprocessor-based technology. When used with Yokogawa’s BT100 or BT200 handheld terminal (HHT), YEWFLO can be configured to meet specific application needs. In addition, the optional local indicator/totalizer (TBL option) allows setting of various parameters.
When in the analog output mode, the HHT may be connected at any point on the instrument's 4-20 mA loop. This connection superimposes a digital signal on top of the instrument’s 4-20 mA signal making communications completely transparent to your process signal. On the other hand, since there are no 4-20 mA wires in the pulse mode, direct connection of the HHT to the HHT PULSE and HHT COM test points on the amplifier is necessary. Once connected, flowrate and total can be read, tag numbers entered, meter size or any other parameter modified as required. Additionally, you may activate or deactivate many features of the YEWFLO as necessary to meet the requirements of your application.
The HHT will enable you to scroll through the program until you locate the parameter that you wish to change. For communication information, see “How to communicate with the YEWFLO remotely” in the maintenance section. Please refer to the appropriate HHT instruction manual for details on each HHT.
To change a parameter using the BT100, insert the removable key in the lock and turn it clockwise to the ENABLE position. If the key is not in place or if it is in the INHIBIT position, you will receive an OPERATION ERR message on the display when you press either the INC or DEC key or try to enter an alphanumeric value in any parameter. If this occurs, insert the key in the lock, turn it clockwise to the ENABLE position then press either the INC, DEC or alphanumeric key as before.
2.1 PARAMETER SETTING IN BRAIN™ COMMUNICATIONS
The Model YF100*E Vortex flowmeter incorporates BRAIN™ communication functions. These functions enable the Vortex converter to remotely carry out the following functions by communicating with the BRAIN™ Terminal (BT100 or BT200), µXL, or Centum-XL distributed control systems.
• Setting or changing parameters required for vortex meter operation such as tag number, flow span and process conditions for example.
• Monitoring flowrate, totalized flow and self-diagnostics.
• 4-20 mA loop check (simulated output) and totalizer reset.
Note: When the pulse/analog jumpers are set for a pulse output, Remote BRAIN™ communication on the
4-20 mA wires is not available. Therefore parameters cannot be set or read remotely. For the BT100 to operate in the pulse output mode, the instrument must be connected to the test points labeled HHT
Pulse and HHT Com. This allows access to all parameters.
Note: Only the position of the jumpers affects remote communication ability, the software setting of pulse or
4-20 mA has no effect.
IM 1F2B4-01-YIA Page 22
QUICK START USING THE BT100/200
BT100 Basic Operation
1) POWER on.
2) First three key strokes will always display “Model No.”, Tag No.”, and “Self-check”.
3) Press MENU key to select desired main menu.
4) Press PMTR key to move down through the selected menu.
5) Once a parameter has been selected, use the INC or DEC keys to review options within the
parameter list. When data input is required, use the alpha key to toggle between the alpha and numeric characters (A to Z, 0 to 9).
6) Once a parameter has been selected, push ENT twice to save the changes.
Notes: A) Use the ALPHA key to move between alpha and numeric characters.
B) To back up in the programming sequence, push H key and then PMTR when in parameter
mode or MENU when in main menu mode.
C) UPLD and DNLD keys permit copying settings from one instrument in BT100 non-volatile
memory to another instrument.
D) The automatic power-off of the BT100 automatically turns off the power when no key has been
pressed for about 5 minutes. This function is not active during the display A10: Flowrate %, A20: Flowrate, or A30: Total. The display of these values is updated every 5 seconds.
IM 1F2B4-01-YIA
Page 23
QUICK START USING THE BT100/200
BT200 Basic Operation
1) Press ON/OFF to activate power.
2) Press ENTER key when prompted.
3) “Model”, “Tag No.”, and “Self-check” will always be displayed next.
4) Press F4 to continue. The main menu list will be displayed next.
5) Highlight the desired menu by using the up and down movement keys. Press ENTER to
access the selected menu.
6) Use the up and down movement keys to highlight the desired parameter and press ENTER to
access.
7) Once a parameter has been selected either: a) Use the up and down movement keys to review options within the parameter. Once the
appropriate option has been selected, press ENTER twice to edit the selection.
b) Where data input is required, use the alpha key to toggle between the alpha and numeric
characters. Press ENTER twice to save the changes.
Notes: A) The function keys (F1-F4) are used to execute the commands displayed at the bottom of the
screen.
B) Use the left (<) and right (>) movement keys to change whole page of displayed information. The
“<“ key shows the preceding page and the “>“ key the following page.
C) To select a desired alpha character, always use the appropriate SHIFT key. Use the green
shift key to select letters marked in green and the black shift key to select letters marked in black. If the alpha/numeric keys are not used in conjunction with the SHIFT key, the numeric value shown on the key will be displayed.
D) To go directly to a particular parameter anywhere in the menu tree while working in a menu, press
either SHIFT key and then press F4. Type the parameter designation (example B24) to be displayed and press ENTER.
IM 1F2B4-01-YIA Page 24
QUICK START USING THE BT100/200
2.2 YEWFLO SETUP
Note: If you specified the correct process conditions on your order, these parameters have been preset at the
factory; therefore, there is no need to re-enter the data.
The purpose of a Quick Start is to address only those parameters which must be set to establish the operation of a meter for this application. Follow the parameters listed below and enter the data for your particular application.
With the BT100 or BT200 properly connected to the Vortex meter begin communicating by pressing the power button. After the power up sequence is complete, go to “ Menu B: SET 1”. The operation of the BT100 and BT200 are slightly different. Please refer to the ‘Basic Handheld Terminal Operation’ if you are unfamiliar with how to move through the menus and parameters. The following flow chart identifies only the parameters to be set, you may have to skip several parameters or menus to get to the parameters shown below. Be sure to enter all values and selections shown below or they will
not be saved. If you make a typing error, use the CLR key to clear and re-enter.
IM 1F2B4-01-YIA
Page 25
QUICK START USING THE BT100/200
2.3 PARAMETER SETTING IN HART™ COMMUNICATIONS
When specified, the model YF100*E vortex flowmeter can be provided with HART™ communication functions. (To determine if this field communication protocol has been incorporated in your instrument, confirm the “HART” suffix is a part of the YEWFLO model code.) These functions enable the vortex converter to remotely carry out the following by communicating with the HART communicator:
· Setting or changing parameters required for vortex meter operation such as tag number, flow span and process conditions.
· Monitoring flowrate, totalized flow and self-diagnostics.
· 4-20 mA loop check (simulated output) and totalizer rest
The HART communicator can interface with YEWFLO from the control room, via direct connection to the amplifier, or any other wiring termination point on the 4-20 mA loop. Polarity does not matter. There must be a minimum of 250 ohms between the connection and the power supply. Refer to Figure 1.3.2 on page 7 for power supply voltage requirements and load resistance.
Note1: The output jumpers on the amplifier must be set to the analog position to communicate. Only the
position of the jumpers affects remote communication ability, the software setting of pulse or 4-20 mA has no effect.
Note2: When Yewflo is supplied with the HART option, the TBL digital display/local operator interface
cannot be used for parameter setting and configuration. Only two parameters are supported by the TBL:
Parameter E01: Total reset Parameter E02: Display Select
The amplifier has been pre-configured at the factory, so no setup should be required prior to installation. If your process conditions have changed and reprogramming is required, the menu/ parameter configuration list for YEWFLO/HART can be found in Appendix B in the back of this manual. Refer to the instructions provided with your HART communicator or operation details. The QUICK START section of this manual will address only those parameters which must be set to establish the operation of the meter for a particular application. Appendix B will cross-reference the BRAIN parameters to the corresponding HART parameters.
2.3.1 Communication Specifications
Method of communication: Frequency shift keying (FSK). Conforms with Bell 202 Modem standard with respect to baud rate and digital “1” and “0” frequencies.
Baud Rate: 1,200 bps
Digital “0” Frequency: 2,200 Hz
Digital “1” Frequency: 1,200 Hz
Data Byte Structure: 1 start bit, 8 data bits, 1 odd parity bit, 1 stop bit
IM 1F2B4-01-YIA Page 34
Loading...
+ 96 hidden pages