YASKAWA CPCR-MR15C, CPCR-MR15CW, CPCR-MR22C, CPCR-MR55C, CPCR-MR22CW Bulletin

...
Over 100 years cumulative experience
24 hour rush turnaround / technical support service
Established in 1993
The leading independent repairer of servo motors and drives in North America.
Visit us on the web:
www.servo-repair.com
www.servorepair.ca
www.ferrocontrol.com
www.sandvikrepair.com
www.accuelectric.com
Scroll down to view your document!
For 24/7 repair services :
USA: 1 (888) 932 - 9183 Canada: 1 (905) 829 -2505
Emergency After hours: 1 (416) 624 0386
Servicing USA and Canada
BULLETIN
_ I .qPmvnpAnk"I I I
_,,JL----I iVV/I IVI 'qL
DC SERVOMOTOR CONTROLI ER FOR SPEED CONTROL
TYPE CPCR-MR01C TO -MRggc
\
V
YASKAWA
SERVOPACK type CPCR-MRE!C isa speed controller for power servomotors such as Print Motor Standard Series, Cup Motor, Hi-Cup Motor, Minertia Motor, and Miner-
tia Motor J Series. The speed of these servomotors, forward or reverse, Is precise- ly controlled through a wide range.
The SERVOPACK type CPCR-MRFiC, thus, is useful for industrial machines
in the fields where the following requirements are especially high:
Wide range of variable speed control (1000:1)
Frequent start and stop operations (1000 operations/min)
Frequent reversing operations (1000 operations/min)
High-speed precise positioning (10#m or less)
High-level servo characteristics (Frequency response: DC to 100 Hz).
SERVOPCAK
TYPES CPCR-MR01C TO -MR07C
POWER THERMAL
SINGLE-PHASE TRANSFORMER
AC MAGNETIC _-"_... -- I1_11_ OVERLOAD
200/220VAC ±10% CONTACTOR - -" -- __._ RELAY MINERTIA MOTOR OR 100/110 VAC "_ J SERIES WITH TG
±10 %, 50/60 Hz
SPEED ADJUSTING IL_
POTENTIOMETER _ _li_ 581-,88
58o-97_, > _ <
Configuration of SERVOPACK Types CPCR-MR01C
to -MR07C, Servomotor and Optional Components
SERVOPACK TYPES CPCR-MR080 TO -MR99C
THERMAL
DC REACTOR OVERLOAD
RELAY
3-PHASE HI-CUPMOTOR 200/220 VAC _+10%, AC MAGNETIC WITH TG
50/60 Hz CONTACTOR
481-1 _ 581-142
SPEED
ADJUSTING
POTENTIOMETER , :> I]
281-87
580-97 581-152
Configuration of SERVOPACK Types CPCR-MR08C
to -MR99C,ServomotorandOptionalComponents
CONTENTS
1. RATINGS AND SPECIFICATIONS/4 4. INSTALLATION AND WIRING / 44
1.1 SERVOPACK RATINGS AND SPECIFICATIONS / 4 4. 1 INSTALLATION/ 44
1.2 SERVOPACK OVERLOAD CHARACTERISTICS / 6 4. 2 WIRING / 44
1.3 SERVOMOTOR RATINGS FOR SERVOPACK / 8 4. 3 POWER LOSS/ 47
1.4 SERVOMOTOR CHARACTERISTICS FOR SERVOPACK / 9 5. DIMENSIONS in mm / 48
5.1 SERVOPACK / 48
2. CONFIGURATION / 13 5. 2 POWER TRANSFORMER/ 54
2.1 COMPONENTS / 13 5. 3 DC REACTOR / 54
2. 2 INTERNAL BLOCK DIAGRAM/ 14 5.4 RESISTOR UNIT (TYPE JUSP-RAO3) / 54
2. 3 EXTERNALTERMINALS / 19 5. 5 SPEED ADJUSTING POTENTIOMETER/ 54 5, 6 THERMAL OVERLOAD RELAY/ 55
3, OPERATION / 22 5. 7 REGENERATIVE UNIT
3. 1 POWER ON AND OFF / 22 (TYPES JUSP-RGO01 TO -RGO03) / 55
3. 2 SPEED REFERENCE/ 25 5.8 PROTECTION DEVICE (TYPE JESP-PT) / 55
3.3 BUILT-IN FUNCTION / 26
3.4 PRECAUTIONS FOR APPLICATION/ 31 6. ORDER / 55
3.5 PRECAUTIONS OF OPERATION / 33
3.6 CONNECTION DIAGRAM OF SERVOPACK / 35 7, SELECTION GUIDE/57 3, 7 APPLICATION/ 38 7.1 DYNAMICS FORMULA FOR
3.8 OPTIONAL COMPONENTS / 39 ELECTRIC FORCE / 57
7.2 SERVOMOTOR SELECTION GUIDE / 58
INDEX
Subject SectionNo. Page
A Allowable Frequency of Operation ..................... 1.4.2 9
APPLICATION ............................... 3.7 38
Auxiliary Input Terminal .......................... 3.2.4 - - 26
B BUILT-IN FUNCTION ........................... 3.3 .... 26
C Coating (Varnish) Treatment ........................ 3.4.1 - 31
COMPONENTS ...................... '........ 2.1 .... 13
CONFIGURATION ............................. 2 ..... 13
CONNECTION DIAGRAM OF SERVOPACK .................. 3.6 .... 35
Current Monitor .............................. 3.3.7, . . 31
D DC REACTOR ............................... 5.3 .... 54
DIMENSIONS in mm ............................ 5 ..... 48
Display .................................. 3.3.6. 30
Driving Motor with Cooling Fan and Motor with Separate Excitation ..... 3.5.3 - - - 34
DYNAMICS FORMULA FOR ELECTRIC FORCE .............. 7.1 .... 57
E Emergency Stop Dynamic Braking (DR) Circuit ............... 3.7.2 - - 38
External Base off Circuit .......................... 3.3.4 . . 29
External Current Limiting Reference Circuit ................. 3.3.1 26
External Terminals for Components to be combined ............ 2.3.3 - 21
EXTERNAL TERMINALS .......................... 2.3 .... 19
External Terminals for Types CPCR-MRO1Cto-MR07C ........... 2.3,1 19
External Terminals for Types CPCR-MR08C to -MR99C ........... 2.3.2 20
H Handling of Speed Reference Input Terminal ................ 3.2.3 - - 26
I INSTALLATION .............................. 4, 1 .... 44
INSTALLATION AND WIRING ....................... 4 ..... 44
INTERNAL BLOCK DIAGRAM ........................ 2.2 .... 14
2
INDEX (Cont'd)
Subject SectionNo. Page
L Load Inertia ................................ 3.4.6 32
Location .................................. 4.1.1 . 44
M Minus Load ................................ 3.4.2 - 31
Motor Overload Protection ......................... 3.4.7 - 32
Mounting ................................. 4.1.2. .44
N Noise Treatment .......................... i i i 3.5.1 . 33
O OPERATION ................................ 3 ..... 22
OPTIONAL COMPONENTS ........................ 3.8 .... 39
ORDER .................................. 6 ..... 55
Overspeed Drive (O-S Drive) ....................... 3.3.8 - - 31
Overtravel Preventive Circuit (Forward OFF, Reverse OFF Circuit) ..... 3.3.3 .... 28
P Power Line Protection ........................... 3.5.2. - 34
POWER LOSS ............................... 4.3 .... 47
POWER ON AND OFF ........................... 3.1 .... 22
POWER TRANSFORMER ......................... 5.2 .... 54
PRECAUTIONS FOR APPLICATION .................... 3.4 .... 31
Precautions for Wiring ........................... 4.2.2 47
PRECAUTIONS OF OPERATION ........... : .......... 3.5 .... 33
Proportional Drive Reference Circuit (Complete Stop Reference Circuit)- - 3.3.2- - 27
PROTECTION DEVICE TYPE JESP-PT ................... 5.8 .... 55
Protection Device Type JESP-PT_-] .... "................. 3.8.1 39
Protective Circuit ............................. 3.3.5 29
R RATINGS AND SPECIFICATIONS ..................... 1 ..... 4
Regenerative Unit Type JUSP-RG ....... .............. 3.8.2 42
REGENERATIVE UNIT TYPES JUSP-RG001 TO -RG003 .......... 5.7 .... 55
RESISTOR UNIT TYPE JUSP-RA03 .................... 5.4 .... 54
S SELECTION GUIDE ............................ 7 ..... 57
Selection of Cable Size........................... 4.2.1 . 44
SERVOMOTOR CHARACTERISTICS FOR SERVOPACK ............ 1.4 .... 9
Servomotor Frequency .......................... 1.4.3- - 12
SERVOMOTOR RATINGS FOR SERVOPACK ................ 1.3 .... 8
SERVOMOTOR SELECTION GUIDE .................... 7.2 .... 58
SERVOPACK ................................ 5.1 .... 48
SERVOPACK OVERLOAD CHARACTERISTICS ............... 1.2 .... 6
SERVOPACK RATINGS AND SPECIFICATIONS ............... 1.1 .... 4
SERVOPACK Types CPCR-MR01C to -MR07C ................ 3.1.1 22
SERVOPACK Types CPCR-MR08C (W) to -MR99C .............. 3.1.2 - - 25
Special Power Voltage ........................... 3.4.5 - 32
SPEED ADJUSTING POTENTIOMETER .................. 5.5 .... 54
Speed-Input Voltage Characteristics .................... 1.4.4 - 12
SPEED REFERENCE ........................... 3.2 .... 25
Speed Reference Circuit .......................... 3.2.1 - 25
Starting and Stopping Time ........................ 1.4.1 . 9
Stop Reference Circuit ........................... 3.2.2 - 26
Switching Operation of Multiple Servomotors ................ 3.7.1 - - 38
T Tachometer Connection .......................... 3.7.4. 39
THERMAL OVERLOAD RELAY ...................... 5.6 .... 55
Transformer for Multiple SERVOPACKs .................... 3.7.5 - - - 39
Type CPCR-MR_-_CL and Type JESP-PT[_L Application ........... 3.4.4 - - 32
Type CPCR-MR[]CW Application ....................... 3.4.3 - 31
Types CPCR-MR01Cto-MR07C ...................... 3.6.1 - 35
Types CPCFI-MR08C to -MR55C ...................... 3.6.2 - - 36
Types CPCR-MR75C,-MR99C ....................... 3.6.3. -37
U Use of Servomotor with Holding Magnetic Brake .............. 3.7.3 39
W WIRING ............................ ...... 4.2 .... 44
3
1. RATINGS AND SPECIFICATIONS
1.1 SERVOPACK RATINGS AND SPECIFICATIONS
Table 1.1 SERVOPACK Ratings and Specifications
SERVOPACK Types CPCR- MR01 C MR01 CJ MR02C MR02CJ MR05C MR07C
Motor Output kW 0.1 max 0.1 0.2 0.2 0.5 0.77
Control Method Single-phase bridge rectifying (power transformer installed separately), transistorized PWM control
Main Voltage Single-phase, 200/220VAC +10% or 100/110VAC _10%, 50/60Hz ---1_5%
Power Circuit Capacity* kVA 0.3 0.3 0.5 0.5 1 1.5 Supply
Control Circuit Single-phase, 100/110VAC _+-_10%, 50/60Hz, 50VA (with power transformer installed separately) Max Output VoItage (V MAx) VDC -----30 (at +-6A) --1,100 (at +-3A) ___45 (at +-7A) --1,100 (at _--+6A) +85 (at _8A) --1.80 (at +-13A) Instantaneous Max Output _--t-15_+ 10% _+ 11 -+ 10% _+20_+ 10% ___15--1. 10% --1, 20 -t- 10% __.30--1, 10%
Current (IMAX) A Continuous Output Current (I out) A --1.6 _--t-3 --1,7 + 6 _+ 8 --1,13
Current Limiting Range A +-3 to +-15 +1 to_+11 +-3 to +-20 +3 to +-15 +-3 to _20 +-6 to ±30 Waveform Factor 1.05 and below
Derating Factor 0.95 and below
Speed Control Range 1000 : 1
Load Regulation 0 to 100% 0.1% and below at rated speed, -t-0.05% and below at 1/1000 rated speed
Voltage Regulation --+10% --1,0.1% and below at rated speed, --1,0.02% and below at 1/1000 rated speed
Temperature Regulation --1,0.5% and below at rated speed, --1,0.1% and below at 1/1000 rated speed
25-+35°0
con- Tach-gen (TG) Temperature _0.05%/oC
Regulation
Rated Reference Voltage +-6VDC (forward running at plus reference)
-o _ - Resistance 20k_2+ 10% u_ rr __ Circuit Time Constant 35/_s ___20%
Rated Reference Voltage --1.2 to -+ 10 V
"5 Resistance 3.3 k_l/V
Circuit Time Constant 45/_s and below
Speed Feedback DC tachometer generator feedback control (7V/1000r/min) Built-in Reference Power Supply --1.12VDC, -+30mA
Ambient Temperature -- 10"C to +60°C (-- 10°C to +40°C in panel) Storage Temperature --20°C to -t-60=C Humidity 85% and below (non-condensing)
Print motor standard series, Minertia motor: 3 times motor inertia
Allowable Load Inertia Cup motor, Hi-cup motor, Minertia motor J series: 2 times motor inertia *Forratedoutput Notes:
fused for application at a rated reference voltage other than -t-6 V. 1. Make sure that the power voltage is limited to less than 220 V +10 %
(242 V). For voltages higher than 220 to 242 V, use a step down trans-
Type Designation former to reduce the voltage.
C P C R - M R i_-][_-]C[_-] - [_-] 2. The drive characteristic of type CPCR-MR[]]C differs for Servopoc_$ and
"--_ T applicable motors as shown in Fig. 1.1 (a)and (b). The allowable
/
L
current-conduction time for the instantaneous rating depends on com-
_!ar_e_s_A_d Servomotor to be Applied binations with the applicable motor and is guaranteed only for time of
Blank: Standard Motor (Cup Motor) start and stop (approx. ls or _ess) in the allowable inertia
:oi_rlo_i_ I/PWM See Table 1.2. range. An overload protection such as motor locking is therefore
rsing " J: Minertia Motor J Series (JM) necessary depending on the application conditions.
M: Minertia Motor Standard Series(MM) 3. When a servomotor is driven by thyristor drive units, the armature
H: Hi-Cup Motor (HM) current generally pulsates, differing from that of battery-driven units.
08: 0.75kW C: Cup Motor(CM) This reduces the average value (component to "produce torque) of ar-
15: 1.5 kW P: Print Motor (PM) mature current when the motor rated current equals armature current
22: 2.2 kW (r/min), and therefore, it is necessary to reduce the rated torque for the
55: 5.5kW Optional motor.
75: 7.5kW
99: 9.9 kW Blank: Standard type The reduction rate is termed the derating factor. The derating
W_: Externally ventilating fan type factor of Servopacktype CPCR-MR[]]C is very excellent, 95 % or greater.
Design Revision Order L: Built-in overload detection type Example: When type CPCR-MR[]C or 95 % derating factor is com-
- J: Overspeed drive type for JM bined with a motor of rated output 1.5kW(8.183N.m), the effective
C: Second Revision Y[]]: Special order output(torque) is1.5kW(8.183N.m) X0.95(14.25kW). tType CPCR-MR[]]C and Type CPCR-MR[]]CW differ in the shapes and 4. In the speed control range, the lowest speed is defined under the con-
cooling systems. For ventilating construction with overload detection dition not stopped by 100 % load variation. circuit, the type CPCR-MR[]]CWL is applied. 5. Speed regulation is generally defined as follows:
No load speed-- Full load speed
Speed regulation = × 100 96
4 Rated speed
MR08C MR15C MR22C MR55C MR08CW MR15CW MR22CW MR55CW MR75C MR99C
0.8 1.5 2.2 3.7 5.5 6.0 7.5 6.2 9.9 Three-phase bridge rectifying, transistorized PWM control
Three-phase, 200 / 220 VAC 4- 10 %, 50 / 60 Hz 4- 5%
1.6 I 3.0 I 4.0 I 6.9I 9 I 10 I 13 I 10 I 17
Single-phase, 200/220VAC 4-10%, 50/60Hz, 50VA
_--+200(at -+7A) __.200 (at _+13A) 4-200 (at ___18A) _4-200 (at _30A) 4-200 (at _40A) 2:200 (at +55A)
--+60+10% --+55 -+75 -+120 4-100
4- 20 -+ 10% -+ 25 4- 10% 4- 40 4- 10%
(-+55_+10%) -+10% --+10% -+10% +10%
+7 -+13 -+18 -+30 4-40 -+55
+1.5 to -+20 -+2.5 to -+25 -+3.5 to _+40 -+6 to -+60 _+7to_+55 _+7to_+75 _+10to+_120 _+10to+_100
1.05 and below
0.95 or more 1000 : 1
0.1% and below at rated speed, +0.05% and below at 1/1000 rated speed
+0.1% and below at rated speed, -+0.05% and below at 1/1000 rated speed
+ 0.5% and below at rated speed, 4-0.1% and below at 1/1000 rated speed
-- 0.05 % / °C
+ 6VDC (forward running at plus reference) 20k_ -+10%
0.5 ms 4- 20%
+2 to -+10V
3.3k_/V
0.1 ms and below
DC tachometer generator feedback control (7V/1000r/min)
+ 12VDC, -+ 30mA
--10°Cto 4- 60°C(--10°Cto 4- 40°Cin panel)
-- 20 °C to 4- 70 °C
85% and below (non-condensing)
Up to 3 times motor inertia / Up to 2 times motor inertia
Actually, however, the calculated resistance value is varied by am- 6. When housed in a panel, the inside temperature must not exceed am-
plifier drift due to voltage'and temperature fluctuations, and such an blent temperature range•
effect appears as a speed change. The percentage ratio of this speed 7. Type CPCR-MR[_]C is limited in its regenerative control capability and change to the rated speed is the respective speed regulation due to therefore its load inertia is limited. (At a constant motor speed, the
voltage and temperature fluctuations, regenerative energy of the motor is proportional to inertia.) When
The speed regulation due to temperature fluctuation must con- the load inertia exceeds the allowable range, make sure to follow
sider the effect of TG temperature fluctuation. The TG temperature Par. 3.4.6 "Load Inertia" and 3.8.2 "Regenerative Unit Type JUSP-RG."
fluctuation, relating to the ratio to TG generation voltage, is not sig-
nificant at a low speed, but cannot be ignored when the speed is high.
OUTPUT CURRENT ALLOWABLE OPERATIONAL
OUTPUT CURRENT
(TMAX) ,MAX ,
, I (TMAX) _"._MOTOR
IMAXt ---- . IL ALLOWABLE OPERATIONAL <_ CURRENT RANGE OF
INSTANTANEOUS I\ H'"- CURRENT RANGE OF
'ouq RATING - i'k,_l_ MOTOR '^''_.IliNS'ANTANEO_S"_"_'_"_'""G, , _-_-_.
/R[CO_TNUO--UE !_'_ I'i IR CONTINUOUS iRATING i _-'1tl SPEED (OUTPUT VOLTAGE) CR_-AOilNG :; [--'_'_ SPEED (OUTPUT VOLTAGE)
NR/ N MAX: Depending on motors. Ni NFt N MAX: Depending on motors.
NI MAX ( V MAX) ( V MAX)
(a) Combination of Type CPCR-MR[]C (b) Combination of Type CPCR-MR[_]CJ,
and DC Servomotors (PM, CM, HM, MM) -MR[_.]C-J, and DC Servomotors (JM)
NR: Rated Motor Speed IR: Rated Motor Current lOUT: Continuous Output Current NMAX: Maximum Drive Speed IMAX: Instantanious Maximum Output Current NiMAX: Instantaneous Maximum
(Maximum Output VoltageVMAX) (Instant&neousMaximum Torque TMAX) Torque Drive Speed
Fig. 1.1 Type CPCR-MR[_]C Drive Characteristic
5
1.2 SERVOPACK OVERLOAD CHARACTERISTICS
The allowable conduction time of CPCR-MR[?.C Hot start: The overload characteristic when is shwon in Fig. 1.2 (a) through (h). Servopack is running at the rated load and so
saturated thermally.
In Fig. i. 2, cold and hot starts mean the follow-
ing: Ambient temperature: For thesedata,the ambient
Cold start: The overload characteristic when temperature is 60°C. At lower ambient tempera- tures, the allowable conduction time increases.
Servopack at the ambient temperature starts to operate.
5000 5000
1000 100£
5OO
ALLOWABLE100_ ALLOWABLE10£ __"--. -_.
CONDUCTION CONDUCTION \, _"_
50_ TIME(s) 50 "_
TIME(s) _.
l HOT ST
10 _ ___
_OVERLOAD DETECT!ON_Z_EZZZZZ
5_LEVEL OF TYPES_ -_
_SP-PT101 L,-P _ _ -- OVERLOADDETECTION
T102L_ LEVELOFTYPE \
JESP-PT20'L\
1_ 10 15 20 J'S 10 20 30
LOAD CURRENT (A) LOAD CURRENT (A)
(a) Types CPCR-MR01Cand-MR02C (c) TypeCPCR-MR07C
100C
500
COLD START
ALLOWABLE ALLOWABLE10E
CONDUCTION CONDUCTION
TIME(s) TIME(s) 50
1C 10
5
DETECTION LEVEL TYPE CPCR-MR08CL
5 10 15 20 1 10 15 20
LOADCURRENT(A) LOADCURRENT(A)
(b) Type CPCR-MR05C (d) TypeCPCR-MR08C
Fig. 1.2 Allowable Conduction Time of SERVOPACK
6
5OOO
1OO13 1OOOi
- _. COLpSTA_
"-4..
I OC _..
ALLOWABLE _%._. ALLOWABLE 10C _..
CONDUCTION _ CONDUCTION _ _.
HOTSTART _
IC _,
OVERLOAD _,
- DETECTION _ OVERLOAD_
LEVELOETYPE_ _ DETECT,ON__ '
LEVELOFTYPE
CPCR-MRI5CL __ CPCR-MR55CL
1 _'10 15 20 25 1 _'30 40 50 60
LOADCURRENT(A) LOADCURRENT(A)
(e) Type CPCR-MR15C (g) Type CPCR-MR55C
5O00
1000500 1000500 t
_'_ COLD STAF
ALLOWABLE100 ALLOWABLE100 k '_
CONDUCTION CONDUCTION
TIME(s) 50 _ TIME(s) 50
\
" \
OVERLOAD DETECT'ION _ _"
OVERLOADDETECTION_ _ LEVELOFTYPE _
LEVELOFTYPE CPCR-MR75CL _
CPCR-MR22CL _ _
1
0 10 20 30 40 0-"20 30 40 50 60 70 75
LOADCURRENT(A) LOADCURRENT(A)
(f) TypeCPCR-MR22C (h) Type CPCR-MR75C
Fig. 1.2 Allowable Conduction Time of SERVOPACK (Cont'd)
,7
1.3 SERVOMOTOR RATINGS FRO SERVOPACK
Table 1.2 ServomotorRatingsfor SERVOPACK
DC Servomotor
SERVOPACK
Type Effective Rated Effective Instantaneous Effective Allowable Max Drive Max Torque
CPCR- Type Output Speed Rated Torque Max Torque Current Inertia Speed Drive Speed
kW r/min N-m N.rn A kg-m=xlO -" r/min r/min
UGPMEN-08 0.047 4000 0.114 0.451 4.9 1.175 5000 4000
MR01 C PMES-09 0.095 4000 0.225 0.745 5.5 1.375 4500 4000
UGPMEN- 09 0.095 4000 0.225 0.745 5.7 1.3 4500 4000
M R 01 CJ UGJMED - 10 M 0.095 1000 0.904 4.9 2.3 12 1700 100
PMES- 12 0.19 3000 0,603 2.156 6.4 4.5 3250 3000
MR02C
UGPMEN - 12 0.19 3000 0.603 2.156 6.6 4.8 3250 3000
MR02C-M UGMMEM-06 0.18 3000 0.559 1.96 6.2 2.85 3400 3000
UGJMED -40 M 0.152 1000 1.452 5.586 5.0 32 2100 700
MR02CJ
UGJMED -40 L 0.24 1000 2.272 7.546 5.6 40 2050 700 PMES - 16 0.47 2500 1.813 5.488 7.3 18.6 2550 2500
MR05C
UGPMEN- 16 0.47 2500 1.813 5.488 7.5 18.9 2550 2500 UGCMED-04 AA 0.37 1750 2.029 5.88 8.0 44.75 2300 1750
MR05C-C
UGCMEM-04 0.38 1750 2.078 5.88 8.0 46 2250 1750
MR 05C- H UGHMED-03 GG 0.24 1000 2.234 6.566 7.8 40.75 1850 1200 MR 05- M UGMMEM - 13 0.38 3000 1.205 3.528 7.4 4.25 3850 3000
M R 07 C* UGMMEM - 25 0.73 3000 2.323 5.488 13.1 8.5 3400 3000 MR 08C UGCMED-08AA 0.71 1750 3.881 13.132 6.7 132.5 2500 2000
MR 08CW UGCMEM -08GC 0.71 1750 3.881 13.134 6.4 108 2500 2000
UGHMED- 06 AA 0.57 1000 5.439 19.6 6.2 219 1600 1200
MR08C-H
UGHMEM -06AA 0.57 1000 5.439 21.56 5.5 163.75 1500 1200
MR08CW-H
UGHMED-06GG 0.49 1000 4.655 15.974 6.5 99 1800 1200
MR08C-J
UGJMED- 60 MA 0.43 1000 4.096 17.64 6.0 132 1800 1000
MR08CW-J MR 15 C UGCMED- 15 AA 1.43 1750 7.771 19.6 11.2 303 2250 2000
MR15CW UGCMEM-15GC 1.43 1750 7.771 18.13 11.9 255 2400 2000 M R 15 C- P PM ES - 20 0.95 3000 3.018 9.996 8.3 61 3900 3600
UGHMED - 12AA 1.14 1000 10.898 28.42 10.6 402 1450 1200
MR15C-H
UGHMEM- 12AA 1.14 1000 10.898 29.106 10.0 260 1450 1200
MR15CW-H
UGHMED-12GG 1.14 1000 10.898 28.42 10.6 402 1450 1200
MR15C-J UGJMED-60L 0.81 1000 7.713 21.56 11.0 189 1700 1000 MR15CW-J UGJMED-80M 1.05 1000 9.967 25.48 11.5 420 1700 1000
MR15C-M
UGMMEM -50 AA 1.46 3000 4.655 10.486 12.1 27 4000 3000
MR15CW-M MR22C UGCMED- 22AA 2.09 1750 11.456 30.38 16.1 456 2350 2000
MR 22CW UGCMEM-22GC 2.09 1750 11.456 29.106 17.2 369 2400 2000
UGHMED-20AA 1.90 1000 18.159 49 16.6 876 1400 1200
MR22C-H
UGHMEM-20AA 1.90 1000 18.159 46.256 16.9 708 1450 1200
MR22CW-H
UGHMED -20GG 1.71 1000 16.297 45.08 16.2 702 1500 1200
MR22C-J
UGJMED- 80 L 1.54 1000 14.671 39.2 18.0 735 1700 1000
MR22CW-J
UGCMED- 37 AA 3.52 1750 19.179 48.02 27.0 596 2250 2000
MR55C
UGCMEM -37 FB 3.52 1750 19.179 45.472 27.6 750 2400 2000
MR55CW
UGCMED- 55 AA 5.23 1750 28.489 63.504 30.0 946 1750 1750
UGHMED- 30 AA 2.85 1000 27.185 70.756 23.3 988 1300 1000 MR55C" H UGHMEM -30AA 2.85 1000 27.185 66.346 24.2 788 1450 1200 MR55CW-H UGHMED-30GG 2.74 1000 26.068 73.99 21.0 730 1250 1000
UGHMED -44AA 4.18 1000 39.847 94.472 24.7 2276 1000 1000 MR55C-J
UGJMED - 80 K 2.47 1000 23.745 77.028 23.0 670 1450 650 MR55CW-J
MR55C-M
UGMMEM - 1 AA 2.93 3000 9.31 24.5 24.9 50.5 4000 3000 MR55CW-M
MR 750 UGCMFD- 75 AA 6.92 1750 37.701 78.4 40.0 1446 1750 1750 MR 75 C - H UG HMFD -60 AA 5.70 1000 54.37 98.98 33.6 2276 1000 1000 MR 99C GEELM- K 9.14 1750 47.784 98 53.5 1000 1750 1750
MR99C- M UGMMKR -2 AA 5.86 3000 18.62 45.08 54.1 105 4000 3000
*Specifications are the same as those for type CPCR-MR08. 5. For the details of combination of types CPCR-MR75C-H and UGHMFD
Notes: -60, contact the company.
1. Motors in _ are applied to Servopac_with standard adjustment. 6. In the combination of CPCR-MR99C and GEELM-K, the rated speed
2. The instantaneous maximum torque means the motor-generated torque differs from the rated speed of the motor.
when the Servopock is at the maximum instantaneous output current, 7. Motor types PM: Print motor standard series, JM: Minertia motor when Servopockand a servomotor are combined for start and stop op- J series, MM: Minertia motor standard series, CM: Cup motor, HM: erations(Fig.1.2). Hi-Cupmotor
3, The maximum drive speed is the speed that can be driven at the rated 8. Allowable inertia is the value at rated motor speed or below. When
motor torque or below, operating speed exceeds rated speed, the values of allowable
inertia are smaller than those listed in the table above.
4. The instantaneous maximum torque drive speed is the maximum speed
available at the instantaneous maximum torque (Fig. 1.2).
1.4 SERVOMOTOR CHARACTERISTICS FOR __STARTING
TIME (tr) //p= 100%
SERVOPACK
..... STOPPING / _=1
120 TI/
1.4.1 Starting and Stopping Time 100
The starting time and stopping time of servomotor 80 under a constant load is shown by the formula TIME
below• Viscous or friction torque of the motor (ms)60 _" i Ip=150%
is neglected. 40 _ _ _=15
Starting Time: 20 "-_ 100%
...... , s__o_....... _ IP=300%
............ 300='o-- ---- _= 3
I I
NR (JM + JL) (ms) 0 0'2 0!4 06 0.8 110
tr= 104.7 × Kt IR (a--#)
LOAD CURRENT COEFFICIENT _ .
Stopping Time: (a) Combination of SERVOPACK Type CPCR-MR02C-M
and Servomotor Type UGMMEM-06AA1
NR(JM + JL) (ms)
tf= 104. 7 X Kt IR (_-}-/_) STARTING
--rIME (t,)
STOPPING
..... TIME (tf)
Where, 200 /Ip= 100%
NR: Rated motor speed (r/min) _ _=I JM: Motor inertia (kg.m z) 150
TIME
EL : Load inertia converted to the motor (ms)100
shaft. (kg .m z) . _ IP=150°/0
Kt " Torque constant of motor (N.m/A) 5[ ___ 100%__.... Ip=300%
- - "-'--22 -"- - ---------- -_ 150%_= 3
IR : Motor rated current (A) 300%
=Ip/In" Acceleration/deceleration current 0'2 014 016 0'8 110
constant LOAD CURRENT COEFFICIENT fl
Ip ; Acceleration/deceleration current (b) Combination of SERVOPACK Type CPCR-MR15C-H
(Acceleration/deceleration current _ times and Servomotor Type UGHMED-12AA
the motor rated current) (A) Fig. 1.4 Motor Starting and Stopping Time
l_ = IL/IR : Load current constant
IL : Current equivalent to load torque
(Load current /3 times the motor rated 1.4.2 Allowable Frequency of Operation
current) (A) The allowable frequency of operation is restricted
by the servomotor and Servopack, and both the
_-_ I conditions must be considered for satisfactory
MOTOR - a op eration.
ARMATURE " TIME CURRENT I tr .lt, I I &t (i) Allowable Frequency of Operation restricted
i lI,!I I by the Servopack
I The allowable frequency of operation is restricted
_ by the heat generated in the regenerative resistor
I
MOTOR ,/" N I TIME in the Servopack and varies depending on the
SPEED
motor type, capacity, load inertia, acceleration/
Fig. 1.3 Timing Chart of deceleration current values , and motor speed.
Motor Armature Current and Speed Figs. 1.5 to 1.7 show the allowable frequency
of operation when Servopack is combined with
Fig. 1.4(a) shows the starting and stopping servomotors such as Cup Motor, Hi-Cup Motor or
time when Servopack type CPCR-MR02-M is com- Minertia Motor. bined with servomotor type UGMMEM-06. Fig.l.4 The values in Figs. 1.5 to 1.7 are shown when
(b) shows the starting and stopping time when load inertia is 0. When load inertia is m times of
Servopack type CPCR-MRIEC-H is combined with 1 servomotor type UGHMED-12AA motor inertia, the frequency is __ times the
m+l
The values shown in Fig. 1.4 are measured value in the figure. If load inertia exceeds three when operating motor at no load (JL = 0). When times the motor inertia or if the combination of JL is equal to JM , the starting and stopping time Servopack type CPCR-MR 99C and industrial DC is twice the value in Fig. 1.4. When JL is double motor type GEELM-K is applied, contact your JM , the starting and stopping time is three times Yaskawa representative. the value in Fig. 1.4.
9
1.4.2 Allowable Frequency of Operation (Cont'd)
IIIllll ,. l
FREQUENCY FREQUENCY 100 FREQUENCY OF OPERATION 100 OF OPERATION ?_ OF OPERATION 100
(TIMES/MIN) ' : : : : (TIMES/MIN) (TIMES/MIN)
I['Mi
i i i i i
, , 011 I I I I I I 11 I I I oIL___J_
0 1000 '20()0 500 1000 1200 1000 2000 3000
MOTOR SPEED (r/rain) MOTOR SPEED (r/rain) MOTOR SPEED (r/min)
(a) Combination of Type CPCR-MR08C (a) Combination of Type CPCR-MR08C-H (a) Combination of Type CPCR-MR15C-M
andType UGCMED-08 andTypeUGHMED-06 andTypeUGMMEM-50
t
ALLOWABLE ALLOWABLE ALLOWABLE FREQUENCY 100 FREQUENCY _-'.C'/,_,¢,_ FREQUENCY tnn
OF OPERATION OF OPERATION 100 OF OPERATION .v_ (TIMES/MIN) (TIMES/MIN) (TIMES/MIN)
I I"_] I111 o_
1000 2000 500 1000 1200 1000 2000 3000
MOTOR SPEED (r/rain) MOTOR SPEED (r/min) MOTOR SPEED (r/rain)
(b) Combinationof TypeCPCR-MR15C (b) Combinationof TypeCPCR-MR15C-H (b)CombinationofTypeCPCR-MR55C-M
and TypeUGCMED-15 andTypeUGHMED-12 andTypeUGMMEM-1Aor Type
CPCR-MR99C-MandTypeUGMMKR-2A
200 ____ 200 \i__ Fig. 1.7 AIIowableFrequencyof
I I I ! OperationofCombinationof
ALLOWABLE III I I\_\_1 I II ALLOWABLE SERVOPACK and Minertia Motor
FREQUENCY 1_)0 ! ___ FREQUENCY _,
OF OPERATION OF OPERATION 100 (TIMES/MIN) (TIMES/MIN)
I r'-L'- (2) Allowable Frequency of
I I I b4"i I ] ] ] " Operation restricted by the
0 Servomotor
1000 2000 500 1000 1200
MOTOR SPEED (r/min) MOTOR SPEED (r/rain)
The allowable frequency of operation
(c) Combination of Type CPCR-MR22C (c) Combination of Type CPCR-MR22C-H
and TypeUGCMED-22 andTypeUGHMED-20 varies depending on the load condi-
tions, motor running time and the
200 II_l III I I 2OO_[_[_[Z[Z[_E_ operating conditions. Typical exam-
I I I Ill_l plesareshown below. SeePar. 1.4.1
iI I I I___I [ II] __ "Startingand Stopping Time" for
ALLOWABLEFREQUENCY10£ ! c:_O_,__G,_!_, ALLOWABLEFREQUENCY _ symbols.
OF OPERATION OFOPERATION 100
(TIMES/MIN) C_--_-_ (TIMES/MIN) " When motor repeats rated-speed
i i i i [ i-_]_ [ operation andbeing at standstill.
0_ Cycle time (T) should be deter-
1000 2000 500 1000 1200
MOTOR SPEED (r/min) MOTOR SPEED (r/min) mined so that RMS value of motor
(d) Combinationof TypeCPCR-MR55C (d)CombinationofTypeCPCR-MR55C-H armature current is lower than the
andType UGCMED-37 andTypeUGHMED-30 motor rated current:
I-H-__ r__ ip2 (t_+i_tf) +1_,ts (s)
ALLOWABLE ALLOWABLE _ O.
FREQUENCY 10(] FREQUENCY100 Where cycle time (T) is determinedOF OPERATION OF OPERATION
(TIMES/MIN) (TIMES/MIN) I I ,'_b.,_! ! values Ip, tr, tf satisfying the formula
_i_ above, should be specified.
0
1000 2000 500 1000
MOTOR SPEED (r/min) MOTOR SPEED (r/rain) MOTORARMATUREt |_t
(e) Combinationof TypeCPCR-MR55CandType UGCMED-55or Type (e) Combinationof TypeCPCR-MR55C-HandTypeUGHMED-44 CURRENT ] ___J ,_ TIME
CPCR-MR75Cand Type UGCMFD-75 , , : : , , ; '
Fig. 1 5 Allowable Frequency of Fig. 1.6 Allowable Frequency of SPEEO
TIME
Operation of Combination of Operation of Combination of
SERVOPACK and Cup Motor SERVOPACK and Hi-Cup Motor Fig. 1.8 Time Chart of Motor
Armature and Motor Speed
10
When the motor remains at standstill between When the motor accelerates, runs at constant
cycles of acceleration and deceleration without speed, and decelerates in a continuing cycle continuous rated speed running, without being at standstill.
The timing chart of the motor armature current The timing chart of the motor armature current and speed is as shown in Fig. i. 9. The allowable and speed is as shown in Fig. i. ii. The allow-
frequency of operation "n" can be calculated as able frequency of operation "n" can be calculated
follows : as follows.
Kt "IR Kt IR
n = 286.5 X NR (JM + JL) X n = 286.5 X Nn (JM + JL) X
(i/___fl_/_3) (times/min) (i/_--fl 2 /_) (times/min)
Fig. 1.10(a) and (b) indicate allowable frequency Fig. 1.12(a) and (b) indicate allowable frequency of operation of Minertia Motor type'UGMMEN-06AAI of operation of Minertia Motor type UGMMEN-06AAI and Hi-Cup Motor type UGHMED-12AA, respectively, and Hi-Cup Motor type UGHMED-12AA, respectively.
The values in Fig. i.i0 are measured when The values in Fig. 1.12 are measured when
operating motor at no load. When JL is equal to operating motor at no load. When JL is equal to JM , the frequency is half of the value in the figure. JM , the frequency is half of the value in the figure. When JL is twice of JM , the frequency is one-third When JL is twice of JM , the frequency is one-third
of the value in the figure, of the value in the figure.
MOTOR --7 _
ARMATURE ! I j t : f - T,ME MOTOR
CURRENT Ii ARMATURE f TIME
I I'_i I_ l CURRENT Ill
' ' i I I l I I
l , MOTOR I / _f k I / k I __
MOTOR T,ME SPEED/" "I V X,;4. T,ME
SPEED
Fig. 1.9 Timing Chart of Fig. 1.11 Timing Chart of
Motor Armature Current and Speed Motor Armature Current and Speed
1000 _ _ i __._1 1000%
p=100%
800 - Ip= 150% \ ,.-,,:1 800 Ip: 100%
,,,ow,
FREQUENCY 600 /p=_ FREQUENCY 600_
OFOPERATION OFOPERATION (TIMES/MIN) (TIMES/MIN)
400 Ip= 300% _._
400
200 200
0 I I I I I 0
0.2 0.4 0.6 0.S 1.0 0.2 0.4 0.6 0.8 1.0
LOAD CURRENT COEFFICIENT fl LOAD CURRENT COEFFICIENT fl
(a) Minertia Motor Type UGMMEM-06AA1 (a) Minertia Motor Type UGMMEM-06AA1
300 300
Ip= 100%
_'=1 = 100%
ALLOWABLE 200 ALLOWABLE 200 = "
FREQUENCY __ FREQUENCY _
OF OPERATION /p=200% a'=2 _.._ OF OPERATION
(TIMES/MIN)
(TIMES/MIN) /p= 300% _ _
100 _ 100
0 _ _ _ T _ 0
0.2 0.4 0.6 0.8 1.0 0.2 0.4 0.6 0.8 1.0
LOAD CURRENT COEFFICIENT /3 LOAD CURRENT COEFFICIENT/3
(b) Hi-Cup Motor Type UGHMED-12AA (b) Hi-Cup Motor Type UGHMED-12AA
Fig. 1.10 Allowable Frequency of Operation Fig. 1.12 Allowable Frequency of Operation
11
1 4.3 Servomotor Frequency SPEED
(r/rain)
In the servo drive consisting of Servopack and RATED [_________
servomotor, motor speed amplitude is restricted SPEED(+) .......,
2500TO ',
by the maximum armature current controlled by 4000* i
Servopack. (a)CombinationofSERVOPACK
and Print Motor
l T I I
--6--4--'2,_0 2 4 6
The relation between motor speed amplitude (N)
and frequency(f )is shown by the formula below: / ] INPUT VOLTAGE (V)
/
I
_X Kt X IR Jr/mini L/_..... _ RATEDSPEED(--)
N = 1.52 (J'_w+ .]L) f _ --2500TO4000*
Fig. 1.14 shows servomotor frequency of Hi- "variesdependingon motortype.
Cup Motor type UGHMED-12AA. The values in I Fig. 1.14 are measured when operating motor at SPEED17501
no load. When JL is equal to JM , the speed is half (r/rain)i000_/ :
of the value in the figure. When JL is twice of JM , (b)Combinationof SERVOPACK the speed is one-third of the value in the figure, andCupMotor i 1 c )tI ! I I
--6--4--2/10 2 4 6 ! / I INPUT VOLTAGE (V)
MOTOR ARMATURE
t CURRENT
SPEED'000 --//----Yi
(r/min) l / ;
MOTOR (C) CombinationofSERVOPACK 5oo-1-/
t SPEED and Minertia Motor J Series
or Hi-CupMotor i i i Y i I r
--6--4--2/10 2 4 6
Fig. 1.13 Timing Chart of _ / IINPUTVOLTAGE(V)
Meter Armature Current and Speed i/ 1- 5o0 -
_---- ---1-_1000
100G
MOTOR 10(] _
Ip=300% SPEED 3000 -------_.....
SPEED N (r/rain) 2000-_ / i
(r/rain) Ip=200%
/p=lOOO/o (d) Combinationof SERVOPACK
lc and MinertiaMotor looo_
/ i
/
I
StandardSeries _ _ t_ : _
--6_--4--2J--4--2 0 2 4 6
1 , i _ /i / ---1000 INPUT VOLTAGE (V)
0 3 1_0 30 100 ---2000 FREQUENCY f (Hz) il______ _ --3000
Fig. 1.14 Servomotor Frequency
of Hi-Cup Motor Type UGHMED-12AA
Fig. 1.15 Speed--Input Voltage Characteristics
Adjustable with
1.4.4 Speed-Input Voltage Characteristic RATED SPEED (+) -_,__/_--_1-',.... I
Fig. I.15 shows motor speed and input voltage /_<_///" i curve when speed reference input terminals ICN-
(_)and (_) are used. -'10J8-_s-'4-_2 4 6 8 _0
I
When the auxiliary input terminals (_) and _) _ / INPUT VOLTAGE(V)
',' _l_
are used, by adjusting Servopack [FN2_, the
, I
rated speed can be obtained by input voltages RATEDSPEED(--) of --+2 to + 10 V (Fig. 1.16).
The forward motor rotation (+) means counter-
clockwise rotation when viewed from the drive Fig. 1.16 Speed--Input Voltage Characteristic end (Forward motor rotation is given by connec- when Auxiliary Input Terminal
tion as shwon in Figs. 2.1 to 2.5.) (_)and (_) are used.
12
2. CONFIGURATION
2.1 COMPONENTS
Table 2.1 shows optional components to be com- bined with Servopack.
Table 2.1 Combination of SERVOPACK and Servomotors
and Optional Component
Optional Components to be Combined
SERVOPACK Servomotor Thermal Power DC Speed Magnetic Protection Regen- Magnetic
Type TypewithTG Adjusting
CPCR o (7V/1000 r/min) Overload Transformer Reactor Potentiometer Contactor Device erative Field Power
Relay Type Type Type Type Type Type Unit Unit Type
UGPMEN-08 RHP-15/4.9
CPT8585 JESP JUSP
MR01C PMES-09
RHP-15/5.7 (300 VA) -PT101 (L) -RG003
UGPMEN-09
MR01CJ UGJMED-10M RH-18/2.2PV CPT8589 JESP JUSP
(300 VA) -PT2OI(L) -RGOO1
PMES-12
MR02C RHP-15/6.6 CPT8624 JESP JUSP
UGPMEN-12 (500VA) -PT102(L) -RG002
MR02C-M UGMMEM°06 RH-35/6.2HV
UGJMED-40M RH-18/5.0PV CPT8630 JESP JUSP
MR02CJ UGJMED-40L RH-18/5.5PV (500 VA) -- HI-10E -PT202(L) -RG001
PMES-16 JESP
MR05C RHP-15/7.5
UGPMEN-16 -PT203(L) UGCMED-04AA JESP
CPT8660 -PT203(L)-C JUSP MR05C-C UGCMEM-04GC RH-35/7.8HV (1 kVA) -RG001 MR05C-H UGHMED-03GG JEESP
-PT203(L)-H
MR05C-M UGMMEM-13 RH-35/6.9HV Jl=SP
-PT203(L)-M
PT866
MR07C UGMMEM-25 RH-35/12.5HV _;1.5kVSA_ JESP
-PT204(L)
UGCMED-08AA RH-35/6.9HV
MRO8C(W)
UGCMEM-08GC RH-35/6.2HV UGHMED-06AA RH-35/6.2HV X3055
MR08C(W)-H UGHMEM-06AA RH-35/5.5HV (10mH8A)
UGHMED-06GG RH-35/6.2HV
MR08C-J UGJMED-60MA RH-35/TT
UGCMED-15AA MR15C(W) UGCMEM-15GC RH-35/11.5HV MR15C-P PMES-20 RHP-1 5/8.3F 25HP-10B --
UGHMED-12AA RH-35/10.5HV 2
X3056 HI-15Es
MR15C(W)-H UGHMEM-12AA RH-35/10HV -- i(10mH13A)
UGHMED-12GG RH-35/10.5HV UGJMED-60L RH-35/15T1
M R15C(W)-J
UGJMED-80M RH-35/15T2
MR15C(W)-M ' UGMMEM-50AA RH-35/12.5HV
IMR22C(W) UGCMED-22AA RH-35/17HV
UGCMEM-22GC RH-35/17.5HV UGHMED-20AA RH-35/17HV X3057
MR22C(W)-H UGHMEM-20AA RH-35/17.5HV (10mH18A)
UGHMED-20GG RH-35/_ 6HV
MR22C(W)-J UGJMED-80L RH-35/26T
UGCMED-37AA RH-35/27HV
MR55C UGCMEM-37FB RH-35/28HV
UGCMED-55AA RH-35/30HV 3.7 kW or
below:
UGHMED-30AA RH-35/23.5HV X3058 HI-18E
MR55C(W)-H UGHMEM-30AA RH-35/24.5HV -- (10mH28A)
UGHMED-30GG RH-35/21HV 3.7 to UGHMED-44AA RH-35/24.5HV 5.5 kW:
MR55C(W)-J UGJMED-80K RH-35/30T HI-25E MR55C(W)-M UGMMEM-1AA RH-35/24.5HV 5.5 to
I MR75C UGCMFD-75AA RH-35/41.2HV X3066 11 kW:
MR75C-H UGHMFD-60AA RH-35/33HV (10mH40A) HI-35E MR99C GEELM-K X3067 Regenerative
-- resistorunit NP A- M
MR99C-M UGMMKR-2AA RH-35/53HVW (10mH55A) JUSP-RAO3 -2_)_1_H_-"_1
Notes: 4. When ordering,see Par. 6. "Order."
1. Servopocks in _ are standard products.
2. Thermal overload relay,RH-35/,:_]HVcomesattachedto the 5. Whenpower supply100/110VAC isusedfor CPCR-MR07C, motor. Others mustbe procuredseparately, usemagneticcontactor,HI-15E.
3. For CPCR-MR99C and CPCR-MR99C-M,the regenerative
resistorunitmustbe installedseparately. 13
2.2 INTERNAL BLOCK DIAGRAM
POWER SUPPLY SINGLE-PHASE
200/220 VAC, 100/110 VAC
+_10o , 50/60 Hz POWER
[i POWE ON,TH°'
^_ r---'m 1 MC 1 Ry
_
_ L._ --I SURGESUF_%SS_NG SURGESUPPRESgNGMC c_'_cE t _ DEVI¢
t THERMAL OVERLOAD
RELAY 1 THR
I .... I _. I
1X
1 MC- :1 MCpowE R
TRANSFORMER I 1-2 6 5
1 FU
1Tr
2C DCSERVOMOTOR
1 DB
, I
2R
,,
U22 ,,
V21( (+)
c_ 7-- DC TACHOMETER
& &
GENERATOR ITG)
...... 2 C'--_ 2 CN 7 V/(1000 r/min)
+12V(+30mA) 10 CONTROL
0V 11 POWER
--12V (--30 mA) 12 /I_ [F0wE_
V[_-] -12V
3CR 3ml
SPEED REFERENCE
(0 V) ] (SEE PAR 3.2.1.)
PROPORTIONAL DRIVE REFERENCE 37 VR 11VR +6 V
(WITH I CR ON)
(SEE PAR. 3.3.2.)
I
!
1 CRI_
PWM
GENERATOR
_r
I
I I
FWD_2mA 13 VR_
OVERTRAVEL PREVENTION 13( IRVS EXTERNAL (BASEOFFWITHTERMS. 4. CURRENTLIMIT
5-6 OR TERMS. 5-7 OPEN) 1;( I FWD (SEE PAR. 3.3.1 .) (SEE PAR. 3.3.3.)
I
4CR 3mA 1Tr TO4Tr -- i
_, -- _ DRIVE 2 CN CIRCUIT I
(ov) i
OFF OV.OCDETECTION/
EXTERNAL BASE ; _ti'_'_"_ I ._1(WITH 4 CR ON) " I
(SEE PAR. 3.3.4.) 1 PWB (TYPE CPCR-MR-CA;,:]Ci
......... ] -4_CN- -- -I
Notes:
1. Terminals (_ and (_ are normally open contact. They are different from terminals (_) and _) (normally closed contacts) of the previous types (CPCR-MR01 to oMR05),
2. Thermal overload relay is directly connected to terminal (_)and the motor in series. Pre-
vious types (CPCR-MR01 to °MR05) have connection terminal (_).
3, Terminal (_) is not connected internally. In the previous types (CPCR-MR01 to -MR05)
it is common toSG OV.
4. O.S drive works only for type CPCR-MRE]CJ.
Fig. 2.1 InternalBlock Diagramof SERVOPACKTypes
CPCR-MR01C to -MR05C
14
POWER SUPPLY SINGLE-PHASE
200/220 VAC, 100/110 VAC _+10%
50160 Hz POWER
POWER ON 1THR
OFF _.1_ 1 MC 1 Ry
1 MC _URGESUPPRESSING
DEVICE
t THERMALOVERLOAD
RELAY 1 THR
I ' I
1MC" -1MCpowER 1X
TRANSFORMER 1"---"2-6--.o5
1 FU
1 PTU I
DC SERVOMOTOR
1D
1 DB
2R
I
U2: I
i
V_,( (÷)
& r&, DCTACHOMETER
GENERATOR (TG)
F j _ 7 V/(1000r/min)
r t- -_ ''" 2CN
+12V (+30 mh 10 CONTROL
0V POWER
--12V (--30 mA) 12 -'.._ rPOW_
PROPORT,ONA" _
DRIVE REFERENCE
WITH 1 CR ON) V_-] ÷12VSEE PAR. 3.3.2.)
3 CR 3 m,._A
(_)--_--o-- --
(0 V) SPEED REFERENCE
J (SEEPAR.3.2.1.)
7VR 0TO_+6V
3 11VR
r---l" -- -- -- I I
I PWM 5VR
1 ca J(_ GENERATOR
i I i I__
FWD_ 3VR_ _(_
2 mA
OVERTRAVELPREVENTION 13 (BASE OFF WITH i(_ RVS EXTERNAL
TERMS.5-6OR CURRENTLIMIT
TERMS,5-7OPEN) 144 (SEE PAR. 3.3.3.) I ' FWD (SEE PAR. 3. 3.1.)
4CR 3mA 1TrTO4Tr -- /
DRIVE / 2 CN
o
CIRCUIT
(0 V)
EXTERNAL BASE OFFi 0
Iv,0_
I
(SEEPAR.3.3.4.) t PWB(TYPECPCR-MR-CAi_TC]
J
I .......... 4ON ....... :]
Notes:
1. Terminals (Q and (_ are normally open contact. They are different from terminals (_ and (_) (normally closed contacts) of the previous types (CPCR-MR01 to -MR05).
2. Thermal overload relay is directly connected to terminal (_ and the motor in series. Pre- vious types (CPCR-MR01 to -MR05) have connection terminal (_.
3. Terminal (_ is not connected internally. In the previous types (CPCR-MR01 to -MR05) it is common to SG 0V.
4. O.S drive works only for type CPCR-MR_._CJ.
Fig. 2.2 Internal Block Diagram of SERVOPACK Type CPCR-MR07C
15
Loading...
+ 43 hidden pages