Trane Symbio 700 Application User guide

Page 1
Application Guide
with Odyssey Split Systems
SSAAFFEETTYY WWAARRNNIINNGG
Only qualified personnel should install and service the equipment. The installation, starting up, and servicing of heating, ventilating, and air-conditioning equipment can be hazardous and requires specific knowledge and training. Improperly installed, adjusted or altered equipment by an unqualified person could result in death or serious injury. When working on the equipment, observe all precautions in the literature and on the tags, stickers, and labels that are attached to the equipment.
June 2020
AACCCC--AAPPGG000011AA--EENN
Page 2
Introduction
WARNING
CAU
TION
NOTICE
Read this manual thoroughly before operating or servicing this unit.
Warnings, Cautions, and Notices
Safety advisories appear throughout this manual as required. Your personal safety and the proper operation of this machine depend upon the strict observance of these precautions.
The three types of advisories are defined as follows:
Indicates a potentially hazardous situation which, if not avoided, could result in death or serious injury.
Indicates a potentially hazardous situation which, if not avoided, could result in minor or moderate injury. It could also be used to alert against unsafe practices.
Indicates a situation that could result in equipment or property-damage only accidents.
PPrrooppeerr FFiieelldd WWiirriinngg aanndd GGrroouunnddiinngg RReeqquuiirreedd!!
FFaaiilluurree ttoo ffoollllooww ccooddee ccoouulldd rreessuulltt iinn ddeeaatthh oorr sseerriioouuss iinnjjuurryy.. AAllll ffiieelldd wwiirriinngg MMUUSSTT bbee ppeerrffoorrmmeedd bbyy qquuaalliiffiieedd ppeerrssoonnnneell.. IImmpprrooppeerrllyy iinnssttaalllleedd aanndd ggrroouunnddeedd ffiieelldd wwiirriinngg ppoosseess FFIIRREE aanndd EELLEECCTTRROOCCUUTTIIOONN hhaazzaarrddss.. TToo aavvooiidd tthheessee hhaazzaarrddss,, yyoouu MMUUSSTT ffoollllooww rreeqquuiirreemmeennttss ffoorr ffiieelldd wwiirriinngg iinnssttaallllaattiioonn aanndd ggrroouunnddiinngg aass ddeessccrriibbeedd iinn NNEECC aanndd yyoouurr llooccaall//ssttaattee//nnaattiioonnaall eelleeccttrriiccaall ccooddeess..
WWAARRNNIINNGG
WWAARRNNIINNGG
PPeerrssoonnaall PPrrootteeccttiivvee EEqquuiippmmeenntt ((PPPPEE)) RReeqquuiirreedd!!
FFaaiilluurree ttoo wweeaarr pprrooppeerr PPPPEE ffoorr tthhee jjoobb bbeeiinngg uunnddeerrttaakkeenn ccoouulldd rreessuulltt iinn ddeeaatthh oorr sseerriioouuss iinnjjuurryy.. TTeecchhnniicciiaannss,, iinn oorrddeerr ttoo pprrootteecctt tthheemmsseellvveess ffrroomm ppootteennttiiaall eelleeccttrriiccaall,, mmeecchhaanniiccaall,, aanndd cchheemmiiccaall hhaazzaarrddss,, MMUUSSTT ffoollllooww pprreeccaauuttiioonnss iinn tthhiiss mmaannuuaall aanndd oonn tthhee ttaaggss,, ssttiicckkeerrss,, aanndd llaabbeellss,, aass wweellll aass tthhee iinnssttrruuccttiioonnss bbeellooww::
•• BBeeffoorree iinnssttaalllliinngg//sseerrvviicciinngg tthhiiss uunniitt,, tteecchhnniicciiaannss MMUUSSTT ppuutt oonn aallll PPPPEE rreeqquuiirreedd ffoorr tthhee wwoorrkk bbeeiinngg uunnddeerrttaakkeenn ((EExxaammpplleess;; ccuutt rreessiissttaanntt gglloovveess//sslleeeevveess,, bbuuttyyll gglloovveess,, ssaaffeettyy ggllaasssseess,, hhaarrdd hhaatt//bbuummpp ccaapp,, ffaallll pprrootteeccttiioonn,, eelleeccttrriiccaall PPPPEE aanndd aarrcc ffllaasshh ccllootthhiinngg)).. AALLWWAAYYSS rreeffeerr ttoo aapppprroopprriiaattee SSaaffeettyy DDaattaa SShheeeettss ((SSDDSS)) aanndd OOSSHHAA gguuiiddeelliinneess ffoorr pprrooppeerr PPPPEE..
•• WWhheenn wwoorrkkiinngg wwiitthh oorr aarroouunndd hhaazzaarrddoouuss cchheemmiiccaallss,, AALLWWAAYYSS rreeffeerr ttoo tthhee aapppprroopprriiaattee SSDDSS aanndd OOSSHHAA//GGHHSS ((GGlloobbaall HHaarrmmoonniizzeedd SSyysstteemm ooff CCllaassssiiffiiccaattiioonn aanndd LLaabbeelllliinngg ooff CChheemmiiccaallss)) gguuiiddeelliinneess ffoorr iinnffoorrmmaattiioonn oonn aalllloowwaabbllee ppeerrssoonnaall eexxppoossuurree lleevveellss,, pprrooppeerr rreessppiirraattoorryy pprrootteeccttiioonn aanndd hhaannddlliinngg iinnssttrruuccttiioonnss..
•• IIff tthheerree iiss aa rriisskk ooff eenneerrggiizzeedd eelleeccttrriiccaall ccoonnttaacctt,, aarrcc,, oorr ffllaasshh,, tteecchhnniicciiaannss MMUUSSTT ppuutt oonn aallll PPPPEE iinn aaccccoorrddaannccee wwiitthh OOSSHHAA,, NNFFPPAA 7700EE,, oorr ootthheerr ccoouunnttrryy--ssppeecciiffiicc rreeqquuiirreemmeennttss ffoorr aarrcc ffllaasshh pprrootteeccttiioonn,, PPRRIIOORR ttoo sseerrvviicciinngg tthhee uunniitt.. NNEEVVEERR PPEERRFFOORRMM AANNYY SSWWIITTCCHHIINNGG,, DDIISSCCOONNNNEECCTTIINNGG,, OORR VVOOLLTTAAGGEE TTEESSTTIINNGG WWIITTHHOOUUTT PPRROOPPEERR EELLEECCTTRRIICCAALL PPPPEE AANNDD AARRCC FFLLAASSHH CCLLOOTTHHIINNGG.. EENNSSUURREE EELLEECCTTRRIICCAALL MMEETTEERRSS AANNDD EEQQUUIIPPMMEENNTT AARREE PPRROOPPEERRLLYY RRAATTEEDD FFOORR IINNTTEENNDDEEDD VVOOLLTTAAGGEE..
©2020 Trane
ACC-APG001A-EN
Page 3
Copyright
Trademarks
IInnttrroodduuccttiioonn
WWAARRNNIINNGG
FFoollllooww EEHHSS PPoolliicciieess!!
FFaaiilluurree ttoo ffoollllooww iinnssttrruuccttiioonnss bbeellooww ccoouulldd rreessuulltt iinn ddeeaatthh oorr sseerriioouuss iinnjjuurryy..
•• AAllll TTrraannee ppeerrssoonnnneell mmuusstt ffoollllooww tthhee ccoommppaannyy’’ss EEnnvviirroonnmmeennttaall,, HHeeaalltthh aanndd SSaaffeettyy ((EEHHSS)) ppoolliicciieess wwhheenn ppeerrffoorrmmiinngg wwoorrkk ssuucchh aass hhoott wwoorrkk,, eelleeccttrriiccaall,, ffaallll pprrootteeccttiioonn,, lloocckkoouutt//ttaaggoouutt,, rreeffrriiggeerraanntt hhaannddlliinngg,, eettcc.. WWhheerree llooccaall rreegguullaattiioonnss aarree mmoorree ssttrriinnggeenntt tthhaann tthheessee ppoolliicciieess,, tthhoossee rreegguullaattiioonnss ssuuppeerrsseeddee tthheessee ppoolliicciieess..
•• NNoonn--TTrraannee ppeerrssoonnnneell sshhoouulldd aallwwaayyss ffoollllooww llooccaall rreegguullaattiioonnss..
This document and the information in it are the property of Trane, and may not be used or reproduced in whole or in part without written permission. Trane reserves the right to revise this publication at any time, and to make changes to its content without obligation to notify any person of such revision or change.
All trademarks referenced in this document are the trademarks of their respective owners.
ACC-APG001A-EN
3
Page 4
Table of Contents
Introduction . . . . . . . . .. . . . . . . .. . . . . . . . .. . . . . . . . .. . . . . . . . . . . . . . . . . .. . . . . . . .. . . . . . 7
Additional Documentation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
Symbio 700 Overview . . . . . . . . . . .. . . . . . . .. . . . . . . . .. . . . . . . .. . . . . . . . .. . . . . . . . . .. . 8
Field Connection. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
Unit Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
Onboard User Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
Mobile Application . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
Startup Sequence. . . . . . . .. . . . . . . .. . . . . . . . . . . . . . . . .. . . . . . . .. . . . . . . . . .. . . . . . . . .. 13
Conventional Thermostat Sequence of Operation . . .. . . . . . . . .. . . . . . . . .. . . . . . . 14
Space Temperature Control Sequence of Operation . . . . . . .. . . . . . . . .. . . . . . . . .. 16
Constant Volume and Multi-Speed Fan Configuration. . . . . . . . . . . . . . . . . . . . . . . . . . 16
Normal Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
Supply Fan Control. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
Single Zone Variable Air Volume . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
General Support Sequences . . . . . . . . . . . . . . . . .. . . . . . . .. . . . . . . . . .. . . . . . . .. . . . . . . 19
Fan Setpoints with VFD-driven Fan Types. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
Compressor Minimum Runtime. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
Refrigeration Circuit Management. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
Compressor Proof of Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
Compressor Low Pressure Cutout Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
Heat Pump Support Sequences . . . . . .. . . . . . . .. . . . . . . . . . . . . . . . . .. . . . . . . .. . . . . . . 21
Heat Pump Switchover Valve . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
Demand Defrost Control. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
Evaporator Defrost Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
Building Automation System Support Sequences . . . . . . . . . .. . . . . . . .. . . . . . . . . . 23
Occupancy Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
Timed Override. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
Supply Air Tempering. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
Unit Stop. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
Capacity Limit Control. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
Remote Capacity Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
Emergency and Ventilation Override . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
Ventilation Override (Future) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
Emergency Override. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
Service Test Mode. . . . . . . . .. . . . . . . . . . . . . . . . .. . . . . . . .. . . . . . . . . .. . . . . . . . .. . . . . . . 27
Service Test Timeout. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
4
ACC-APG001A-EN
Page 5
TTaabbllee ooff CCoonntteennttss
Leaving Service Test Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
Constant Volume Supply Fan Service Test Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
Multi-Speed Supply Fan Service Test Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
Variable Speed Supply Fan Service Test Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
Diagnostics . .. . . . . . . . . . . . . . . . .. . . . . . . . .. . . . . . . . .. . . . . . . .. . . . . . . . . . . . . . . . . .. . . . 31
Device Tracker. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
Compressor Proving Diagnostics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
Diagnostic: Compressor X Proving Trip . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
Diagnostic: Compressor X Proving Lockout. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
Diagnostic: Compressor X Contactor Failure. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
Diagnostics – Low Pressure Cutout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
Diagnostic: Circuit X LPC Trip . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
Diagnostic: Circuit X LPC Lockout. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
Diagnostics – Alarm Indicator Status . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
Reset Diagnostic. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
Power-Up Reset or Exception/Override Mode Transition. . . . . . . . . . . . . . . . . . . . 33
Reset Diagnostic Point. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
Heat Cool Mode Transition Reset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
Reset Diagnostic Point – Active to Inactive Transition. . . . . . . . . . . . . . . . . . . . . . . 33
Troubleshooting . .. . . . . . . .. . . . . . . . . . . . . . . . .. . . . . . . .. . . . . . . . .. . . . . . . . . .. . . . . . . . 34
Unit Communication Fault. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
Sensor Fault. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
Compressor Fault. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
VFD Fault . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
Defrost Fault . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
Appendix A . . . . . . . . .. . . . . . . . . . . . . . . . .. . . . . . . .. . . . . . . . . .. . . . . . . . .. . . . . . . . . . . . . . 38
Supply Fan . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
Multi-Speed/VFD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
Variable Speed/VFD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
Compressor Staging . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
Thermostat Staging . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
Cooling Only (Electric Heat) – CVZT & VVZT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
Heat Pump – CVZT & VVZT. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
Condenser Fan Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
Thermostat, CVZT, & VVZT. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
Electric Heat. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
CVZT & VVZT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
Diagnostics and Alarm Indicator Status . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
Emergency and Ventilation Override . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
ACC-APG001A-EN
5
Page 6
TTaabbllee ooff CCoonntteennttss
Internal and External Space Setpoint Adjustment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
6
ACC-APG001A-EN
Page 7
Introduction
The Symbio 700 installed on Odyssey split systems is a factory installed and programmed controller, providing digital control and protection of the equipment.
The Symbio 700 has two model options:
SSttaannddaarrdd CCoonnffiigguurraattiioonn — provides standard troubleshooting via on-board user interface (UI) and access to the Symbio Service and Installation mobile app.
AAddvvaanncceedd CCoonnffiigguurraattiioonn — introduces additional troubleshooting tools and Building Automation System interface via BACnet® (ANSI/ASHRAE Standard 135-2016) or LonTalk™.
The Symbio 700 offers multiple equipment configuration options regardless of controller model. The Odyssey split system can be configured as the following system types:
Conventional Thermostat Control (T-Stat)
Space Temperature Control Constant Volume (CVZT)
Space Temperature Control Single Zone Variable Air Volume (VVZT)
These configurations can be used with standard cooling or heat pump systems.
This guide provides information about the configuration, control capabilities and troubleshooting of the Odyssey system with Symbio 700 controller.
Additional Documentation
Symbio Service and Installation Quick Start Guide - BAS-SVN043
Symbio 700 User Guide - BAS-SVU054
Symbio 700 BACnet Integration Guide - ACC-SVP001
Symbio 700 LonTalk Integration Guide - ACC-SVP002
Odyssey General Installation, Operation, and Maintenance Guide - SSA-SVX06
Odyssey Cooling Installation, Operation, and Maintenance Guide -SS-SVX001
Odyssey Heat Pump Installation, Operation, and Maintenance Guide - SSP-SVX001
ACC-APG001A-EN
7
Page 8
Symbio 700 Overview
Field Connection
The Symbio 700 controller optimizes inputs and outputs (I/O) for multiple applications. For initial installation of an Odyssey with Symbio 700, the field landed inputs are outlined below.
Table 1. Field Connections
Connector Function Pin #
J16
J17
J18
J19 Zone Sensor Connections
J20
Demand Shed/Demand Limit
Connection
BACnet Communication
Connections
Equipment Shutdown Input
Connections
Occupancy Connections
Figure 1. Symbio 700 Field Connections
Signal
1 24VAC
2
1 BACnet +
2 BACnet -
3 BACnet +
4 BACnet -
1 24VAC
2
1
2 GND
3
4 Mode
5
6 GND
7 24VAC
1 24VAC
2
Demand Shed/Demand Limit
Input
Equipment Shutdown Input
Zone Temperature
Cool Setpoint
Heat Setpoint
Occupancy Switch
8
ACC-APG001A-EN
Page 9
Table 1. Field Connections (continued)
Connector Function Pin #
J21 Thermostat Connections
J22 CO
J23
2
Space Humidity
Unit Configuration
The Odyssey system can be configured via an onboard user interface or via the Symbio Service and Installation mobile app.
Signal
1 24VAC
2 Y1
3
4 G
5 W2
6 Y2
7 X2
8 1.5K Ohms Pull-down
9 GND
1 24Vdc Out
2 CO
3 Common
1 24Vdc Out
2
3 Common
W1/O
In
2
Space Humidity
SSyymmbbiioo 770000 OOvveerrvviieeww
Onboard User Interface
The onboard user interface provides a 2 x 16 Backlit LCD display and navigational buttons. This allows the user to view status, configure, and troubleshoot the unit without additional tools.
Figure 2. Symbio 700 Onboard User Interface
The interface provides an intuitive menu structure: alarms, status, service, settings, and utilities. Configuration of the unit is accomplished under the utilities menu item. A complete list of functions is outlined in the Symbio 700 User Guide - BAS-SVU054.
ACC-APG001A-EN
9
Page 10
SSyymmbbiioo 770000 OOvveerrvviieeww
To configure the unit, navigate to the utilities menu and press “Enter”. Once in the utilities menu the user has additional submenu options. This allows the user to navigate and configure the appropriate setting quickly and easily.
Mobile Application
The Trane Symbio™ Service and Installation mobile app is required to setup, edit, and confirm the communication protocol and associated settings.
The free download of Trane Symbio Service and Installation mobile app is available on the App Store® for iOS, and on Google Play® for Android™.
Figure 3. Trane Symbio™ Service and Installation mobile app
Bluetooth Pairing
Quick Connection Instructions
Follow these instructions to quickly connect the mobile app to the Symbio 700 controller:
Connecting to the Symbio 700 controller
1. Enable BBlluueettooootthh on your smart device.
2. Press
3. Confirm the status of Bluetooth communications.
10
on Symbio 700 keyboard/display to turn on Bluetooth.
ACC-APG001A-EN
Page 11
SSyymmbbiioo 770000 OOvveerrvviieeww
Blue LED
Off NOT CONNECTED Bluetooth Off
Press for On/Off
Blinking
On Solid CONNECTED
Figure 4. Symbio 700 Bluetooth status
Display Description
WAITING... Bluetooth On — Not Paired
Bluetooth On — Connected/
Paired
4. Start the mobile app on your smart device.
5. On the login screen, press SSkkiipp in the lower right-hand corner of the screen. Or Trane personnel can login using their Trane Connect username and password.
6. On the Unit List page, select the Symbio 700 controller that you want to pair with. If the controller is not listed, press the refresh arrow in the upper right-hand corner of the screen.
7. When prompted, pair the app to the Symbio 700 controller. A popup message displays a 6­digit random number. The same number is shown on the display of the Symbio 700 controller until the pairing is complete, allowing the user to confirm connection to the intended controller.
Figure 5. Bluetooth pairing
8. PPrreessss oonn tthhee SSyymmbbiioo 770000 oonn--bbooaarrdd kkeeyybbooaarrdd//ddiissppllaayy ttoo ccoommpplleettee tthhee ccoonnnneeccttiioonn..
ACC-APG001A-EN
11
Page 12
SSyymmbbiioo 770000 OOvveerrvviieeww
IImmppoorrttaanntt:: To keep the list of previously-connected devices manageable, the Bluetooth smart
The Symbio Installation and Service tool is required to view and configure the following:
Building Automation System configuration (Advanced Controller Configuration)
BACnet over Zigbee® (Air-Fi™ Wireless)
BACnet IP (Internet Protocol)
BACnet MS/TP
LonTalk
Historical Alarms
Firmware Updates
Backup & Restore
For more detailed information on the Symbio Service and Installation Mobile Application, refer to the Quick Start Guide for Symbio Service and Installation - BAS-SVN043.
devices list is limited to 10 devices. When 10 or more Bluetooth devices are defined on the smart device, connection to the Symbio 700 controller is not allowed.
iiOOSS ddeevviicceess - delete any unused devices until there are less than 10 items.
AAnnddrrooiidd ddeevviicceess - the devices list is automatically limited to 10 items.
12
ACC-APG001A-EN
Page 13
Startup Sequence
Under normal conditions, the Symbio 700 will startup over approximately 60 seconds once power is applied to the system. During this process, the controller checks that a valid system configuration is present and proceeds to normal control operation. After startup, the system will begin to respond to operational requests.
ACC-APG001A-EN
13
Page 14
Conventional Thermostat Sequence of Operation
When the Odyssey system is configured to operate with a conventional thermostat, the controller provides protection for the system (see General Support Sequence section) and continues to provide insight to operating conditions. A conventional thermostat can be applied with constant volume cooling only, heat pump, and single zone 2-speed fan configured systems. While not recommended, a conventional thermostat can be applied to single zone variable volume configured systems, but the system is limited to staged fan control instead of a fully variable sequence.
When under conventional thermostat control, the equipment responds directly to operating requests from the thermostat device. Each thermostat input corresponds to a specific unit function, as described in the following tables. Equipment protection functions and compressor minimum on/off timers remain in-control, even when under conventional thermostat control.
Table 2. Cooling only/electric heat systems
Inputs Outputs
Supply
X Y1 Y2
NA OPEN OPEN OPEN OPEN CLOSED ON Min None None
NA OPEN OPEN CLOSED OPEN X ON Max None
NA OPEN OPEN X CLOSED X ON Max None
NA CLOSED OPEN OPEN OPEN X ON Min
NA OPEN CLOSED OPEN OPEN X ON Min
NA CLOSED CLOSED OPEN OPEN X ON Max
NA X X X X X OFF 0 None None OFF
W1/O
W2 G
Fan On/
Off
Request
Supply
Fan Speed
Request
Compres-
sor Cool
Stage
Request
Stage 1
Stage 1
Full Stage
Auxiliary
Heat
Stage
Request
Stage 1
Full Stage
None Cool
None Cool
None Cool
Heat Cool
Mode
Status
Fan Only
Heat
Heat
X=ignored by controller
14
ACC-APG001A-EN
Page 15
CCoonnvveennttiioonnaall TThheerrmmoossttaatt SSeeqquueennccee ooff OOppeerraattiioonn
Heat
Heat
Heat
Mode
Status
Stage
Stage
Em Heat
None Heat
Request
Full Stage
Stage 1
Request
Heat Cool
Heat
Auxiliary
sor Heat
Compres-
Heat
None Heat
None Heat
Stage 1 Full Stage
Stage 1
Full Stage
Full Stage
Stage 1 Full Stage
Full Stage Full Stage
None None Cool
Fan Only
None None Cool
None None Cool
Compres-
Supply
Supply
Inputs Outputs
sor Cool
Fan On/
Stage
Request
Request
Fan Speed
Stage 1
Stage 1
Full Stage
Off
Request
W2 G
W1/O
X Y1 Y2
Table 3. Heat pump systems
ACC-APG001A-EN
OPEN OPEN OPEN CLOSED OPEN OPEN OFF 0 None None None Cool
OPEN CLOSED OPEN CLOSED OPEN X ON Min
OPEN X X OPEN CLOSED X ON Max None None
OPEN CLOSED CLOSED OPEN CLOSED X ON Max None
OPEN OPEN CLOSED OPEN CLOSED X ON Max None
OPEN CLOSED OPEN OPEN CLOSED X ON Max None
OPEN CLOSED CLOSED OPEN OPEN X ON Max None
OPEN OPEN CLOSED OPEN OPEN X ON Max None
OPEN CLOSED OPEN OPEN OPEN X ON Max None
CLOSED OPEN OPEN OPEN OPEN X ON Max None None
OPEN OPEN CLOSED CLOSED OPEN X ON Min
X X X X X X OFF 0 None None None OFF
OPEN CLOSED CLOSED CLOSED OPEN X ON Max
OPEN OPEN OPEN X OPEN CLOSED ON Min None None None
X=ignored by controller
15
Page 16
Space Temperature Control Sequence of Operation
Constant Volume and Multi-Speed Fan Configuration
Normal Operation
The Symbio 700 has a single-loop (space temperature only) control sequence. The sequence is PI-based (proportional, integral) and strives to maintain space temperature within 1F of the active cooling and heating setpoints.
When Space Temperature Active > Space Temp Cooling Setpoint Status, the algorithm calculates a need for cooling capacity to be energized.
When Space Temperature Active < Space Temp Heating Setpoint Status, the algorithm calculates a need for heating capacity to be energized.
When Space Temp Heating Setpoint Status ≤ Space Temperature Active ≤ Space Temp Cooling Setpoint Status:
– The algorithm calculates a reduction in need for any active cooling or heating capacity if
ON.
– If no cooling or heating capacity is active, cooling and heating capacity remains inactive.
Supply Fan Control
The supply fan is controlled “ON” 5 seconds before heating or cooling capacity is energized. When heating or cooling capacity is de-energized, a supply fan off delay is applied based on active capacity. For single-speed supply fan configured systems, the supply fan is controlled “ON” during all cooling and heating sequences.
For multi-speed supply fan configured systems, the fan operates per the following:
Low speed when the supply fan is ON without active capacity (unless ON due to an override function)
Low speed when the unit is operating at its minimum cooling stage
High speed when the unit is operating at its maximum cooling stage or while any heating stages are active.
16
ACC-APG001A-EN
Page 17
SSppaaccee TTeemmppeerraattuurree CCoonnttrrooll SSeeqquueennccee ooff OOppeerraattiioonn
Figure 6. Multi-speed fan sequence of operation
Single Zone Variable Air Volume
When configured for VVZT (also known as SZVAV) control, the sequence is only applicable when the following are true; otherwise, the CVZT sequence is leveraged:
When Occupancy Status is Occupied and
When Supply Fan Configuration Status is Continuous and
When Discharge Air Temperature sensor is not in an Alarm state and
The unit is operating under a cooling demand (VVZT heating is not applicable with staged heat for Odyssey)
The sequence is PI-based (proportional, integral) and strives to maintain space temperature within 1F of the Active Cooling and Heating setpoints.
When Space Temperature Active > Space Temp Cooling Setpoint status, the algorithm calculates a need for cooling capacity to be energized. A discharge air temperature setpoint calculates lower to determine proper compressor staging needs. The minimum value of this calculated setpoint for temperature control can be adjusted by the Discharge Air Temperature Minimum Cool Limit setpoint.
When Space Temperature Active < Space Temp Cooling Setpoint status, the algorithm calculates a reduction in need for cooling capacity to be energized. A discharge air temperature setpoint calculates higher to determine proper compressor staging needs. The maximum value of this calculated setpoint for temperature control can be adjusted by the Discharge Air Temperature Maximum Cool Limit setpoint.
Different from the CVZT sequence, compressors are staged to maintain the discharge air temperature at the Discharge Air Temperature Setpoint Active setpoint.
VVZT DAT Control Mode
With the Symbio 700 VVZT control sequence, the end user can choose to use the internally derived Discharge Air Temperature Setpoint Active or to override the value with their own.
ACC-APG001A-EN
17
Page 18
SSppaaccee TTeemmppeerraattuurree CCoonnttrrooll SSeeqquueennccee ooff OOppeerraattiioonn
If the VVZT DAT Control Mode – Active point is set to "Auto", the VVZT control algorithm will use the internally derived Discharge Air Temperature Setpoint Active, as described above, for all cooling capacity output control.
If the VVZT DAT Control Mode – Active point is set to "Manual", the VVZT control algorithm will use the Discharge Air Cooling Setpoint (Target) – Active as upper limit for the Discharge Air Temperature Setpoint calculation. Typically this is set to a low value (i.e 50-55F) to drive longer compressor runtimes. When this override is active, if the space temperature is 2° F below the Space Temp Cooling Setpoint Status value or 1° F above the Space Temp Heating Setpoint Status value, the controller will pause the override sequence until the space temperature recovers to above the Space Temp Cooling Setpoint status.
Supply Fan Control
For the VVZT control sequence to be active, the Supply Fan Configuration Status must be ON/ Continuous.
The fan speed is continuously variable on VVZT systems. The fan remains at minimum speed (based on active compressor stages) until the space demand requires additional airflow.
All heating is accomplished with the CVZT control sequence, and the fan is controlled at maximum speed.
Figure 7. Supply fan sequence of operation
18
ACC-APG001A-EN
Page 19
General Support Sequences
Fan Setpoints with VFD-driven Fan Types
When a system is equipped with a VFD, the minimum and maximum VFD parameters can be adjusted to tune the airflow to meet the application requirements.
In addition to this, the Symbio 700 supports setpoints that can adjust airflow as needed:
Supply Fan Maximum Speed Setpoint
Range: 67-100%
Operation: This setpoint “trims” the maximum fan speed, based on the configured
maximum VFD speed
– Example: VFD Max = 60Hz
Supply Fan Maximum Speed Setpoint @ 75% yields a maximum of 45Hz VFD output.
Effective VFD Max (to be used in Supply Fan Minimum Speed Setpoint application) will be set to 45Hz
Supply Fan Minimum Speed Setpoint
Range: 0-100%
Operation: 0-100% over minimum to effective maximum VFD configured fan speed
Example: VFD Min = 30Hz, Effective VFD Max = 60Hz
Supply Fan Minimum Speed Setpoint @ 50% yields 45Hz VFD output.
Minimum and Maximum Speed Setpoints interact to ensure that the minimum defined fan speed at a given equipment operating condition is maintained.
Compressor Minimum Runtime
Under all normal running conditions, a 3–minute minimum ON and OFF timer is maintained for each compressor. Once a compressor is turned ON, it remains on for a minimum of 3 minutes. Once a compressor is turned OFF, it remains off for a minimum of 3 minutes. System overrides that require immediate shutdown of the equipment, test modes, and compressor diagnostics/ protection functions can override these 3–minute timers. However for normal temperature and thermostatic-based control, these minimum ON/OFF timers are maintained.
Refrigeration Circuit Management
There are two refrigeration configurations that the controller will use to determine proper response to refrigeration system faults:
When the unit is configured with a MMaanniiffoolldd refrigeration system, if any compressor protection device or function trips for a given compressor, all compressors associated with the circuit on which the protection device or functions trips will be commanded to OFF.
When the unit is configured with an IInnddeeppeennddeenntt refrigeration system, if any compressor protection device or function trips, for a given compressor, only the compressor associated with the protection device or function that tripped will be commanded to OFF.
Compressor Proof of Operation
For each compressor. a Compressor Proving binary input is used to monitor the state of an auxiliary switch that is used to indicate compressor motor contactor status. Under normal operation, detected operation indicates that all safety devices within the compressor safety circuit are in their normal state. The switch operates as OPEN when the compressor motor is OFF and CLOSED when the compressor motor is ON.
Refer to the Diagnostics section below for specific diagnostics that are generated based on the Compressor Proving signals.
ACC-APG001A-EN
19
Page 20
GGeenneerraall SSuuppppoorrtt SSeeqquueenncceess
Compressor Low Pressure Cutout Control
For each compressor/circuit, a normally CLOSED low pressure cutout input is monitored for equipment protection on the Symbio 700. When a low pressure event is active, the input becomes OPEN and diagnostics are generated as described below. Refer to the Diagnostics section below for specific diagnostics that are generated based on the circuit Low Pressure Cutout inputs.
20
ACC-APG001A-EN
Page 21
Heat Pump Support Sequences
Heat Pump Switchover Valve
The Switchover Valve function is only applicable to Heat Pump units. Depending on the refrigeration system configuration for a unit, it may have one or two switchover valves. Additionally, some units with two switchover valves could control each valve independently while others will control in tandem.
In normal unit operation, the Unit Mode will determine the operation of the switchover valve. Unit Mode COOL will turn the switchover valve ON while Unit Mode HEAT will turn the switchover valve OFF.
If the unit is in active Heat Pump Heating (switchover valve is OFF) and then enters defrost, the switchover valve will be turned ON for the duration of defrost. When leaving active defrost, the switchover valve transition to OFF is delayed 5 seconds.
Demand Defrost Control
There are two schemes in common usage for heat pump outdoor coil defrosting: Demand Defrost and time temperature defrost. Demand Defrost is more efficient because defrost cycles are initiated only when necessary, compared with initiation based on operating time below the threshold temperature.
Outdoor coil defrosting occurs only when operating in heating mode with outdoor ambient temperature below 52° F and the outdoor coil temperature below 33° F. The first defrost cycle after power-up is initiated based on operating time at the required conditions. Shortly after completion of the defrost cycle, the temperature difference between the outdoor coil and outdoor air is calculated and is used as an indicator of unit performance at dry coil conditions.
Over time, as moisture and frost accumulate on the coil, the coil temperature will drop, increasing the temperature difference. When the temperature difference reaches 1.8 times the dry coil temperature differential (ΔT), a defrost cycle is initiated. While defrosting, the reversing valve is in the cooling position, outdoor fans are off, and the compressors continue to operate.
The defrost cycle is terminated when the coil temperature rises high enough to indicate that the frost has been eliminated. Termination of the defrost cycle includes a soft start delay. At the end of each defrost cycle, the outdoor fan comes on 5 seconds before the reversing valve is de­energized. This reduces stress on the compressor and makes for a quieter defrost.
Figure 8. Typical Demand Defrost cycle
ACC-APG001A-EN
During the defrost cycle, the Switchover Valve is turned ON, the Condenser Fan is turned OFF, and auxiliary heat is turned ON regardless of their prior operating status while maintaining
21
Page 22
HHeeaatt PPuummpp SSuuppppoorrtt SSeeqquueenncceess
compressor operation. The defrost cycle is terminated based on the defrost termination temperature calculation using the outdoor temperature (ODT) +47°F. The defrost termination temperature (DTT) will be limited between 57° F and 72° F.
Evaporator Defrost Control
To prevent frost build-up on the indoor coil during low ambient conditions, compressor operation is monitored and controlled accordingly, relative to outdoor air temperature.
Evaporator Defrost Control can be initiated through two means, based on configuration.
If configured for Evaporator Defrost Control Enabled:
– When the unit is operating in a “Cool” mode with a valid Outdoor Air Temperature, the
EDC function will keep track of the amount of time that at least one compressor in the unit is commanded ON and the Outdoor Air Temperature Active is less than the low ambient temperature defined in table 3. If the Accumulated Compressor On Time reaches 10 minutes, the EDC function will cause the Compressor Output(s) to de-energize for three minutes. The supply fan continues to operate during this three-minute interval at 100% capacity. After the three-minute EDC timer has expired, the EDC function is ended and compressors are allowed to operate as requested by the algorithm.
– Low Ambient Temperature Sepoints:
Single Compressor Systems: 55° F
Multi-Compressor Systems: 40° F
If configured for FroStat Installed:
– A FroStat input can also be used to directly request the Evaporator Defrost Control
function
– When the unit is running in an effective “Cool” mode, the FroStat input will directly
control the FroStat diagnostic. If the FroStat input CLOSES, the diagnostic will be annunciated.
– When the unit is running in an effective “Heat” mode, and the Refrigeration System ==
Heat Pump, the FroStat diagnostic will be controlled “Inactive” until the following are true:
FroStat input is CLOSED
One or More Compressors have been active for Heat Pump Heating for more than 30 seconds.
Once the above two conditions are met, the FroStat Diagnostic will become Active.
– The FroStat diagnostic is an Auto-Reset diagnostic such that it will be reset when the
FroStat input is OPEN in either effecting unit mode.
– If the FroStat diagnostic becomes active, the Compressor Output(s) will de-energize until
the FroStat diagnostic is cleared. The supply fan continues to operate during the FroStat diagnostic, so long as it is still requested by a heating or cooling function.
FroStat and Evaporator Defrost Control can both be configured on a unit, although in most cases, only one should be necessary.
22
ACC-APG001A-EN
Page 23
Building Automation System Support Sequences
Occupancy Mode
During expected occupied periods, the system will control to the user selected cooling and heating setpoints.
The unoccupied setpoint temperatures are often adjusted higher for cooling (setup) and lower for heating (setback) to reduce building operating cost.
Regardless of how the (occupied) fan mode is set, the supply fan mode is forced to AUTO during unoccupied periods to reduce supply fan operating costs.
There are two mechanisms available to control when units should switch between occupied and unoccupied modes:
Building controllers provide signals to the unit to request occupied or unoccupied operation. Time-of-day scheduling within building controllers typically determine when the switching should occur.
Stand Alone Unoccupied control is initiated by a contact closure that causes the unit to begin unoccupied control. In this mode, the controller will use the Unoccupied Cooling and Heating setpoints to determine capacity control needs. Stand Alone Unoccupied control is only applicable when the unit is not being controlled by a conventional thermostat interface.
Timed Override
Exceptions to the time-of-day scheduling are required when unusual or difficult to schedule events cause a space to become occupied during a scheduled unoccupied period. The Timed Override function provides a mechanism for an occupant to signal the system that the space is actually occupied and override the time-of-day schedule to provide occupied control for some limited time period. It also provides a mechanism to return the system to unoccupied mode when the space is no longer occupied.
There are two methods of requesting or terminating timed override on a Symbio 700 control system:
BAS
– Timed Override Request value can be set to 3 discrete values:
IIddllee