Trane unit heaters, offered in both propeller and centrifugal models, are a complete heat generating
and distributing plant, equipped with automatic controls, and packaged in an attractive
streamlined housing. Designed for ceiling mounting, they provide a convenient low-cost method
of comfortably heating stores, factories, warehouses, and other large open areas.
Trane unit heaters represent a technological breakthrough in quality. Trane offers customers the
most complete line of unit heaters anywhere. And every unit in the line has been rated for 80
percent thermal efficiency or better.
But higher thermal efficiency and lower operating costs are just two features of this product line.
Innovation—the engineering advances you’ve come to expect from Trane—can also be found
across this entire line of unit heaters. And rugged, quality construction provides years of
dependable service.
Quality products mean Trane value. So does fair, competitive pricing. The 10-year warranty tells
you Trane will be here for the long haul—keeping our commitment to you. You can count on Trane
standing behind every unit shipped. That is what Trane value means.
Trademarks
Trane and the Trane logo are trademarks of Trane in the United States and other countries.
The complete heat exchanger, draft hood assembly of the unit heater and burners are warranted
by Trane to be free from defects in material and workmanship for a period of 10 years from the date
of manufacture. (Warranty not applicable on duct furnaces or Separated Combustion units.)
Quiet Operation
Trane unit heaters incorporate an exceptionally balanced fan blade to assure quiet operation.
Heat Exchangers
All Trane heat exchangers are available in three types of steel:
All units are equipped with a 24Vcontrol system which is powered by a 24V transformer as standard
equipment.
Fan Time Delay
The fan time delay switch is mounted at the factory as standard equipment on all unit heaters
(optional on duct furnaces). This feature eliminates an initial blast of cold air by allowing the unit
to fire for a short period of time before actuating the fan motor. After the thermostat is satisfied
(with burners off), the fan continues to operate for approximately one minute, removing residual
heat from heat exchanger.
Burners
All sizes 30,000 through 400,000 Btu input are equipped with a proven design pressed steel burner
having a unique “burner shade” protective device to prevent scale or foreign matter from plugging
the burner ports.
Energy Saving Ignition Pilot Control
The pilot burner is ignited only during each cycle of operation, thereby conserving energy during
the off cycle.
LP/Natural Operation
All units are available for operation on either natural or LP gas from our factory.
Easy Access For Maintenance
All Trane unit heaters are so designed that the burner access panel is removed with just two screws.
Burners are individually removable for inspection and servicing. Pilot is also accessible through
side panel access door.
Te s t F i r e
All Trane unit heaters are test fired to assure proper operation.
Ideal For Retrofit
Trane unit heaters let you pocket fuel savings from day one and provide years of dependable
service.
4 UH-PRC002-EN
Features and Benefits
Propeller Fan / Tubular Heat Exchanger Unit Heaters
Trane has added a new unit heater to enhance its broad line of heating products. The Trane
tubular heat exchanger is a very durable unit heater that provides an alternative to the traditional
clam shell style. These are propeller style units that combine the latest tubular heat exchanger
style with inshot burner technology to create a very efficient operating unit.
High Efficiency Propeller Fan Unit Heaters
Trane high-efficiency propeller fan unit heaters achieve annual fuel savings of 20 to 25 percent
over conventional gravity vented heaters. Each unit features a factory-installed power venter fan
and sealed flue collector that controls combustion and excess air during the on-cycle.
Heated air no longer escapes through the draft diverter opening during the off-cycle. Energy
saving spark ignition reduces gas losses. The pilot only operates when required.
Horizontal power venting allows side wall venting, smaller openings, and single-walled vent
pipe, reducing heat loss. Higher efficiencies can reduce equipment and material costs as well as
installation time.
High Efficiency Centrifugal Fan Unit Heaters
The high-efficiency centrifugal fan unit heater keeps energy costs down. The design advances
achieve annual fuel savings of 20 to 25 percent over conventional gravity vented heaters.
The high-efficiency centrifugal unit features integral power venting (factory-installed) and
sealed flue collector for optimum combustion. Electronic spark ignition reduces pilot gas losses,
and the power venter allows for horizontal venting through side walls. It adds up to higher
seasonal efficiencies and lower installation time.
High Efficiency Indoor Duct Furnace
The high efficiency indoor gas duct furnace complements our current centrifugal and propeller
fan lines. All high efficiency lines were designed to achieve fuel savings of up to 25 percent over
conventional gravity vented heaters.
Conventional gravity vented heaters lost heated room air through the draft diverter opening. The
high efficiency line features an integral flue vent fan and sealed flue collector for improved
combustion. It reduces air requirements and wind effects on the system’s efficiency. Intermittent
pilot ignition reduces pilot gas losses and the flue vent fan allows for horizontal venting through
side walls.
Note: DUCT FURNACES ARE APPROVED FOR BLOW-THROUGH APPLICATIONS ONLY.
Horizontal Blower Assemblies
Trane horizontal blower assemblies have been specially designed for air handling systems of
high static pressure in combination with Trane duct furnaces. They are matched against the
proper furnace size for greatest efficiency of operation.
UH-PRC002-EN5
Features and Benefits
Separated Combustion Propeller Fan Unit Heaters
The Trane separated combustion propeller type unit heater keeps energy costs down by offering
80 percent thermal efficiencies. With model inputs available from 100 through 400 MBH, they
are designed to be installed in mildly hostile environments where dusty, dirty and mildly
corrosives exist or high humidity or slightly negative pressures prevail.
The Trane propeller unit separates the combustion process from the environment where the unit
is installed. A power venting system draws a controlled quantity of combustion air from outside
the building. The same system exhausts flue gas products to the outside. The burners, pilot and
flue system are enclosed within the unit. The entire combustion process is literally unaffected
by the atmosphere in the space where the unit is located.
Combustion and exhaust air may be piped horizontally through a side wall, or vertically through
the roof via our standard two-pipe venting arrangement or optional concentric vent kit which
utilizes one 8-inch side wall or rooftop penetration for both the combustion and exhaust air. Both
venting systems are C.S.A. International certified.
Separated Combustion Centrifugal Fan Unit Heaters
The Trane separated combustion centrifugal type unit heater keeps energy costs down by
offering 80 percent thermal efficiencies. With model inputs available from 100 through 400 MBh,
they are designed to be installed in mildly hostile environments where dusty, dirty and mildly
corrosives exist or high humidity or slightly negative pressures prevail. This unit operates at a
static pressure up to 0.2” water column, and is available with a louvered (standard) or flanged
outlet (optional) when discharge duct work is desired.
These units separate the combustion process from the environment where the unit is installed.
A power venting system draws a controlled quantity of combustion air from outside the
building. The same system exhausts flue gas products to the outside. The burners, pilot and flue
system are enclosed within the unit. The entire combustion process is literally unaffected by the
atmosphere in the space where the unit is located.
Separated Combustion Duct Furnace
The Trane separated combustion duct furnace is designed for installation in dusty, dirty or mildly
corrosive environments or where high humidity or slightly negative pressures exist. Ideal
applications include HVAC equipment rooms, manufacturing facilities, automotive garages and
greenhouses.
6 UH-PRC002-EN
Application Considerations
General
Propeller fan unit heaters and centrifugal fan unit heaters are designed for use in space heating
applications. The units are typically used in areas with high ceilings, and are exposed in the space
to be heated. Unit heaters offer low installed cost, and are able to heat large volume areas without
requiring extensive duct systems.
Duct furnaces are designed for use in ducted applications with a separate air handling device such
as a horizontal blower assembly. By utilizing a separate air source, greater application flexibility in
airflow delivery can be obtained. Multiple duct furnaces can be used with an air handling unit to
provide zone heating.
Note: When installing duct furnaces in parallel or in series, minimum clearance requirements
must be considered. This is required for serviceability of the gas valve and the high limit.
“All duct furnaces are approved in blow-thru applications only.”
All duct furnaces are AGA approved upstream or downstream of the cooling coil. Recommend
optional field installed drain pan when installed on the downstream side of the cooling coil.
Note: Downstream denotes cooling coil ahead of the fan section.
When used in conjunction with filters, cooling coils and an air handler, the duct furnace can become
part of a built-up heating and cooling system.
Gas Heating Value
The majority of gas heating units are installed in applications where natural gas is readily available.
In areas where natural gas is not available, Trane units may be ordered directly from the factory
for use on LP (propane) gas.
Gas heat content varies by fuel type and location. The standard gross heating value for natural gas
is 1,000 Btu per cubic foot, and for propane, 2,500 Btu per cubic foot. Significant variations from
these standard values should be taken into consideration in equipment selections. To account for
variations in the gross heating value of the fuel, adjust the total heat input required and select the
unit on the basis of the adjusted load using the following formula:
Adjusted load = Calculated load x gross heat value (Btu/ft3)
Actual gross heat value (Btu/ft
3
)
Low Temperature Rise
Trane recommends against the setup of a unit which will result in a temperature rise of less than
30°F. With such low temperature rises, the flue gases passing through the heat exchanger are
cooled to condensate before reaching the flue outlet. This condensate is corrosive and will result
in shortened heat exchanger life.
Air Density
Catalog performance data is based on elevations up to 2,000 feet above sea level. Above 2,000 feet
the unit’s heating capacity must be derated four percent for each 1,000 feet above sea level, and
UH-PRC002-EN7
Application Considerations
special orifice selections are required. Tab le 8, p . 24 contains correction factors that can be applied
to the unit’s cataloged heating capacity, fan rpm, and fan bhp to obtain actual values for elevations
above 2,000 feet.
Corrosive Atmospheres
Corrosion of heat exchangers and draft diverters have two basic variables—moisture
(condensation) and sulphur. These two ingredients form to make sulfuric acid in the combustion
process. Condensation occurs commonly in makeup air systems, using large amounts of fresh air,
when air temperatures entering the heat exchanger drop to 40°F or below. This reaction can also
occur in recirculating systems where some quantity of outside air is introduced upstream of the
exchanger. The sulphur will always be present as an integral component of the gas. The resulting
concentration of the acid is governed by the amount of sulphur in the gas. This concentration varies
from gas to gas and geographically within the same type of gas.
Beyond sulfuric acid corrosion there is the area of chlorinated or halogenated hydrocarbon vapor
corrosion. This type of corrosion occurs when substances are mixed with combustion air that will
cause the formation of hydrochloric or hydrofluoric acid when burned. These basic substances are
found in degreasers, dry cleaning solvents, glues, cements, paint removers and aerosol
propellants. Specific chemicals included in this group are trichloroethylene, perchloroethylene,
carbon tetrachloride, methylene chloride, methyl chloroform and refrigerants 11, 12, 21, 22 and 114.
If sufficient PPM content of these corrosives is present, none of the common heat exchanger
materials will hold up. The dilemma becomes whether to place the gas heating equipment outside
of the area to be conditioned, or use equipment in the space which does not burn a fuel such as
gas (i.e., electric or hydronic).
Units should not be installed in areas with corrosive or inflammable atmospheres. Locations
containing solvents or chlorinated hydrocarbons will produce corrosive acids when coming in
contact with burner flames. This reaction will greatly reduce the life of the heat exchanger and may
void the warranty. For added protection against heat exchanger corrosion, optional 409 and 321
stainless steel construction is available. On units using outside air, with entering air temperature
below 40°F, condensation of flue gas in the heat exchanger is possible. In these cases, stainless steel
heat exchangers are recommended.
Careful review of the job application with respect to use, probable contaminants within a
conditioned space or the amount of fresh air to be brought in, will help to make the proper selection
of heat exchanger material. This review will help to eliminate problems before they begin.
Indoor Units
Indoor gas unit heaters and duct furnaces are used primarily in commercial and industrial
structures such as manufacturing areas, warehouses, garages, stores, showrooms, lobbies, and
corridors.
Separated combustion units are used primarily in industrial work areas with wood or textile dust,
non-explosive contaminated environments, nonchlorine process areas, automotive and truck
garages and greenhouses.
Unit Placement
Refer to the applicable Trane Installation, Operation and Maintenance literature for specific
installation instructions. Installations must conform with local building codes or in the absence of
local codes with the National Fuel Gas Code ANSI Z223.1.
When selecting a location for an indoor unit heater, both the size and weight of the unit, as well as
the heating requirements of the building, should be considered. Installation of units in airplane
hangars or public garages should be in accordance with NFPA No. 409 for aircraft hangars, and
NFPA No. 88 for garages.
For proper distribution, air should be directed towards areas of maximum heat loss. When multiple
units are used, circulation of heated air around the space perimeter is recommended. Satisfactory
results can also be obtained where multiple units are located toward the center of the area, with
8 UH-PRC002-EN
Application Considerations
heated air being discharged toward the outside walls. Throw data for standard unit heaters and unit
heaters utilizing optional discharge nozzles is shown in “General Data,” p. 20.
Locations where extreme drafts can affect burner operation should be avoided. Strong drafts may
cause pilot outage. Units with intermittent pilot ignition may be preferable in areas where drafts
are likely.
Minimum clearances required for accessibility and safety are listed in Tab le 2, p. 2 0.
Mounting Detail
(Hanging Hardware Supplied by Others)
Figure 1. Steel Construction
Figure 2. Wood Construction
Throw Data
Throw data for units with standard louvers and for units with optional discharge nozzles are in
“General Data,” p. 20. Optional nozzles are for use on propeller fan unit heaters, centrifugal fan unit
heaters and duct furnaces. When greater throw distance is desired, a 45° nozzle is recommended.
For high mounting heights, a 90° nozzle may be used. When wide diffusion is needed, a Y splitter
nozzle should be considered. A five-way nozzle can be used for applications requiring even air
UH-PRC002-EN9
Application Considerations
distribution over a large floor area. (Five-way nozzles are not available on propeller fan unit
heaters.)
Indoor Units—Venting
Gas fired indoor units require venting to remove the products of combustion. To help assure safe,
trouble-free operation, follow the guidelines listed below:
Power Vented Units
Units with a factory installed flue vent fan.
1. All units must be vented. Power vented units are designed to use single wallvent pipe. A
Breidert Type L, Field Starkap, or equivalent unit vent cap must be furnished by the customer.
2. The venting system for these appliances shall terminate at least 4 feet below, 4 feet horizontally
from, or 1 foot above any door, window or gravity air inlet into any building.
3. Through-the-wall vents for these appliances shall not terminate over public walkways or over
an area where condensate or vapor could create a nuisance or hazard or could be detrimental
to the operation of regulators, relief valves, or other equipment.
4. The vent pipe diameter must be as shown under “Recommended Flue Size” in the specification
charts. An adaptor must be field supplied if required.
5. Each furnace must have an individual vent pipe and vent terminal. Vent pipe equivalent
length must not exceed 50 feet. Equivalent length is the total length of straight sections, plus
15 feet for each 90° elbow and 8 feet for each 45° elbow.
6. Maintain 6 inch clearance between vent pipe and combustible materials. Vent terminal must be
installed with a minimum clearance of 4 feet from electric meters, gas meters, regulators, and
relief equipment.
7. Seal vent pipe joints to prevent leakage. Use General Electric RTV-108 or Dow Corning RTV-732
Silicone Sealant or 3M #425 aluminum foil tape.
8. Pitch horizontal pipes downward 1/4-inch per foot toward outlet for condensate drainage.
Horizontal portions of the venting system shall be supported at maximum intervals of 4 feet to
prevent sagging.
9. Vertical vent pipes should be equipped with condensate drains.
10. Insulate single wall vent pipe exposed to cold air or running through unheated areas.
FM and IRI Requirements
IRI, which stands for Industrial Risk Insurers, and FM, which stands for Factory Mutual, are both
basically insurance companies which insure commercial/industrial firms against a variety of
losses. Both publish requirements which must be met by certain equipment operating in the
facilities they are preparing to insure.
Listed below is our interpretation of the requirements of both insurers pertaining to heating units
only to the extent of features/controls required by IRI and/or FM. There are a number of additional
requirements which pertain to electrical service, details of installation, etc., and we urge you to
obtain copies of the publications pertaining to these details if you are involved in a job where IRI
or FM adherence has been indicated. The requirements detailed herein are our interpretations of
the latest publications in our possession and we must disclaim any responsibility for errors due to
our interpretation and/or lack of any updated revision of these standards. Our intent is to provide
you with an understanding of the application of these standards and how we believe our indirectfired gas heating equipment applies.
IRI Requirements
1. All input sizes require 100 percent shutoff. This requires that any natural gas unit, equipped with
intermittent pilot ignition, must employ a “lock out” type ignition system which will shut off
pilot gas if the pilot fails to light at any time. This system is required by AGA on LP gas units
10 UH-PRC002-EN
Application Considerations
as standard equipment. However, for natural gas units, you need to specify on the order
“Natural Gas, 100 percent shutoff.”
2. All units require AGA certification or UL “listed” controls. Our units are AGA certified and meet
this requirement.
3. Models with inputs of 150,000 to 400,000 Btu require “mechanical exhaust” and a “safety
interlock.” For our units, this means a power vented or drafter-equipped unit. In both instances,
if the flue vent fan (factory or field installed) does not get up to speed, the unit will not fire,
satisfying the safety interlock portion.
FM Requirements
1. All units must be AGA certified or UL listed. Our units are AGA certified.
2. The high limit control must be in a circuit, the voltage of which does not exceed 120 Vac. All of
our high limits would meet this requirement.
The specific requirement for an “IRI or FM Gas Train,” while it applies to direct and indirect-fired
gas heating equipment as well as oil-fired, comes into play only with units having an input in excess
of 400,000 Btu. This may be one of the reasons why the majority of gas heating equipment
manufacturers (indirect-fired) limit their largest individual furnace to 400,000 Btu.
Minimum/Maximum Gas Inlet Pressures
Gas valves are suitable to a maximum inlet pressure of 0.5 psi (14 inches water column) on natural
gas. If the main gas supply pressure is greater than 14 inches wc, a step-down pressure regulator
must be field-installed ahead of the gas valve. Minimum inlet pressure for natural gas units is
5 inches wc.
For LP (propane) gas, the minimum inlet pressure is 11.0 inches wc and the maximum inlet pressure
is 14.0 inches wc.
High Pressure Regulators—Natural Gas Only
The Trane indoor gas heating products contained in this catalog are designed to operate at a
pressure of 3.5-inch wc (water column) when firing on natural gas. This is the “manifold” pressure
or that which is present at the burner orifices. All five- and six-function valves provide a built-in
pressure regulator which is capable of reducing “supply” pressures from a maximum of 14-inch
wc (1/2 psi) down to 3.5-inch wc on the leaving side of the valve. The valve typically “drops” about
1-1/2 inches so the minimum supply pressure is 5-inch wc.
Whenever supply pressures exceed 14 inches wc, a high pressure regulator should be selected. We
supply a Rockwell regulator which is fitted with pressure springs and capacity orificing to meet the
requirements of each specific job. In order to select the proper spring/orifice combination, we need
to know what the supply pressure is on that particular job and the input size of the unit being
ordered. More than one unit can be run from one regulator; however, we recommend that each unit
have its own regulator.
We require that the “job” supply pressure be included on all jobs requiring high pressure
regulators along with the unit size. Ta bl e 1 displays the regulators range as it pertains to inlet
pressure and MBh. A dash (
house.
These devices are not available from Trane for LP gas. LP accessories must be secured from the
gas supplier/ supply house.
—) requires the customer to contact a local utility or an industrial supply
UH-PRC002-EN11
Application Considerations
Table 1.Orifice chart: Rockwell 043–182 regulator
Inlet Pressure
(psi)
13/8”—————Blue (only)
23/8”3/8”————Blue (only)
33/8”3/8”3/8”———Blue or Green
53/8”3/8”3/8”3/8”3/8”3/8”Blue or Green
103/8”3/8”3/8”3/8”3/8”3/8”Blue or Green
201/4”1/4”1/4”1/4”1/4”5/16”Blue or Green
401/4”1/4”1/4”1/4”1/4”1/4”Blue or Green
601/8”1/8”1/8”1/8”1/8”3/16”Blue or Green
801/8”1/8”1/8”1/8”1/8”—Blue or Green
1001/8”1/8”1/8”1/8”1/8”1/8”Blue or Green
1251/8”1/8”1/8”1/8”1/8”1/8”Blue or Green
Venting Unit Heaters
Venting unit heaters and duct furnaces used to be as simple as remembering that warm air rises.
With the introduction of new venting equipment and safety controls, things have become a little
more technical. Today’s contractor has to know a lot more about proper venting to get the job done
within code at a reasonable price.
For starters, ANSI now categorizes vented appliances into four categories. Category I includes noncondensing appliances with negative vent pressure, like the traditional atmospheric unit heater.
Category II groups condensing appliances with negative vent pressure.
Category III appliances are non-condensing and operate with a positive vent pressure, like the
traditional power vented unit heater. Category IV covers condensing appliances with positive vent
pressure.
Never connect power vented devices to common flues. Mechanically vented appliances must have
dedicated vents to the point of termination.
Power Vented Unit Heaters
Mechanically vented appliances have enjoyed increasing acceptance in American facilities. Power
vented unit heaters allow installation without the need to penetrate expensive roofing materials.
They also offer more flexibility in placement of individual unit heaters.
12 UH-PRC002-EN
Figure 3. Power vented unit heater
Application Considerations
Mechanical venting occurs when a power blower provides a positive air flow to exhaust vent gas.
The blower may be mounted at the unit heater or at the point of termination. With a factoryinstalled power venter, a pressure switch detects the flow of vent gas before the gas valve is
allowed to open. With third party drafters, a centrifugal switch usually monitors the operation of
the blower motor. When properly installed, the switch senses motor rotation and allows the gas
valve to operate. Interlocking the blower to the gas valve provides some control over the
combustion process. Using a factory unit with a pressure sensitive switch ensures that control.
With all their advantages, power venters bring some requirements as well. Each manufacturer
determines the maximum length of pipe and fittings that his system can use for safe operation.
Remember to count the fittings and allow for their higher resistance to flow. The total length of run
includes not only the piping length, but the resistance of all the fittings including the termination
cap.
Many contractors have become accustomed to using B vent with natural draft units. Used with
power vented appliances indoors, B vent is unacceptable. B vent does not allow positive pressure
in the vent piping to be sealed from the heated space. Proper installation uses 24-gauge, single wall
vent pipe and each joint sealed with temperature resistant sealant or tape.
Contractors must also be aware of the conditions at the point of termination. The National Fuel Gas
Code NFPA 54/ANSI Z223.1-1992 mandates that vent system should terminate at least 4 feet below,
4 feet horizontally or 1 foot above any window, door, or gravity inlet to a building. Termination with
a vent cap approved by the manufacturer should occur well above the snow line.
Beyond satisfying the codes, vents should be positioned away from shrubs and plants that might
be affected by unseasonable warming by the exhaust. Sidewall vents release a considerable
amount of water vapor that may condense on cold siding, adversely affecting painted surfaces.
Placing these vents in locations that get natural air circulation from prevailing winds may help to
reduce these negative effects.
Separated Combustion Venting
Another form of mechanical venting includes those unit heaters that use a powered exhaust also
to pull in outside air. Most often found on condensing furnaces, separated combustion does not
use room air for combustion. Instead these unit heaters use a second run of pipe to supply fresh
outdoor air.
1. Heat
2. Fumes
3. Humidity
The separated combustion approach offers several advantages. First, it does not use warm indoor
air to fire the unit heater. This saves energy by avoiding drawing unheated make-up air into the
living space. Second, the unit heater has an unlimited source of air for combustion. In many of the
new super insulated buildings appliances can be starved for combustion air. In contaminated
atmospheres the use of separated combustion unit heaters assures that the heat exchanger sees
only non-corrosive air.
When positioning the intake and exhaust vents on separated combustion equipment, the intake
and outlet must mount on the same outside surface. This ensures that any wind effects balance out.
Remember to keep the vents at least 18” apart to avoid drawing exhaust air into the intake air.
With Trane’s separated combustion unit heaters intake air and exhaust air run through standard
14 UH-PRC002-EN
24-gauge galvanized pipe. Remember that separated combustion unit heaters still have high vent
Application Considerations
temperatures. Use of PVC, CPVC and other plastic vent materials are inappropriate and hazardous.
Check the manufacturer’s instructions before piping any appliance.
The vent gases of power vented and separated combustion unit heaters may condense on a cold
start-up or when vent piping runs through unheated areas. To protect the heater always pitch both
intake and exhaust piping toward the outside of the building. Remember also that no power vented
equipment can share a common flue with any other appliance. Should a flue become blocked one
appliance could vent into the occupied space.
Approved vent caps should be used on both the intake and exhaust terminations. For greater
convenience Trane offers a concentric vent adapter that allows venting through a single perforation
through the building wall or roof.
UH-PRC002-EN15
Selection Procedure
Determine the total heating load requirements in accordance with methods recommended by the
ASHRAE Handbook of Fundamentals or other acceptable means.
High Efficiency Propeller Fan Unit Heater
1. From the performance data tables, select the unit whose heating output meets or exceeds the
heating load requirement.
2. Airflow (cfm) and temperature rise can be read directly from the performance data tables.
3. Knowing the mounting height of the unit, throw can be determined from the performance data
table. If the throw is not adequate, consider using a larger propeller fan unit heater or a
centrifugal fan unit heater with an optional discharge nozzle for greater throw.
Selection Example—A natural gas propeller fan unit heater that can provide 75 MBh heating
output is required. The unit will be mounted 10 feet above the floor and a 40-foot throw is
required.
Select the unit as follows:
a. From Table 10, p. 25, select a GHND-010 with 100.0 MBh input and 80.0 MBh heating output,
1,480 cfm and a 50°F temperature rise.
b. From Tab l e 3 , p . 2 0 , throw at a mounting height of 10 feet is 54 feet.
High Efficiency Centrifugal Fan Unit Heater
1. From the performance data tables, select the unit whose heating output meets or exceeds the
heating load requirement.
2. Airflow (cfm) ranges are listed for each unit size in the performance data tables. Knowing either
the desired airflow or temperature rise, the other can be calculated using the following
formulas:
cfm =
ΔT =
3. Knowing the mounting height of the unit, throw can be determined from the performance data
table. If the throw is not adequate, a discharge nozzle can be used to obtain additional throw.
Selection Example—An LP (Propane) gas centrifugal fan unit heater that can provide 150 MBh
heating output is required. An airflow of 2,000 cfm is desired. The unit will be mounted 12 feet
above the floor and a 65-foot throw is required.
Select the unit as follows:
a. From Table 11, p. 25, select a GBPD-020 with a 200.0 MBh input and 160.0 MBh heating
Output x 1,000
1.085 x ΔT
Output x 1,000
1.085 x cfm
output. An airflow of 2,000 cfm is within the allowable range, and temperature rise is
calculated as follows:
ΔT =
MBh x 1,000
1.085 x χφμ
ΔT =
160 x 1,000
1.085 x 2,000
= 74.0°F
b. FromTable 3, p. 20, throw at a 12-foot mounting height is 61 feet. As a 61-foot throw is not
adequate, a 60-degree nozzle can be selected (from Table 5, p. 21) which provides a throw
of 76 feet.
16 UH-PRC002-EN
Selection Procedure
High Efficiency Duct Furnace
1. From the performance data tables, select the unit whose heating output meets or exceeds the
heating load requirement.
2. Given the airflow to be supplied to the duct furnace, temperature rise and pressure drop
through the duct furnace can be read directly from the performance data charts. If the air
temperature rise is below 30°F, some supply air must be bypassed around the duct furnace. If
the air temperature rise is over 80°F, additional supply air must be delivered to the duct furnace.
Selection Example—A natural gas duct furnace that can provide 300 MBh heating output is
required. An airflow of 5,000 cfm is being provided to the duct furnace.
Select the unit as follows:
a. FromTable 14, p. 27, select a GLND-040 with a 400.0 MBh input and 320.0 MBh heating
output.
b. FromFigure 10, p. 29, temperature rise at 5,000 cfm is 58°F and pressure drop is 0.16 inches.
Horizontal Blower Assembly
1. From the performance data tables, select the blower assembly that provides the needed airflow
at the required static pressure, and determine the required motor size and fan speed.
2. If a blower assembly is to be used with a duct furnace, refer to the dimensional data table to
determine which blower to use with the given duct furnace. The duct furnace pressure drop
must be added to the pressure drop of the duct system before entering the blower assembly
performance data tables. Enter the performance data table at the required airflow and at the
total external static pressure to determine the motor size and fan speed.
Selection Example—A GLND-040 high efficiency duct furnace is to be used with a horizontal
blower assembly. An airflow of 5,000 cfm is required. The pressure drop of the duct system is
0.54 inches, and the pressure drop of the duct furnace is 0.16 inches.
Select the unit as follows:
a. From Table 29, p. 55, select a HBAC-45 for use with the GLND-040 duct furnace.
b. FromTable 16, p. 28, an HBAC-45 at 5,000 cfm and 0.7 inches static pressure (0.54-inch
ductwork + 0.16-inch furnace) requires a 1-1/2 hp motor with a fan speed of 720 rpm.
UH-PRC002-EN17
Model Number Descriptions
Indoor Gas Heating Units
Note: All units are AGA approved. For
CGA approved units, contact Air
Handling Product Support.
Digit 1 — Gas Heating
Equipment
Digit 2 — Product Type
B=High Efficiency Centrifugal Fan
Unit Heater
L=High Efficiency Indoor Duct
Furnace
H =High Efficiency Propeller Fan Unit
Heater
A =Separated Combustion Propeller
Fan Unit Heater
K=Separated Combustion
Centrifugal Fan Unit Heater
M =Separated Combustion Indoor
Duct Furnace
T=Propeller Fan / Tubular Heat
Exchanger
Digit 3 — Fuel
N= Natural Gas
P=LP Gas (Propane)
Digit 4 — Development
Sequence
D =Fourth Generation
Digits 5, 6, 7 — Input Capacity
Single Furnace
(a)
003
=30 MBh015 =150 MBh
(a)
=45 MBh017 =175 MBh
004
(a)
=60 MBh020 =200 MBh
006
(a)
=75 MBh022 =225 MBh
007
009=90 MBh025 = 250 MBh
(b)
=100 MBh030 = 300 MBh
010
(c)
=105 MBh035 = 350 MBh
011
(c)
=120 MBh040 = 400 MBh
120
(b)
=125 MBh
012
(a) Not available for high efficiency propeller fan.
(b)Not available for tubular.
(c) Available for tubular only.
Digit 8 — Main Power Supply
A =115/60/1D = 230/60/3
B =230/60/1E= 460/60/3
C =208/60/3F=575/60/3
Digit 9 — Gas Control Option
D =Single-Stage, Intermittent Pilot
Ignition
E=Two-Stage, Intermittent Pilot
Ignition
H =Electronic Modulating with Room
T-Stat, Intermittent Pilot Ignition
J=Electronic Modulating with
Duct-Stat, Intermittent Pilot
Ignition
L=Electronic Modulating with
External 4–20 mA Input
N =Electronic Modulating with
External 0–10 Vdc Input
T=Single Stage Direct Spark Ignition
V = Two-Stage, Direct Spark Ignition
0=None
A =#409 Stainless Steel Burners
B =Orifices For Elevation Above 2000
Feet (Specify Elevation)
Propeller Fan Unit Heater
(High Efficiency and Separated
Combustion)
C =#409 Stainless Steel Draft Diverter
D =Summer-Winter Switch
E=Vertical Louvers
J=Totally Enclosed Motor
7=OSHA Fan Guard
Centrifugal Fan Unit Heater
(High Efficiency and Separated
Combustion)
C =#409 Stainless Steel Draft Diverter
D =Summer-Winter Switch
E=Vertical Louvers
H =Duct Discharge Flange
J=Totally Enclosed Motor
Duct Furnace (Indoor) (High
Efficiency)
C =#409 Stainless Steel Draft Diverter
D =Summer-Winter Switch
F=Horizontal Louvers
G =Horizontal and Vertical Louvers
K =Side Access Burner Drawer (Left
Hand)
2
L=Fan Time Delay Control
M =Side Access Burner Drawer (Right
Hand)
2
Separated Combustion, Indoor Duct
Furnace
C =#409 Stainless Steel Draft Diverter
D =Summer-Winter Switch
F=Horizontal Louvers
G =Horizontal and Vertical Louvers
Propeller Type / Tubular Heat
Exchanger
J=Totally Enclosed Motor
7=OSHA Fan Guard
1
1
Not available for tubular.
2
The left or right hand side of the side access burner
drawer, options K & M, is determined by facing the
air outlet side of the duct furnace.
0=None
A =100 MBhF =225 MBh
B =125 MBhG = 250 MBh
C =150 MBhH =300 MBh
D =175 MBhJ =350 MBh
E=200 MBhK =400 MBh
Digit 8 — Main Power Supply
A =115/60/1D = 230/60/3
B =230/60/1E = 460/60/3
C =208/60/3
Model Number Descriptions
Digit 9 — Motor Horsepower
A =1/3 hpD = 1 hp
B =1/2 hpE =1-1/2 hp
C =3/4 hpF =2 hp
Digit 10 — Design Sequence
D =Fourth Design
Digit 11 — Miscellaneous
Options
0=None
1=Insulation
3=Totally Enclosed Motor
UH-PRC002-EN19
General Data
Service Clearances
Table 2.Minimum clearances
Sides18”18”
Top6”6”
Bottom21”
Flue6”6”
(a)21” clearance is required for bottom access to burners a nd pi lot. If a side pull -out bur ner dr awer is ord ered ( duc t furn ace only), bottom cl earance can
be reduced to six inches. Side clearance, however, must be increased such that it is adequate for burner drawer removal. Reference Table 27, p. 53.
Heat Throw Data
Figure 5. Standard unit heater applications
Duct FurnacePropeller & Centrifugal Fan U.H.
(a)
21”
Table 3. Standard unit heater—approximate distance of throw at nominal airflow