Trane CVHH CenTraVac Installation, Operation And Maintenance Manual

Installation, Operation, and Maintenance
With Tracer® AdaptiView™ Control
CVHH
X39641257007
SSAAFFEETTYY WWAARRNNIINNGG
Only qualified personnel should install and service the equipment. The installation, starting up, and servicing of heating, ventilating, and air-conditioning equipment can be hazardous and requires specific knowledge and training. Improperly installed, adjusted or altered equipment by an unqualified person could result in death or serious injury. When working on the equipment, observe all precautions in the literature and on the tags, stickers, and labels that are attached to the equipment.
February 2018
CCVVHHHH--SSVVXX000011GG--EENN
Introduction
WARNING
CAU
TION
NOTICE
Read this manual thoroughly before operating or servicing this unit.
Use the following checklist when testing UAT CRs/ MyTickets.
Warnings, Cautions, and Notices
Safety advisories appear throughout this manual as required. Your personal safety and the proper operation of this machine depend upon the strict observance of these precautions.
The three types of advisories are defined as follows:
Indicates a potentially hazardous situation which, if not avoided, could result in death or serious injury.
Indicates a potentially hazardous situation which, if not avoided, could result in minor or moderate injury. It could also be used to alert against unsafe practices.
Indicates a situation that could result in equipment or property-damage only accidents.
Important Environmental Concerns
Scientific research has shown that certain man-made chemicals can affect the earth’s naturally occurring stratospheric ozone layer when released to the atmosphere. In particular, several of the identified chemicals that may affect the ozone layer are refrigerants that contain Chlorine, Fluorine and Carbon (CFCs) and those containing Hydrogen, Chlorine, Fluorine and Carbon (HCFCs). Not all refrigerants containing these compounds have the same potential impact to the environment. Trane advocates the responsible handling of all refrigerants-including industry replacements for CFCs and HCFCs such as saturated or unsaturated HFCs and HCFCs.
Important Responsible Refrigerant Practices
Trane believes that responsible refrigerant practices are important to the environment, our customers, and the air conditioning industry. All technicians who handle refrigerants must be certified according to local rules. For the USA, the Federal Clean Air Act (Section
608) sets forth the requirements for handling, reclaiming, recovering and recycling of certain refrigerants and the equipment that is used in these service procedures. In addition, some states or municipalities may have additional requirements that must also be adhered to for responsible management of refrigerants. Know the applicable laws and follow them.
WWAARRNNIINNGG
PPrrooppeerr FFiieelldd WWiirriinngg aanndd GGrroouunnddiinngg RReeqquuiirreedd!!
FFaaiilluurree ttoo ffoollllooww ccooddee ccoouulldd rreessuulltt iinn ddeeaatthh oorr sseerriioouuss iinnjjuurryy.. AAllll ffiieelldd wwiirriinngg MMUUSSTT bbee ppeerrffoorrmmeedd bbyy qquuaalliiffiieedd ppeerrssoonnnneell.. IImmpprrooppeerrllyy iinnssttaalllleedd aanndd ggrroouunnddeedd ffiieelldd wwiirriinngg ppoosseess FFIIRREE aanndd EELLEECCTTRROOCCUUTTIIOONN hhaazzaarrddss.. TToo aavvooiidd tthheessee hhaazzaarrddss,, yyoouu MMUUSSTT ffoollllooww rreeqquuiirreemmeennttss ffoorr ffiieelldd wwiirriinngg iinnssttaallllaattiioonn aanndd ggrroouunnddiinngg aass ddeessccrriibbeedd iinn NNEECC aanndd yyoouurr llooccaall// ssttaattee//nnaattiioonnaall eelleeccttrriiccaall ccooddeess..
WWAARRNNIINNGG
PPeerrssoonnaall PPrrootteeccttiivvee EEqquuiippmmeenntt ((PPPPEE)) RReeqquuiirreedd!!
FFaaiilluurree ttoo wweeaarr pprrooppeerr PPPPEE ffoorr tthhee jjoobb bbeeiinngg uunnddeerrttaakkeenn ccoouulldd rreessuulltt iinn ddeeaatthh oorr sseerriioouuss iinnjjuurryy.. TTeecchhnniicciiaannss,, iinn oorrddeerr ttoo pprrootteecctt tthheemmsseellvveess ffrroomm ppootteennttiiaall eelleeccttrriiccaall,, mmeecchhaanniiccaall,, aanndd cchheemmiiccaall hhaazzaarrddss,, MMUUSSTT ffoollllooww pprreeccaauuttiioonnss iinn tthhiiss mmaannuuaall aanndd oonn tthhee ttaaggss,, ssttiicckkeerrss,, aanndd llaabbeellss,, aass wweellll aass tthhee iinnssttrruuccttiioonnss bbeellooww::
•• BBeeffoorree iinnssttaalllliinngg//sseerrvviicciinngg tthhiiss uunniitt,, tteecchhnniicciiaannss MMUUSSTT ppuutt oonn aallll PPPPEE rreeqquuiirreedd ffoorr tthhee wwoorrkk bbeeiinngg uunnddeerrttaakkeenn ((EExxaammpplleess;; ccuutt rreessiissttaanntt gglloovveess//sslleeeevveess,, bbuuttyyll gglloovveess,, ssaaffeettyy ggllaasssseess,, hhaarrdd hhaatt//bbuummpp ccaapp,, ffaallll pprrootteeccttiioonn,, eelleeccttrriiccaall PPPPEE aanndd aarrcc ffllaasshh ccllootthhiinngg)).. AALLWWAAYYSS rreeffeerr ttoo aapppprroopprriiaattee MMaatteerriiaall SSaaffeettyy DDaattaa SShheeeettss ((MMSSDDSS))//SSaaffeettyy DDaattaa SShheeeettss ((SSDDSS)) aanndd OOSSHHAA gguuiiddeelliinneess ffoorr pprrooppeerr PPPPEE..
•• WWhheenn wwoorrkkiinngg wwiitthh oorr aarroouunndd hhaazzaarrddoouuss cchheemmiiccaallss,, AALLWWAAYYSS rreeffeerr ttoo tthhee aapppprroopprriiaattee MMSSDDSS//SSDDSS aanndd OOSSHHAA//GGHHSS ((GGlloobbaall HHaarrmmoonniizzeedd SSyysstteemm ooff CCllaassssiiffiiccaattiioonn aanndd LLaabbeelllliinngg ooff CChheemmiiccaallss)) gguuiiddeelliinneess ffoorr iinnffoorrmmaattiioonn oonn aalllloowwaabbllee ppeerrssoonnaall eexxppoossuurree lleevveellss,, pprrooppeerr rreessppiirraattoorryy pprrootteeccttiioonn aanndd hhaannddlliinngg iinnssttrruuccttiioonnss..
•• IIff tthheerree iiss aa rriisskk ooff eenneerrggiizzeedd eelleeccttrriiccaall ccoonnttaacctt,, aarrcc,, oorr ffllaasshh,, tteecchhnniicciiaannss MMUUSSTT ppuutt oonn aallll PPPPEE iinn aaccccoorrddaannccee wwiitthh OOSSHHAA,, NNFFPPAA 7700EE,, oorr ootthheerr ccoouunnttrryy--ssppeecciiffiicc rreeqquuiirreemmeennttss ffoorr aarrcc ffllaasshh pprrootteeccttiioonn,, PPRRIIOORR ttoo sseerrvviicciinngg tthhee uunniitt.. NNEEVVEERR PPEERRFFOORRMM AANNYY SSWWIITTCCHHIINNGG,, DDIISSCCOONNNNEECCTTIINNGG,, OORR VVOOLLTTAAGGEE TTEESSTTIINNGG WWIITTHHOOUUTT PPRROOPPEERR EELLEECCTTRRIICCAALL PPPPEE AANNDD AARRCC FFLLAASSHH CCLLOOTTHHIINNGG.. EENNSSUURREE EELLEECCTTRRIICCAALL MMEETTEERRSS AANNDD EEQQUUIIPPMMEENNTT AARREE PPRROOPPEERRLLYY RRAATTEEDD FFOORR IINNTTEENNDDEEDD VVOOLLTTAAGGEE..
©2018 Ingersoll Rand
CVHH-SVX001G-EN
X39003892001A
IInnttrroodduuccttiioonn
WWAARRNNIINNGG
FFoollllooww EEHHSS PPoolliicciieess!!
FFaaiilluurree ttoo ffoollllooww iinnssttrruuccttiioonnss bbeellooww ccoouulldd rreessuulltt iinn ddeeaatthh oorr sseerriioouuss iinnjjuurryy..
•• AAllll IInnggeerrssoollll RRaanndd ppeerrssoonnnneell mmuusstt ffoollllooww IInnggeerrssoollll RRaanndd EEnnvviirroonnmmeennttaall,, HHeeaalltthh aanndd SSaaffeettyy ((EEHHSS)) ppoolliicciieess wwhheenn ppeerrffoorrmmiinngg wwoorrkk ssuucchh aass hhoott wwoorrkk,, eelleeccttrriiccaall,, ffaallll pprrootteeccttiioonn,, lloocckkoouutt//ttaaggoouutt,, rreeffrriiggeerraanntt hhaannddlliinngg,, eettcc.. AAllll ppoolliicciieess ccaann bbee ffoouunndd oonn tthhee BBOOSS ssiittee.. WWhheerree llooccaall rreegguullaattiioonnss aarree mmoorree ssttrriinnggeenntt tthhaann tthheessee ppoolliicciieess,, tthhoossee rreegguullaattiioonnss ssuuppeerrsseeddee tthheessee ppoolliicciieess..
•• NNoonn--IInnggeerrssoollll RRaanndd ppeerrssoonnnneell sshhoouulldd aallwwaayyss ffoollllooww llooccaall rreegguullaattiioonnss..
WWAARRNNIINNGG
RReeffrriiggeerraanntt MMaayy BBee UUnnddeerr PPoossiittiivvee PPrreessssuurree!!
FFaaiilluurree ttoo ffoollllooww iinnssttrruuccttiioonnss bbeellooww ccoouulldd rreessuulltt iinn aann eexxpplloossiioonn wwhhiicchh ccoouulldd rreessuulltt iinn ddeeaatthh oorr sseerriioouuss iinnjjuurryy oorr eeqquuiippmmeenntt ddaammaaggee.. SSyysstteemm ccoonnttaaiinnss rreeffrriiggeerraanntt aanndd mmaayy bbee uunnddeerr ppoossiittiivvee pprreessssuurree;; ssyysstteemm mmaayy aallssoo ccoonnttaaiinn ooiill.. RReeccoovveerr rreeffrriiggeerraanntt ttoo rreelliieevvee pprreessssuurree bbeeffoorree ooppeenniinngg tthhee ssyysstteemm.. SSeeee uunniitt nnaammeeppllaattee ffoorr rreeffrriiggeerraanntt ttyyppee.. DDoo nnoott uussee nnoonn--aapppprroovveedd rreeffrriiggeerraannttss,, rreeffrriiggeerraanntt ssuubbssttiittuutteess,, oorr nnoonn-­aapppprroovveedd rreeffrriiggeerraanntt aaddddiittiivveess..
WWAARRNNIINNGG
RReeppllaaccee MMaannuuaall iinn CCaabbiinneett AAfftteerr UUssee!!
FFaaiilluurree ttoo rreeppllaaccee tthhiiss IInnssttaallllaattiioonn,, OOppeerraattiioonn,, aanndd MMaaiinntteennaannccee mmaannuuaall iinn ccaabbiinneett aafftteerr uussee ccoouulldd pprreevveenntt ppeerrssoonnnneell ffrroomm aacccceessssiinngg nneecceessssaarryy ssaaffeettyy iinnffoorrmmaattiioonn aanndd ccoouulldd rreessuulltt iinn ddeeaatthh oorr sseerriioouuss iinnjjuurryy oorr eeqquuiippmmeenntt ddaammaaggee..
NNOOTTIICCEE
DDoo NNoott UUssee NNoonn--CCoommppaattiibbllee PPaarrttss oorr MMaatteerriiaallss!!
UUssee ooff nnoonn--ccoommppaattiibbllee ppaarrttss oorr mmaatteerriiaallss ccoouulldd rreessuulltt iinn eeqquuiippmmeenntt ddaammaaggee.. OOnnllyy ggeennuuiinnee TTrraannee®® rreeppllaacceemmeenntt ccoommppoonneennttss wwiitthh iiddeennttiiccaall TTrraannee ppaarrtt nnuummbbeerrss sshhoouulldd bbee uusseedd iinn TTrraannee CCeennTTrraaVVaacc cchhiilllleerrss.. TTrraannee aassssuummeess nnoo rreessppoonnssiibbiilliittyy ffoorr ddaammaaggeess rreessuullttiinngg ffrroomm tthhee uussee ooff nnoonn--ccoommppaattiibbllee ppaarrttss oorr mmaatteerriiaallss..
NNoottee:: Graphic labels (shown above) are used for CE
application only.
IImmppoorrttaanntt::
Before servicing, disconnect all power sources and allow at least 30 minutes for capacitors to discharge.
All electrical enclosures—unit or remote —are IP2X.
CVHH-SVX001G-EN
3
X39003892001A
IInnttrroodduuccttiioonn
NNoottee:: Graphic labels (shown above) are used for CE
application only.
any other components originally attached to the fully assembled unit— compliance with the following is required to preserve the factory warranty:
Trane, or an agent of Trane specifically authorized to perform start-up and warranty of Trane® products, will perform or have direct on-site technical supervision of the disassembly and reassembly work.
The installing contractor must notify Trane—or an agent of Trane specifically authorized to perform startup and warranty of Trane® products—two weeks in advance of the scheduled disassembly work to coordinate the disassembly and reassembly work.
Start-up must be performed by Trane or an agent of Trane specifically authorized to perform startup and warranty of Trane® products.
Trane, or an agent of Trane specifically authorized to perform start-up and warranty of Trane® products, will provide qualified personnel and standard hand tools to perform the disassembly and reassembly work at a location specified by the contractor. The contractor shall provide the rigging equipment such as chain falls, gantries, cranes, forklifts, etc. necessary for the disassembly and reassembly work and the required qualified personnel to operate the necessary rigging equipment.
Factory Warranty Information
Compliance with the following is required to preserve the factory warranty:
AAllll UUnniitt IInnssttaallllaattiioonnss
Startup MUST be performed by Trane, or an authorized agent of Trane, to VALIDATE this WARRANTY. Contractor must provide a two-week startup notification to Trane (or an agent of Trane specifically authorized to perform startup).
AAddddiittiioonnaall RReeqquuiirreemmeennttss ffoorr UUnniittss RReeqquuiirriinngg DDiissaasssseemmbbllyy aanndd RReeaasssseemmbbllyy
When a new chiller is shipped and received from our Trane manufacturing location and, for any reason, it requires disassembly or partial disassembly, and reassembly— which could include but is not limited to the evaporator, condenser, control panel, compressor/ motor, economizer, purge, factory-mounted starter or
Copyright
This document and the information in it are the property of Trane, and may not be used or reproduced in whole or in part without written permission. Trane reserves the right to revise this publication at any time, and to make changes to its content without obligation to notify any person of such revision or change.
Trademarks
All trademarks referenced in this document are the trademarks of their respective owners.
Revision History
Refrigerant used in purge changed to R-513A
Running edits
4
CVHH-SVX001G-EN
Table of Contents
Unit Nameplate. . . . . . .. . . . . . .. . . . . . .. . . . . . . . 8
Compressor Nameplate . . . . . . . . . . . . . . . . . . . 9
Pressure Vessel Nameplates. . . . . . . . . . . . . . . 9
Model Number Descriptions. . . . . . . . . . . . . . . 11
Pre-Installation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
ASHRAE Standard 15 Compliance . . . . . . . . 12
Unit Shipment. . . . . . . . . . . . . . . . . . . . . . . . . . . 12
General Information . . . . . . . . . . . . . . . . . . . . . 12
Installation Requirements and
Contractor Responsibilities . . . . . . . . . . . . . . . 13
Storage Requirements . . . . . . . . . . . . . . . . . . . 14
Unit Components. . . . . . . . . . . . . . . . . . . . . . . . 16
Unit Clearances and Weights . . . . .. . . . . . .. . 17
Recommended Unit Clearances. . . . . . . . . . . 17
General Weights. . . . . . . . . . . . . . . . . . . . . . . . . 18
Weights (lb) . . . . . . . . . . . . . . . . . . . . . . . . . 18
Weights (kg) . . . . . . . . . . . . . . . . . . . . . . . . . 19
Installation: Mechanical . . . . . . .. . . . . . . . . . . . 22
Operating Environment . . . . . . . . . . . . . . . . . . 22
Foundation Requirements . . . . . . . . . . . . . . . . 22
Rigging . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
Standard Chiller Lift . . . . . . . . . . . . . . . . . . 22
Special Lift Requirements. . . . . . . . . . . . . 24
Unit Isolation. . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
Isolation Pads . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
Spring Isolators . . . . . . . . . . . . . . . . . . . . . . . . . 24
Leveling the Unit . . . . . . . . . . . . . . . . . . . . . . . . 26
Installation: Water Piping . . . .. . . . . . .. . . . . . . 28
Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
Water Treatment . . . . . . . . . . . . . . . . . . . . . . . . 28
Pressure Gauges . . . . . . . . . . . . . . . . . . . . . . . . 28
Valves—Drains and Vents . . . . . . . . . . . . . . . . 28
Strainers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
Required Flow-Sensing Devices. . . . . . . . . . . 29
Water Flow Detection Controller and
Sensor—ifm efector . . . . . . . . . . . . . . . . . . 29
Evaporator and Condenser Water
Piping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
Water Piping Connections . . . . . . . . . . . . . . . . 32
Waterbox Locations . . . . . . . . . . . . . . . . . . . . . 32
Grooved Pipe Coupling . . . . . . . . . . . . . . . . . . 33
Flange-connection Adapters . . . . . . . . . . . . . . 33
Victaulic Gasket Installation . . . . . . . . . . . . . . 34
Screw-Tightening Sequence for Water
Piping Connections . . . . . . . . . . . . . . . . . . . . . . 35
Flanges with 8 or 12 Screws. . . . . . . . . . . 35
Flanges with 16 or 20 Screws . . . . . . . . . 35
Pressure Testing Waterside Piping . . . . . . . . 35
Vent Piping . . . . . . .. . . . . . .. . . . . . .. . . . . . .. . . . 36
Refrigerant Vent Line . . . . . . . . . . . . . . . . . . . . 36
General Requirements. . . . . . . . . . . . . . . . 36
Purge Discharge . . . . . . . . . . . . . . . . . . . . . 36
Vent Line Materials. . . . . . . . . . . . . . . . . . . 36
Vent Line Sizing. . . . . . . . . . . . . . . . . . . . . . 36
Vent Line Installation. . . . . . . . . . . . . . . . . . . . . 37
Trane RuptureGuard . . . . . . . . . . . . . . . . . . . . . 39
General Information. . . . . . . . . . . . . . . . . . 39
Connection to External Vent Line and
Drip Leg. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
Vent Line Sizing Reference . . . . . . . . . . . . . . . 40
Insulation. .. . . . . . .. . . . . .. . . . . . .. . . . . . .. . . . . 45
Unit Insulation Requirements. . . . . . . . . . . . . 45
Insulation Thickness Requirements . . . . . . . 45
Factory Applied Insulation . . . . . . . . . . . . 45
Installation: Controls . .. . . . . . .. . . . . . .. . . . . . 47
UC800 Specifications . . . . . . . . . . . . . . . . . . . . 47
Power Supply. . . . . . . . . . . . . . . . . . . . . . . . 47
Wiring and Port Descriptions. . . . . . . . . . 47
Communication Interfaces . . . . . . . . . . . . 48
Rotary Switches . . . . . . . . . . . . . . . . . . . . . 48
LED Description and Operation. . . . . . . . 48
Installing the Tracer AdaptiView
Display . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
Adjusting the Tracer AdaptiView Display
Arm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
Electrical Requirements . . . . . .. . . . . . .. . . . . . 53
CVHH-SVX001G-EN
5
TTaabbllee ooff CCoonntteennttss
Installation Requirements . . . . . . . . . . . . . . . . 53
Electrical Requirements . . . . . . . . . . . . . . . . . . 53
Trane-supplied Remote Starter
Wiring . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
Customer-supplied Remote Starter
Wiring . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
Current Transformer and Potential
Transformer Wire Sizing . . . . . . . . . . . . . . . . . 57
Power Supply Wiring. . . . . . . .. . . . . . .. . . . . . . 58
Three-Phase Power . . . . . . . . . . . . . . . . . . . . . . 58
Circuit Breakers and Fused
Disconnects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
CE for Control Power Transformer
Option . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
CE for Starter or Drive . . . . . . . . . . . . . . . . 60
Control Power Transformer
Option . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
Power Factor Correction Capacitors
(Optional) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
Interconnecting Wiring. . . . . . . . . . . . . . . . . . . 63
Starter to Motor Wiring (Remote-
Mounted Starters Only) . . . . . . . . . . . . . . . . . . 64
Ground Wire Terminal Lugs. . . . . . . . . . . 64
Terminal Clamps. . . . . . . . . . . . . . . . . . . . . 65
Wire Terminal Lugs . . . . . . . . . . . . . . . . . . 65
Bus Bars . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
Starter to Control Panel Wiring . . . . . . . . . . . 66
Medium Voltage Motor. . . .. . . . . . .. . . . . . .. . 68
Motor Terminal Box . . . . . . . . . . . . . . . . . . . . . 68
Motor Supply Wiring. . . . . . . . . . . . . . . . . . . . . 69
Motor Terminals . . . . . . . . . . . . . . . . . . . . . 69
Ground Wire Terminal Lug. . . . . . . . . . . . 70
CE for Medium Voltage Starter. . . . . . . . . . . . 70
System Control Circuit Wiring (Field
Wiring) . . . . .. . . . . . .. . . . . . .. . . . . . . . . . . . . . . . . 72
Water Pump Interlock Circuits and Flow
Switch Input . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
Chilled Water Pump . . . . . . . . . . . . . . . . . . 73
Chilled Water Proof of Flow . . . . . . . . . . . 73
Condenser Water Pump . . . . . . . . . . . . . . 73
Condenser Water Proof of Flow . . . . . . . 74
Sensor Circuits . . . . . . . . . . . . . . . . . . . . . . . . . . 74
CWR—Outdoor Option . . . . . . . . . . . . . . . 76
Optional Control and Output
Circuits. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
Optional Tracer Communication
Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
Starter Module Configuration. . . . . . . . . . . . . 76
Schematic Wiring Drawings . . . . . . . . . . . . . . 76
Operating Principles. . . . . . . . . . . . . . . . . . . . .. . 77
General Requirements . . . . . . . . . . . . . . . . . . . 77
Cooling Cycle . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
CVHH 3-Stage Compressor . . . . . . . . . . . 77
CVHH 2-Stage Compressor . . . . . . . . . . . 77
Oil and Refrigerant Pump . . . . . . . . . . . . . . . . 78
Compressor Lubrication
System. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
Motor Cooling System . . . . . . . . . . . . . . . . . . . 81
Tracer AdaptiView Display . . . . . . . . . . . . . . . 81
RuptureGuard . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
EarthWise Purge. . . . . . . . . . . . . . . . . . . . . . . . . 81
General Information. . . . . . . . . . . . . . . . . . 81
Start-up and Shut-down . . . . . . . . . . . . . . . . .. . 86
Sequence of Operation. . . . . . . . . . . . . . . . . . . 86
Software Operation Overview
Diagram. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
Start-up Sequence of Operation—
Wye-delta . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
Power Up Diagram. . . . . . . . . . . . . . . . . . . 90
Ice Machine Control. . . . . . . . . . . . . . . . . . . . . . 90
Free Cooling Cycle. . . . . . . . . . . . . . . . . . . . . . . 92
Hot Water Control . . . . . . . . . . . . . . . . . . . . . . . 93
Control Panel Devices and Unit-Mounted
Devices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
Unit Control Panel . . . . . . . . . . . . . . . . . . . 93
User-Defined Language
Support . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
Unit Start-up and Shut-down
Procedures. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
Daily Unit Start-up . . . . . . . . . . . . . . . . . . . 95
6
CVHH-SVX001G-EN
TTaabbllee ooff CCoonntteennttss
Seasonal Unit Start-up . . . . . . . . . . . . . . . 95
Daily Unit Shut-down . . . . . . . . . . . . . . . . 96
Seasonal Unit Shut-down. . . . . . . . . . . . . 96
EarthWise Purge. . . . . . . . . . . . . . . . . . . . . . . . . 96
Sequence of Operations . . . . . . . . . . . . . . 96
Air Removal . . . . . . . . . . . . . . . . . . . . . . . . 100
Pump-out Operating Sequence. . . . . . . 100
Carbon Tank and Regeneration
Subsystem . . . . . . . . . . . . . . . . . . . . . . . . . 101
Recommended Maintenance . . . . . . . . . . .. . 105
Record Keeping Forms . . . . . . . . . . . . . . . . . . 105
Normal Operation . . . . . . . . . . . . . . . . . . . . . . 106
Recommended Compressor Oil
Change . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
Purge System . . . . . . . . . . . . . . . . . . . . . . . . . . 107
Leak Checking Based on Purge Pump
Out Time . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
Leak Testing . . . . . . . . . . . . . . . . . . . . . . . . . . . 108
Recommended System
Maintenance . . . . . . . . . . . . . . . . . . . . . . . . . . . 109
Condenser . . . . . . . . . . . . . . . . . . . . . . . . . 109
Evaporator . . . . . . . . . . . . . . . . . . . . . . . . . 109
Waterbox and Tubesheet Protective
Coatings . . . . . . . . . . . . . . . . . . . . . . . . . . . 109
Sacrificial Anodes. . . . . . . . . . . . . . . . . . . 109
RuptureGuard Maintenance . . . . . . . . . . . . . 110
EarthWise Purge. . . . . . . . . . . . . . . . . . . . . . . . 110
Maintenance . . . . . . . . . . . . . . . . . . . . . . . 110
Waterbox Removal and
Installation . . . . . . .. . . . . . .. . . . . . .. . . . . . . . . . 113
Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113
Procedure. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113
Reassembly . . . . . . . . . . . . . . . . . . . . . . . . 114
Torque Requirements and Waterbox
Weights . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114
Screw-Tightening Sequence for
Waterboxes . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116
Evaporator Waterbox Covers . . . . . . . . 116
Condenser Waterbox Covers. . . . . . . . . 116
Heat Recovery Condenser Waterbox
Covers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117
Appendix A: Forms and Check
Sheets . . . . . .. . . . . . .. . . . . .. . . . . . .. . . . . . .. . . 118
Unit Start-up/Commissioning. . . . . . . . . . . . 118
Appendix B: CenTraVacChiller Installation Completion and Request for
Trane Service. . . . .. . . . . .. . . . . . .. . . . . . .. . . . 119
Appendix C: CVHH CenTraVacChiller Start-up Tasks to be Performed by
Trane . . . . . . . . . . . . . . . . . . . . . .. . . . . . .. . . . . . .. 121
Appendix D: CVHH CenTraVacChiller
Annual Inspection List . . . . . . . . . . . . . . . . . . . . 123
Appendix E: CVHH CenTraVacChiller
Operator Log . . .. . . . . . .. . . . . . . . . . . . . . . . . . . 124
CVHH-SVX001G-EN
7

Unit Nameplate

The unit nameplate is located on the left side of the control panel. A typical unit nameplate is illustrated in the following figure and contains the following information:
Unit model and size descriptor
Unit electrical requirements
Correct operating charge and refrigerant type
Unit test pressures and maximum operating pressures
Unit literature
SSeerriiaall NNuummbbeerr.. The unit serial number provides the specific chiller identity. Always provide this serial number when calling for service or during parts identification.
SSeerrvviiccee MMooddeell NNuummbbeerr.. The service model represents the unit as built for service purposes. It identifies the selections of variable unit features required when ordering replacements parts or requesting service.
NNoottee:: Unit-mounted starters are identified by a
separate number found on the starter.
PPrroodduucctt DDeessccrriippttiioonn BBlloocckk.. The CenTraVacchiller models are defined and built using the Product Definition and Selection (PDS) system. This system describes the product offerings using a product coding block which is made up of feature categories and codes that identify all characteristics of a unit.
Figure 1. Typical unit nameplate
8
CVHH-SVX001G-EN
TRANE MADE IN USA X39002458010B
MODEL NO.
SALES ORDERSERIAL NO.
16 6
34 6
290 10
75 10
290 10
75 10
290 10
75 10
DETAIL B
ECONOMIZER
DETAIL C OIL TANK
DETAIL D
EVAPORATOR
A
B
C
D
2614
DETAIL A
CONDENSER
4935
939
STD
HTRC
1131
789
CD-001
UUnniitt NNaammeeppllaattee

Compressor Nameplate

The compressor assembly has a separate model number which is required to identify internal and external compressor parts. The model number begins with “CCHH” and the nameplate is located on the foot of the volute.

Pressure Vessel Nameplates

Figure 3. ASME nameplate (all dimensions are metric)
Figure 2. Compressor nameplate
NNoottee:: The serial number space on the compressor
nameplate will be intentionally left blank.
CVHH-SVX001G-EN
9
4
4
50,8
50,8
12,7
25,4
DETAIL A
ECONOMIZER
D
A
B
C
DETAIL B
CONDENSER
939
CENTERED
1131
DETAIL C OIL TANK
2735
DETAIL D
EVAPORATOR
789
CD-001
UUnniitt NNaammeeppllaattee
Figure 4. PED nameplate (all dimensions are metric)
10
CVHH-SVX001G-EN

Model Number Descriptions

CVHH CenTraVac Chiller Description
Digit 1, 2 — Simplex CenTraVac™™ Chiller
Digit 3 — Direct Drive
Digit 4 — Development Sequence
Digit 5, 6, 7 — Nominal Total Compressor Tonnage
Digit 8 — Unit Motor Voltage
Digit 9 — Unit Type
Digit 10, 11 — Design Sequence
Digit 12 — Manufacturing Location
Digit 13 — Hot Gas Bypass (HGB)
Digit 14 — Starter Type
Digit 15 — Control Enclosure
Digit 16 — Evaporator Shell Size
Digit 17 — Evaporator Tube Bundle
Digit 18 — Evaporator Tubes
Digit 19 — Evaporator Waterbox
Digit 20 — Condenser Shell Size
Digit 21 — Condenser Tube Bundle
Digit 32 — Control: Enhanced Protection
Digit 33 — Control: Extended Operation
Digit 34 — Tracer®® Communication Interface
Digit 35 — Special Options
Digit 36 — Control: Water Flow Control
Digit 37 — Control: Chilled Water Reset
Digit 38 — Control: Heat Recovery/ Auxiliary Temperature Sensors
Digit 39 — Industrial Chiller Package (INDP)
Digit 40 — Control Power Transformer (CPTR)
Digit 41 — Thermal Dispersion Water Flow Proving
Digit 42 — Compressor Motor Frame Size
CCHH Centrifugal Compressor Description
The compressor assembly has a separate model number which is required to identify internal and external compressor parts. The model number begins with “CCHH” and the nameplate is located on the foot of the volute.
Digit 1, 2 — Unit Function
Digit 3 — Drive
Digit 4 — Development Sequence
Digit 5, 6, 7 — Nominal Total Compressor Tonnage
Digit 8 — Compressor Motor Voltage
Digit 9 — Compressor Motor Frame Size
Digit 10, 11 — Design Sequence
Digit 12 — Manufacturing Location
Digit 13, 14, 15, 16 — Compressor Motor Power (kW)
Digit 17, 18, 19, 20 — First Stage Compressor Impeller (IMP1)
Digit 21, 22, 23, 24 — Second Stage Compressor Impeller (IMP2)
Digit 25, 26, 27, 28 — Third Stage Compressor Impeller (IMP3)
Digit 29 — Motor and Terminal Board Configuration
Digit 30 — Resistant Temperature Detector
Digit 22 — Condenser Tubes
Digit 23 — Condenser Waterbox
Digit 24 — Auxiliary Condenser Size and Waterbox
Digit 25, 26 — Evaporator Orifice Size
Digit 27, 28 — Economizer Orifice Size
Digit 29, 30 — Condenser Orifice Size
Digit 31 — Unit Option
CVHH-SVX001G-EN
11

Pre-Installation

ASHRAE Standard 15 Compliance

Trane recommends that indoor CenTraVacchiller installations fully meet or exceed the guidelines of the current version of ASHRAE Standard 15, in addition to any applicable national, state, or local requirements. This typically includes:
A refrigerant monitor or detector that is capable of monitoring and alarming within the acceptable exposure level of the refrigerant, and that can actuate mechanical ventilation.
Audible and visual alarms, activated by the refrigerant monitor, inside the equipment room and outside of every entrance.
The equipment room should be properly vented to the outdoors, using mechanical ventilation that can be activated by the refrigerant monitor.
The purge discharge and the rupture disk must be properly piped to the outdoors.
If required by local or other codes, a self-contained breathing apparatus should be available in close proximity to the equipment room.
For the USA, refer to the latest copy of ASHRAE Standard 15 for specific guidelines. Trane assumes no responsibility for any economic, health, or environmental issues that may result from an equipment room’s design or function.
NNoottee:: The holding charge should register
approximately 5 psig (34.5 kPaG) at 72°F (22.2°C). Place a gauge on the access valve provided (indicated by arrow and circle in the following figure) on the refrigerant pump discharge line to verify the holding charge. This access valve is located on the front of the oil tank, which is at the right rear corner of the chiller. If the charge has escaped, contact your local Trane sales office for instructions.
3. The loose parts box and isolator pads ship on top of the control panel box.
4. Check the oil sump sight glasses to verify that the sump was factory-charged with 21 gallons (79.5 L) of oil. The oil level should be visible to about halfway in the top sight glass. If no oil level is visible, contact your local Trane sales office.
IImmppoorrttaanntt:: If isolation springs are installed, do NOT
block oil tank serviceability.
Figure 5. Refrigerant pump discharge line access valve

Unit Shipment

Inspect unit while it is still on the truck for any shipping damage. The chiller ships shrink-wrapped in a 0.010-in. (0.254 mm) recyclable film protective covering. Do NOT remove shrink-wrap for inspection! Inspect for damage to the shrink-wrap and determine if physical damage has occurred.
Each chiller ships from the factory as a hermetically assembled package; it is factory-assembled, -wired, and -tested. All openings except for the waterbox vent and drain holes are covered or plugged to prevent contamination during shipment and handling.“Unit
Components,” p. 16 shows an illustration of a typical
unit and its components. As soon as the unit arrives at the job site, inspect it thoroughly for damage and material shortages. In addition:
1. Verify the hermetic integrity of the unit by checking the chiller pressure for an indication of holding charge pressure.
2. To prevent damaging moisture from entering the unit and causing corrosion, each chiller is pressurized with 3 to 5 psig (20.7 to 34.5 kPaG) of dry nitrogen before shipment.

General Information

Regulations regarding waste handling are constantly changing. To ensure that personnel are in compliance with the latest local, state, and federal regulations, contact your local waste management office for the proper procedures on handling, disposal, transporting,
12
CVHH-SVX001G-EN
PPrree--IInnssttaallllaattiioonn
and storage of oil, oil filters, refrigerant filters, and filter dryer cores.

Installation Requirements and Contractor Responsibilities

A list of the contractor responsibilities typically associated with the unit installation process is provided.
Type of Requirement
Foundation
Rigging
Disassembly/Reassembly (as required)
Isolation
Electrical
Trane Supplied Trane Installed
Trane will perform or have direct on-site supervision of the disassembly and reassembly work (contact your local Trane office for pricing)
Circuit breakers or fusible disconnects (optional)
Unit-mounted starter (optional)
Power factor correction capacitors (PFCCs) (optional)
Trane Supplied Field Installed
Isolation pads or spring isolators
Jumper bars
Temperature sensor (optional outdoor air)
Flow switches (may be field supplied); for installation instructions for the ifm efector® flow detection controller and sensor, refer to “Water
Flow Detection Controller and Sensor— ifm efector,” p. 29 or
Trane literature that shipped with the device
Remote-mounted starter (optional)
WWAARRNNIINNGG
CCoommbbuussttiibbllee MMaatteerriiaall!!
FFaaiilluurree ttoo ffoollllooww iinnssttrruuccttiioonnss bbeellooww ccoouulldd rreessuulltt iinn ddeeaatthh oorr sseerriioouuss iinnjjuurryy oorr eeqquuiippmmeenntt ddaammaaggee.. SShhrriinnkk--wwrraapp iiss aa ccoommbbuussttiibbllee mmaatteerriiaall.. AAvvooiidd ooppeenn ffllaammeess aanndd hhoott ssppaarrkkss..
NNoottee:: The chiller should remain within its protective
shrink-wrap covering during storage.
Field Supplied Field Installed
Meet foundation requirements
Safety chains
Clevis connectors
Lifting beam
Isolation pads or spring isolators
Optional spring isolators, when required, are installed by others; do NOT overload springs and do NOT install isolation springs if they block serviceable parts such as the oil tank system, service valves, etc.
Circuit breakers or fusible disconnects (optional)
Electrical connections to unit-mounted starter (optional)
Electrical connections to remote-mounted starter (optional)
Wiring sizes per submittal and National Electric Code (NEC) or local codes
PFCCs (remote mounted starter optional only)
Terminal lugs
Ground connection(s)
Jumper bars
BAS wiring (optional)
Inter-processor communication (IPC) wiring (AFD and remote-mounted starters only)
Control voltage wiring (AFD and remote-mounted starters only)
Oil pump interlock wiring (AFD and remote mounted starters only)
High condenser pressure interlock wiring (AFD and remote-mounted starters only)
Chilled water pump contactor and wiring including interlock
Condenser water pump contactor and wiring including interlock
Option relays and wiring
CVHH-SVX001G-EN
13
PPrree--IInnssttaallllaattiioonn
Type of Requirement
Water piping
Relief
Insulation
Water Piping Connection Components
Other Materials
“Appendix B: CenTraVac Chiller Installation Completion and Request for Trane Service,” p. 119
(CTV-ADF001*-EN; refer to “Appendix A: Forms and
Check Sheets,” p. 118)
Chiller start-up commissioning
Post-commissioning transport of empty refrigerant containers for return or recycling
(a)
Start-up must be performed by Trane or an agent of Trane specifically authorized to perform start-up and warranty of Trane® products. Contractor shall provide Trane (or an agent of Trane specifically authorized to perform start-up) with notice of the scheduled start-up at least two weeks prior to the scheduled start-up.
(a)
Trane Supplied Trane Installed
Rupture disk assembly
RuptureGuard (optional)
Insulation (optional)
Flanged (optional)
Trane, or an agent of Trane specifically authorized to perform start-up of Trane® products
Trane Supplied Field Installed
Flow sensing devices (may be field supplied)
Flanged (optional)
Victaulic® to flange adapter for 150 psig (1034.2 kPaG) waterboxes
Field Supplied Field Installed
Taps for flow sensing devices
Taps for thermometers and gauges
Thermometers
Strainers (as required)
Water flow pressure gauges
Isolation and balancing valves in water piping
Vents and drain on waterbox valves (one each per pass)
Pressure relief valves (for waterboxes as required)
Vent line and flexible connector and vent line from rupture disk to atmosphere
Insulation
Chiller feet insulation
Victaulic®
Victaulic® coupling for 150 psig (1034.2 kPaG) and 300 psig (2068.4 kPaG) waterboxes
Fasteners for flanged-type connections (optional)
Material and equipment to perform leak testing
Dry nitrogen (8 psig [55.2 kPaG] maximum per machine as needed)
To be completed by installing contractor prior to contacting Trane for start-up
Move empty refrigerant containers to an easily accessible point of loading

Storage Requirements

NNOOTTIICCEE
IInnssuullaattiioonn DDaammaaggee!!
FFaaiilluurree ttoo ffoollllooww tthheessee iinnssttrruuccttiioonnss ccoouulldd rreessuulltt iinn iinnssuullaattiioonn ddaammaaggee.. TToo pprreevveenntt ddaammaaggee ttoo ffaaccttoorryy iinnssttaalllleedd iinnssuullaattiioonn::
•• DDoo nnoott aallllooww tthhee iinnssuullaattiioonn ttoo bbee eexxppoosseedd ttoo eexxcceessssiivvee ssuunnlliigghhtt.. SSttoorree iinnddoooorrss oorr ccoovveerr wwiitthh ccaannvvaass ttoo pprreevveenntt eexxppoossuurree..
•• DDoo nnoott uussee tthhiinnnneerrss aanndd ssoollvveennttss oorr ootthheerr ttyyppeess ooff ppaaiinntt.. UUssee oonnllyy wwaatteerr bbaassee llaatteexx..
14
CVHH-SVX001G-EN
PPrree--IInnssttaallllaattiioonn
Less than 1 month 1–6 months Greater than 6 months
Location requirements:
Solid foundation
Vibration free
Dry
Temperature range -40°F to 158°F (-40°C to 70°C)
Location requirements:
Solid foundation
Vibration free
Dry
Temperature range -40°F to 158°F (-40°C to 70°C)
Do not remove any plastic coverings Do not remove any plastic coverings Do not remove any plastic coverings
Do not charge the chiller with refrigerant
If additional refrigerant is on site, follow manufacturer’s storage requirements
Verify dry nitrogen pressure using gauge located on the evaporator shell reads 3 to 5 psig (20.7 to 34.5 kPaG)
Notify the local Trane office if charge has escaped
Do not charge the chiller with refrigerant
If additional refrigerant is on site, follow manufacturer’s storage requirements
Verify dry nitrogen pressure using gauge located on the evaporator shell reads 3 to 5 psig (20.7 to 34.5 kPaG)
Notify the local Trane office if charge has escaped
Do not operate purge unit Do not operate purge unit Do not operate purge unit
Verify waterbox and tube bundles are clean and dry
(a)
If the chiller will be stored for more than six months after production, contact your local Trane Service Agency for required extended storage actions to minimize impact to the chiller and preserve the warranty.
Location requirements:
Solid foundation
Vibration free
Dry
Temperature range -40°F to 158°F (-40°C to 70°C)
Do not charge the chiller with refrigerant
If additional refrigerant is on site, follow manufacturer’s storage requirements
Verify dry nitrogen pressure using gauge located on the evaporator shell reads 3 to 5 psig (20.7 to 34.5 kPaG)
Notify the local Trane office if charge has escaped
Verify waterbox and tube bundles are clean and dry
Conduct an oil analysis and verify no oil breakdown
(a)
Repeat yearly
Replace oil if breakdown has occurred
If no oil analysis program has been followed, replace oil prior to start-up
CVHH-SVX001G-EN
15
1
2
3
4
5
6
7
8
9
0
-
0
PPrree--IInnssttaallllaattiioonn

Unit Components

NNoottee:: The control panel side of the unit is always
designated as the front side of the unit.
Figure 6. Typical CVHH CenTraVac™™ chiller
1. Suction Elbow
2. Compressor
3. Terminal Box
4. Control Panel
5. Condenser
6. Motor Housing
7. Economizer
8. Oil Tank Assembly
9. Purge
10. Evaporator
11. Display Panel
16
CVHH-SVX001G-EN

Unit Clearances and Weights

3 ft. (92 cm)
A
18 in. (46 cm)
Economizer
Condenser
Evaporator
Motor
Right-hand tube pull shown, apply tube pull clearance dimension to left end for left-hand tube pull.
Optional unit-mounted starter
These dimensions per NEC Article 110
B
C
D
E

Recommended Unit Clearances

Adequate clearances around and above the chiller are required to allow sufficient access for service and maintenance operations. Specific unit clearance requirements are indicated in the submittal package provided for your unit.
Do NOT install piping or conduit above the compressor motor assembly or behind the suction elbow of the unit.
Minimum vertical clearance above the unit is 3 ft (92 cm).
Figure 7. Clearance requirements
Use a housekeeping pad to provide better service clearances; refer to submittal for more information.
Per National Electric Code (NEC) Article 110: Unit mounted starters from 0 to 600V require a 42 inch (107 cm) clearance, 601 to 2500V require a 48 inch (122 cm) clearance, and 2501 to 9000V require a 60 inch (152 cm) clearance. Refer to NEC and local electrical codes for starter and control panel clearance requirements.
Table 1. Clearance requirements
Shell Combo
100M/100M
100M/10HM
130M/130M
130M/13HM
CVHH-SVX001G-EN
100L/100L
in.
84 213 166 422 416 1057 12 30 122 310
84 213 166 422 416 1057 31 79 118 300
84 213 186 422 457 1161 12 30 122 310
88 224 166 422 420 1067 29 74 109 277
88 224 166 422 420 1067 31 79 123 312
in.
cm
A B C D E
cm
in.
cm
in.
cm
in.
cm
17
UUnniitt CClleeaarraanncceess aanndd WWeeiigghhttss
Table 1. Clearance requirements (continued)
Shell Combo
160M/200M
160M/20HM
200L/200L
200L/20HL
200L/220L
220L/220L
220L/22HL
Note: All dimensions are approximate; refer to the unit submittal package for exact dimensions for your unit.
A B C D E
in.
96 244 166 422 428 1087 37 94 112 285
96 244 166 422 428 1087 36 91 128 325
107 272 186 472 479 1217 34 86 111 282
107 272 186 472 479 1217 37 94 131 333
107 272 186 472 480 1219 37 94 120 305
120 305 186 472 493 1252 38 97 118 300
120 305 186 472 492 1250 42 107 143 363
cm
in.
cm
in.
cm

General Weights

Weights (lb)

IImmppoorrttaanntt:: The weight information provided here
should be used for general information only. Trane does not recommend using this weight information for considerations relative to chiller handling, rigging, or placement. The large number of variances between chiller selections drives variances in chiller weights that are not recognized in these tables. For specific weights for your chiller, refer to your submittal package.
in.
cm
in.
cm
Table 2. Representative weights, 60 Hz chillers (lb)
Model
CVHH
Notes:
1. TECU tubes, 0.028 in. tube wall thickness.
2. 300 psig marine waterboxes.
3. Heaviest possible bundle and motor combination.
4. Operating weights assume the largest possible refrigerant charge.
5. Industrial Control Panel (INDP) option, add 50 lb.
6. Control Power Transformer (CPTR) option, add 280 lb.
7. Supplemental Motor Protection (SMP) option, add 500 lb.
8. To calculate the maximum chiller weight with starter/drive, add the starter/AFD weight from the following table (maximum weights, unit-mounted
starters/AFDs [lb]) to the chiller maximum weight from this table.
Comp Size
NTON EVSZ CDSZ
900–1200 1228 100M 100M 47451 41071
900–1200 1228 100L 100L 49252 42368
900–1200 1340 100M 10HM 54999 47798
900–1200 1340 130M 130M 52868 44894
900–1200 1340 130M 13HM 62184 53398
900–1200 1340 160M 200M 63653 53621
900–1200 1340 200L 220L 71963 58931
900–1200 1340 220L 220L 79082 64664
1500–1700 1340 200L 200L 70921 59137
1500–1700 1340 200L 20HL 80262 67562
1500–1700 1340 220L 220L 79082 64664
1500–1700 1340 220L 22HL 93396 78060
CPKW
Evap Size
Cond Size
Weights without Starters
Operating Shipping
18
CVHH-SVX001G-EN
UUnniitt CClleeaarraanncceess aanndd WWeeiigghhttss
Table 3. Representative weights, 50Hz chillers (lb)
Model
CVHH
Notes:
1. TECU tubes, 0.028 in. tube wall thickness.
2. 300 psig marine waterboxes.
3. Heaviest possible bundle and motor combination.
4. Operating weights assume the largest possible refrigerant charge.
5. Industrial Control Panel (INDP) option, add 50 lb.
6. Control Power Transformer (CPTR) option, add 280 lb.
7. Supplemental Motor Protection (SMP) option, add 500 lb.
8. To calculate the maximum chiller weight with starter/drive, add the starter/AFD weight from the following table (maximum weights, unit-mounted
starters/AFDs [lb]) to the chiller maximum weight from this table.
Comp Size
NTON EVSZ CDSZ
950–1050 1023 100M 100M 49024 42643
950–1050 1023 100L 100L 50824 43940
950–1050 1023 100M 10HM 56723 49522
950–1050 1023 130M 130M 54592 46618
950–1050 1023 130M 13HM 63908 55122
950–1050 1023 160M 200M 65377 55345
950–1050 1023 200L 220L 73687 60655
950–1050 1023 220L 220L 80806 66388
1550 1023 200L 200L 72345 60561
1550 1023 200L 20HL 81686 68986
1550 1023 220L 220L 80506 66088
1550 1023 220L 22HL 94820 79484
CPKW
Evap Size
Cond Size
Weights without Starters
Operating Shipping
Table 4. Maximum weights, unit-mounted starters/
Adaptive Frequency™™ Drives (AFDs) (lb)
Low Voltage (less than 600 volts)
Adaptive Frequency Drive (less than 600 volts)
Medium Voltage (2300–6600 volts)
Note: All weights are nominal and ±10%.
Wye-delta
Solid State 557
900 amp
1210 amp
Across-the-line 652
Primary Reactor
Autotransformer 1702
557
3000
3000
1602

Weights (kg)

IImmppoorrttaanntt:: The weight information provided here
should be used for general information only. Trane does not recommend using this weight information for considerations relative to chiller handling, rigging, or placement. The large number of variances between chiller selections drives variances in chiller weights that are not recognized in these tables. For specific weights for your chiller, refer to your submittal package.
CVHH-SVX001G-EN
19
UUnniitt CClleeaarraanncceess aanndd WWeeiigghhttss
Table 5. Representative weights, 60 Hz chillers (kg)
Model
CVHH
Notes:
1. TECU tubes, 0.71 mm tube wall thickness.
2. 2068.4 kPaG marine waterboxes.
3. Heaviest possible bundle and motor combination.
4. Operating weights assume the largest possible refrigerant charge.
5. Industrial Control Panel (INDP) option, add 23 kg.
6. Control Power Transformer (CPTR) option, add 127 kg.
7. Supplemental Motor Protection (SMP) option, add 227 kg.
8. To calculate the maximum chiller weight with starter/drive, add the starter/AFD weight from the following table (maximum weights, unit-mounted
starters/AFDs [kg]) to the chiller maximum weight from this table.
Comp Size
NTON EVSZ CDSZ
900–1200 1228 100M 100M 21523 18629
900–1200 1228 100L 100L 22340 19218
900–1200 1340 100M 10HM 24947 21681
900–1200 1340 130M 130M 23981 20364
900–1200 1340 130M 13HM 28206 24221
900–1200 1340 160M 200M 28873 24322
900–1200 1340 200L 220L 32642 26731
900–1200 1340 220L 220L 35871 29331
1500–1700 1340 200L 200L 32169 26824
1500–1700 1340 200L 20HL 36406 30646
1500–1700 1340 220L 220L 35871 29331
1500–1700 1340 220L 22HL 42364 35407
CPKW
Evap Size
Cond Size
Weights without Starters
Operating Shipping
Table 6. Representative weights, 50 Hz chillers (kg)
Model
CVHH
Notes:
1. TECU tubes, 0.71 mm tube wall thickness.
2. 2068.4 kPaG marine waterboxes.
3. Heaviest possible bundle and motor combination.
4. Operating weights assume the largest possible refrigerant charge.
5. Industrial Control Panel (INDP) option, add 23 kg.
6. Control Power Transformer (CPTR) option, add 127 kg.
7. Supplemental Motor Protection (SMP) option, add 227 kg.
8. To calculate the maximum chiller weight with starter/drive, add the starter/AFD weight from the following table (maximum weights, unit-mounted
starters/AFDs [kg]) to the chiller maximum weight from this table.
Comp Size
NTON EVSZ CDSZ
950–1050 1023 100M 100M 22237 19343
950–1050 1023 100L 100L 23053 19931
950–1050 1023 100M 10HM 25729 22463
950–1050 1023 130M 130M 24763 21146
950–1050 1023 130M 13HM 28988 25003
950–1050 1023 160M 200M 29655 25104
950–1050 1023 200L 220L 33424 27513
950–1050 1023 220L 220L 36653 30113
1550 1023 200L 200L 32815 27470
1550 1023 200L 20HL 37052 31292
1550 1023 220L 220L 36517 29977
1550 1023 220L 22HL 43010 36053
CPKW
Evap Size
Cond Size
Weights without Starters
Operating Shipping
20
CVHH-SVX001G-EN
UUnniitt CClleeaarraanncceess aanndd WWeeiigghhttss
Table 7. Maximum weights, unit-mounted starters/
Adaptive Frequency™™ Drives (AFD) (kg)
Low Voltage (less than 600 volts)
Adaptive Frequency Drive (less than 600 volts)
Wye-delta
Solid State 253
900 amp
1210 amp
253
1361
1361
Table 7. Maximum weights, unit-mounted starters/ Adaptive Frequency™™ Drives (AFD) (kg) (continued)
Medium Voltage (2300–6600 volts)
Note: All weights are nominal and ±10%.
Across-the-line 296
Primary Reactor
Autotransformer 772
727
CVHH-SVX001G-EN
21

Installation: Mechanical

Operating Environment

IImmppoorrttaanntt::
The standard chiller is designed for indoor use only and as such has NEMA Type 1 or IP 20 enclosures.
For chillers in unheated equipment rooms, contact your local Trane Service Agency for methods to ensure that the oil temperature is maintained suitable for proper operation of the chiller.
NNOOTTIICCEE
EEqquuiippmmeenntt FFaaiilluurree!!
UUnniitt ooppeerraattiinngg aatt aammbbiieenntt tteemmppeerraattuurreess eexxcceeeeddiinngg 110044°°FF ((4400°°CC)) ccoouulldd rreessuulltt iinn AAFFDD//ssttaarrtteerr ccoommppoonneenntt ddaammaaggee dduuee ttoo tthhee ppaanneell’’ss iinnaabbiilliittyy ttoo ddiissssiippaattee hheeaatt aaddeeqquuaatteellyy.. FFoorr CCDDHHFF,, CCDDHHGG,, CCVVHHEE,, CCVVHHFF,, CCVVHHGG,, CCVVHHLL,, CCVVHHMM,, aanndd CCVVHHSS CCeennTTrraaVVaacc cchhiilllleerrss,, uunniittss ooppeerraattiinngg aatt tthheessee tteemmppeerraattuurreess ccoouulldd aallssoo ffaattiigguuee tthhee uunniitt’’ss rruuppttuurree ddiisskk,, ccaauussiinngg iitt ttoo bbrreeaakk aatt aa rreedduucceedd rreeffrriiggeerraanntt pprreessssuurree ((<<1155 ppssiigg [[<<110033..44 kkPPaaGG]])).. IIff aannyy ooff tthheessee aaddvveerrssee ooppeerraattiinngg ccoonnddiittiioonnss aarree pprreesseenntt,, ttaakkee nneecceessssaarryy aaccttiioonn ttoo iimmpprroovvee tthhee eeqquuiippmmeenntt rroooomm eennvviirroonnmmeenntt..
To ensure that electrical components operate properly, do NOT locate the chiller in an area exposed to dust, dirt, corrosive fumes, or excessive heat and humidity. The ambient temperature range for chiller operation is 34°F to 104°F (1.1°C to 40°C).

Foundation Requirements

Chiller mounting surface must be:
rigid non-warping mounting pads or a concrete foundation, and
able to support the chiller at its full operating weight (including completed piping and full operating charges of refrigerant, oil, and water).
For proper unit operation, the chiller must be level within 1/16 in. (1.6 mm) over its length and width when set into place on the mounting surface. “Weights
(lb),” p. 18 and “Weights (kg),” p. 19 show
approximate weights for various chiller sizes and options in pounds and kilograms, respectively.
NNoottee:: For specific weight information, refer to the unit
submittal package.
IImmppoorrttaanntt:: Trane will not assume responsibility for
equipment problems resulting from an improperly designed or constructed foundation.

Rigging

Lifting is the recommended method for moving chillers. Suggested lifting arrangements for standard units are described in “Standard Chiller Lift,” p. 22.
NNoottee:: The lifting beam used for CenTraVac
must be at least long.
WWAARRNNIINNGG
HHeeaavvyy OObbjjeecctt!!
FFaaiilluurree ttoo ffoollllooww iinnssttrruuccttiioonnss bbeellooww ccoouulldd rreessuulltt iinn uunniitt ddrrooppppiinngg wwhhiicchh ccoouulldd rreessuulltt iinn ddeeaatthh oorr sseerriioouuss iinnjjuurryy,, aanndd eeqquuiippmmeenntt oorr pprrooppeerrttyy--oonnllyy ddaammaaggee.. EEnnssuurree tthhaatt aallll tthhee lliiffttiinngg eeqquuiippmmeenntt uusseedd iiss pprrooppeerrllyy rraatteedd ffoorr tthhee wweeiigghhtt ooff tthhee uunniitt bbeeiinngg lliifftteedd.. EEaacchh ooff tthhee ccaabblleess ((cchhaaiinnss oorr sslliinnggss)),, hhooookkss,, aanndd sshhaacckklleess uusseedd ttoo lliifftt tthhee uunniitt mmuusstt bbee ccaappaabbllee ooff ssuuppppoorrttiinngg tthhee eennttiirree wweeiigghhtt ooff tthhee uunniitt.. LLiiffttiinngg ccaabblleess ((cchhaaiinnss oorr sslliinnggss)) mmaayy nnoott bbee ooff tthhee ssaammee lleennggtthh.. AAddjjuusstt aass nneecceessssaarryy ffoorr eevveenn uunniitt lliifftt..
NNOOTTIICCEE
WWiirriinngg DDaammaaggee!!
DDaammaaggee ttoo uunniitt wwiirriinngg ccoouulldd rreessuulltt iinn eeqquuiippmmeenntt ffaaiilluurree.. CCaarree mmuusstt bbee ttaakkeenn dduurriinngg rriiggggiinngg,, aasssseemmbbllyy aanndd ddiissaasssseemmbbllyy ttoo aavvooiidd ddaammaaggiinngg uunniitt wwiirriinngg..

Standard Chiller Lift

WWAARRNNIINNGG
PPrrooppeerr DDiiaammeetteerr CClleevviiss RReeqquuiirreedd ttoo LLiifftt UUnniittss!!
FFaaiilluurree ttoo ffoollllooww iinnssttrruuccttiioonnss bbeellooww ccoouulldd rreessuulltt iinn ddeeaatthh oorr sseerriioouuss iinnjjuurryy.. AA cclleevviiss wwiitthh aa 22..2255--iinn.. ((55..7722--ccmm)) ddiiaammeetteerr ppiinn MMUUSSTT bbee uusseedd ttoo lliifftt tthheessee uunniittss.. UUssiinngg aa ssmmaalllleerr cclleevviiss wwoouulldd ccaauussee ttoooo mmuucchh ssttrreessss ttoo tthhee 22..2255--iinn.. ((55..7722--ccmm)) lliiffttiinngg hhoolleess wwhhiicchh ccoouulldd rreessuulltt iinn ppuullll-­oouutt ooff tthhee lliiffttiinngg hhoolleess ccaauussiinngg tthhee uunniitt ttoo ddrroopp ffrroomm tthhee rriiggggiinngg..
1. Insert clevis connections at the points indicated in the following figure. A 2.5 in. (63.5 mm) diameter lifting hole is provided at each of these points.
2. Attach the lifting chains or cables.
3. Once the lifting cables are in place, attach a safety chain or cable between the first-stage casing of the compressor and the lifting beam.
IImmppoorrttaanntt:: There should NOT be tension on this
safety cable; the cable is used only to prevent the unit from rolling during the lift.
chillers
22
CVHH-SVX001G-EN
Jack slots
15 feet (4.6 m) minimum effective length
Safety chain or cable
IInnssttaallllaattiioonn:: MMeecchhaanniiccaall
4. Position isolator pads or spring isolators beneath the chiller feet (refer to “Unit Isolation,” p. 24 for instructions).
NNoottee:: Follow instructions provided by the spring
isolator manufacturer, being careful to not damage isolator adjustment screw.
5. Once the isolators are in place, lower the chiller— working from end to end—in small increments to maintain stability.
6. When lift is complete, detach the clevis connections and safety chain.
Figure 8. Typical rigging arrangements
CVHH-SVX001G-EN
23
A
B
C
IInnssttaallllaattiioonn:: MMeecchhaanniiccaall

Special Lift Requirements

operating location, contact Trane. Also refer to
“Factory Warranty Information,” p. 4.
NNOOTTIICCEE
OOiill LLoossss!!
FFaaiilluurree ttoo pprreevveenntt ooiill mmiiggrraattiioonn oouutt ooff tthhee ooiill ttaannkk ccoouulldd rreessuulltt iinn eeqquuiippmmeenntt ffaaiilluurree oorr pprrooppeerrttyy--oonnllyy ddaammaaggee.. TToo pprreevveenntt ooiill mmiiggrraattiioonn oouutt ooff tthhee ooiill ttaannkk dduurriinngg lliiffttiinngg pprroocceedduurreess,, rreemmoovvee tthhee ooiill ffrroomm tthhee ooiill ttaannkk iiff tthhee uunniitt wwiillll bbee lliifftteedd aatt aannyy aannggllee ggrreeaatteerr tthhaann 1155°° ffrroomm hhoorriizzoonnttaall eenndd--ttoo--eenndd.. IIff ooiill iiss aalllloowweedd ttoo rruunn oouutt ooff tthhee ooiill ttaannkk iinnttoo ootthheerr aarreeaass ooff tthhee cchhiilllleerr,, iitt wwiillll bbee eexxttrreemmeellyy ddiiffffiiccuulltt ttoo rreettuurrnn tthhee ooiill ttoo tthhee ooiill ttaannkk eevveenn dduurriinngg ooppeerraattiioonn..
NNOOTTIICCEE
EEqquuiippmmeenntt DDaammaaggee!!
MMoovviinngg tthhee cchhiilllleerr uussiinngg aa ffoorrkk lliifftt ccoouulldd rreessuulltt iinn eeqquuiippmmeenntt oorr pprrooppeerrttyy--oonnllyy ddaammaaggee.. DDoo nnoott uussee aa ffoorrkk lliifftt ttoo mmoovvee tthhee cchhiilllleerr!!
NNOOTTIICCEE
CCoommpprreessssoorr AAlliiggnnmmeenntt!!
FFaaiilluurree ttoo pprreesseerrvvee ccoommpprreessssoorr aalliiggnnmmeenntt ccoouulldd rreessuulltt iinn eeqquuiippmmeenntt oorr pprrooppeerrttyy--oonnllyy ddaammaaggee.. LLiiffttiinngg tthhee ccoommpprreessssoorr//mmoottoorr aasssseemmbbllyy ffrroomm tthhee sshheellllss wwiitthhoouutt ffaaccttoorryy--iinnssttaalllleedd ddoowweelliinngg iinn tthhee ccoommpprreessssoorr ccaassttiinngg ffllaannggeess ccoouulldd rreessuulltt iinn mmiissaalliiggnnmmeenntt ooff tthhee ccoommpprreessssoorr ccaassttiinnggss..
If the chiller cannot be moved using a standard chiller lift, consider the following:
When job site conditions require rigging of the chiller at an angle greater than 45° from horizontal (end-to-end), the unit may require removal of the compressor. Contact Trane or an agent of Trane specifically authorized to perform start-up and warranty of Trane® products regarding the disassembly and reassembly work. For more information, refer to “Factory Warranty
Information,” p. 4.
NNoottee:: Disassembly and reassembly work includes
dowel-pinning the compressor and removing it from the unit. Contact Trane or an agent of Trane specifically authorized to perform start­up and warranty of Trane specific rigging instructions. Do NOT attempt to rotate the chiller onto its side.
When lifting the chiller is either impractical or undesirable, attach cables or chains to the jacking slots shown in the figure in “Standard Chiller
Lift,” p. 22; then push or pull the unit across a
smooth surface. Should the chiller be on a shipping skid, it is not necessary to remove the skid from the chiller before moving it into place.
If removal of the compressor or economizer assembly is necessary to move the chiller to the
®
products for

Unit Isolation

To minimize sound and vibration transmission through the building structure and to ensure proper weight distribution over the mounting surface, always install isolation pads or spring isolators under the chiller feet.
NNoottee:: Isolation pads (refer to the figure in “Isolation
Pads,” p. 24) are provided with each chiller
unless spring isolators are specified on the sales order.
Specific isolator loading data is provided in the unit submittal package. If necessary, contact your local Trane sales office for further information.
IImmppoorrttaanntt:: When determining placement of isolation
pads or spring isolators, remember that the control panel side of the unit is always designated as the front side of the unit.

Isolation Pads

When the unit is ready for final placement, position isolation pads (18-in. [457.2-mm] sides) end for end under the full length of the chiller leg. The pads measure 9 in. × 18 in. (228.6 mm x 457.2 mm) and on some units there may be small gaps between pads. Pads are provided to cover entire foot.
Figure 9. Isolation pad and dimensions
A = 3/8 in. (9.5 mm)
B = 18 in. (457.2 mm)
C = 9 in. (228.6 mm)
Remember that the chiller must be level within 1/16 in. (1.6 mm) over its length and width after it is lowered onto the isolation pads. In addition, all piping connected to the chiller must be properly isolated and supported so that it does not place any stress on the unit.

Spring Isolators

Spring isolators should be considered whenever chiller installation is planned for an upper story location. Base isolator placement is shown in the following figure; also refer to the following table.
24
CVHH-SVX001G-EN
1
2
3
4
1
2
3
4
5 6
Isolator Configuration 1
Isolator Configuration 2
Width
Length
Evap Width
Length
Width
Origin: Right front corner of evap right front foot
Condenser
Evaporator
Condenser
Evaporator
IInnssttaallllaattiioonn:: MMeecchhaanniiccaall
Figure 10. Isolation spring placement
Table 8. Isolation spring placement
Evap Width Length
in.
cm
in.
cm
Isolator
Config
EVSZ CDSZ
200L 200L 112.2 285.0 67 170.2 180 457.2 2 105.7 268.5 60.5 153.7
220L 220L 119.4 303.3 74 188.0 180 457.2 2 112.9 286.8 67.5 171.5
200L 20HL 132.3 336.0 67 170.2 180 457.2 2 125.8 319.5 60.5 153.7
220L 22HL 142.5 361.0 74 188.0 180 457.2 2 136.0 345.4 67.5 171.5
160M 20HM 127.3 323.3 61 154.9 160 406.4 2 120.8 306.8 54.5 138.4
200L 220L 112.3 285.2 67 170.2 180 457.2 2 105.8 268.7 60.5 153.7
160M 200M 106.4 270.3 61 154.9 160 406.4 2 99.9 253.7 54.5 138.4
100M 100M 104.1 264.4 160 406.4 1 97.6 247.9
100L 100L 104.1 264.4 180 457.2 1 97.6 247.9
130M 130M 109.3 277.6 160 406.4 1 102.8 261.1
100M 10HM 118.2 300.2 160 406.4 1 111.7 283.7
130M 13HM 123.4 313.4 160 406.4 1 116.9 296.9
in.
Width
cm
Origin to Center
of Rear Pad
in.
cm
Origin to Center
of Middle Pad
in.
cm
Spring isolators typically ship assembled and ready for installation. To install and adjust the isolators properly, follow the provided instructions.
NNoottee:: Do NOT adjust the isolators until the chiller is
piped and charged with refrigerant and water.
IImmppoorrttaanntt:: Do NOT block any serviceable components
such as the lubrication system with field­installed devices such as spring isolators.
1. Position the spring isolators under the chiller as shown in the preceding figure. Ensure that each isolator is centered in relation to the tube sheet.
CVHH-SVX001G-EN
NNoottee:: Spring isolators shipped with the chiller may
not be identical. Compare the data provided in the unit submittal package to determine proper isolator placement.
2. Set the isolators on the sub-base; shim as necessary to provide a flat, level surface at the same elevation for the end supports.
IImmppoorrttaanntt:: Support the full underside of the
isolator base plate; do NOT straddle gaps or small shims.
3. If required, screw the isolators to the floor through the slots provided, or cement the pads.
NNoottee:: Fastening the isolators to the floor is not
necessary unless specified.
25
Side View of Unit End View of Unit
Center tube sheet support leg
Outside edge of
tube sheet
Center of isolator spring
Note: The spring isolator must be centered in relation to the tube sheet. Do not align the isolator with the flat part of the chiller foot since the tube sheet is often off center.
Note: The length of the isolator should be parallel to the leg.
IInnssttaallllaattiioonn:: MMeecchhaanniiccaall
4. If the chiller must be fastened to the isolators, insert cap screws through the chiller base and into holes drilled and tapped in the upper housing of each isolator.
IImmppoorrttaanntt:: Do NOT allow the screws to protrude
below the underside of the isolator upper housing, or interfere with the adjusting screws. An alternative method of fastening the chiller to the isolators is to cement the neoprene pads.
5. Set the chiller on the isolators; refer to “Standard
Chiller Lift,” p. 22. The weight of the chiller will
force down the upper housing of each isolator, and could cause it to rest on the isolator’s lower housing (refer to the following figure).
6. Check the clearance on each isolator. If this dimension is less than 1/4 in. (6.35 mm) on any isolator, use a wrench to turn the adjusting screw one complete revolution upward.
NNoottee:: When the load is applied to the isolators
(refer to Step 5), the top plate of each isolator moves down to compress the springs until either the springs support the load or the top plate rests on the bottom housing of the isolator. If the springs are supporting the load, screwing down on the adjusting screw (refer to Step 7) will raise the chiller.
7. Turn the adjusting screw on each of the remaining isolators to obtain the required minimum clearance of 1/4 in. (6.35 mm).
8. Once the minimum required clearance is obtained on each of the isolators, level the chiller by turning the adjusting screw on each of the isolators on the low side of the unit. Work from one isolator to the next.
IImmppoorrttaanntt:: The chiller must be level to within 1/
16 in. (1.6 mm) over its length and width, and the clearance of each isolator must be at least 1/4 in. (6.35 mm).
Figure 11. Chiller foot and isolator orientation
IImmppoorrttaanntt:: Do NOT install spring isolators or brackets
in such a way that they could inhibit chiller servicing such as charging or evacuation, oil tank service, etc.

Leveling the Unit

The chiller must be set level within 1/16 in. (1.6 mm).
1. Measure and make a punch mark an equal distance up from the bottom of each foot of the chiller.
2. Suspend a clear plastic tube along the length of the chiller as shown in the following figure.
3. Fill the tube with water until the level aligns with the punch mark at one end of the chiller.
4. Check the water level at the opposite mark. If the water level does not align with the punch mark, use full length shims to raise one end of the chiller until the water level at each end of the tube aligns with the punch marks at both ends of the chiller.
5. Once the unit is level across its length, repeat the first three steps to level the unit across its width.
26
CVHH-SVX001G-EN
Figure 12. Leveling the chiller
1
2
IInnssttaallllaattiioonn:: MMeecchhaanniiccaall
NNoottee:: Use of a laser level is an acceptable alternative
method to level the unit.
IImmppoorrttaanntt:: Immediately report any unit damage
incurred during handling or installation at the job site to the Trane sales office.
CVHH-SVX001G-EN
27

Installation: Water Piping

Overview

The following water piping circuits must be installed and connected to the chiller:
Pipe the evaporator into the chilled water circuit.
Pipe the condenser into the cooling tower water circuit.
Optional: A heat-recovery condenser water circuit.
Optional: An auxiliary condenser water circuit.
NNoottee:: Piping must be arranged and supported to avoid
stress on the equipment. It is strongly recommended that the piping contractor does not run pipe closer than 3 ft (0.9 m) minimum to the equipment. This will allow for proper fit upon arrival of the unit at the job site. Any adjustment that is necessary can be made to the piping at that time. Expenses that result from a failure to follow this recommendation will NOT be paid by Trane.
Piping suggestions for each of the water circuits listed above are outlined in “Evaporator and Condenser
Water Piping,” p. 30. General recommendations for the
installation of field-supplied piping components (e.g., valves, flow switches, etc.) common to most chiller water circuits are listed in the following sections.

Water Treatment

The use of untreated or improperly treated water in a CenTraVacchiller may result in inefficient operation and possible tube damage.
IImmppoorrttaanntt:: Trane strongly recommends using the
services of a qualified water treatment specialist to determine necessary water treatment. A label with a customer disclaimer note is affixed to each unit.
NNOOTTIICCEE
PPrrooppeerr WWaatteerr TTrreeaattmmeenntt RReeqquuiirreedd!!
TThhee uussee ooff uunnttrreeaatteedd oorr iimmpprrooppeerrllyy ttrreeaatteedd wwaatteerr ccoouulldd rreessuulltt iinn ssccaalliinngg,, eerroossiioonn,, ccoorrrroossiioonn,, aallggaaee oorr sslliimmee.. UUssee tthhee sseerrvviicceess ooff aa qquuaalliiffiieedd wwaatteerr ttrreeaattmmeenntt ssppeecciiaalliisstt ttoo ddeetteerrmmiinnee wwhhaatt wwaatteerr ttrreeaattmmeenntt,, iiff aannyy,, iiss rreeqquuiirreedd.. TTrraannee aassssuummeess nnoo rreessppoonnssiibbiilliittyy ffoorr eeqquuiippmmeenntt ffaaiilluurreess wwhhiicchh rreessuulltt ffrroomm uunnttrreeaatteedd oorr iimmpprrooppeerrllyy ttrreeaatteedd wwaatteerr,, oorr ssaalliinnee oorr bbrraacckkiisshh wwaatteerr..

Pressure Gauges

Locate pressure gauge taps in a straight length of pipe. Place each tap a minimum of one pipe diameter downstream of any elbow, orifice, etc. For example, for
a 6 in. (16 cm) pipe, the tap would be at least 6 in. (16 cm) from any elbow, orifice, etc.

Valves—Drains and Vents

NNOOTTIICCEE
WWaatteerrbbooxx DDaammaaggee!!
FFaaiilluurree ttoo ffoollllooww iinnssttrruuccttiioonnss ccoouulldd rreessuulltt iinn ddaammaaggee ttoo tthhee wwaatteerrbbooxx.. DDoo nnoott oovveerr--ttiigghhtteenn oorr uussee eexxcceessssiivvee TTeefflloonn®® ppiippee ttaappee wwhheenn iinnssttaalllliinngg vvaallvveess,, ddrraaiinnss,, pplluuggss aanndd vveennttss oonn wwaatteerrbbooxxeess..
1. Install field-supplied air vents and drain valves on the waterboxes. Each waterbox is provided with a National Pipe Thread Female (NPTF) vent and drain connection; the openings are 3/4 in. (19.05 mm).
NNOOTTIICCEE
WWaatteerrbbooxx DDaammaaggee!!
FFaaiilluurree ttoo ffoollllooww iinnssttrruuccttiioonnss ccoouulldd rreessuulltt iinn ddaammaaggee ttoo tthhee wwaatteerrbbooxx dduuee ttoo hhyyddrroossttaattiicc eexxppaannssiioonn.. IInnssttaallll pprreessssuurree--rreelliieeff vvaallvveess iinn tthhee ccoonnddeennsseerr aanndd eevvaappoorraattoorr wwaatteerr cciirrccuuiittss..
2. If necessary for the application, install pressure­relief valves at the drain connections on the evaporator and condenser waterboxes. To do so, add a tee with the relief valve attached to the drain valve. Follow local codes for determining if drain connection is large enough for relief devices.
To determine whether or not pressure relief valves are needed for a specific application, keep in mind that:
a. Vessels with close-coupled shutoff valves may
cause high potentially damaging hydrostatic pressures as fluid temperature rises.
b. Relief valves are required by American Society
of Mechanical Engineers (ASME) codes when the waterside is ASME. Follow ASME guidelines or other applicable codes/local regulation to ensure proper relief valve installation.

Strainers

NNOOTTIICCEE
WWaatteerr BBoorrnn DDeebbrriiss!!
TToo pprreevveenntt ccoommppoonneennttss ddaammaaggee,, ppiippee ssttrraaiinneerrss mmuusstt bbee iinnssttaalllleedd iinn tthhee wwaatteerr ssuupppplliieess ttoo pprrootteecctt ccoommppoonneennttss ffrroomm wwaatteerr bboorrnn ddeebbrriiss.. TTrraannee iiss nnoott rreessppoonnssiibbllee ffoorr eeqquuiippmmeenntt--oonnllyy--ddaammaaggee ccaauusseedd bbyy wwaatteerr bboorrnn ddeebbrriiss..
28
CVHH-SVX001G-EN
Components:
A. E40174 1/2" NPT adapter (for ow probe)
B . SF6200 Flow probe
C . SN0150 Flow control monitor
D. E70231 Combicon connectors (quantity 5)
E . E10965 Micro DC cable, 10m length, PUR jacket
F. F53003 Din rail, 40mm length
Output to
control cabinet
Jumper
N
L
AC
Jumper
If factory-provided, located in control panel.
Do NOT insert more than
3.5 in. (8.9 cm) of the probe length into the pipe.
4
3
2
1
Use a marker to draw a line on the probe at 3.5 in. (8.9 cm) from the probe end.
IInnssttaallllaattiioonn:: WWaatteerr PPiippiinngg
Install a strainer in the entering side of each piping circuit to avoid possible tube plugging in the chiller with debris.

Required Flow-Sensing Devices

The ifm efector® flow detection controller and sensor (refer to “Water Flow Detection Controller and Sensor
—ifm efector,” p. 29) is used to verify evaporator and
condenser water flows.
If a customer-supplied flow sensing device is used to ensure adequate chiller flow protection, refer to the wiring diagrams that shipped with the unit for specific electrical connections.
Be sure to follow the manufacturer’s recommendations for device selection and installation.

Water Flow Detection Controller and Sensor—ifm efector

IImmppoorrttaanntt:: Before installing the ifm efector®flow
detection controller and sensor, use a marker to draw a line on the probe at 3.5 in. (8.9 cm) from the end of the probe. Do NOT insert more than 3.5 in. (8.9 cm) of the probe length into the pipe. Refer to the following figure.
Figure 13. Installation of ifm efector®® flow detection controller and sensor
1. Mount the 1/2-in. NPT adapter in a horizontal or vertical section of pipe. The maximum distance
CVHH-SVX001G-EN
from the control panel must not exceed 29.5 ft (9 m) (see item labeled “1” in the preceding figure). Allow at least five pipe diameters straight run of pipe upstream of the sensor location, and three pipe diameters straight run of pipe downstream of the sensor location.
NNoottee:: In the case of a horizontal pipe, mounting the
sensor in the side of the pipe is preferred. In the case of a vertical pipe, mounting the sensor in a place where the water flows upwards is preferred.
NNOOTTIICCEE
OOvveerrttiigghhtteenniinngg!!
DDoo nnoott eexxcceeeedd ttoorrqquuee ssppeecciiffiiccaattiioonnss aass iitt ccoouulldd rreessuulltt iinn eeqquuiippmmeenntt ddaammaaggee..
2. Insert the flow sensor probe (see item labeled “2” in the preceding figure) through the 1/2-in. NPT adapter so that 3 to 3.5 in. (7.6 to 8.9 cm) of the probe’s length extends into the pipe. Tighten the 1/ 2-in. NPT adapter as needed to prevent leakage and keep the probe from backing out under pressure. DDoo NNOOTT eexxcceeeedd 4400 fftt··llbb ((5544..22 NN··mm)) ooff ttoorrqquuee oonn tthhee ffiittttiinngg.. SSeennssoorr ddaammaaggee ccaann ooccccuurr iiff iitt iiss oovveerrttiigghhtteenneedd..
NNoottee:: When installed, the tip of the ifm efector
sensor probe must be at least 1 in. (2.54 cm) away from any pipe wall. Do NOT insert more than 3.5 in. (8.9 cm) of the probe length into the pipe.
3. Install the Micro DC Cable by inserting it through the wire openings on the back side of the control panel (see item labeled “3” in the preceding figure). Install the supplied Micro DC Cable (29.5 ft [9 m] in length) to the Flow Probe and hand-tighten the connector nut.
4. Plug the other end of the Micro DC Cable into the Flow Control Monitor with the Combicon connector (see item labeled “4” in the preceding figure). Refer to the following figure for cable wiring.
®
NNOOTTIICCEE
DDoo NNoott AAppppllyy EElleeccttrriiccaall PPoowweerr ttoo aa UUnniitt iinn aa VVaaccuuuumm!!
FFaaiilluurree ttoo ffoollllooww iinnssttrruuccttiioonnss bbeellooww ccoouulldd rreessuulltt iinn mmoottoorr aanndd ccoommpprreessssoorr ddaammaaggee.. DDoo nnoott aappppllyy eelleeccttrriiccaall ppoowweerr ttoo aa mmoottoorr iinn aa vvaaccuuuumm.. FFoorr uunniittss wwiitthh iinnssiiddee--tthhee--ddeellttaa ssoolliidd ssttaattee ssttaarrtteerrss,, ddiissccoonnnneecctt ppoowweerr ttoo uunniitt dduurriinngg eevvaaccuuaattiioonn oorr wwhheenn tthhee uunniitt iiss iinn aa ddeeeepp vvaaccuuuumm.. IInn aaddddiittiioonn,, oonn uunniittss wwiitthh iinnssiiddee--tthhee-­ddeellttaa ssoolliidd ssttaattee ssttaarrtteerrss,, aallll ppoowweerr ttoo tthhee uunniitt mmuusstt bbee ddiissccoonnnneecctteedd pprriioorr ttoo eevvaaccuuaattiinngg tthhee uunniitt aass lliinnee ppoowweerr iiss ddiirreeccttllyy aapppplliieedd ttoo tthhee mmoottoorr tteerrmmiinnaallss 44,, 55,, aanndd 66..
29
X39003892001A
7
IInnssttaallllaattiioonn:: WWaatteerr PPiippiinngg
NNoottee:: Graphic labels (shown above) are used for CE
application only.
IImmppoorrttaanntt::
Before servicing, disconnect all power sources and allow at least 30 minutes for capacitors to discharge.
All electrical enclosures—unit or remote—are IP2X.
5. Apply power to the chiller control panel to verify the Flow Control Monitor has power and the Low Volt Broken Wire Relay light is NOT lit.
6. Remove all air from the piping circuit prior to adjusting the low water flow setpoint.
7. Reduce the water flow to the minimum allowable flow and adjust the Flow setting on the Flow Control Monitor (see item labeled “7” in the following figure). Adjusting the “Flow” potentiometer clockwise (+) reduces the flow setting cutout and adjusting counterclockwise (-) increases the flow setting cutout.
NNoottee:: The “Temp” potentiometer on the ifm
efector
®
control module has no effect in Trane application. It is NOT necessary to make adjustments to the “Temp” potentiometer.
8. After the cutout setting is adjusted, the cutout setpoint will be indicated with a yellow light on the Flow Control Monitor LED bar graph display. When the water flows are higher than the cutout, a green light will indicate proper flow status. If the flows fall below the cutout setpoint, a red light will indicate
low/no flow status.
Figure 14. ifm efector®® flow sensing device terminal connection
NNOOTTIICCEE
PPrrooooff ooff FFllooww SSwwiittcchh!!
FFaaiilluurree ttoo pprroovviiddee ffllooww sswwiittcchheess oorr jjuummppiinngg--oouutt ooff sswwiittcchheess ccoouulldd rreessuulltt iinn sseevveerree eeqquuiippmmeenntt ddaammaaggee.. EEvvaappoorraattoorr aanndd ccoonnddeennsseerr wwaatteerr cciirrccuuiittss rreeqquuiirree pprrooooff ooff ffllooww sswwiittcchheess..
•• FFaaiilluurree ttoo iinncclluuddee tthhee pprrooooff ooff ffllooww ddeevviicceess aanndd// oorr jjuummppiinngg oouutt tthheessee ddeevviicceess ccoouulldd ccaauussee tthhee uunniitt ttoo ssttoopp oonn aa sseeccoonnddaarryy lleevveell ooff pprrootteeccttiioonn..
•• FFrreeqquueenntt ccyycclliinngg oonn tthheessee hhiigghheerr lleevveell ddiiaaggnnoossttiicc ddeevviicceess ccoouulldd ccaauussee eexxcceessssiivvee tthheerrmmaall aanndd pprreessssuurree ccyycclliinngg ooff uunniitt ccoommppoonneennttss ((OO--rriinnggss,, ggaasskkeettss,, sseennssoorrss,, mmoottoorrss,, ccoonnttrroollss,, eettcc..)) aanndd//oorr ffrreeeezzee ddaammaaggee,, rreessuullttiinngg iinn pprreemmaattuurree ffaaiilluurree ooff tthhee cchhiilllleerr..
Evaporator and condenser proof of flow switches are required. These switches are used with control logic to confirm flow prior to starting a unit and to stop a running unit if flow is lost. For troubleshooting, a viewable diagnostic is generated if a proof of flow switch does not close when flow is required.

Evaporator and Condenser Water Piping

The following two figures illustrate the recommended (typical) water piping arrangements for the evaporator and condenser.
30
CVHH-SVX001G-EN
4
45
53
3
7
2
2 1
9
6
2
2
8
Outlet
Inlet
1 2
3
4 5
6
7 8
92
3
4 5
2
2
10
Outlet
Inlet
IInnssttaallllaattiioonn:: WWaatteerr PPiippiinngg
Figure 15. Typical evaporator water piping circuit
1. Balancing valve.
2. Gate (Isolation) valve or ball valve.
3. Thermometer (if field supplied).
4. Waterbox nozzle connection.
5. Drain, vent, and anode.
6. Strainer.
7. Chilled water flow switch (4B4). Flow switch 4B4 may be installed in either the entering or leaving leg of the chilled water circuit.
8. Pump.
9. Pressure gauge. It is recommended to pipe the gauge between entering and leaving pipes. A shutoff valve on each side of the gauge allows the operator to read either entering or leaving water pressure.
Figure 16. Typical condenser water piping circuits
1. Balancing valve.
2. Gate (isolation) valve or ball valve.
3. Thermometer (if field supplied).
4. Waterbox nozzle connection.
5. Drain, vent, and anode.
6. Strainer.
7. Condenser water flow switch (4B5). Flow switch 4B5 may be installed in either the entering or leaving leg of the water circuit.
8. Three-way valve (optional).
9. Condenser water pump.
10. Pressure gauge. It is recommended to pipe a single
CVHH-SVX001G-EN
gauge between entering and leaving pipes.
NNootteess::
Some type of field-supplied temperature control device may be required to regulate the temperature of the heat-recovery condenser water circuit. For application recommendations, refer to Heat Recovery Seminar (Part 2): Systems/Equipment (AM­FND-8).
Install a bypass valve system to avoid circulating water through the auxiliary shell when the unit is shut down.
On multiple-pass condensers, entering condenser water must enter at the lowest nozzle.
Piping must be arranged and supported to avoid stress on the equipment. It is strongly recommended that the piping contractor does not run pipe closer than 3 ft (0.9 m) minimum to the equipment. This will allow for proper fit upon arrival of the unit at the job site. Any adjustment that is necessary can be made to the piping at that time. Expenses that result from a failure to follow this recommendation will NOT be paid by Trane.
Water piping connection sizes and components are identified in the tables in “Water Piping
Connections,” p. 32 and “Grooved Pipe Coupling,” p.
33. Remember that with many waterboxes, the
entering and leaving evaporator water can be piped to either waterbox connection when the tube bundles are split vertically. However, large evaporator waterboxes with entering and leaving connections not at the same level must be connected with the entering water at the bottom and the leaving water at the top.
Waterboxes with multiple pass arrangements utilize a baffle to separate the passes. These baffles are designed for a maximum pressure of 20 psid (137.9 kPaD). If larger pressure drops are expected in the application, contact your local Trane representative to discuss special waterbox options.
IImmppoorrttaanntt:: Water flows must be piped in accordance
with nameplate designation.
Field-provided isolation valves for the evaporator and condenser water lines should be installed upstream and downstream of the heat exchangers, and be installed far enough away from the chiller to also provide practical service isolation for flow sensing devices, field thermometers, flexible connectors, and any removable pipe spools.
Ensure that the evaporator water piping is clear; check it after the chilled water pump is operated but before initial chiller start-up. If any partial blockages exist, they can be detected and removed to prevent possible tube damage resulting from evaporator freeze-up or erosion.
For condenser and large evaporator connections, arrange the water piping so that the water supply enters the shell at the lower connection and exits from the top connection. Operational problems may result if
31
IInnssttaallllaattiioonn:: WWaatteerr PPiippiinngg
this piping is not correct. Some shells may be piped as desired since both connections are at the same level.
For applications that include an “infinite source” or “multiple-use” cooling condenser water supply, install a valved bypass “leg” (optional) between the supply and return pipes. This valved bypass allows the operator to short-circuit water flow through the cooling condenser when the supply water temperature is too low.
NNoottee:: System refrigerant pressure differential must be
maintained above 3 psid (20.7 kPaD) at all times. Failure to do so could result in operating problems.

Water Piping Connections

All standard units use grooved-pipe connections. These are grooved-end NSP (Victaulic® style) pipe connections. Flanged connections are optional.
Piping joined using grooved type couplings, like all types of piping systems, requires proper support to carry the weight of pipes and equipment. The support methods used must eliminate undue stresses on joints, piping, and other components, allow movement where required, and provide for any other special requirements (i.e., drainage, etc.).
NNoottee:: If needed, plug-type sensor extension cables are
available for purchase from Trane Parts Service. These sensor extension cables may be necessary if the waterboxes are changed or if the temperature sensors are moved out into the unit piping for better mixed temperature readings.
Figure 17. Typical grooved pipe connection
Table 9. Water connection pipe sizes
Water
Passes
Evaporator Nominal Pipe Size (in.)
1-Pass 12 12 14 16 20 16 20
2-Pass 10 10 12 14 14
3-Pass 8 8 10 12 12
Condenser
1-Pass 12 14 16 24 24
2-Pass 10 12 14 14
Evaporator Metric Pipe Size (mm)
1-Pass DN300 DN300 DN350 DN400 DN500 DN400 DN500
2-Pass DN250 DN250 DN300 DN350 DN350
3-Pass DN200 DN200 DN250 DN300 DN300
Condenser
1-Pass DN300 DN350 DN400 DN600 DN600
2-Pass DN250 DN300 DN350 DN350
100 130 160 200 220 400 440
Shell Size
Nominal Pipe Size (in.)
Metric Pipe Size (mm)

Waterbox Locations

IImmppoorrttaanntt:: Do NOT exchange positions of heat
recovery waterboxes. Proper unit operation could be affected by repositioning heat recovery waterboxes. Contact CenTraVac Chiller Technical Service for more information.
If necessary, the non-marine-style waterboxes on each shell—whether evaporator or condenser—can be switched end-for-end to obtain the desired piping arrangement.
If removal of waterboxes is necessary, refer to
“Waterbox Removal and Installation,” p. 113.
If the waterboxes on any of the shells are exchanged end-for-end, be sure to reinstall them right-side up to
32
CVHH-SVX001G-EN
Flanged Victaulic®
Waterbox
Waterbox
Customer
Flange Adaptor Trane provided
Style 77 Flexible
Customer provided
IInnssttaallllaattiioonn:: WWaatteerr PPiippiinngg
maintain the correct baffle arrangements. Use a new gasket with each waterbox cover.
Three-pass waterboxes have lifting lugs on the top and bottom. When reinstalling, ensure that the waterbox is oriented the same way it as removed.

Grooved Pipe Coupling

A customer-supplied, standard flexible grooved pipe coupling (Victaulic® Style 77 or equivalent) should be used to complete the Victaulic® connection for both 150 psig (1034.2 kPaG) and 300 psig (2068.4 kPaG) waterboxes.
When a flexible coupling such as this is installed at the waterbox connections, other flexible piping connectors (i.e., braided-steel, elastomeric arch, etc.) are not usually required to attenuate vibration and/or prevent stress on the connections.
Table 10. Water piping connection components
Unit
Model
CVHH
CVHH
Unit Connection
Type
Flanged (optional)
Victaulic® (all
others)
Figure 18. Customer piping connection types
NNootteess::
Refer to the coupling manufacturer’s guidelines for specific information concerning proper piping system design and construction methods for grooved water piping systems.
Flexible coupling gaskets require proper lubrication before installation to provide a good seal. Refer to the coupling manufacturer’s guidelines for proper lubricant type and application.
Customer Piping Connection
Victaulic®®
Customer
provided
Victaulic®
coupling
Customer
provided
Victaulic®
coupling
Flanged
No adapter
required
Trane provided
Victaulic®-to-
flange adapter

Flange-connection Adapters

When flat-face flange connections are specified, flange­to-groove adapters are provided (Victaulic® Style 741 for 150 psig [1034.2 kPaG] systems; Style 743 for 300 psig [2068.4 kPaG] systems). The adapters are shipped screwed to one of the chiller end-supports. Adapter descriptions are given in the tables in
“Victaulic Gasket Installation,” p. 34. The flange
adapters provide a direct, rigid connection of flanged components to the grooved-pipe chiller waterbox connections.
Figure 19. Typical shipping location for flange
In this case, the use of flexible type connectors (i.e., braided steel, elastomeric arch, etc.) are recommended to attenuate vibration and prevent stress at the waterbox connections. Flange adapters are not provided for CVHH CenTraVacchillers with 300 psig (2068.4 kPaG) waterboxes that have 14 in. (355.6 mm) and larger piping connections.
All flange-to-flange assembly screws must be provided by the installer. Hex head screw sizes and number required are included in the tables in “Victaulic Gasket
Installation,” p. 34. The four draw-bolts needed for the
14 in. (355.6 mm) and larger Style 741 (150 psig [1034.2 kPaG]) adapters are provided. The Style 741 (150 psig [1034.2 kPaG]) flange adapter requires a smooth, hard surface for a good seal.
Connection to other type flange faces (i.e., raised, serrated, rubber, etc.) requires the use of a flange washer between the faces. Refer to the flange adapter manufacturer’s guidelines for specific information.
The Style 743 (300 psig [2068.4 kPaG]) flange adapters are designed to mate with raised-face flanges. They can be used with flat-faced flanges, but only if the raised projections on the outside face of the adapter are removed; refer to the following figure. The flange­adapter gasket must be placed with the color-coded lip on the pipe and the other lip facing the mating flange.
CVHH-SVX001G-EN
33
Remove to mate to flat-faced flanges
IInnssttaallllaattiioonn:: WWaatteerr PPiippiinngg
NNOOTTIICCEE
PPiippiinngg CCoonnnneeccttiioonn LLeeaakkss!!
FFaaiilluurree ttoo pprroovviiddee eeffffeeccttiivvee sseeaall ccoouulldd rreessuulltt iinn eeqquuiippmmeenntt oorr pprrooppeerrttyy--oonnllyy ddaammaaggee.. TToo pprroovviiddee eeffffeeccttiivvee sseeaall,, ggaasskkeett ccoonnttaacctt ssuurrffaacceess ooff aaddaapptteerr mmuusstt bbee ffrreeee ooff ggoouuggeess,, uunndduullaattiioonnss oorr ddeeffoorrmmiittiieess..
Figure 20. Modifying 300 psig (2068.4 kPaG) or 21 bar flange adaptors for flat-faced flange application

Victaulic Gasket Installation

1. Inspect supplied gasket to be certain it is suited for intended service (code identifies gasket grade). Apply a thin coat of silicone lubricant to gasket tips and outside of gasket.
2. Install gasket, placing gasket over pipe end and making sure gasket lip does not overhang pipe end. Refer to the following figure for gasket
configuration.
3. Align and bring two pipe ends together and slide gasket into position centered between the grooves on each pipe. No portion of the gasket should extend into the groove on either pipe.
4. Open fully and place hinged Victaulic® flange around the grooved pipe end with the circular key section locating into the groove.
5. Insert a standard hex head screw through the mating holes of the Victaulic® flange to secure the flange firmly in the groove.
6. Tighten fasteners alternately and equally until housing screw pads are firmly together (metal-to­metal); refer to “Screw-Tightening Sequence for
Water Piping Connections,” p. 35. Do NOT
excessively tighten fasteners.
NNoottee:: Uneven tightening may cause gasket to pinch.
Figure 21. Typical Victaulic®® flange gasket configuration
Table 11. Installation data for 150 psig (1034.2 kPaG) flange adapters (Style 741)
Nominal Pipe Size
in.
8 200
10 250
12 300
14 350
16 400
18 450
20 500
24 600
(a)
Screw size for conventional flange-to-flange connection. Longer screws are required when flange washer must be used.
mm
Assembly Screw
(a)
Size
in. in.
3/4 x 3-1/2
7/8 x 4
7/8 x 4
1 x 4-1/2
1 x 4-1/2
1-1/8 x 4-3/4
1-1/8 x 5-1/4
1-1/4 x 5-3/4
Number of
Assembly Screws
Required
8 11.75 298 16.6 7.5
12 14.25 362 24.2 11
12 17 432 46.8 21.2
12 18.75 476 62 28.1
16 21.25 540 79 35.8
16 22.75 578 82.3 37.3
20 25 635 103.3 46.9
20 29.5 749 142 64.4
Screw Pattern Diameter
mm
Table 12. Installation data for 300 psig (2068.4 kPaG) flange adapters (Style 743)
Nominal Pipe Size
in.
8 219.1
10 273.0
12 323.9
(a)
Screw size for conventional flange-to-flange connection. Longer screws are required when flange washer must be used.
mm
Assembly Screw
(a)
Size
in. in.
3/4 x 4-3/4
1 x 5-1/4
1-1/8 x 5-3/4
Number of Assembly
Screws Required
12 13 330 34.3 15.6
16 15.25 387 48.3 21.9
16 17.75 451 70.5 32.0
Screw Pattern Diameter
mm
lb
lb
Weight
kg
Weight
kg
34
CVHH-SVX001G-EN
1
3
4 5
7
8
2 6
8 screws
1
3
4
10 11
9
5
7
8
12
26
12 screws
16 screws 20 screws
1 5
9
20
2
3
4
6
7
8
10
19
18
17
16
15
14
13
12
11
1
5
9
2
3
4
6
7
8
10
16
15
14
13
12
11
IInnssttaallllaattiioonn:: WWaatteerr PPiippiinngg

Screw-Tightening Sequence for Water Piping Connections

This section describes a screw-tightening sequence for flanges with flat gaskets or O-rings. Remember that improperly tightened flanges may leak.
NNoottee:: Before tightening any of the screws, align the
flanges.

Flanges with 8 or 12 Screws

Tighten all screws to a snug tightness, following the numerical sequence for the appropriate pattern as shown in the following figure. Repeat this sequence to apply the final torque to each screw.
Figure 22. Flange screw tightening sequence (8 or 12 screws)
for the appropriate pattern as shown in the following figure. Next, sequentially tighten the remaining half of the screws in numerical order.
Figure 23. Flange screw tightening sequence (16 or 20 screws)

Pressure Testing Waterside Piping

NNOOTTIICCEE
EEqquuiippmmeenntt DDaammaaggee!!
FFaaiilluurree ttoo ffoollllooww tthheessee iinnssttrruuccttiioonnss ccoouulldd rreessuulltt iinn eeqquuiippmmeenntt ddaammaaggee.. DDoo nnoott oovveerr pprreessssuurriizzee tthhee ssyysstteemm oorr eexxcceeeedd ddeessiiggnn pprreessssuurree.. AAllwwaayyss ppeerrffoorrmm aa hhyyddrroo pprreessssuurree tteesstt wwiitthh wwaatteerr pprreesseenntt iinn ppiippiinngg aanndd wwaatteerrbbooxxeess..

Flanges with 16 or 20 Screws

Tighten only the first half of the total number of screws to a snug tightness, following the numerical sequence
CVHH-SVX001G-EN
Waterside design pressure is either 150 psig (1034.2 kPaG) or 300 psig (2068.4 kPaG); refer to unit nameplate or to submittal documentation.
35

Vent Piping

Refrigerant Vent Line

General Requirements

State and local codes, and ASHRAE Standard 15 contain requirements for venting the relief device on the chiller to the atmosphere outside of the building. These requirements include, but are not limited to, permitted materials, sizing, and proper termination.
NNoottee:: The following information is a general outline of
vent-line installation requirements based on ASHRAE Standard 15. Most codes contain similar requirements but may vary in some significant areas. The installer must check state and local codes and follow the specific requirements applicable to the location.

Purge Discharge

To comply with ASHRAE Standard 15, the discharge piping from purge units that remove non-condensable gas from refrigerating systems must conform to the ASHRAE Standard 15 requirements for relief piping. To help meet this requirement, the purge discharge is factory-piped to the relief device assembly.

Vent Line Materials

All materials in the relief device vent system must be compatible with the refrigerant in use. Commonly used and accepted piping materials include steel and drain/ waste/vent (DWV) copper. Consult local codes for restrictions on materials. Consult with the manufacturers of any field-provided components or materials for acceptable material compatibility.
NNoottee:: PVC piping is acceptable for use as a vent-line
material with R-1233zd but the glue that joins the sections of plastic pipe may not be. When considering a vent system constructed of plastic piping such as PVC, ensure that both the pipe material and the adhesive have been tested for refrigerant compatibility. In addition, verify that the local codes permit PVC for refrigerant vent lines; even though ASHRAE Standard 15 doesn’t prohibit its use, some local codes do.
The following materials for PVC pipe construction are recommended for use with R-1233zd:
Primer/Cleaner:
Hercules—PVC Primer #60-465
RECTORSEAL® PVC Cleaner—SamCL-3L
Adhesives:
Hercules—Clear PVC, Medium Body/Medium Set, #60-020
RECTORSEAL®—PVC Cement, Gene404L

Vent Line Sizing

Vent line size must conform to local codes and requirements. In most cases, local codes are based on ASHRAE Standard 15. ASHRAE Standard 15 provides specific requirements for the discharge piping that allows pressure-relief devices to safely vent refrigerant to the atmosphere if over-pressurization occurs. In part, the standard mandates that:
The minimum pipe size of the vent line must equal the size of the discharge connection on the pressure-relief device. A larger vent line size may be necessary, depending on the length of the run.
Two or more relief devices can be piped together only if the vent line is sized to handle all devices that could relieve at the same time.
When two or more relief devices share a common vent line, the shared line must equal or exceed the sum of the outlet areas of all upstream relief devices, depending on the resulting back pressure.
ASHRAE Standard 15 provides guidance for determining the maximum vent line length. It also provides the equation and data necessary to properly size the vent line at the outlet of a pressure-relief device or fusible plug (for more information, refer to “Vent
Line Sizing Reference,” p. 40).
The equation accounts for the relationship between pipe diameter, equivalent pipe length, and the pressure difference between the vent line inlet and outlet to help ensure that the vent line system provides sufficient flow capacity.
The tables in “Vent Line Sizing Reference,” p. 40 provide additional information based on ASHRAE Standard 15, including:
Capacities of various vent line sizes and lengths. However, this data applies only to conventional pressure-relief valves and NOT to balanced relief valves, rupture members (as used on Trane® centrifugal chillers), fusible plugs, or pilot-operated valves.
A simplified method to determine the appropriate vent-line size, using the figures (in I-P or SI units) in
“Vent Line Sizing Reference,” p. 40. Enter the figure
with the total CC value, read across to a pipe curve and down to find the maximum allowable length for that size pipe.
NNoottee:: To determine the total CC value for a specific
unit, add the appropriate CC values for the evaporator, standard condenser, and economizer. If the unit is equipped with any options (e.g., heat recovery, free cooling, or an auxiliary condenser), add the applicable CC value(s) for those options to the total as well.
36
CVHH-SVX001G-EN
VVeenntt PPiippiinngg
NNoottee:: The tables and figures in “Vent Line Sizing
Reference,” p. 40 are applicable only for non-
manifolded vent-line runs connected to a 50 psig (344.7 kPaG) rupture disk relief device. The pipe length provided by the table is in “equivalent feet.” The vent-line length in equivalent feet is the sum of the linear pipe length plus the equivalent length of the fittings (e.g., elbows).

Vent Line Installation

IImmppoorrttaanntt:: Before constructing the rupture disk vent
line, consult local codes for applicable guidelines and constraints.
All CenTraVaccentrifugal chillers are equipped with rupture disks. If refrigerant pressure within the evaporator exceeds 50 psig (344.7 kPaG), the rupture disk breaks and shell pressure is relieved as refrigerant escapes from the chiller.
A cross-section of the rupture disk assembly appears inthe following figure (rupture disk location and cross section), along with an illustration indicating the location of the rupture disk on the suction elbow.
Several general recommendations for rupture disk vent line installation are outlined as follows.
NNoottee:: If the rupture disk was removed for service or
vent-line piping installation, the rupture disk must be reinstalled (as shown in the following figure [rupture disk location and cross section]). Refer to the following procedure and contact CenTraVac reinstalling the rupture disk.
Verify that the rupture disk is positioned as shown in the cross-section view that appears in the following figure (rupture disk location and cross section).
– Install the two bottom hex head screws though
the pipe flanges.
– Install the rupture disk with a gasket on each
side between the pipe flanges. Orient the disk with the reference arrow facing the chiller side as shown in the following figure (rupture disk location and cross section).
Install the two top hex head screws.
Center the disk and gaskets to the flange bore.
Hand-tighten all screws, assuring equal
pressure.
– Use a torque wrench set to 145 ft·lb (196.6 N·m)
with a 24-mm socket.
– Tighten screws in a star pattern, one half turn
each, to maintain even pressure on the disk.
– Final torque on all screws should be 145 ft·lb
(196.6 N·m).
Chiller Technical Service when
When attaching the vent line to the chiller, do NOT apply threading torque to the outside pipe of the rupture disk assembly.
NNOOTTIICCEE
RRuuppttuurree DDiisskk DDaammaaggee!!
FFaaiilluurree ttoo ffoollllooww iinnssttrruuccttiioonn ccoouulldd rreessuulltt iinn ddaammaaggee ttoo tthhee rruuppttuurree ddiisskk aasssseemmbbllyy.. DDoo nnoott aappppllyy tthhrreeaaddiinngg ttoorrqquuee ttoo tthhee oouuttssiiddee ppiippee..
Provide support as needed for the vent line. Do NOT use the rupture disk assembly to support the vent-line piping.
Use a flexible connection between the vent line and the rupture disk assembly to avoid placing stress on the rupture disk. (Stress can alter rupture pressure and cause the disk to break prematurely.) The flexible connector used to isolate the rupture disk from excessive vent line vibration must be compatible with the refrigerant in use. Use a flexible, steel connector (such as the stainless-steel type MFP, style HNE, flexible pump connector from Vibration Mounting and Control, Inc.), or equivalent. Refer to the following figure (arrangement for rupture disk relief piping) for a recommended relief piping arrangement.
WWAARRNNIINNGG
PPrreessssuurree--RReelliieeff DDeevviiccee DDiisscchhaarrggee HHaazzaarrdd!!
AAnn iimmpprrooppeerr vveenntt--lliinnee tteerrmmiinnaattiioonn ccoouulldd rreessuulltt iinn ddeeaatthh oorr sseerriioouuss iinnjjuurryy oorr eeqquuiippmmeenntt ddaammaaggee.. WWhheenn aa pprreessssuurree--rreelliieeff ddeevviiccee ooppeerraatteess,, iitt ccoouulldd ddiisscchhaarrggee aa llaarrggee aammoouunntt ooff fflluuiidd aanndd//oorr vvaappoorr.. UUnniittss MMUUSSTT bbee eeqquuiippppeedd wwiitthh aa vveenntt--lliinnee tteerrmmiinnaattiioonn tthhaatt ddiisscchhaarrggeess oouuttddoooorrss iinn aann aarreeaa tthhaatt wwiillll nnoott sspprraayy rreeffrriiggeerraanntt oonn aannyyoonnee..
NNOOTTIICCEE
PPrrooppeerr RReeffrriiggeerraanntt VVeenntt LLiinnee TTeerrmmiinnaattiioonn!!
FFaaiilluurree ttoo pprrooppeerrllyy tteerrmmiinnaattee aa rreeffrriiggeerraanntt vveenntt lliinnee ccoouulldd rreessuulltt iinn eeqquuiippmmeenntt ddaammaaggee.. IImmpprrooppeerrllyy tteerrmmiinnaattiinngg aa rreeffrriiggeerraanntt vveenntt lliinnee ccoouulldd aallllooww rraaiinn ttoo eenntteerr tthhee lliinnee.. AAccccuummuullaatteedd rraaiinnwwaatteerr ccoouulldd ccaauussee tthhee rreelliieeff ddeevviiccee ttoo mmaallffuunnccttiioonn;; oorr,, iinn tthhee ccaassee ooff aa rruuppttuurree ddiisskk,, tthhee rraaiinnwwaatteerr pprreessssuurree ccoouulldd ccaauussee tthhee ddiisskk ttoo rruuppttuurree,, aalllloowwiinngg wwaatteerr ttoo eenntteerr tthhee cchhiilllleerr..
CVHH-SVX001G-EN
37
X39003892001A
Outside pipe
assembly
Gasket
Cap
Bolt
Rupture disk
Suction
connection
VVeenntt PPiippiinngg
Figure 24. Rupture disk location and cross section of rupture disk
NNoottee:: Graphic labels (shown above) are used for CE
Route the vent-line piping so that it discharges
Provide a drip leg on the vent line (refer to the
EEqquuiippmmeenntt DDaammaaggee!!
FFaaiilluurree ttoo ffoollllooww iinnssttrruuccttiioonnss bbeellooww ccoouulldd rreessuulltt iinn eeqquuiippmmeenntt ddaammaaggee.. AAllll vveenntt lliinneess mmuusstt bbee eeqquuiippppeedd wwiitthh aa ddrriipp lleegg ooff ssuuffffiicciieenntt vvoolluummee ttoo hhoolldd tthhee eexxppeecctteedd aaccccuummuullaattiioonn ooff wwaatteerr aanndd//oorr rreeffrriiggeerraanntt.. TThhee ddrriipp lleegg mmuusstt bbee ddrraaiinneedd ppeerriiooddiiccaallllyy ttoo aassssuurree tthhaatt iitt ddooeess nnoott oovveerrffllooww aanndd aallllooww fflluuiidd ttoo ffllooww iinnttoo tthhee hhoorriizzoonnttaall ppoorrttiioonn ooff tthhee vveenntt lliinnee.. TTrraannee aassssuummeess nnoo rreessppoonnssiibbiilliittyy ffoorr eeqquuiippmmeenntt ddaammaaggee ccaauusseedd bbyy iinnssuuffffiicciieenntt ddrraaiinnaaggee ooff ddrriipp lleegg..
application only.
outdoors in an area that will not spray refrigerant on anyone. Position the vent-line discharge at least 15 ft (4.6 m) above grade level and at least 20 ft (6.1 m) from any building opening. Provide a vent­line termination that cannot be blocked by debris or accumulate rainwater.
following figure [arrangement for rupture disk relief piping]). Provide a standard 1/4-in. FL x 1/4-in. NPT, capped refrigerant service valve to facilitate liquid removal.
NNOOTTIICCEE
NNoottee:: Pipe connection is 3 in. (76.2 mm) NPT.
Consult local regulations and codes for any additional relief line requirements.
38
CVHH-SVX001G-EN
Alternate
Outside
wall
Support
this pipe
Purge discharge
vent line
Rupture disk
assembly
Flexible
steel
connection
1/4 in. FL x 1/4 in. NPT
drain valve
Drip leg
(length as required
for easy access)
Flow
Flow
Flow
FlowFlow
Chiller Chiller Chiller
Disk in normal operating position. Chiller pressure is below 50 psig (344.7 kPaG).
When chiller pressure exceeds the disk’s rated burst pressure, the disk begins to tear open along the score line of the outlet ring.
The disk snaps open through the score line of the outlet ring and the pressure is vented. The outlet ring is designed with a hinge area to retain the disc petal.
VVeenntt PPiippiinngg
Figure 25. Arrangement for rupture disk relief piping
IImmppoorrttaanntt:: On the purge discharge vent line, the purge
exhaust connection point MUST be lower than the purge height. Do NOT create a U­trap; extend to drip leg if necessary to avoid a trap.
Figure 26. Reverse buckling rupture disk (top view)
To prevent water, refrigerant, and/or other debris such as rust from hindering the operation of the valve, a drip leg should be installed immediately after or downstream of the RuptureGuard(refer to the figure in “Connection to External Vent Line and Drip Leg,” p.
39).

Connection to External Vent Line and Drip Leg

Trane RuptureGuard

General Information

The Trane RuptureGuardrefrigerant containment system replaces the carbon rupture disk on new low pressure chillers utilizing R-1233zd. The RuptureGuardconsists of a solid-metal, (non­fragmenting) reverse-buckling rupture disk and automatically re-seating relief valve. The relief valve and the rupture disk are rated at the chiller’s maximum working pressure level. If the chiller’s refrigerant pressure exceeds the rupture disk burst rating, the disk bursts, releasing pressure to the relief valve. The relief valve vents the pressure down to a safe level and then re-seats, thus minimizing the amount of refrigerant vented to the atmosphere. The following figure illustrates the operation of a reverse buckling rupture disk.
CVHH-SVX001G-EN
NNOOTTIICCEE
EEqquuiippmmeenntt DDaammaaggee!!
FFaaiilluurree ttoo ffoollllooww iinnssttrruuccttiioonnss bbeellooww ccoouulldd rreessuulltt iinn eeqquuiippmmeenntt ddaammaaggee.. AAllll vveenntt lliinneess mmuusstt bbee eeqquuiippppeedd wwiitthh aa ddrriipp lleegg ooff ssuuffffiicciieenntt vvoolluummee ttoo hhoolldd tthhee eexxppeecctteedd aaccccuummuullaattiioonn ooff wwaatteerr aanndd//oorr rreeffrriiggeerraanntt.. TThhee ddrriipp lleegg mmuusstt bbee ddrraaiinneedd ppeerriiooddiiccaallllyy ttoo aassssuurree tthhaatt iitt ddooeess nnoott oovveerrffllooww aanndd aallllooww fflluuiidd ttoo ffllooww iinnttoo tthhee hhoorriizzoonnttaall ppoorrttiioonn ooff tthhee vveenntt lliinnee.. TTrraannee aassssuummeess nnoo rreessppoonnssiibbiilliittyy ffoorr eeqquuiippmmeenntt ddaammaaggee ccaauusseedd bbyy iinnssuuffffiicciieenntt ddrraaiinnaaggee ooff ddrriipp lleegg..
With RuptureGuardinstalled horizontally, the drain plug downstream of the valve relief plug and nearest to the bottom of the valve body should be piped to the drip leg in the vent line (refer to the following figure). This will allow the removal of any condensate formed within the valve body.
Provisions, such as installing a set of flanges (refer to the following figure) or other disconnect means, must be made in the discharge vent piping. This will allow the piping downstream of the valve to be easily removed for an annual inspection, to replace the metal RuptureGuarddisk, or for any other servicing need.
1. Connect the discharge of the valve assembly to the
39
Purge exhaust
Rupture disk
Flange
Inlet flange
Drain line
Outlet flange
Drain valve
VVeenntt PPiippiinngg
vent line connected to the outdoors.
NNoottee:: Make sure there are no crosses (a derate on
the rated flow capacity for this configuration is published in Engineering Bulletin: RuptureGuard Selection Guide [E/CTV-EB­10]), elbows, tees, or any other obstructions within the first 9 in. (22.86 cm) of valve discharge. Refer to ASHRAE Standard 15, national, state, and local codes for additional requirements on piping rupture disk and relief valve vent lines.
Figure 27. External vent line and drip leg (not provided)
IImmppoorrttaanntt:: If a RuptureGuard™is to be installed, it
MUST be installed properly. Failure to properly install the RuptureGuard
will likely result in a start-up delays and required rework and expenses that result from a failure to properly install the RuptureGuard
will NOT be paid by Trane.

Vent Line Sizing Reference

Table 13. “C” values used to determine rupture disk
NTON
900–1200 100M 100M 112.0 48.4 40.7 18.5 4.5
900–1200 100L 100L 123.2 54.5 45.8 18.5 4.5
900–1200 130M 130M 122.4 54.0 45.4 18.5 4.5
900–1200 160M 200M 134.1 60.5 50.7 18.5 4.5
900–1200 200L 220L 160.4 75.4 62.1 18.5 4.5
900–1200 220L 220L 168.6 83.6 62.1 18.5 4.5
1500–1700 200L 200L 156.8 75.4 57.1 19.8 4.5
1500–1700 220L 220L
900–1200 100M 10HM 127.0 48.4 55.7 18.5 4.5
900–1200 130M 13HM 138.2 54.0 61.3 18.5 4.5
900–1200 160M 20HM 150.2 60.5 66.8 18.5 4.5
1500–1700 200L 20HL 174.9 75.4 75.2 19.8 4.5
1500–1700 220L 22HL 191.4 83.6 83.6 19.8 4.5
Notes:
1. Rupture disk diameter is 3 in.
2. Use the total “C” value in the following figure to determine the
3. If piping multiple rupture disks (multiple units) to a common
4. The CVHH unit is a Simplex chiller and has (1) refrigerant circuit
vent line sizes (lb/min); for use with the following figure
Evap.
Cond.
Size
(EVSZ)
vent line pipe diameter.
vent line, first determine the total “C” value for each unit, and then; add all “C” values together and apply the result to the following figure.
and (1) relief device.
(CDSZ)
“C” Values for Unit Components
Total
Size
Evap.
“C”
Value
169.9 83.6 62.1 19.8 4.5
Cond. Econ.
Oil
Tank
40
CVHH-SVX001G-EN
Figure 28. Rupture disk vent pipe sizing (IP units); for use with preceding table
Pipe size as a Function of “C” Value and Length of Run
“C” Value (lb/min)
L = Pipe Length (Equivalent Feet)
Pipe Size (I.D.) Friction Factor
6 NPS
6.06 in. f = 0.0149
5 NPS
5.05 in. f = 0.0155
4 NPS
4.03 in. f = 0.0163
3 NPS
3.07 in. f = 0.0173
1000
100
10
10 100 1000
VVeenntt PPiippiinngg
NNoottee:: The preceding figure, provided as a reference, is based on ASHRAE Standard 15. Vent line size is typically
dictated by state or local code which may be different from ASHRAE Standard 15 requirements.
CVHH-SVX001G-EN
41
L =
0.214d5 (P
2
0
– P
2
2
)–d * ln(P0 / P2)
fC
2
R
6f
ASHRAE Standard 15
VVeenntt PPiippiinngg
L = equivalent length of discharge piping, feet
= rated capacity as stamped on the relief device
C
r
in SCFM (conversion: lb/min = SCFM * 0.0764)
= CC value in lb/min from the preceding table
C
r
f = Moody friction factor in fully turbulent flow
d = inside diameter of pipe or tube, in.
ln = natural logarithm
P
= absolute pressure at outlet of discharge piping,
2
psi (atmospheric pressure)
P
= allowed back pressure (absolute) at the outlet
0
of pressure relief device, psi
P
= (0.15 P) + atmospheric pressure
0
Table 14. “C” values used to determine rupture disk
vent line sizes (kg/s); for use with the following figure
Evap.
Cond.
NTON
900–1200 100M 100M 0.853 0.368 0.310 0.141 0.034
900–1200 100L 100L 0.939 0.415 0.349 0.141 0.034
900–1200 130M 130M 0.932 0.412 0.346 0.141 0.034
900–1200 160M 200M 1.022 0.461 0.386 0.141 0.034
900–1200 200L 220L 1.222 0.575 0.473 0.141 0.034
900–1200 220L 220L 1.284 0.637 0.473 0.141 0.034
1500–1700 200L 200L 1.195 0.575 0.435 0.151 0.034
1500–1700 220L 220L 1.295 0.637 0.473 0.151 0.034
900–1200 100M 10HM
900–1200 130M 13HM 1.053 0.412 0.467 0.141 0.034
900–1200 160M 20HM 1.144 0.461 0.509 0.141 0.034
1500–1700 200L 20HL 1.332 0.575 0.573 0.151 0.034
1500–1700 220L 22HL 1.458 0.637 0.637 0.151 0.034
Notes:
1. Rupture disk diameter is 76.2 mm.
2. Use the total “C” value in the following figure to determine the
vent line pipe diameter.
3. If piping multiple rupture disks (multiple units) to a common vent line, first determine the total “C” value for each unit, and then; add all “C” values together and apply the result to the following figure .
4. The CVHH unit is a Simplex chiller and has (1) refrigerant circuit and (1) relief device.
Size
(EVSZ)
(CDSZ)
“C” Values for Unit Components
Total
Size
Evap.
“C”
Value
0.967 0.368 0.424 0.141 0.034
Cond. Econ.
Oil
Tank
42
CVHH-SVX001G-EN
Figure 29. Rupture disk vent pipe sizing (SI units); for use with preceding table
Pipe size as a Function of “C” Value and Length of Run
“C” Value (kg/s)
L = Pipe Length (Equivalent Meters)
Pipe Size (I.D.) Friction Factor
150 DN 154 mm f = 0.0149
125 DN 128 mm f = 0.0155
100 DN 102 mm f = 0.0163
80 DN 78 mm f = 0.0173
10
1
0
10 100 1000
VVeenntt PPiippiinngg
NNoottee:: The preceding figure, provided as a reference, is based on ASHRAE Standard 15. Vent line size is typically
dictated by state or local code which may be different from ASHRAE Standard 15 requirements.
CVHH-SVX001G-EN
43
L =
7.4381x10
5
(P
2
0
– P
2
2
)–d * ln(P0 / P2)
fC
2
R
500f
ASHRAE Standard 15
d
–15
VVeenntt PPiippiinngg
L = equivalent length of discharge piping, meters
C
= rated capacity as stamped on the relief device
r
in SCFM (conversion: kg/s = SCFM * 0.0764 / 132.28)
C
= CC value from the preceding table (convert C
r
in kg/s to lb/min for IP; lb/min = (kg/s) / 132.28)
f = Moody friction factor in fully turbulent flow
d = inside diameter of pipe or tube, mm
ln = natural logarithm
P
= absolute pressure at outlet of discharge piping,
2
kPa (atmospheric pressure)
P
= allowed back pressure (absolute) at the outlet
0
of pressure relief device, kPa
P
= (0.15 P) + atmospheric pressure
0
44
CVHH-SVX001G-EN

Insulation

Unit Insulation Requirements

Factory-installed insulation is available as an option for all units. Factory installation does NOT include insulation of the chiller feet; if required, insulation for chiller feet is provided by others. In applications where the chiller is not factory-insulated, install insulation over the areas outlined and highlighted with dashed lines as shown in the figure in “Factory Applied
Insulation,” p. 45.
Insulate all 1/4-in. (6.35-mm) eductor lines, one from the suction cover and one from the evaporator, to prevent sweating.
The quantities of insulation required based on unit size and insulation thickness are listed in the following table. Insulation thickness is determined at normal design conditions which are:
Standard comfort-cooling leaving chilled water temperature
85°F (29.4°C) dry bulb ambient temperature
75 percent relative humidity
Operation outside of normal design conditions as defined in this section may require additional insulation; contact Trane for further review.
NNoottee:: If the unit is not factory-insulated, install
insulation around the evaporator bulbwells and ensure that the bulbwells and connections for the waterbox drains and vents are still accessible after insulation is applied. The sensor modules (Low Level Intelligent Devices [LLIDs]) and interconnecting four-wire cable inter-processor communication (IPC) bus must be raised up above the field-installed insulation. Secure the IPC bus to the insulation top/outer surface after insulation is completed.
IImmppoorrttaanntt:: Do NOT insulate the motor housing, unit
wiring, or sensor modules.
WWAARRNNIINNGG
RReeppllaaccee MMaannuuaall iinn CCaabbiinneett AAfftteerr UUssee!!
FFaaiilluurree ttoo rreeppllaaccee tthhiiss IInnssttaallllaattiioonn,, OOppeerraattiioonn,, aanndd MMaaiinntteennaannccee mmaannuuaall iinn ccaabbiinneett aafftteerr uussee ccoouulldd pprreevveenntt ppeerrssoonnnneell ffrroomm aacccceessssiinngg nneecceessssaarryy ssaaffeettyy iinnffoorrmmaattiioonn aanndd ccoouulldd rreessuulltt iinn ddeeaatthh oorr sseerriioouuss iinnjjuurryy oorr eeqquuiippmmeenntt ddaammaaggee..
NNOOTTIICCEE
EEqquuiippmmeenntt DDaammaaggee!!
FFaaiilluurree ttoo rreemmoovvee tthhee ssttrraaiinn rreelliieeff wwiitthh tthhee sseennssoorr ccoouulldd rreessuulltt iinn eeqquuiippmmeenntt ddaammaaggee.. DDoo NNOOTT aatttteemmpptt ttoo ppuullll sseennssoorr bbuullbb tthhrroouugghh tthhee ssttrraaiinn rreelliieeff;; aallwwaayyss rreemmoovvee tthhee eennttiirree ssttrraaiinn rreelliieeff wwiitthh tthhee sseennssoorr..
Table 15. Evaporator insulation requirements
EVSZ (Standard Unit)
100M 661 61.4
100L 680 63.2
130M 684 63.5
160M 711 66.1
200M 738 68.6
200L 765 71.1
220M 770 71.5
220L 799 74.2
Notes:
1. Units are NOT insulated on the motor or refrigerant drain lines.
2. 3/4-in. (19.05-mm) sheet insulation is installed on the
evaporator, evaporator waterboxes, suction elbow, suction cover, economizer, liquid lines, and piping.
3. Copper oil eductor lines require pipe insulation.
3/4 in. (19.05 mm) Insulation
Square Feet Square Meters

Insulation Thickness Requirements

Factory Applied Insulation

All low-temperature surfaces are covered with 3/4 in. (19.05 mm) Armaflex® II or equal (thermal conductivity = 0.25 Btu/h-ft waterboxes, suction elbow, economizer, and piping.
The insulation is Armaflex® or equivalent closed cell elastomeric insulation to prevent the formation of condensation in environments with a relative humidity up to 75 percent. Chillers in high humidity areas or ice storage, low leaving water temperature (less than 36°F [2.2°C] chilled water temperature/glycol) units, may require double thickness to prevent formation of condensation.
IInnssuullaattiioonn DDaammaaggee!!
FFaaiilluurree ttoo ffoollllooww tthheessee iinnssttrruuccttiioonnss ccoouulldd rreessuulltt iinn iinnssuullaattiioonn ddaammaaggee.. TToo pprreevveenntt ddaammaaggee ttoo ffaaccttoorryy iinnssttaalllleedd iinnssuullaattiioonn::
•• DDoo nnoott aallllooww tthhee iinnssuullaattiioonn ttoo bbee eexxppoosseedd ttoo eexxcceessssiivvee ssuunnlliigghhtt.. SSttoorree iinnddoooorrss oorr ccoovveerr wwiitthh ccaannvvaass ttoo pprreevveenntt eexxppoossuurree..
•• DDoo nnoott uussee tthhiinnnneerrss aanndd ssoollvveennttss oorr ootthheerr ttyyppeess ooff ppaaiinntt.. UUssee oonnllyy wwaatteerr bbaassee llaatteexx..
2
[0.036 W/m2- K]), evaporator,
NNOOTTIICCEE
CVHH-SVX001G-EN
45
Line from evaporator
Line to eductor
Filter drier
and eductor lines
Pipe (free cooling only)
Control
panel
support
Pipe
Economizer
Pipe
Suction
connection
See first
two notes
Suction
elbow
Evaporator
Suction
cover
See first
note
Eductor line
See first
two notes
IInnssuullaattiioonn
Figure 30. Recommended area for unit insulation
NNootteess::
Bulbwells, drain, and vent connections must be accessible after insulating.
All units with evaporator marine waterboxes wrap waterbox shell insulation with strapping and secure strapping with seal.
Evaporators with pressure vessel nameplates must have insulation cut out around the nameplate. Do NOT glue insulation to the nameplate.
Apply 2-in. (50.8-mm) wide black tape on overlap joints. Where possible apply 3-in. (7.6-cm) wide strip of
0.38-in. (9.7-mm) thick insulation over butt joint seams.
Insulate all economizer supports.
46
CVHH-SVX001G-EN

Installation: Controls

This section covers information pertaining to the UC800 controller hardware. For information about the Tracer® AdaptiViewdisplay, which is used to interface with the internal chiller data and functions provided by the UC800, refer to Tracer AdaptiView
Display for Water-Cooled CenTraVac Chillers Operations Guide (CTV-SVU01*-EN).

UC800 Specifications

Power Supply

NNOOTTIICCEE
CCuussttoommeerr WWiirriinngg!!
FFaaiilluurree ttoo ffoollllooww iinnssttrruuccttiioonnss bbeellooww ccoouulldd rreessuulltt iinn eeqquuiippmmeenntt oorr pprrooppeerrttyy--oonnllyy ddaammaaggee.. OOnnllyy uussee fflleexxiibbllee ccoonndduuiitt oorr mmeettaall--ccllaadd ccaabbllee wwhheenn wwiirriinngg tthhee ccoonnttrrooll ppaanneell aanndd mmoottoorr tteerrmmiinnaall bbooxx ttoo eennssuurree aa vviibbrraattiioonn--ffrreeee iinnssttaallllaattiioonn..
The UC800 (1K1) receives 24 Vac (210 mA) power from the 1T3 power supply located in the chiller control panel.

Wiring and Port Descriptions

The following figure illustrates the UC800 controller ports, LEDs, rotary switches, and wiring terminals. The numbered list following the figure corresponds to the numbered callouts in the illustration.
CVHH-SVX001G-EN
47
LINK
+ +
+
24
VDC
+
MBUS
1
2 3 4 5
6
7 8
9
0
-
6
0
-
Front View
Bottom View
IInnssttaallllaattiioonn:: CCoonnttrroollss
Figure 31. UC800 wiring locations and connection ports
4. Machine bus for existing machine LLIDs (IPC3 Tracer bus). IPC3 Bus: used for Comm 4 using TCI
or LonTalk
5. Power (210 mA at 24 Vdc) and ground terminations (same bus as Item 4). Factory wired.
6. Not used.
7. Marquee LED power and UC800 Status indicator (refer to the table in “LED Description and
Operation,” p. 48).
8. Status LEDs for the BAS link, MBus link, and IMC link.
9. USB device Type B connection for the service tool (Tracer® TU).
10. The Ethernet connection can only be used with the Tracer® AdaptiViewdisplay.
11. USB Host (not used).
®
using LCI-C.

Communication Interfaces

There are four connections on the UC800 that support the communication interfaces listed. Refer to the figure in “Wiring and Port Descriptions,” p. 47 for the locations of each of these ports.
BACnet® MS/TP
MODBUS® Slave
LonTalk® using LCI-C (from the IPC3 bus)
Comm 4 using TCI (from the IPC3 bus)
1. Rotary Switches for setting BACnet® MAC address
2. LINK for BACnet® MS/TP, or MODBUS® Slave (two
3. LINK for BACnet® MS/TP, or MODBUS® Slave (two
48
or MODBUS® ID.
terminals, ±). Field wired if used.
terminals, ±). Field wired if used.

Rotary Switches

There are three rotary switches on the front of the UC800 controller. Use these switches to define a three­digit address when the UC800 is installed in a BACnet® or MODBUS® system (e.g., 107, 127, etc.).
NNoottee:: Valid addresses are 001 to 127 for BACnet
001 to 247 for MODBUS
®
.
®
and

LED Description and Operation

There are ten LEDs on the front of the UC800. The following figure shows the locations of each LED and the following table describes their behavior in specific instances.
CVHH-SVX001G-EN
LINK
LINK MBUS IMC
TX RX
ACT
SERVICE
Marquee LED
IInnssttaallllaattiioonn:: CCoonnttrroollss
Figure 32. LED locations
Table 16. LED behavior
LED UC800 Status
Powered. If the Marquee LED is green solid, the
UC800 is powered and no problems exist.
Marquee LED
LINK, MBUS,
IMC
Ethernet Link
Service
Low power or malfunction. If the Marquee LED is red solid, the UC800 is powered but there are problems present. Alarm. The Marquee LED blinks red when an alarm exists.
The TX LED blinks green at the data transfer rate when the UC800 transfers data to other devices on the link. The RX LED blinks yellow at the data transfer rate when the UC800 receives data from other devices on the link.
The LINK LED is solid green if the Ethernet link is connected and communicating. The ACT LED blinks yellow at the data transfer rate when data flow is active on the link.
The Service LED is solid green when pressed. For qualified service technicians only. Do NOT use.
IImmppoorrttaanntt:: Maintain at least 6 in. (16 cm) between low-
voltage (less than 30V) and high voltage circuits. Failure to do so could result in electrical noise that could distort the signals carried by the low-voltage wiring, including inter-processor communication (IPC).
CVHH-SVX001G-EN
49
30 Volt Maximum
30–120 Volt Maximum
IInnssttaallllaattiioonn:: CCoonnttrroollss
Figure 33. Control panel: Tracer®® AdaptiView™™ main unit assembly (showing low voltage and higher voltage areas for proper routing of field wiring)
50
CVHH-SVX001G-EN
A
B
D
C
IInnssttaallllaattiioonn:: CCoonnttrroollss

Installing the Tracer AdaptiView Display

During shipment, the Tracer® AdaptiViewdisplay is boxed, shrink-wrapped, and located behind the control panel. The display must be installed at the site.
IImmppoorrttaanntt:: For best results, Trane, or an agent of
Trane, must install the Tracer AdaptiView™display and display arm.
1. Unwrap the control panel and display arm. Locate the box containing the Tracer® AdaptiView display behind the control panel (labeled A in the following figure).
2. After the box containing the display has been removed, remove the shipping bracket from the back of the control panel (labeled B in the following figure).
3. Remove the display from the box.
NNoottee:: Screws are M4 (metric size 4), 6 to 8 mm long,
and are shipped with the display.
4. Plug the power cable (labeled C in the following figure) and the Ethernet cable (labeled D in the following figure) into the bottom of the display.
NNoottee:: Both cables are already present and extend
from the end of the display arm.
5. Adjust the Tracer® AdaptiViewdisplay support arm so the base plate that attaches to the display is horizontal.
®
holes in the display support arm base plate.
8. Attach the Tracer® AdaptiViewdisplay to the display support arm base plate (labeled E in the following figure) using the M4 (metric size 4) screws referenced in Step 3.
Figure 34. Tracer®® AdaptiView™™ shipping location
Figure 35. Power cable and Ethernet cable connections
CCAAUUTTIIOONN
TTeennssiioonn iinn DDiissppllaayy SSuuppppoorrtt AArrmm!!
FFaaiilluurree ttoo ffoollllooww iinnssttrruuccttiioonnss bbeellooww ccoouulldd rreessuulltt iinn uunneexxppeecctteedd mmoovveemmeenntt ooff tthhee sspprriinngg-­llooaaddeedd ssuuppppoorrtt aarrmm wwhhiicchh ccoouulldd rreessuulltt iinn mmiinnoorr ttoo mmooddeerraattee iinnjjuurryy.. EEnnssuurree tthhaatt tthhee ssuuppppoorrtt aarrmm iiss iinn tthhee ffuullll uupprriigghhtt ppoossiittiioonn wwhheenn rreemmoovviinngg tthhee TTrraacceerr AAddaappttiiVViieeww ddiissppllaayy ffrroomm tthhee ssuuppppoorrtt aarrmm..
NNoottee:: Review “Adjusting the Tracer AdaptiView
Display Arm,” p. 52 before attaching the
display as some adjustments may be required prior to attaching the display to the support arm base.
6. Position the Tracer® AdaptiViewdisplay—with the LCD screen facing up—on top of the display support arm base plate.
NNoottee:: Ensure the Trane logo is positioned so that it
will be at the top when the display is attached to the display support arm.
IImmppoorrttaanntt:: Use care when positioning the Tracer
AdaptiView™display on top of the support arm base plate and do NOT drop the display.
7. Align the four holes in the display with the screw
®
CVHH-SVX001G-EN
51
E
1
2
3
4
IInnssttaallllaattiioonn:: CCoonnttrroollss
Figure 36. Display attachments to the support arm base plate

Adjusting the Tracer AdaptiView Display Arm

The Tracer® AdaptiViewdisplay arm may become too loose or too tight and may need adjustment. There are three joints on the display arm that allow the display to be positioned at a variety of heights and angles (refer to items labeled 11, 22, and 33 in the following figure).
Figure 37. Joint locations on the display arm
To adjust the tension on the display arm:
At each joint in the display arm, there is either a hex bolt (11 and 22) or hex screw (33). Turn the hex bolt or screw in the proper direction to increase or decrease tension.
NNoottee:: Each hex bolt or screw is labeled with
lloooosseenn/ttiigghhtteenn or ++/-- indicators.
Joint 33 has a 6 mm hex screw controlling the tension on a gas spring, which allows the Tracer® AdaptiViewdisplay to tilt up and down.
Joints 11 and 22 are covered by a plastic cap. Remove the plastic cap to access the screw. Adjust using a 13 mm wrench as necessary.
To adjust the swivel rotation tension of the Tracer® AdaptiViewdisplay, adjust the screw located in the support arm base plate, as described in the final step in “Installing the Tracer AdaptiView
Display,” p. 51. This adjustment must be done prior
to attaching the display to the support arm base.
Use a 14 mm wrench to adjust the tension.
To adjust the left/right swivel of the entire display arm, use a 13 mm wrench to adjust the screw labeled 44 in the preceding figure.
52
CVHH-SVX001G-EN

Electrical Requirements

X39003892001A

Installation Requirements

WWAARRNNIINNGG
PPrrooppeerr FFiieelldd WWiirriinngg aanndd GGrroouunnddiinngg RReeqquuiirreedd!!
FFaaiilluurree ttoo ffoollllooww ccooddee ccoouulldd rreessuulltt iinn ddeeaatthh oorr sseerriioouuss iinnjjuurryy.. AAllll ffiieelldd wwiirriinngg MMUUSSTT bbee ppeerrffoorrmmeedd bbyy qquuaalliiffiieedd ppeerrssoonnnneell.. IImmpprrooppeerrllyy iinnssttaalllleedd aanndd ggrroouunnddeedd ffiieelldd wwiirriinngg ppoosseess FFIIRREE aanndd EELLEECCTTRROOCCUUTTIIOONN hhaazzaarrddss.. TToo aavvooiidd tthheessee hhaazzaarrddss,, yyoouu MMUUSSTT ffoollllooww rreeqquuiirreemmeennttss ffoorr ffiieelldd wwiirriinngg iinnssttaallllaattiioonn aanndd ggrroouunnddiinngg aass ddeessccrriibbeedd iinn NNEECC aanndd yyoouurr llooccaall// ssttaattee//nnaattiioonnaall eelleeccttrriiccaall ccooddeess..
power supply wiring to the starter,
other unit control options present, and
any field-supplied control devices.
As you review this manual along with the wiring instructions presented in this section, keep in mind that:
All field-installed wiring must conform to National Electric Code (NEC) guidelines, and any applicable local, state, and national codes. For the USA, be sure to satisfy proper equipment grounding requirements per NEC.
Compressor motor and unit electrical data (including motor kW, voltage utilization range, rated load amps, and locked rotor amps) is listed on the chiller nameplate.
All field-installed wiring must be checked for proper terminations, and for possible shorts or grounds.
NNoottee:: Always refer to the actual wiring diagrams
that shipped with the chiller or the unit submittal for specific as-built electrical schematic and connection information.
NNOOTTIICCEE
AAddaappttiivvee FFrreeqquueennccyy DDrriivvee ((AAFFDD))// SSttaarrtteerr CCoommppoonneenntt DDaammaaggee!!
FFaaiilluurree ttoo rreemmoovvee ddeebbrriiss ffrroomm iinnssiiddee tthhee AAFFDD// ssttaarrtteerr ppaanneell ccoouulldd rreessuulltt iinn aann eelleeccttrriiccaall sshhoorrtt aanndd ccoouulldd ccaauussee sseerriioouuss AAFFDD//ssttaarrtteerr ccoommppoonneenntt ddaammaaggee..
NNoottee:: Graphic labels (shown above) are used for CE
application only.
IImmppoorrttaanntt::
Before servicing, disconnect all power sources and allow at least 30 minutes for capacitors to discharge.
All electrical enclosures—unit or remote —are IP2X.
Unit-mounted starters are available as an option on most units. While this option eliminates most field­installed wiring requirements, the electrical contractor must still complete the electrical connection for the following:
CVHH-SVX001G-EN
Do NOT modify or cut enclosure to provide electrical access. Removable panels have been provided, and any modification should be done away from the enclosure. If the starter enclosure must be cut to provide electrical access, exercise care to prevent debris from falling inside the enclosure. Refer to installation information shipped with the starter or submittal drawings.

Electrical Requirements

Before wiring begins, observe the following electrical requirements:
Follow all lockout/tagout procedures prior to performing installation and/or service on the unit.
Always wear appropriate personal protective equipment.
Wait the required time to allow the capacitor(s) to discharge; this could be up to 30 minutes.
Verify that all capacitors are discharged prior to service using a properly rated volt meter.
Use appropriate capacitor discharge tool when necessary.
53
X39003892001A
EElleeccttrriiccaall RReeqquuiirreemmeennttss
Comply with the safety practices recommended in PROD-SVB06*-EN.
For AWG/MCM equivalents in mm
2
, refer to the
following table.
Table 17. Wire sizing reference
2
AWG/MCM mm
22 0.32
21 0.35
20 0.5
18 0.75
17 1.0
16 1.5
14 2.5
12 4
10 6
8 10
6 16
4 25
2 or 1 35
1/0
2/0
2/0 or 3/0
4/0 or 250
300 150
350 or 400 185
450 or 500 240
Note: AWG = American Wire Gauge
Equivalent
50
70
95
120
WWAARRNNIINNGG
PPeerrssoonnaall PPrrootteeccttiivvee EEqquuiippmmeenntt ((PPPPEE)) RReeqquuiirreedd!!
FFaaiilluurree ttoo wweeaarr PPPPEE aanndd ffoollllooww pprrooppeerr hhaannddlliinngg gguuiiddeelliinneess ccoouulldd rreessuulltt iinn ddeeaatthh oorr sseerriioouuss iinnjjuurryy.. AAllwwaayyss wweeaarr aapppprroopprriiaattee ppeerrssoonnaall pprrootteeccttiivvee eeqquuiippmmeenntt iinn aaccccoorrddaannccee wwiitthh aapppplliiccaabbllee rreegguullaattiioonnss aanndd//oorr ssttaannddaarrddss ttoo gguuaarrdd aaggaaiinnsstt ppootteennttiiaall eelleeccttrriiccaall sshhoocckk aanndd ffllaasshh hhaazzaarrddss..
WWAARRNNIINNGG
LLiivvee EElleeccttrriiccaall CCoommppoonneennttss!!
FFaaiilluurree ttoo ffoollllooww aallll eelleeccttrriiccaall ssaaffeettyy pprreeccaauuttiioonnss wwhheenn eexxppoosseedd ttoo lliivvee eelleeccttrriiccaall ccoommppoonneennttss ccoouulldd rreessuulltt iinn ddeeaatthh oorr sseerriioouuss iinnjjuurryy.. WWhheenn iitt iiss nneecceessssaarryy ttoo wwoorrkk wwiitthh lliivvee eelleeccttrriiccaall ccoommppoonneennttss,, hhaavvee aa qquuaalliiffiieedd lliicceennsseedd eelleeccttrriicciiaann oorr ootthheerr iinnddiivviidduuaall wwhhoo hhaass bbeeeenn pprrooppeerrllyy ttrraaiinneedd iinn hhaannddlliinngg lliivvee eelleeccttrriiccaall ccoommppoonneennttss ppeerrffoorrmm tthheessee ttaasskkss..
IImmppoorrttaanntt:: Customers are responsible for all field
wiring in compliance with international, national, and/or local codes.
WWAARRNNIINNGG
HHaazzaarrddoouuss VVoollttaaggee ww//CCaappaacciittoorrss!!
FFaaiilluurree ttoo ddiissccoonnnneecctt ppoowweerr aanndd ddiisscchhaarrggee ccaappaacciittoorrss bbeeffoorree sseerrvviicciinngg ccoouulldd rreessuulltt iinn ddeeaatthh oorr sseerriioouuss iinnjjuurryy.. DDiissccoonnnneecctt aallll eelleeccttrriicc ppoowweerr,, iinncclluuddiinngg rreemmoottee ddiissccoonnnneeccttss aanndd ddiisscchhaarrggee aallll mmoottoorr ssttaarrtt//rruunn ccaappaacciittoorrss bbeeffoorree sseerrvviicciinngg.. FFoollllooww pprrooppeerr lloocckkoouutt//ttaaggoouutt pprroocceedduurreess ttoo eennssuurree tthhee ppoowweerr ccaannnnoott bbee iinnaaddvveerrtteennttllyy eenneerrggiizzeedd.. FFoorr vvaarriiaabbllee ffrreeqquueennccyy ddrriivveess oorr ootthheerr eenneerrggyy ssttoorriinngg ccoommppoonneennttss pprroovviiddeedd bbyy TTrraannee oorr ootthheerrss,, rreeffeerr ttoo tthhee aapppprroopprriiaattee mmaannuuffaaccttuurreerr’’ss lliitteerraattuurree ffoorr aalllloowwaabbllee wwaaiittiinngg ppeerriiooddss ffoorr ddiisscchhaarrggee ooff ccaappaacciittoorrss.. VVeerriiffyy wwiitthh aa CCAATT IIIIII oorr IIVV vvoollttmmeetteerr rraatteedd ppeerr NNFFPPAA 7700EE tthhaatt aallll ccaappaacciittoorrss hhaavvee ddiisscchhaarrggeedd..
FFoorr aaddddiittiioonnaall iinnffoorrmmaattiioonn rreeggaarrddiinngg tthhee ssaaffee ddiisscchhaarrggee ooff ccaappaacciittoorrss,, sseeee PPRROODD--SSVVBB0066**--EENN..
54
NNoottee:: Graphic labels (shown above) are used for CE
application only.
IImmppoorrttaanntt::
Before servicing, disconnect all power sources and allow at least 30 minutes for capacitors to discharge.
All electrical enclosures—unit or remote —are IP2X.
CVHH-SVX001G-EN
EElleeccttrriiccaall RReeqquuiirreemmeennttss

Trane-supplied Remote Starter Wiring

Table 18. Standard field power wiring requirements
Power Supply Wiring
to Starter Panel
3-Phase Line Voltage L1, L2, L3, and Ground
Starter to Motor Power Wiring
Remote Starter to Chiller Motor Junction Box
Power Supply Wiring to Unit-Mounted
Control Power Transformer
(CPTR Optional)
3-Phase Line Voltage
(b)
Ground CPTR Panel GND
Starter to Control Panel
120 Vac Control Wiring
120 Vac Power Supply (from Starter to
Control Panel)
High Pressure Cutout to Starter
1F1 Circuit Breaker to Starter 2X8-3 1X1-2
Oil Pump Interlock 2X8-7, 2X8-8 1X1-10, 1X1-21
Low-voltage Starter Oil/Refrigerant Pump
Mdeium-voltage Starter Oil/Refrigerant
Start
Pump Start
Oil/Refrigerant Pump Neutral
Starter to Oil/Refrigerant Pump
Junction Box
Low Voltage 3-Phase Pump Power 2X8-21, 2X8-22, 2X8-23 4X4-1, 4X4-2, 4X4-3
Medium Voltage 1-Phase Pump Power 2X8-12, 2X8-13 4X4-1, 4X4-4
Low Voltage Circuits
Less Than 30 Vac
Standard Circuits
Inter-processor Communications (IPC)
Remote-Mounted
Notes:
1. All wiring to be in accordance with National Electrical Code (NEC) and any local codes.
2. For AWG/MCM equivalents in mm
3. Auxiliary equipment must be powered from other sources as the chiller control panel power supplies are sized for the chiller loads only.
(a)
Ground lug for a unit-mounted solid state starter or wye-delta starter is sized to accept 14 AWG solid to 8 AWG strand wire. If local codes require different lug size, it must be field-supplied and -installed.
(b)
Refer to submittal and ship-with wiring schematics for voltage requirements.
(c)
Must be separated from 120 Vac and higher wiring.
(d)
The maximum distance a Trane–supplied remote starter can be placed from the chiller is 1000 ft (305 m).
(c) (d)
2
, refer to the table in “Electrical Requirements,” p. 53.
Starter Panel
Terminals
(a)
Starter Motor
T1 through T6 T1 through T6
Control Power Transformer
Terminals
6Q1-1,3,5
Starter Panel
Terminals
2X8-1, 2X8-2
2X8-G (Ground)
2X8-4 1X1-4
2X8-24 1X1-21
2X8-14 1X1-21
2X8-25 1X1-16
Starter Panel
Terminals
Starter Panel
Terminals
2K32-J3-3-4, or
2X1-12 to 13 if Present (Do
NOT Ground Shield at Starter)
Unit Control Panel
Terminations
1X1-1, 1X1-12
1X1-G (Ground)
Oil/Refrigerant
Pump Junction Box
Unit Control Panel
Terminations
1T2-J53-4
Shield Ground at
1X1-G (GND) Only
2-wire with Gound
Comm Link
CVHH-SVX001G-EN
55

Customer-supplied Remote Starter Wiring

Table 19. Standard customer-supplied remote field wiring requirements
Power Supply Wiring to Starter Panel
Starter by Others 3-phase Power Wiring See Starter by Others Schematic
Starter to Motor Power Wiring
Remote Starter to Chiller Motor Junction box
(a)
Power Supply Wiring to Unit-Mounted Control
Power Transformer (CPTR)
3-Phase line voltage
(b)
Ground CPTR Panel GND
Starter to Control Panel 120 Vac Control Wiring
Power from Control Panel 1F1 5X12-3 1X1-2
Neutral from Control Panel 5X12-2 1X1-13
Ground from Control Panel 5X12-G 1X1-G
Interlock Relay Signal
Start Contactor Signal
Oil Pump Interlock 5X12-7, 5X12-8 1X1-10, 1X1-21
Run Contactor Signal
Transition Complete
Solid State Starter Fault
(c)
Low Voltage Circuits less than 30 Vac
Standard Circuits
Current Transformers (refer to table in “Current
Transformer and Potential Transformer Wire
Sizing,” p. 57) (Required)
(d)
Potential Transformers (Required)
Notes:
1. All wiring to be in accordance with National Electrical Code (NC) and any local codes.
2. For AWG/MCM equivalents in mm
3. Starter by Others Specification available from your local Trane sales office.
(a)
Wires, lugs, and fuses/breakers are sized based on National Electric Code (NEC) [NFPA 70] and UL 1995.
(b)
Refer to submittal and ship-with wiring schematics for voltage requirements.
(c)
Solid State Starter Fault input is used with low- and medium-voltage, customer-supplied solid state starters only.
(d)
Must be separated from 120 Vac and higher wiring.
2
, refer to the table in “Electrical Requirements,” p. 53.
Starter Panel Terminals
Starters Motor
T1 through T6 Terminals T1 through T6 Terminals
Control Power Transformer
Terminals
6Q1-1,3,5
Starter Panel Terminals
Unit Control Panel
Terminations
5X12-4 1K23 J10-1
5X12-5 1K23 J8-1
5X12-10 1K23 J6-1
5X12-14 1K23 J12-2 5X12-12
5X12-11
Starter Panel Terminals
1K13 J2-2 1K13 J2-1
Unit Control Panel
Terminations
5X12-19 1K23 J7-1
5X12-20 1K23 J7-2
5X12-21 1K23 J7-3
5X12-22 1K23 J7-4
5X12-23 1K23 J7-5
5X12-24 1K23 J7-6
5X12-25 1K23 J5-1
5X12-26 1K23 J5-2
5X12-27 1K23 J5-3
5X12-28 1K23 J5-4
5X12-29 1K23 J5-5
5X12-30 1K23 J5-6
Note: Phasing Must be
Maintained
56
CVHH-SVX001G-EN
CCuussttoommeerr--ssuupppplliieedd RReemmoottee SSttaarrtteerr WWiirriinngg

Current Transformer and Potential Transformer Wire Sizing

For customer-supplied starter-to-chiller unit control panel starter module 1K23; these wires must be separated from 120 Vac or higher wiring.
Table 20. Maximum recommended wire length for
Wire AWG
Notes:
1. For AWG/MCM equivalents in mm
2. Wire length is for copper conductors only.
3. Wire length is total one-way distance that the CT can be from
(a)
Wires, lugs, and fuses/breakers are sized based on National Electric Code (NEC) [NFPA 70] and UL 1995.
secondary current transformer (CT) leads in dual CT system
Maximum Wire Length
(a)
8 1362.8 415.5
10 856.9 261.2
12 538.9 164.3
14 338.9 103.3
16 213.1 65.0
17 169.1 51.5
18 134.1 40.9
20 84.3 25.7
“Electrical Requirements,” p. 53.
the starter module.
Secondary CT Leads
Feet Meters
2
, refer to the table in
Table 21. Maximum recommended total wire length
for potential transformers (PTs) in a single PT system
Wire AWG
Notes:
1. For AWG/MCM equivalents in mm
“Electrical Requirements,” p. 53.
2. Wire length is for copper conductors only.
3. Wire length is maximum round trip wire length. The maximum
distance the PT can be located from the starter module is half of the listed value.
(a)
Wires, lugs, and fuses/breakers are sized based on National Electric Code (NEC) [NFPA 70] and UL 1995.
(a)
8 5339 1627
10 3357 1023
12 2112 643
14 1328 404
16 835 254
17 662 201
18 525 160
20 330 100
21 262 79
22 207 63
Maximum Lead Length
Feet Meters
2
, refer to the table in
Table 22. Maximum recommended total wire length
(to and from) for PT leads in a dual PT system
Wire AWG
(a)
8 3061 933 711 217
10 1924 586 447 136
12 1211 369 281 85
14 761 232 177 53
16 478 145 111 33
17 379 115 88 26
18 301 91 70 21
20 189 57 44 13
21 150 45 34 10
22 119 36 27 8
Notes:
1. For AWG/MCM equivalents in mm
“Electrical Requirements,” p. 53.
2. Wire length is for copper conductors only.
3. Wire length is maximum round trip wire length. The maximum
distance the PT can be located from the starter module is half of the listed value.
(a)
Wires, lugs, and fuses/breakers are sized based on National Electric Code (NEC) [NFPA 70] and UL 1995.
Max Wire Length
Primary
Feet Meters Feet Meters
Max Wire Length
Secondary
2
, refer to the table in
CVHH-SVX001G-EN
57

Power Supply Wiring

X39003892001A
WWAARRNNIINNGG
PPrrooppeerr FFiieelldd WWiirriinngg aanndd GGrroouunnddiinngg RReeqquuiirreedd!!
FFaaiilluurree ttoo ffoollllooww ccooddee ccoouulldd rreessuulltt iinn ddeeaatthh oorr sseerriioouuss iinnjjuurryy.. AAllll ffiieelldd wwiirriinngg MMUUSSTT bbee ppeerrffoorrmmeedd bbyy qquuaalliiffiieedd ppeerrssoonnnneell.. IImmpprrooppeerrllyy iinnssttaalllleedd aanndd ggrroouunnddeedd ffiieelldd wwiirriinngg ppoosseess FFIIRREE aanndd EELLEECCTTRROOCCUUTTIIOONN hhaazzaarrddss.. TToo aavvooiidd tthheessee hhaazzaarrddss,, yyoouu MMUUSSTT ffoollllooww rreeqquuiirreemmeennttss ffoorr ffiieelldd wwiirriinngg iinnssttaallllaattiioonn aanndd ggrroouunnddiinngg aass ddeessccrriibbeedd iinn NNEECC aanndd yyoouurr llooccaall// ssttaattee//nnaattiioonnaall eelleeccttrriiccaall ccooddeess..
NNoottee:: Graphic labels (shown above) are used for CE
application only.
IImmppoorrttaanntt::
Before servicing, disconnect all power sources and allow at least 30 minutes for capacitors to discharge.
All electrical enclosures—unit or remote —are IP2X.

Three-Phase Power

Review and follow the guidelines in this section to properly install and connect the power supply wiring to the starter panel:
Verify that the starter nameplate ratings are compatible with the power supply characteristics and with the electrical data on the unit nameplate.
NNOOTTIICCEE
AAddaappttiivvee FFrreeqquueennccyy DDrriivvee ((AAFFDD))// SSttaarrtteerr CCoommppoonneenntt DDaammaaggee!!
FFaaiilluurree ttoo rreemmoovvee ddeebbrriiss ffrroomm iinnssiiddee tthhee AAFFDD// ssttaarrtteerr ppaanneell ccoouulldd rreessuulltt iinn aann eelleeccttrriiccaall sshhoorrtt aanndd ccoouulldd ccaauussee sseerriioouuss AAFFDD//ssttaarrtteerr ccoommppoonneenntt ddaammaaggee..
NNOOTTIICCEE
UUssee CCooppppeerr CCoonndduuccttoorrss OOnnllyy!!
FFaaiilluurree ttoo uussee ccooppppeerr ccoonndduuccttoorrss ccoouulldd rreessuulltt iinn eeqquuiippmmeenntt ddaammaaggee aass tthhee eeqquuiippmmeenntt wwaass nnoott ddeessiiggnneedd oorr qquuaalliiffiieedd ttoo aacccceepptt ootthheerr ttyyppeess ooff ccoonndduuccttoorrss..
Do NOT modify or cut enclosure to provide electrical access. Removable panels have been provided and any modification should be done away from the enclosure. If the starter enclosure must be cut to provide electrical access, exercise care to prevent debris from falling inside the enclosure.
Use copper conductors to connect the three-phase power supply to the remote- or unit-mounted starter panel.
Flexible conduit connections are recommended to enhance serviceability and minimize vibration transmission.
Size the power supply wiring in accordance with National Electric Code (NEC) and local guidelines, using the RLA value stamped on the chiller nameplate and transformer load on L1 and L2.
Confirm that wire size is compatible with lug size stated in unit submittal.
Make sure that the incoming power wiring is properly phased; each power supply conduit run to the starter must carry the correct number of conductors to ensure equal phase representation.
NNoottee:: Connect L1, L2, and L3 (shown in the
following figure) per starter diagram provided with chiller.
When installing the power supply conduit, ensure that the position of the conduit does not interfere with the serviceability of any of the unit components, or with structural members and equipment. Ensure that the conduit is long enough to simplify any servicing that may be necessary in the future (e.g., starter).
Electrical wire torque specifications—follow starter manufacturer’s torque specifications.
58
CVHH-SVX001G-EN
L1
L2 L3
G
L1
L2 L3
G
L1
L2 L3
G
G G
L1 L2 L3 L1 L2 L3
L3
L2 L1
G
L3
L2 L1
G
L3
L2 L1
G
G G
L3 L2 L1 L3 L2 L1
Unit-mounted Starters
Remote-mounted Starters
PPoowweerr SSuuppppllyy WWiirriinngg
Figure 38. Proper phasing for starter power supply wiring

Circuit Breakers and Fused Disconnects

Any field-supplied circuit breaker or fused disconnect installed in power supplied to the chiller must be sized in compliance with National Electric Code (NEC) or local guidelines.

CE for Control Power Transformer Option

IImmppoorrttaanntt:: For the Control Power Transformer (CPTR)
option, chiller-mounted/UPS power, the customer needs to ensure that the supply is NOT taken from public low voltage supplies, and that a dedicated clean source of private power supply is used for chiller­mounted CPTR option when a CE chiller is selected. This also includes when CPTR option is standard such as in customer­supplied starters and remote-mounted medium-voltage Adaptive Frequency Drives (AFDs).
All customer wiring, including power wiring to starters/ drives/CPTR Option/UPS shore power, needs to be separated: 24–27 Vdc, 110–120 Vac, and 380–600 Vac each need to be in separate conduit runs.
For 110/120 V customer wiring, including main power supply to CPTR option, it is required that the customer provides some sort of surge protection ahead of it, and all customer wiring needs to be run in conduit. Any Ethernet cables being used by customer to interface with the Trane® chiller must be shielded Ethernet cabling.
The customer is required to provide an overcurrent device upstream of the CPTR option in accordance with International Electrotechnical Commission (IEC) standards and/or any applicable local and national codes.
The customer is required to follow all local, national, and/or IEC codes for installation.
Service personnel must use proper PPE for servicing and should also use proper lockout/tagout procedures during servicing. The customer should also disconnect the main supply disconnecting device upstream of the starter or drive first before performing any service on any part of the chiller, including the CPTR option, related controls, and oil pump motor circuits. In addition, service personnel should first disconnect the supply disconnecting device upstream of the CPTR option before performing any service on the CPTR option or its related circuits. Lock the CPTR option enclosure panel disconnect handle before servicing to prevent accidental pulling of the disconnect handle.
CVHH-SVX001G-EN
59
PPoowweerr SSuuppppllyy WWiirriinngg

CE for Starter or Drive

IImmppoorrttaanntt::
All Trane-supplied remote starters and drives used in conjunction with CVHH Trane
®
chillers will be CE-compliant per European Union (EU) directives and International Electrotechnical Commission (IEC) standards to which the CVHH chillers also comply. All Trane-supplied remote starters and drives must be used with CVHH Trane chillers to ensure CE compliance.
For remote starters and drives, basic details are provided on remote starter/ drive nameplate. Please refer to the chiller unit nameplate located on the chiller-mounted control panel for details on wire sizing (minimum current ampacity) and overcurrent protection sizing upstream of the unit (maximum overcurrent protection).
Always refer to as-built schematic wiring diagrams and the chiller
Installation, Operation, and Maintenance manual located inside the
chiller-mounted control panel (regardless of unit- or remote-mounted starter or drive) for details on wiring, safety, installation, and warnings.
Refer to drive-specific Installation, Operation, and Maintenance manuals for drive and option installation specifics for unit- and remote-mounted adaptive frequency drives.
Customers are responsible for all field wiring with respect to EMC and EMI interference. Customers are responsible to mitigate the risks associated with EMC and EMI interference that can occur as a result of customer-provided field wiring as dictated by local, national, and international codes. This also implies that for remote-mounted starters and drives, customers are responsible for the entire field wiring into the starter/drive as well as between the starter/drive and the chiller/ compressor terminals with respect to EMC and EMI interference. It also implies that customers are responsible for incoming power wiring to both the starter/drive and CPTR option enclosure unit-mounted panel with respect to EMC and EMI interference.
All customer wiring, including power wiring to starters/ drives/CPTR Option/UPS shore power, needs to be separated: 24–27 Vdc, 110–120 Vac, and 380–600 Vac each need to be in separate conduit runs.
For 110/120V customer wiring, including power supply to CPTR option, it is required that the customer provides some sort of surge protection and all customer wiring needs to be run in conduit.
For remote starters interfacing with the Trane® chiller, all wiring needs to be run in conduit. Any Ethernet cables being used by customer to interface with the Trane® chiller must be shielded Ethernet cabling.
The customer is required to provide an overcurrent protective device upstream of all starters and drives in
®
accordance with IEC standards and/or any applicable local and national codes.
Service personnel must use proper PPE for servicing and should also use proper lockout/tagout procedures during servicing: lock the starter disconnect handle before servicing to prevent accidental pulling of disconnect handle at the starter panel. In addition, service personnel should first disconnect the main supply disconnecting device upstream of the starter or drive before performing any service on any part of the chiller.
WWAARRNNIINNGG
LLoocckkoouutt//TTaaggoouutt BBeeffoorree RReemmoovviinngg TToouucchh--SSaaffee CCoovveerrss!!
FFaaiilluurree ttoo ffoollllooww iinnssttrruuccttiioonnss rreeggaarrddiinngg ttoouucchh--ssaaffee ccoovveerrss ccoouulldd rreessuulltt iinn ddeeaatthh oorr sseerriioouuss iinnjjuurryy.. TToouucchh--ssaaffee ccoovveerrss iinnssiiddee ppaanneellss aarree tthheerree ffoorr pprrootteeccttiioonn aanndd mmaayy bbee rreemmoovveedd iiff nneecceessssaarryy ffoorr sseerrvviiccee oonnllyy aanndd oonnllyy aafftteerr ddiissccoonnnneeccttiioonn ooff mmaaiinn ppoowweerr ssuuppppllyy.. BBeeffoorree rreemmoovviinngg aannyy ttoouucchh--ssaaffee ccoovveerr,, eennssuurree tthhaatt tthheerree iiss nnoo lliinnee ppoowweerr ffiirrsstt.. RReemmoovvaall ooff ttoouucchh--ssaaffee ccoovveerrss iiss aatt tthhee ccuussttoommeerr// sseerrvviiccee ppeerrssoonnnneell’’ss oowwnn rriisskk.. AAfftteerr aannyy sseerrvviiccee iiss ccoommpplleetteedd,, iiff tthhee ttoouucchh--ssaaffee ccoovveerrss hhaavvee bbeeeenn rreemmoovveedd,, tthheeyy nneeeedd ttoo bbee ppuutt bbaacckk iinn ttoo eennssuurree ssaaffeettyy aanndd pprrootteeccttiioonn..
60
CVHH-SVX001G-EN
X39003892001A
NNoottee:: Graphic labels (shown above) are used for CE
application only.
IImmppoorrttaanntt::
Before servicing, disconnect all power sources and allow at least 30 minutes for capacitors to discharge.
All electrical enclosures—unit or remote —are IP2X.
For CE units, the convenience outlet in the control panel requires a suitable adaptor to meet the needs of customers with different plug requirements.

Control Power Transformer Option

The Control Power Transformer (CPTR) option provides a means to isolate the incoming line voltage required for the chiller control circuits and the oil/refrigerant pump from the compressor incoming line voltage. The CPTR option provides a solution for customers that cannot afford to lose communication with the chiller or extended restart times due to lost incoming power.
The CPTR option will benefit:
UPS customers
Customers requiring fast restarts
Customers who need controls sourced from a clean dedicated source
Customers with building automation/ communication systems who want to maintain chiller status reporting during power loss
PPoowweerr SSuuppppllyy WWiirriinngg
Chillers with remote-mounted medium-voltage Adaptive FrequencyDrives (AFDs) or customer­supplied starters
NNOOTTIICCEE
CCoommppoonneenntt DDaammaaggee!!
FFaaiilluurree ttoo ffoollllooww iinnssttrruuccttiioonnss bbeellooww ccoouulldd ccaauussee aann eelleeccttrriiccaall sshhoorrtt wwhhiicchh ccoouulldd rreessuulltt iinn ccoommppoonneenntt ddaammaaggee.. RReemmoovvee ddeebbrriiss ffrroomm iinnssiiddee tthhee CCPPTTRR ooppttiioonn eenncclloossuurree ppaanneell bbeeffoorree ttuurrnniinngg tthhee ppoowweerr oonn..
The standard unit-mounted CPTR option shall have an enclosure with a disconnect and will require customer­supplied power.
CVHH CenTraVacchillers have a low-voltage CPTR option and a medium-voltage CPTR option.
The CPTR option involves a single phase 4kVA transformer(s) and the oil pump motor circuit to be located together in an enclosure that is unit-mounted. There is three-phase line power between 380 to 600 Vac feeding this enclosure. Wherever the 4kVA transformer is located, the oil pump motor circuit will be located along with it.
With the CPTR option, the control power transformer(s) and oil pump motor circuit are NOT inside of the starter.
For the low-voltage CPTR option, the single phase 4kVA transformer feeds the 120V control power to all of the controls. The three-phase line power feeds a motor starter and overload oil pump motor circuit which feeds the three-phase oil pump motor.
For the medium-voltage CPTR option, there are two single-phase 4-kVA transformers: one of the 4kVA transformers feeds the 120V control power to all of the controls. The second transformer feeds a combination motor controller oil pump motor circuit which then feeds a single-phase oil pump motor.
NNoottee:: Refer to the unit nameplate for maximum
overcurrent protection and minimum current ampacity values for connecting to the CPTR option enclosure.
Service personnel are required to ensure that the incoming power supply voltage provided by the customer to the CPTR option enclosure unit-mounted panel is as per submittal and nameplate.

Power Factor Correction Capacitors (Optional)

Power factor correction capacitors (PFCCs) are designed to provide power factor correction for the compressor motor. PFCCs are available as an option for unit- and remote-mounted starters.
CVHH-SVX001G-EN
61
X39003892001A
Power
Circuit
1 2 3
Fused Disconnect or Suitable
Breaker
Motor Starter
Contactor
Motor
Current
Transformer
Fuses
Enclosed
3-phase
Capacitor
Unit
PPoowweerr SSuuppppllyy WWiirriinngg
NNootteess::
Verify PFCC voltage rating is greater than or equal to the compressor voltage rating stamped on the unit nameplate.
Refer to the wiring diagrams that shipped with the unit for specific PFCC wiring information.
NNOOTTIICCEE
MMoottoorr DDaammaaggee!!
FFaaiilluurree ttoo wwiirree PPFFCCCCss iinnttoo tthhee ssttaarrtteerr ccoorrrreeccttllyy ccoouulldd ccaauussee mmiissaapppplliiccaattiioonn ooff tthheessee ccaappaacciittoorrss aanndd rreessuulltt iinn aa lloossss ooff mmoottoorr oovveerrllooaadd pprrootteeccttiioonn aanndd ssuubbsseeqquueennttllyy ccaauussee mmoottoorr ddaammaaggee..
Figure 39. Option 1—PFCCs installed downstream of starter contactor, upstream of current transformers
WWAARRNNIINNGG
HHaazzaarrddoouuss VVoollttaaggee ww//CCaappaacciittoorrss!!
FFaaiilluurree ttoo ddiissccoonnnneecctt ppoowweerr aanndd ddiisscchhaarrggee ccaappaacciittoorrss bbeeffoorree sseerrvviicciinngg ccoouulldd rreessuulltt iinn ddeeaatthh oorr sseerriioouuss iinnjjuurryy.. DDiissccoonnnneecctt aallll eelleeccttrriicc ppoowweerr,, iinncclluuddiinngg rreemmoottee ddiissccoonnnneeccttss aanndd ddiisscchhaarrggee aallll mmoottoorr ssttaarrtt//rruunn ccaappaacciittoorrss bbeeffoorree sseerrvviicciinngg.. FFoollllooww pprrooppeerr lloocckkoouutt//ttaaggoouutt pprroocceedduurreess ttoo eennssuurree tthhee ppoowweerr ccaannnnoott bbee iinnaaddvveerrtteennttllyy eenneerrggiizzeedd.. FFoorr vvaarriiaabbllee ffrreeqquueennccyy ddrriivveess oorr ootthheerr eenneerrggyy ssttoorriinngg ccoommppoonneennttss pprroovviiddeedd bbyy TTrraannee oorr ootthheerrss,, rreeffeerr ttoo tthhee aapppprroopprriiaattee mmaannuuffaaccttuurreerr’’ss lliitteerraattuurree ffoorr aalllloowwaabbllee wwaaiittiinngg ppeerriiooddss ffoorr ddiisscchhaarrggee ooff ccaappaacciittoorrss.. VVeerriiffyy wwiitthh aa CCAATT IIIIII oorr IIVV vvoollttmmeetteerr rraatteedd ppeerr NNFFPPAA 7700EE tthhaatt aallll ccaappaacciittoorrss hhaavvee ddiisscchhaarrggeedd..
FFoorr aaddddiittiioonnaall iinnffoorrmmaattiioonn rreeggaarrddiinngg tthhee ssaaffee ddiisscchhaarrggee ooff ccaappaacciittoorrss,, sseeee PPRROODD--SSVVBB0066**--EENN..
NNoottee:: Graphic labels (shown above) are used for CE
application only.
IImmppoorrttaanntt::
Before servicing, disconnect all power sources and allow at least 30 minutes for capacitors to discharge.
All electrical enclosures—unit or remote —are IP2X.
PPFFCCCCss mmuusstt bbee wwiirreedd oonnee ooff ttwwoo wwaayyss aass sshhoowwnn aass eexxppllaaiinneedd iinn tthhee ffoolllloowwiinngg ffiigguurreess aanndd aaccccoommppaannyyiinngg tteexxtt ((OOppttiioonn 11 aanndd OOppttiioonn 22))..
62
CVHH-SVX001G-EN
X39003892001A
NNoottee:: Graphic labels (shown above) are used for CE
Power
Circuit
1 2
3
Fused Disconnect or Suitable
Breaker
Motor Starter
Contactor
Motor
Current
Transformer
Fuses
Enclosed
3-phase
Capacitor
Unit
application only.
IImmppoorrttaanntt::
Before servicing, disconnect all power sources and allow at least 30 minutes for capacitors to discharge.
All electrical enclosures—unit or remote —are IP2X.
Simultaneously disconnect capacitors and load from line power. If the capacitors are not switched offline when the load is disconnected, they continue to add capacitance to the electrical distribution system. A leading power factor—too much capacitance—may eventually develop. This overprotection causes poor voltage regulation (i.e., voltage is high when the circuit is unloaded, then drops as loads are added).
PPoowweerr SSuuppppllyy WWiirriinngg
Figure 40. Option 2—PFCC wires routed through current transformers
Size motor overload protection to account for capacitor-supplied current. Overloads are typically set to measure the total current drawn by the motor. When PFCCs are used, they become the source of part of that current. If the current they provide is not registered by the overload protectors, potentially damaging amperage can reach the motor. The simplest way to ensure that the overloads detect all current supplied to the motor is to position the PFCCs upstream of the current transformers as shown in the preceding figure (Option 1). If the capacitor connection points are downstream of the current transformers, route the PFCC leads through the current transformers as shown in the preceding figure (Option 2). This ensures that the overloads register both line and capacitor-supplied current.

Interconnecting Wiring

Typical equipment room conduit layouts with and without unit-mounted starters are shown in the following two figures.
IImmppoorrttaanntt:: The interconnecting wiring between the
starter panel, compressor, and control panel is factory-installed with unit-mounted starters. However, when a remote-mounted starter is used, the interconnecting wiring must be field-installed.
NNoottee:: Refer to starter submittal drawing for location of
incoming wiring to the starter.
CVHH-SVX001G-EN
63
1
2
3
1
2
3
4
5
7
6
PPoowweerr SSuuppppllyy WWiirriinngg
Figure 41. Typical equipment room layout for units with unit-mounted starters
1. Line side power conduits
2. Unit-mounted starter
3. Unit control panel
Figure 42. Typical equipment room layout for units with remote-mounted starters
1. Line side power conduits
2. Remote-mounted starter
3. Unit control panel
4. Inter-processor communication (IPC) circuit conduit less than 30V (and current transformer/potential transformer [CT/PT] wiring for starters by others)
NNoottee:: Must enter the low voltage Class 2 portion of the
unit control panel (1000 feet [304.8 m] maximum).
5. Motor terminal box
6. 115V control conduit
NNoottee:: Must enter the higher than 30 Vdc Class 1 portion
of the until control panel.
7. Lead power wiring
NNoottee:: Refer to the unit field connection diagram for
approximate unit control panel knock out locations. To prevent damage to the unit control panel components, do NOT route control conduit into the top of the box.

Starter to Motor Wiring (Remote-Mounted Starters Only)

Ground Wire Terminal Lugs

Ground wire lugs are provided in the motor terminal box and in the starter panel.
64
CVHH-SVX001G-EN
X39003892001A
PPoowweerr SSuuppppllyy WWiirriinngg

Terminal Clamps

NNOOTTIICCEE
UUssee CCooppppeerr CCoonndduuccttoorrss OOnnllyy!!
FFaaiilluurree ttoo uussee ccooppppeerr ccoonndduuccttoorrss ccoouulldd rreessuulltt iinn eeqquuiippmmeenntt ddaammaaggee aass tthhee eeqquuiippmmeenntt wwaass nnoott ddeessiiggnneedd oorr qquuaalliiffiieedd ttoo aacccceepptt ootthheerr ttyyppeess ooff ccoonndduuccttoorrss..

Wire Terminal Lugs

NNOOTTIICCEE
CCoommppoonneenntt DDaammaaggee!!
FFaaiilluurree ttoo eennssuurree tthhee ppoowweerr ssuuppppllyy wwiirriinngg aanndd oouuttppuutt ttoo mmoottoorr wwiirriinngg aarree ccoonnnneecctteedd ttoo tthhee pprrooppeerr tteerrmmiinnaallss ccoouulldd ccaauussee ccaattaassttrroopphhiicc ffaaiilluurree ooff tthhee ssttaarrtteerr aanndd//oorr mmoottoorr..
Wire terminal lugs must be field supplied.
Use field-provided, crimp-type wire terminal lugs properly sized for the application.
NNoottee:: Wire size ranges for the starter line and load-
side lugs are listed on the starter submittal drawings supplied by the starter manufacturer or Trane. Carefully review the submitted wire lug sizes for compatibility with the conductor sizes specified by the electrical engineer or contractor.
On 600V and below, a terminal clamp with a 3/8-in. (9.525-mm) bolt is provided on each motor terminal stud; use the factory-supplied Belleville washers on the wire lug connections. The following figure illustrates the junction between a motor terminal stud and terminal lug.
Torque for this assembly is 24 ft·lb (32.5 N·m).
Install but do NOT connect the power leads between the starter and compressor motor. (These connections will be completed under supervision of a qualified Trane service engineer after the pre-start inspection.)
NNoottee:: Graphic labels (shown above) are used for CE
application only.
IImmppoorrttaanntt::
Before servicing, disconnect all power sources and allow at least 30 minutes for capacitors to discharge.
All electrical enclosures—unit or remote —are IP2X.
Terminal clamps are supplied with the motor terminals to accommodate either bus bars or standard motor terminal wire lugs. Terminal clamps provide additional surface area to minimize the possibility of improper electrical connections.
CVHH-SVX001G-EN
65
1
2
3
4
PPoowweerr SSuuppppllyy WWiirriinngg
Figure 43. Terminal stud, clamp, and lug assembly
(600V and below)
1. Belleville washer
2. Terminal lugs
3. Terminal clamp
4. Motor terminal stud
5. Terminal mounting bolt

Bus Bars

NNOOTTIICCEE
CCoommppoonneenntt DDaammaaggee!!
FFaaiilluurree ttoo ffoollllooww iinnssttrruuccttiioonnss bbeellooww ccoouulldd ccaauussee aann eelleeccttrriiccaall sshhoorrtt wwhhiicchh ccoouulldd rreessuulltt iinn ccoommppoonneenntt ddaammaaggee.. RReemmoovvee ddeebbrriiss ffrroomm iinnssiiddee tthhee CCPPTTRR ooppttiioonn eenncclloossuurree ppaanneell bbeeffoorree ttuurrnniinngg tthhee ppoowweerr oonn..
Bus bars and extra nuts are available as a Trane option.
Install the bus bars between the motor terminals when using a starter that is:
A low-voltage Adaptive FrequencyDrive (AFD)
Across-the-line
Primary reactor/resistor
Autotransformer
Customer-supplied
Connect T1 to T6, T2 to T4, and T3 to T5.
NNoottee:: Bus bars are not needed in medium-voltage or
high-voltage applications since only three terminals are used in the motor and starter.
diagram (showing the electrical connections required between the remote-mounted starter and the control panel).
NNoottee:: Install separate conduit into the low voltage
(30 volts) section of the control panel.
When sizing and installing the electrical conductors for these circuits, follow the guidelines listed. Use 14 AWG for 120V control circuits unless otherwise specified. For AWG/MCM equivalents in mm
“Electrical Requirements,” p. 53.
2
, refer to the table in
NNOOTTIICCEE
AAddaappttiivvee FFrreeqquueennccyy DDrriivvee ((AAFFDD))// SSttaarrtteerr CCoommppoonneenntt DDaammaaggee!!
FFaaiilluurree ttoo rreemmoovvee ddeebbrriiss ffrroomm iinnssiiddee tthhee AAFFDD// ssttaarrtteerr ppaanneell ccoouulldd rreessuulltt iinn aann eelleeccttrriiccaall sshhoorrtt aanndd ccoouulldd ccaauussee sseerriioouuss AAFFDD//ssttaarrtteerr ccoommppoonneenntt ddaammaaggee..
IImmppoorrttaanntt:: Maintain at least 6 in. (16 cm) between low-
voltage (less than 30V) and high-voltage circuits. Failure to do so could result in electrical noise that may distort the signals carried by the low-voltage wiring, including the inter-processor communication (IPC) wiring.
To wire the starter to the control panel, use these guidelines:
If the starter enclosure must be cut to provide electrical access, exercise care to prevent debris from falling inside the enclosure. Do NOT cut the Adaptive FrequencyDrive (AFD) enclosure.
Use only shielded, twisted-pair wiring for the inter­processsor communication (IPC) circuit between the starter and the control panel on remote­mounted starters.
NNoottee:: Recommended wire is Beldon Type 8760,
18 AWG for runs up to 1000 ft (304.8 m). For AWG/MCM equivalents in mm table in “Electrical Requirements,” p. 53. The polarity of the IPC wiring is critical for proper operation.
Separate low-voltage (less than 30V; refer to the table in “Trane-supplied Remote Starter Wiring,” p.
55) wiring from the 115V wiring by running each in
its own conduit.
When routing the IPC circuit out of the starter enclosure, ensure that it is at least 6 in. (16 cm) from all wires carrying a higher voltage.
2
, refer to the

Starter to Control Panel Wiring

The unit submittal includes the field wiring connection diagram and the starter-to-control-panel connection
66
CVHH-SVX001G-EN
X39003892001A
PPoowweerr SSuuppppllyy WWiirriinngg
WWAARRNNIINNGG
PPrrooppeerr FFiieelldd WWiirriinngg aanndd GGrroouunnddiinngg RReeqquuiirreedd!!
FFaaiilluurree ttoo ffoollllooww ccooddee ccoouulldd rreessuulltt iinn ddeeaatthh oorr sseerriioouuss iinnjjuurryy.. AAllll ffiieelldd wwiirriinngg MMUUSSTT bbee ppeerrffoorrmmeedd bbyy qquuaalliiffiieedd ppeerrssoonnnneell.. IImmpprrooppeerrllyy iinnssttaalllleedd aanndd ggrroouunnddeedd ffiieelldd wwiirriinngg ppoosseess FFIIRREE aanndd EELLEECCTTRROOCCUUTTIIOONN hhaazzaarrddss.. TToo aavvooiidd tthheessee hhaazzaarrddss,, yyoouu MMUUSSTT ffoollllooww rreeqquuiirreemmeennttss ffoorr ffiieelldd wwiirriinngg iinnssttaallllaattiioonn aanndd ggrroouunnddiinngg aass ddeessccrriibbeedd iinn NNEECC aanndd yyoouurr llooccaall// ssttaattee//nnaattiioonnaall eelleeccttrriiccaall ccooddeess..
IImmppoorrttaanntt::
Before servicing, disconnect all power sources and allow at least 30 minutes for capacitors to discharge.
All electrical enclosures—unit or remote —are IP2X.
The IPC wiring shield should be grounded on one end only at control panel end. The other end should be un­terminated and taped back on the cable sheath to prevent any contact between shield and ground.
Oil Pump Interlock: All starters must provide an interlock (normally open) contact with the chiller oil pump connected to the control panel at terminals 1X1-10 and 1X1-21 (14 AWG; for AWG/MCM equivalents in mm refer to the table in “Electrical
Requirements,” p. 53). The purpose of
this interlock is to maintain the oil pump signal in the event that a starter failure, such as welded contacts, keeps the chiller motor running after the controller interrupts the run signal.
2
,
NNoottee:: Graphic labels (shown above) are used for CE
application only.
CVHH-SVX001G-EN
67

Medium Voltage Motor

X39003892001A
8
(203)
29
(737)
35
(889)
18
(457)
26.5
(674)
48
(1219)
25
(635)
37.4
(949)
26.4
(670)
A
B
C
WWAARRNNIINNGG
HHaazzaarrddoouuss VVoollttaaggee!!
FFaaiilluurree ttoo ddiissccoonnnneecctt ppoowweerr bbeeffoorree sseerrvviicciinngg ccoouulldd rreessuulltt iinn ddeeaatthh oorr sseerriioouuss iinnjjuurryy.. DDiissccoonnnneecctt aallll eelleeccttrriicc ppoowweerr,, iinncclluuddiinngg rreemmoottee ddiissccoonnnneeccttss bbeeffoorree sseerrvviicciinngg.. FFoollllooww pprrooppeerr lloocckkoouutt//ttaaggoouutt pprroocceedduurreess ttoo eennssuurree tthhee ppoowweerr ccaann nnoott bbee iinnaaddvveerrtteennttllyy eenneerrggiizzeedd.. VVeerriiffyy tthhaatt nnoo ppoowweerr iiss pprreesseenntt wwiitthh aa vvoollttmmeetteerr..
The motor is suitable for remote-mounted across-the­line (including circuit breaker starting), primary reactor, autotransformer, or solid-state starting. Refer to the unit nameplate for motor data including RLA, LRA, etc.
In all cases of non-Trane supplied starters, the Trane
Engineering Specification for UC800 Starter By Others
(available through your local Trane office) must be followed in order to ensure proper function and protection of the chiller. A disconnecting means and short-circuit protection must be installed ahead of the starter, unless they are included as part of the starter.
NNoottee:: Trane assumes no responsibility for the design,
documentation, construction, compatibility, installation, start-up, or long term support of starters provided by others.

Motor Terminal Box

A large steel motor terminal box is provided to allow for the field connection of the motor power supply wire to the motor. There are three sizes available depending on voltage and motor frame size.
Figure 44. Motor terminal box dimensions, in. (mm)
NNoottee:: Graphic labels (shown above) are used for CE
application only.
IImmppoorrttaanntt::
Before servicing, disconnect all power sources and allow at least 30 minutes for capacitors to discharge.
All electrical enclosures—unit or remote —are IP2X.
All electrical circuits shall be treated as energized until all lockout/tagout procedures are in place and the circuit has been tested to verify that it is de-energized. The medium-voltage motor terminal box cover must NOT be removed if power is present, or if there is a possibility that power may be present. Working on energized medium-voltage circuits is not an approved practice for normal HVAC maintenance or service.
68
CVHH-SVX001G-EN
Table 23. Motor terminal box dimensions
X39003892001A
Box Weight
lb
(a)
564
A
B 259 117.3
C 129 58.5
Note: Lifting holes are 0.56 in. (14.3 mm).
(a)
Motor terminal box cover-only weight is 55 lb (24.9 kg).
kg
256
(a)
Frame 440E, 5000, 5800, 580L
Volt Range
6000–13.8kV
Frame 6800, 6800L
2300–13.8kV
380–600 Vac
Frame 440E, 5000
NNoottee:: If the box is removed for installation purposes,
the motor terminals MUST be protected against impact or stress damage. Field fabrication of a cover or guard is required.
The motor terminal box is large enough to accommodate the use of stress cones.
If conduit is applied, a flexible connection of the conduit to the box should be made to allow for unit serviceability and for vibration isolation. The cable should be supported or protected against abrasion and wear on any edges or surfaces. Cable or conduit openings can be cut at any location in the box sides, top, or bottom for cable entry. Always ensure that NO debris remains in the box after cutting cable entry holes.

Motor Supply Wiring

WWAARRNNIINNGG
PPrrooppeerr FFiieelldd WWiirriinngg aanndd GGrroouunnddiinngg RReeqquuiirreedd!!
FFaaiilluurree ttoo ffoollllooww ccooddee ccoouulldd rreessuulltt iinn ddeeaatthh oorr sseerriioouuss iinnjjuurryy.. AAllll ffiieelldd wwiirriinngg MMUUSSTT bbee ppeerrffoorrmmeedd bbyy qquuaalliiffiieedd ppeerrssoonnnneell.. IImmpprrooppeerrllyy iinnssttaalllleedd aanndd ggrroouunnddeedd ffiieelldd wwiirriinngg ppoosseess FFIIRREE aanndd EELLEECCTTRROOCCUUTTIIOONN hhaazzaarrddss.. TToo aavvooiidd tthheessee hhaazzaarrddss,, yyoouu MMUUSSTT ffoollllooww rreeqquuiirreemmeennttss ffoorr ffiieelldd wwiirriinngg iinnssttaallllaattiioonn aanndd ggrroouunnddiinngg aass ddeessccrriibbeedd iinn NNEECC aanndd yyoouurr llooccaall// ssttaattee//nnaattiioonnaall eelleeccttrriiccaall ccooddeess..
MMeeddiiuumm VVoollttaaggee MMoottoorr
NNoottee:: Graphic labels (shown above) are used for CE
application only.
IImmppoorrttaanntt::
Before servicing, disconnect all power sources and allow at least 30 minutes for capacitors to discharge.
All electrical enclosures—unit or remote —are IP2X.
Motor circuit wire sizing by the installer must be made in accordance with the National Electric Code (NEC) or any other applicable codes.
Three terminals are provided on the chiller for the connection of power to the motor from the starter. Power leads to motors must be in multiples of three, with equal phase representation in all conduits or wire trays. To limit the effects of corona or ionization with cables carrying more than 2000V, Trane requires that the power cable have a metallic shield, unless the cable is specifically listed or approved for non-shielded use. If the cable is shielded, the shielding must be grounded at one end (grounding is typically done at the starter or supply end).
Care must be taken while routing the incoming cables to ensure that cable loads or tensions are not applied to the terminal or premature terminal failure could result.
CVHH-SVX001G-EN

Motor Terminals

Field-provided, ring-type lugs, with no sharp edges or corners, must be used by a qualified installer to connect the power wiring to the motor terminals.
69
X39003893001A
MMeeddiiuumm VVoollttaaggee MMoottoorr
Follow all instructions provided with the field-provided lugs to ensure proper connections.
IImmppoorrttaanntt:: The use of stress cones is highly
recommended to reduce and control longitudinal and radial electrical stresses at the cable ends.
Prior to assembly the terminal stud, nuts, and lug should be inspected and cleaned to ensure they are not damaged or contaminated. When attaching starter leads to 2.3 to 6.6 kV motor terminals, the M14x2 brass jam nuts should be tightened to a maximum torque of 24 to 30 ft·lb (32.5 to 40.7 N·m). Always use a second wrench to backup the assembly and prevent applying excessive torque to the terminal shaft.
NNoottee:: 6.0 and 6.6kV motors on 6800 or 6800L frames
(see compressor model number for motor frame) use the same motor terminals as the 10 to
13.8kV motors.
The motor terminal on a 10 to 13.8kV motor has a copper shaft that is threaded M14 x 2-6 G. Brass nuts are provided on the motor terminals to retain the lugs, and the final connection should be tightened to 24 to 30 ft·lb (32.5 to 40.7 N·m).
NNOOTTIICCEE
MMoottoorr TTeerrmmiinnaall DDaammaaggee!!
AAppppllyyiinngg ttoorrqquuee ttoo tthhee mmoottoorr tteerrmmiinnaall wwhheenn ttiigghhtteenniinngg lluuggss ccoouulldd rreessuulltt iinn eeqquuiippmmeenntt oorr pprrooppeerrttyy--oonnllyy ddaammaaggee.. AAllwwaayyss uussee aa sseeccoonndd wwrreenncchh ttoo bbaacckk--uupp tthhee aasssseemmbbllyy aanndd pprreevveenntt tthhee aapppplliiccaattiioonn ooff ttoorrqquuee ttoo tthhee tteerrmmiinnaall sshhaafftt..

CE for Medium Voltage Starter

WWAARRNNIINNGG
HHaazzaarrddoouuss VVoollttaaggee ww//CCaappaacciittoorrss!!
FFaaiilluurree ttoo ddiissccoonnnneecctt ppoowweerr aanndd ddiisscchhaarrggee ccaappaacciittoorrss bbeeffoorree sseerrvviicciinngg ccoouulldd rreessuulltt iinn ddeeaatthh oorr sseerriioouuss iinnjjuurryy.. DDiissccoonnnneecctt aallll eelleeccttrriicc ppoowweerr,, iinncclluuddiinngg rreemmoottee ddiissccoonnnneeccttss aanndd ddiisscchhaarrggee aallll mmoottoorr ssttaarrtt//rruunn ccaappaacciittoorrss bbeeffoorree sseerrvviicciinngg.. FFoollllooww pprrooppeerr lloocckkoouutt//ttaaggoouutt pprroocceedduurreess ttoo eennssuurree tthhee ppoowweerr ccaannnnoott bbee iinnaaddvveerrtteennttllyy eenneerrggiizzeedd.. FFoorr vvaarriiaabbllee ffrreeqquueennccyy ddrriivveess oorr ootthheerr eenneerrggyy ssttoorriinngg ccoommppoonneennttss pprroovviiddeedd bbyy TTrraannee oorr ootthheerrss,, rreeffeerr ttoo tthhee aapppprroopprriiaattee mmaannuuffaaccttuurreerr’’ss lliitteerraattuurree ffoorr aalllloowwaabbllee wwaaiittiinngg ppeerriiooddss ffoorr ddiisscchhaarrggee ooff ccaappaacciittoorrss.. VVeerriiffyy wwiitthh aa CCAATT IIIIII oorr IIVV vvoollttmmeetteerr rraatteedd ppeerr NNFFPPAA 7700EE tthhaatt aallll ccaappaacciittoorrss hhaavvee ddiisscchhaarrggeedd..
FFoorr aaddddiittiioonnaall iinnffoorrmmaattiioonn rreeggaarrddiinngg tthhee ssaaffee ddiisscchhaarrggee ooff ccaappaacciittoorrss,, sseeee PPRROODD--SSVVBB0066**--EENN..
Before beginning wiring and torquing, ensure proper motor terminal care and do NOT apply any excess stress.

Ground Wire Terminal Lug

A ground wire lug is provided in the motor terminal box to allow the field connection of an earth ground. The lug will accept a field-supplied ground wire of #8 to #2 AWG. For AWG/MCM equivalents in mm the table in “Electrical Requirements,” p. 53. After completing the field connection of wiring, inspect and clean the motor terminals and motor housing, and remove any debris before reinstalling the motor terminal box cover. The cover must be re-installed onto the motor terminal box and all bolts installed. Do NOT operate the chiller with the motor terminal box cover removed or with any loose or missing cover bolts.
2
, refer to
NNoottee:: Graphic labels (shown above) are used for CE
application only.
70
CVHH-SVX001G-EN
MMeeddiiuumm VVoollttaaggee MMoottoorr
IImmppoorrttaanntt::
Before servicing, disconnect all power sources and allow at least 10 minutes for capacitors to discharge.
All electrical enclosures—unit or remote —are IP2X.
Customers are responsible for all field wiring in compliance with local, national, and/or international codes.
Any fuses inside the medium-voltage starter enclosure may be energized.
Power factor correction capacitors (PFCC) fuses must be installed before energizing the medium-voltage starter.
Do NOT modify or disassemble the medium-voltage starter.
Use only factory-authorized replacement parts.
Do NOT install or energize the medium­voltage starter if it has been damaged.
Contactor must be bolted in place after installation; maximum torque is 14 ft·lb (19.0 N·m).
NNoottee:: Graphic labels (shown above) are used for CE
application only.
IImmppoorrttaanntt:: Mounting a motor starter on or over a
combustible surface could result in a fire. To minimize the risk of possible fires, a floor plate of at least 0.056 in. (1.43 mm) thick galvanized or 0.63 in. (1.6 mm) thick uncoated steel extending at least 5.9 in. (150 mm) beyond the equipment on all four sides must be used.
CVHH-SVX001G-EN
71

System Control Circuit Wiring (Field Wiring)

Table 24. Unit control panel wiring 120 Vac
Standard Control Circuits: Unit
Control Panel Control Wiring
Chilled Water Flow Proving Input
Condenser Water Flow Proving
Chilled Water Pump Relay Output
Condenser Water Pump Relay
Optional Control Circuits (120
Alarm Relay MAR (Non-Latching)
Alarm Relay MMR (Latching) Output
Compressor Running Relay Output
Maximum Capacity Relay Output
Head Relief Request Relay Output
Standard Low Voltage Circuits
Optional Low Voltage Circuits
External Base Loading Enable Input
External Hot Water Control Enable
External Ice Machine Control
External Free Cooling Input Enable
External Condenser Pressure
Evaporator/Condenser Differential
Condenser Head Pressure Control 1K5-J2-4 to 6
External Current Limit Setpoint
External Chilled Water Setpoint
External Base Loading Setpoint
Generic Refrigerant Monitor Input
Outdoor Air Temperature Sensor
Note: All wiring to be in accordance with National Electrical Code (NEC) and any local codes.
(a)
If the Chilled Water Flow Proving Input is a factory-installed ifm efector® flow-sensing device, the secondary field device (recommended with 38°F [3.3°C] and lower leaving chilled water temperatures) for proof of flow connects from 1X1-5 to 1K26-4 (binary input; normally open, closure with flow). Remove factory jumper when used.
(120 Vac)
(b)
Input
Output
Vac)
Output
Limit Warning Relay Output
Purge Alarm Relay Output
Ice Making Relay Output
Free Cooling Relay Output
(Less than 30 Vac)
External Auto Stop Input
Emergency Stop Input
Input
Enable Input
Input
% RLA Compressor Output
Output
Pressure Output
Input
Input
Input
Tracer® Comm 4 Interface
BACnet® or MODBUS®
LonTalk® Comm 5 Interface
(c)
Unit Control Terminations
(a)
1X1-5 to 1K16-J3-2
1X1-6 to 1K16-J2-2
1K15-J2-4 to 6
1K15-J2-1 to 3
Note: Defaults are factory programmed; alternates can be selected at start-up using the service tool.
1K19-J2-1 to 3
1K19-J2-4 to 6
1K19-J2-7 to 9
1K19-J2-10 to 12
1K20-J2-1 to 3
1K20-J2-4 to 6
1K20-J2-7 to 9
1K15-J2-10 to 12
1K21-J2-4 to 6
Unit Control Panel Terminations
1K2-J2-1 to 2
1K2-J2-3 to 4
1K8-J2-1 to 2
1K8-J2-3 to 4
1K9-J2-1 to 2
1K10-J2-1 to 2
1K5-J2-1 to 3
1K5-J2-4 to 6
1K5-J2-4 to 6
1K6-J2-2 to 3
1K6-J2-5 to 6
1K7-J2-2 to 3
1K7-J2-5 to 6
Inter-processor Communication
(IPC) Bus Connection and Sensor
1K3-J2-1(+) to 2(-) 1K3-J2-3(+) to 4(-)
1K1, 5(+) to 6(-)
1K4-J2-1(+) to 2(-) 1K4-J2-3(+) to 4(-)
Left Panel
Input or Output Type
Binary Input Normally Open, Closure with Flow
Binary Input Normally Open, Closure with Flow
Binary Output Normally Open
Binary Output Normally Open
Binary Output Normally Open
Binary Output Normally Open
Binary Output Normally Open
Binary Output Normally Open
Binary Output Normally Open
Binary Output Normally Open
Binary Output Normally Open
Binary Output Normally Open
Binary Output Normally Open
Input or Output Type
Binary Input
Binary Input
Binary Input Normally Open
Binary Input Normally Open
Binary Input Normally Open
Binary Input Normally Open
Analog Output
Analog Output
Analog Output
Analog Output
Analog Input 2–10 Vdc, or 4–20 mA
Analog Input 2–10 Vdc, or 4–20 mA
Analog Input 2–10 Vdc, or 4–20 mA
Analog Input 2–10 Vdc, or 4–20 mA
Communication and Sensor
Communication to Tracer®
Communication to BACnet® or
MODBUS®
Communication to LonTalk®
Closure Required for Normal
Closure Required for Normal
(As Ordered; See Sales Order)
(As Ordered; See Sales Order)
(As Ordered; See Sales Order)
Contacts
Contacts
Operation
Operation
2–10 Vdc
2–10 Vdc
2–10 Vdc
2–10 Vdc
72
CVHH-SVX001G-EN
X39003892001A
SSyysstteemm CCoonnttrrooll CCiirrccuuiitt WWiirriinngg ((FFiieelldd WWiirriinngg))
Table 24. Unit control panel wiring 120 Vac (continued)
(b)
If the Condenser Water Flow Proving Input is a factory-installed ifm efector® flow-sensing device, the secondary (optional) field device for proof of flow connects from 1X1-6 to 1K27-4 (binary input; normally open, closure with flow). Remove factory jumper when used.
(c)
Standard low-voltage circuits (less than 30 Vac) must be separated from 120 Vac or higher wiring.

Water Pump Interlock Circuits and Flow Switch Input

WWAARRNNIINNGG
HHaazzaarrddoouuss VVoollttaaggee!!
FFaaiilluurree ttoo ddiissccoonnnneecctt ppoowweerr bbeeffoorree sseerrvviicciinngg ccoouulldd rreessuulltt iinn ddeeaatthh oorr sseerriioouuss iinnjjuurryy.. DDiissccoonnnneecctt aallll eelleeccttrriicc ppoowweerr,, iinncclluuddiinngg rreemmoottee ddiissccoonnnneeccttss bbeeffoorree sseerrvviicciinngg.. FFoollllooww pprrooppeerr lloocckkoouutt//ttaaggoouutt pprroocceedduurreess ttoo eennssuurree tthhee ppoowweerr ccaann nnoott bbee iinnaaddvveerrtteennttllyy eenneerrggiizzeedd.. VVeerriiffyy tthhaatt nnoo ppoowweerr iiss pprreesseenntt wwiitthh aa vvoollttmmeetteerr..
NNoottee:: Graphic labels (shown above) are used for CE
application only.
IImmppoorrttaanntt::
Before servicing, disconnect all power sources and allow at least 30 minutes for capacitors to discharge.
All electrical enclosures—unit or remote —are IP2X.
NNoottee:: The circuits for the chilled water proof of flow
and the condenser water proof of flow do NOT require external power. Refer to the wiring diagrams that shipped with the chiller.

Chilled Water Pump

1. Wire the evaporator water pump contactor (5K42) to a separate 120 volt single-phase power supply with 14 AWG, 600V copper wire. For AWG/MCM equivalents in mm
Requirements,” p. 53.
2. Connect circuit to 1K15-J2-6.
3. Use 1K15-J2-4 120 Vac output to allow the control panel to control the evaporator water pump, or wire the 5K1 contactor to operate remotely and independently of the control panel.
2
, refer to the table in “Electrical

Chilled Water Proof of Flow

When this circuit is installed properly and the evaporator pump is running and providing the required minimum flow, this circuit will prove the evaporator water flow for the chiller controls. Proof of evaporator water flow is required before the start sequence will be allowed to proceed and a loss of evaporator water flow during chiller operation will result in a chiller shut­down.
Refer to as-built schematics on the inside of the control panel for field wiring. This is a dry binary input; normally-open, closure for flow. Apply no external power.
1. With factory-installed ifm efector® flow-sensing devices, a field-provided secondary flow-sensing device is recommended with applications having 38°F (3.3°C) and below leaving evaporator water temperatures. When a secondary flow-sensing device is used, remove the factory jumper and install its contacts between 1X1-5 to 1K26-4; this places the secondary flow sensing device in series with the ifm efector® flow-sensing device.
2. For field-provided primary proof of flow devices, connect the primary proof of flow device between terminals 1X1-5 to 1K16-J3-2. A secondary field device is recommended with applications having 38°F (3.3°C) and below leaving evaporator water temperatures, and must be field-wired in series with the primary proof of flow device.

Condenser Water Pump

1. Wire the condenser water pump contactor (5K43) to a separate 120-volt, single-phase power supply with 14 AWG, 600-volt copper wire. For AWG/MCM equivalents in mm
Requirements,” p. 53.
2. Connect circuit to control panel terminals 1K15-J2-
3.
3. Use 1K15-J2-1 120 Vac output to allow the control
2
, refer to the table in “Electrical
CVHH-SVX001G-EN
73
SSyysstteemm CCoonnttrrooll CCiirrccuuiitt WWiirriinngg ((FFiieelldd WWiirriinngg))
panel to control the condenser pump.

Condenser Water Proof of Flow

When this circuit is installed properly and the condenser pump is running and providing the required minimum condenser water flow, this circuit will prove the condenser water flow for the chiller controls. Proof of condenser water flow is also required for the start sequence will be allowed to proceed and a loss of condenser water flow during chiller operation will result in a chiller shut-down.
Refer to as-built schematics on the inside of the control panel for field wiring. This is a dry binary input; normally-open, closure for flow. Apply no external power.
1. With factory-installed ifm efector® flow-sensing devices, a secondary field-provided flow-sensing device is optional. When a secondary flow-sensing device is used, remove the factory jumper, and install its contacts between 1X1-5 to 1K27-4; this
places the secondary flow sensing device in series with the ifm efector® flow-sensing device.
2. For field-provided primary proof of flow devices, connect the primary proof of flow device between terminals 1X1-6 to 1K16-J2-2. The secondary field provided flow sensing device is optional; however, when it is present, it must be field-wired in series with the primary proof of flow device.

Sensor Circuits

All sensors are factory-installed except the optional outdoor air temperature sensor (refer to the following figure for sensor locations). This sensor is required for the outdoor air temperature type of chilled water reset. Use the following guidelines to locate and mount the outdoor air temperature sensor. Mount the sensor probe where needed; however, mount the sensor module in the control panel.
74
CVHH-SVX001G-EN
Figure 45. CVHH sensor locations
See Detail A
1
p
[
u
See Detail B
0
o
w
6
f
-
9
5
i
Detail A Detail B
=q
=q
ty
ty
er
er
er
er
ty
78
]\a
sd
234
SSyysstteemm CCoonnttrrooll CCiirrccuuiitt WWiirriinngg ((FFiieelldd WWiirriinngg))
1. Tracer® AdaptiViewdisplay module
2. Motor winding temperature 1
3. Motor winding temperature 2
4. Motor winding temperature 3
5. Oil pump discharge pressure transducer
6. Oil tank pressure transducer
7. Evaporator water differential pressure transducer
8. Condenser water differential pressure transducer
9. Compressor discharge refrigerant temperature sensor
10. Evaporator saturated refrigerant temperature sensor
11. Condenser saturated refrigerant temperature sensor
12. Second condenser entering water temperature sensor (used on HTRC)
13. Second condenser leaving water temperature sensor (used on HTRC)
14. Oil tank temperature sensor
15. Evaporator entering water temperature sensor
16. Evaporator leaving water temperature sensor
17. Condenser entering water temperature sensor
18. Condenser leaving water temperature sensor
19. Inboard bearing temperature sensor
20. Outboard bearing temperature sensor
CVHH-SVX001G-EN
75
SSyysstteemm CCoonnttrrooll CCiirrccuuiitt WWiirriinngg ((FFiieelldd WWiirriinngg))
21. Oil cooling solenoid valve
22. Inlet guide vane first stage actuator
23. Inlet guide vane second stage actuator
24. Outboard bearing pad temperature sensor 1
25. Outboard bearing pad temperature sensor 2
26. Outboard bearing pad temperature sensor 3
27. Condenser high pressure cut out switch
28. Condenser refrigerant pressure transducer
29. Oil tank vent line valve

CWR—Outdoor Option

The outdoor temperature sensor is similar to the unit­mounted temperature sensors in that it consists of the sensor probe and the module. A four-wire inter­processor communication (IPC) bus is connected to the module for 24 Vdc power and the communications link. Trane recommends mounting the sensor module within the control panel and the sensor two wire leads be extended and routed to the outdoor temperature sensor probe sensing location. This ensures the four­wire inter-processor control (IPC) bus protection and provides access to the module for configuration at start-up.
The sensor probe lead wire between the sensor probe and the module can be separated by cutting the two­wire probe lead leaving equal lengths of wire on each device: the sensor probe and the sensor module.
NNoottee:: This sensor and module are matched and must
remain together or inaccuracy may occur.
These wires can then be spliced with two 14 to 18 AWG 600V wires of sufficient length to reach the desired outdoor location with a maximum length 1000 ft (304.8 m). For AWG/MCM equivalents in mm the table in “Electrical Requirements,” p. 53. The module four-wire bus must be connected to the control panel four-wire bus using the Trane-approved connectors provided.
The sensor will be configured (given its identity and become functional) at start-up when the Trane service technician performs the start-up configuration. It will NOT be operational until that time.
NNoottee:: If shielded cable is used to extend the sensor
leads, be sure to cover the shield wire with tape at the junction box and ground it at the control panel. If the added length is run in conduit, do NOT run them in the same conduit with other circuits carrying 30 or more volts.
IImmppoorrttaanntt:: Maintain at least 6 in. (15.24 cm) between
low-voltage (less than 30V) and high voltage circuits. Failure to do so could result in electrical noise that may distort the signals carried by the low-voltage wiring, including the IPC.
2
, refer to

Optional Control and Output Circuits

Install various optional wiring as required by the owner’s specifications (refer to “System Control Circuit
Wiring (Field Wiring),” p. 72).

Optional Tracer Communication Interface

This control option allows the control panel to exchange information—such as chiller status and operating set points—with a Tracer® system.
NNoottee:: The circuit must be run in separate conduit to
prevent electrical noise interference.
Additional information about the Tracer® communication interface option is published in the Installation and Operation manual that ships with the Tracer® communication interface

Starter Module Configuration

The starter module configuration settings will be checked (and configured for remote starters) during start-up commissioning.
NNoottee:: To configure starter modules and perform other
starter checks, it is recommended that the line voltage three-phase power be turned off and secured (locked out), and then that a separate source control power (115 Vac) be utilized to power up the control circuits.
Use the as-built starter schematic to ensure correct fuse and terminals. Verify that the correct fuse is removed and that the control circuit connections are correct; then apply the 115 Vac separate source power to service the controls.

Schematic Wiring Drawings

Please refer to the submittals and drawings that shipped with the unit. Additional wiring drawings for CenTraVacchillers are available from your local Trane office.
76
CVHH-SVX001G-EN

Operating Principles

Condenser
High Side Economizer
Low Side Economizer
Evaporator
Compressor
Third Stage
Compressor
Second Stage
Compressor
First Stage
6
5
7
4
8
3
1 2
Pressure
Enthalpy
P
4
P
3
P
1
P
2

General Requirements

Operation and maintenance information for CVHH CenTraVacchillers are covered in this section. This includes both 50 and 60 Hz centrifugal chillers equipped with the Tracer® AdaptiViewUC800 control system. This information pertains to all chiller types unless differences exist, in which case the sections are listed by chiller type as applicable and described separately. By carefully reviewing this information and following the instructions given, the owner or operator can successfully operate and maintain a CenTraVacchiller. If mechanical problems do occur, however, contact a Trane service technician to ensure proper diagnosis and repair of the unit.
IImmppoorrttaanntt:: Although CenTraVac
chillers can operate through surge, it is NOT recommended to operate them through repeated surges over long durations. If repeated surges of long durations occur, contact your Trane Service Agency to resolve the issue.

Cooling Cycle

When in the cooling mode, liquid refrigerant is distributed along the length of the evaporator and sprayed through small holes in a distributor (i.e., running the entire length of the shell) to uniformly coat each evaporator tube. Here, the liquid refrigerant absorbs enough heat from the system water circulating through the evaporator tubes to vaporize. The gaseous refrigerant is then drawn through the eliminators (which remove droplets of liquid refrigerant from the gas) and the first-stage variable inlet guide vanes, and into the first-stage impeller.
further cooling the liquid refrigerant. This flash gas is then drawn directly from the first and second stages of the economizer into the third- and second-stage impellers of the compressor, respectively. All remaining liquid refrigerant flows through another orifice plate to the evaporator.
Figure 46. Pressure enthalpy curve, 3-stage
Figure 47. Refrigerant flow, 3-stage

CVHH 3-Stage Compressor

Compressed gas from the first-stage impeller flows through the fixed, second-stage inlet vanes and into the second-stage impeller. Here, the refrigerant gas is again compressed, and then discharged through the third-stage variable guide vanes and into the third­stage impeller. After the gas is compressed a third time, it is discharged into the condenser. Baffles within the condenser shell distribute the compressed refrigerant gas evenly across the condenser tube bundle. Cooling tower water circulated through the condenser tubes absorbs heat from the refrigerant, causing it to condense. The liquid refrigerant then passes through an orifice plate and into the economizer.
The economizer reduces the energy requirements of the refrigerant cycle by eliminating the need to pass all gaseous refrigerant through three stages of compression (refer to the following figure). Notice that some of the liquid refrigerant flashes to a gas because of the pressure drop created by the orifice plates, thus
CVHH-SVX001G-EN

CVHH 2-Stage Compressor

Compressed gas from the first-stage impeller is discharged through the fixed, second-stage variable guide vanes and into the second-stage impeller. Here, the refrigerant gas is again compressed, and then discharged into the condenser. Baffles within the condenser shell distribute the compressed refrigerant gas evenly across the condenser tube bundle. Cooling tower water circulated through the condenser tubes absorbs heat from the refrigerant, causing it to condense. The liquid refrigerant then passes through an orifice plate and into the economizer.
The economizer reduces the energy requirements of the refrigerant cycle by eliminating the need to pass all gaseous refrigerant through both stages of
77
Condenser
Economizer
Evaporator
Compressor
Second Stage
Compressor
First Stage
6
5
4
3
1 2
Pressure
Enthalpy
P
3
P
1
P
2
OOppeerraattiinngg PPrriinncciipplleess
compression (refer to the following figure). Notice that some of the liquid refrigerant flashes to a gas because of the pressure drop created by the orifice plate, thus further cooling the liquid refrigerant. This flash gas is then drawn directly from the economizer into the second-stage impellers of the compressor. All remaining liquid refrigerant flows out of the economizer, passing through another orifice plate and into the evaporator.
Figure 48. Pressure enthalpy curve

Oil and Refrigerant Pump

Compressor Lubrication System

A schematic diagram of the compressor lubrication system is illustrated in the following figure. Oil is pumped from the oil tank (by a pump and motor located within the tank) through an oil pressure regulating valve designed to maintain a net oil pressure of 20 to 24 psid (137.9 to 165.5 kPaD). It is then filtered and sent to the braze plate heat exchanger oil cooler located above the oil tank and on to the compressor motor bearings. From the bearings, the oil drains back to the oil tank.
Figure 49. Refrigerant flow, 2-stage
78
CVHH-SVX001G-EN
Figure 50. Oil refrigerant pump
Compressor lubrication system Motor cooling system Oil reclaim system
1
-
2
3
4
5
6
8
9
=
e
o
q
r
t
u
w
y
0
i
p
7
OOppeerraattiinngg PPrriinncciipplleess
1. Motor coolant return to condenser, 2.125 in. (53.975 mm) OD
2. Oil tank vent line, 2.125 in. (53.975 mm) OD
3. Vent line actuated ball valve
4. Condenser
5. High pressure condenser gas to drive oil reclaim eductors, 0.375 in. (9.525 mm) OD
6. Oil return to tank
7. Oil tank
8. Oil cooler braze plate heat exchanger
9. Oil reclaim from evaporator (second eductor), 0.25 in. (6.35 mm) OD
10. Liquid refrigerant to pump, 1.625 in. (41.275 mm) OD
11. Economizer
12. Oil supply to bearings, 0.875 in. (22.225 mm) OD
13. Purge
14. Compressor
15. Liquid refrigerant motor coolant supply, 1.125 in. (28.575 mm) OD
16. Liquid refrigerant to economizer
17. Liquid refrigerant to evaporator
18. Evaporator
19. Oil reclaim from suction cover (first eductor), 0.25 in. (6.35 mm) OD
20. Motor coolant filter
21. Oil tank junction box enclosure
22. Oil pump motor terminal box
CVHH-SVX001G-EN
79
X39003892001A
OOppeerraattiinngg PPrriinncciipplleess
CCAAUUTTIIOONN
HHoott SSuurrffaaccee!!
FFaaiilluurree ttoo ffoollllooww iinnssttrruuccttiioonnss bbeellooww ccoouulldd rreessuulltt iinn mmooddeerraattee iinnjjuurryy.. SSuurrffaaccee tteemmppeerraattuurreess ccaann rreeaacchh 115500°°FF ((6666°°CC)).. TToo aavvooiidd ppoossssiibbllee sskkiinn bbuurrnnss,, ssttaayy cclleeaarr ooff tthheessee ssuurrffaacceess.. IIff ppoossssiibbllee,, aallllooww ssuurrffaacceess ttoo ccooooll bbeeffoorree sseerrvviicciinngg.. IIff sseerrvviicciinngg iiss nneecceessssaarryy wwhhiillee ssuurrffaaccee tteemmppeerraattuurreess aarree ssttiillll eelleevvaatteedd,, yyoouu MMUUSSTT ppuutt oonn aallll PPeerrssoonnaall PPrrootteeccttiivvee EEqquuiippmmeenntt ((PPPPEE))..
WWAARRNNIINNGG
HHaazzaarrddoouuss VVoollttaaggee iinn OOiill TTaannkk JJuunnccttiioonn BBooxx EEnncclloossuurree aanndd OOiill PPuummpp MMoottoorr TTeerrmmiinnaall BBooxx!!
FFaaiilluurree ttoo ddiissccoonnnneecctt mmaaiinn ppoowweerr aanndd//oorr aauuxxiilliiaarryy ccoonnttrrooll ppoowweerr bbeeffoorree ooppeenniinngg ooiill ttaannkk jjuunnccttiioonn bbooxx eenncclloossuurree oorr aannyy ootthheerr jjuunnccttiioonn bbooxx//tteerrmmiinnaall bbooxx// ppaanneell oonn tthhee CCVVHHHH aanndd CCDDHHHH cchhiilllleerr ccaann rreessuulltt iinn ddeeaatthh oorr sseerriioouuss iinnjjuurryy.. DDiissccoonnnneecctt aallll ppoowweerr aanndd aappppllyy lloocckkoouutt//ttaaggoouutt ddeevviicceess.. FFoollllooww aallll ccoommppaannyy pprroocceedduurreess ffoorr lloocckkoouutt//ttaaggoouutt.. UUnniitt mmuusstt bbee tteesstteedd ttoo eennssuurree aa zzeerroo eenneerrggyy ssttaattee aanndd eeqquuiippmmeenntt mmuusstt bbee ppuutt iinn aann eelleeccttrriiccaallllyy ssaaffee wwoorrkk ccoonnddiittiioonn pprriioorr ttoo mmaaiinntteennaannccee.. HHaazzaarrddoouuss vvoollttaaggee uupp ttoo 660000 VVaacc iiss pprreesseenntt iinn tthhee ooiill ttaannkk jjuunnccttiioonn bbooxx eenncclloossuurree aanndd ooiill ppuummpp mmoottoorr tteerrmmiinnaall bbooxx..
NNoottee:: Graphic labels (shown above) are used for CE
application only.
IImmppoorrttaanntt::
Before servicing, disconnect all power sources and allow at least 30 minutes for capacitors to discharge.
All electrical enclosures—unit or remote —are IP2X.
To ensure proper lubrication and prevent refrigerant from condensing in the oil tank, two 750-watt heaters are in wells in the oil tank and are used to heat the oil while the unit is off. With the default settings, the oil heaters are de-energized when the unit starts. The heaters energize as needed to maintain 128°F to 133°F (53.3°C to 56.1°C) when the chiller is not running.
When the chiller is operating, the temperature of the oil tank is typically 100°F to 140°F (37.8°C to 60.0°C). The oil return lines are routed into a separation chamber in the oil tank. Gas flow exits out the top of the oil tank and is vented to the evaporator.
A dual eductor system, using high pressure condenser gas, reclaims oil from the suction cover and the evaporator. The suction cover eductor is discharged into the evaporator, and the evaporator eductor is discharged into the oil tank. The evaporator eductor line has a shut-off valve mounted on the evaporator. The position of the shut-off valve will be set at two turns open during commissioning but may be adjusted later by a qualified technician as necessary for oil return. A normal operating setting for the valve may range from full closed to full open.
80
CVHH-SVX001G-EN
OOppeerraattiinngg PPrriinncciipplleess
Oil supply to both the thrust bearing and journal bearings is cooled when the oil tank temperature reaches 140°F (60.0°C). The supply oil and liquid refrigerant are pumped to a brazed plate heat exchanger. The unit controller monitors oil tank temperature and opens a solenoid valve to allow liquid refrigerant to flow into the heat exchanger.

Motor Cooling System

Compressor motors are cooled with liquid refrigerant (refer to the figure in “Compressor Lubrication
System,” p. 78). The refrigerant pump is located on the
front of the oil tank (motor inside the oil tank). The refrigerant pump inlet is connected to the well at the bottom of the condenser. The well design ensures preferential supply of liquid refrigerant to the refrigerant pump before refrigerant is supplied to the economizer. Refrigerant is delivered to the motor via the pump. An in-line filter is installed (replace the in­line filter only with major service). Motor refrigerant drain lines are routed to the condenser.

Tracer AdaptiView Display

Information is tailored to operators, service technicians, and owners.
When operating a chiller, there is specific information you need on a day-to-day basis—setpoints, limits, diagnostic information, and reports.
Day-to-day operational information is presented at the display. Logically organized groups of information— chiller modes of operation, active diagnostics, settings, and reports put information conveniently at your fingertips. For more information, refer to Tracer
AdaptiView Display for Water-Cooled CenTraVac Chillers Operations Guide (CTV-SVU01*-EN).

RuptureGuard

Operation

The rupture disk monitors the pressure inside the chiller. If the pressure exceeds the disk’s burst setting, the disk ruptures, allowing the chiller pressure to enter the valve holder compartment upstream of the relief valve. If the pressure is above the pressure setting of the relief valve, the valve will open, allowing only the amount of refrigerant to escape to keep the pressure within safe operating limits.
The excess flow valve maintains the downstream side of the rupture disk at atmospheric pressure to assure proper operating conditions for the disk. When the disk bursts, the rapid pressure increase causes the excess flow valve to seal and the valve holder area becomes pressurized.
A disk rupture will be indicated by a pressure reading on the gauge and the pressure switch contacts will
close. The pressure switch is an optional accessory and does not wire to the control panel. The pressure switch can be connected to a customer-supplied building automation system (BAS).

EarthWise Purge

General Information

Centrifugal chillers that use low-pressure refrigerants, such as R-1233zd, operate with areas of the chiller at less than atmospheric pressure. Non-condensables in the air, such as water and nitrogen vapor, may leak into these low-pressure areas and accumulate in the condenser. If these non-condensables are not removed, the condenser loses its ability to condense refrigerant efficiently and the pressure of the condenser increases. Increased condenser pressure lowers the chiller’s efficiency and capacity.
A purge system is required on low-pressure centrifugal chillers. It is a device that is externally mounted on the chiller. Its purpose is to remove non-condensable materials that have leaked into the machine.
NNoottee:: For convenience, the term “air” is often used in
describing non-condensables removed by the purge system, although any other non­condensable materials that may exist in the chiller are also removed by the purge system.
How a Purge System Works
From a functional standpoint, the purge system can be divided into subsystems of components. This section identifies and describes the function of these subsystems.
Refrigeration Circuit Subsystem
The purge evaporator of the refrigeration circuit is located in the purge tank. The purge tank is connected to the chiller condenser by supply and return lines through which chiller refrigerant can freely flow.
The purge evaporator coil presents a cold condensing surface to the chiller refrigerant entering the purge tank. When the purge refrigeration system is running, refrigerant from the chiller condenser is attracted to the cold surface of the purge evaporator. When the gaseous refrigerant contacts the surface of the purge evaporator coil, it condenses into a liquid, leaving a partial vacuum behind. More refrigerant vapor from the chiller condenser migrates to the purge tank to fill the vacuum.
The liquid refrigerant that has condensed in the purge tank returns to the chiller condenser through the liquid return line. The return line includes a filter-drier and a moisture-indicating sight glass.
The condensing unit is air-cooled and is operable whether the chiller is running or not. No additional cooling source is required.
CVHH-SVX001G-EN
81
8
7
6
5
4
3
2
1
-
=
q
w
0
9
OOppeerraattiinngg PPrriinncciipplleess
1. Purge tank
2. Condensing unit (includes compressor, condenser coil, and fan)
3. Pressure-relief device (fusible plug)
4. Pump-out solenoid valve
5. Automatic expansion valve
6. Carbon tank
7. Carbon tank temperature sensor
8. Carbon tank heater
9. Exhaust solenoid valve
10. Pump-out compressor
11. Float switch
12. Compressor suction temperature sensor
13. Chiller refrigerant return line
14. Filter-drier canister
82
CVHH-SVX001G-EN
-
=
0
9
8
7
6
5
4
2
1
OOppeerraattiinngg PPrriinncciipplleess
1. Regeneration solenoid valve
2. Pressure-relief valve
3. Exhaust solenoid valve
4. Pump-out compressor
5. Carbon tank heater
6. Automatic expansion valve
7. Pump-out solenoid valve
8. Pressure-relief device (fusible plug)
9. Carbon tank
10. Purge tank
11. Condensing unit
12. Chiller refrigerant supply line
Purge Tank Subsystem
Any non-condensables that have accumulated from the refrigerant vapor are left behind to collect in the purge tank. As the quantity of non-condensables increases, the heat transfer efficiency of the purge evaporator coil is reduced, causing the purge compressor suction temperature to decrease.
A float switch, mounted in the bottom of the purge tank, indicates if there is excessive accumulation of liquid refrigerant in the tank. A liquid level sensor, which resides in the purge control panel, monitors the status of the float switch.
If the normally closed float switch is open for more than 20 minutes, the purge controls will turn off the
CVHH-SVX001G-EN
83
OOppeerraattiinngg PPrriinncciipplleess
refrigeration system and generate a non-latching diagnostic—Purge Liquid Level Too High Warning. If the float switch has re-closed after 20 minutes, the purge controls will restart the refrigeration system.
If the float switch remains open for more than 20 minutes, or if the float switch/liquid level restart cycle has occurred more than four times in four hours, a latching diagnostic—Purge Liquid Level Too High Continuously—will be generated. The purge system will not restart until it is reset.
If a Purge Liquid Level Too High Continuously diagnostic occurs, check the purge lines for any type of restriction (trapped liquid, closed valves, etc.) and ensure that the filter-drier on the liquid return line is in good condition.
A UL-required pressure-relief device (fusible plug), which protects against over-pressurization of the purge tank, is mounted on the purge tank. The plug material will fuse at 210°F (98.9°C), which equates to approximately 132 psig (910.1 kPaG) for refrigerant R­1233zd.
Pump-out Subsystem
When the purge control subsystem detects the presence of non-condensables in the purge tank, the pump-out solenoid and exhaust solenoid valves open, and the pump-out compressor turns on. The valves and the compressor cycle on and off as needed to achieve an efficient and fast removal of non-condensables.
NNoottee:: A High Vacuum Pump option is available for
applications that require purge operation at low condensing temperatures and pressures. This option provides a two-stage pump-out compressor. The High Vacuum Pump option allows the purge system to operate to saturation temperatures as low as 34°F (1.1°C). Typical applications that may require the High Vacuum Pump option include free-cooling installations, series chiller installations, ice systems having brine flowing through idle chillers, chillers installed outdoors or in unconditioned spaces, or any application that may cause very low condenser water temperatures.
Carbon Tank and Regeneration Subsystem
The discharge from the pump-out compressor is piped through the carbon tank. The special carbon in the tank effectively scrubs and collects refrigerant molecules from the non-condensable gas before the gas passes through the exhaust solenoid valve to the chiller vent line.
A 175 W resistive heater is mounted inside the carbon tank and is used to periodically “regenerate” the carbon bed and drive any collected refrigerant vapor back into the chiller. A UL-required pressure-relief valve, rated at 150 psig (1034.2 kPaG), is mounted on the line leaving the carbon tank. The valve protects against over-pressurization of the carbon tank.
A temperature sensor is installed through the top of the carbon tank shell so that the controls can monitor the carbon bed temperature. The temperature sensor controls the regeneration cycle and protect against overheating. If the limit temperature is reached, the system shuts down and a Purge Carbon Regen Temperature Limit Exceeded diagnostic is generated.
Sensors
The following sensors are used to enable control communication between the Tracer® UC800 controller and the EarthWisepurge system. The sensors use low-level intelligence devices (LLIDs) to communicate with the Tracer® UC800 controller.
CCoommpprreessssoorr ssuuccttiioonn tteemmppeerraattuurree sseennssoorr.. This sensor is mounted on the purge condensing unit suction line. The controller uses the value of this temperature sensor to decide whether or not to purge non-condensables from the purge tank. When the temperature drops to a specified point, the controller activates the pump-out cycle to remove the accumulated non-condensables from the purge tank. When enough non-condensables have been removed and the purge compressor suction temperature increases in response, the controller terminates the pump-out cycle.
SSaattuurraatteedd ccoonnddeennsseerr tteemmppeerraattuurree sseennssoorr.. This sensor is mounted on the chiller. If the chiller is running, the controller uses the value of this temperature sensor to adjust the purge pump-out initiate/terminate setpoints. It may be used to prohibit pump-out if system conditions are too cool.
SSaattuurraatteedd eevvaappoorraattoorr tteemmppeerraattuurree sseennssoorr.. This sensor is mounted on the chiller. If the chiller is off, the controller uses the value of this temperature sensor to adjust the purge pump-out initiate/ terminate setpoints. It may be used to prohibit pump-out if system conditions are too cool.
CCaarrbboonn ttaannkk tteemmppeerraattuurree sseennssoorr.. This sensor is mounted in the carbon tank of the purge system. It provides feedback to the carbon regeneration algorithm. The sensor and the controller function much the same as a thermostat to control the carbon tank heater.
LLiiqquuiidd lleevveell sseennssoorr.. This sensor resides in the purge control panel. It monitors the status of the normally closed float switch, which is mounted in the bottom of the purge tank. If an adequate amount of liquid fails to drain from the purge tank, the float switch and sensor detect the condition and prevent further purge operation.
CCoonnddeennssiinngg uunniitt LLLLIIDD.. This LLID resides in the purge control panel. It uses a high-power relay to control the operation of the purge condensing unit.
QQuuaadd rreellaayy LLLLIIDD.. This LLID resides in the purge control panel. It has four relay outputs that are used to control the pump-out compressor, the carbon
84
CVHH-SVX001G-EN
OOppeerraattiinngg PPrriinncciipplleess
tank heater, the regeneration solenoid valve, and an alarm output.
DDuuaall ttrriiaacc LLLLIIDD.. This LLID resides in the purge control panel. It has two triac-type outputs that are
used to control the pump-out solenoid valve and the exhaust solenoid valve. The purge system draws its control power from the power supplies of the chiller control panel.
CVHH-SVX001G-EN
85

Start-up and Shut-down

Confirmed
Shutdown
Stopped
Stopped
Run Inhibit
Stopping
Preparing to Shut Down
Shutting Down
Running
Running
Running—Limit
Starting
Auto
Waiting to Start
Starting Compressor
Power
Up
Start
Command
Diagnostic
Res
e
t
Fast Restart or Satisfied Setpoint
Stop Command or Diagnostic
Stop Command
Diagnosti
c
Start
Confirmed
This section provides basic information on chiller operation for common events.

Sequence of Operation

Adaptive control algorithms are used on CenTraVac chillers. This section illustrates common control sequences.

Software Operation Overview Diagram

The following figure is a diagram of the five possible software states. This diagram can be thought of as a state chart, with the arrows and arrow text, depicting the transitions between states:
The text in the circles are the internal software designations for each state.
Figure 51. Software operation overview
The first line of text in the circles are the visible top level operating modes that can be displayed in Tracer® AdaptiView.
The shading of each software state circle corresponds to the shading on the time lines that show the state that the chiller is in.
There are five generic states that the software can be in:
Power Up
Stopped
Starting
Running
Stopping
In the following diagrams:
The time line indicates the upper level operating mode, as it would be viewed in the Tracer® AdaptiView.
The shading color of the cylinder indicates the software state.
86
Text in parentheses indicates sub-mode text as viewed in the Tracer® AdaptiView.
Text above the time line cylinder is used to illustrate inputs to the UC800. This may include user input to the Tracer® AdaptiViewtouch screen, control inputs from sensors, or control inputs from a generic BAS.
CVHH-SVX001G-EN
Power
Applied
to
Controls
Last Chiller Mode Was Auto
Call for Cooling
Auto Waiting to Start
Waiting to Start
Starting Compressor
UC800 Boot
Time
(30–50 sec)
Enforce Power Up Start Delay
Timer (0–30 min)
Wait for Highest Motor Winding
Temp to Fall Below 165°F (73.9°C)
Wait for Oil Temp to Rise Above
Sat Evap + 30°F (16.7°C)
and 100°F (37.8°C)
Prelube (60 sec)
Begin Oil Vent Line Valve low limit venting
Overdrive IGV Closed
Energize Condenser Water Pump Relay
Confirm Condenser Water Flow Within 4 min 15 sec (6 sec Filter)
Energize Oil Pump Relay
Confirm 12 psid (82.7 kPaD) Oil Pressure Within 3 min
Check for High Vacuum Lockout
Initialize Oil Vent Line Valve to Minimum Open Position
Energize Evaporator Water Pump Relay
Confirm Evaporator Water Flow Within 4 min 15 sec (6 sec Filter)
Open Oil Vent Line Valve
Enforce Stop to Start Timer Using Values From
Real Time Clock (5–200 sec, 30 is Default)
SSttaarrtt--uupp aanndd SShhuutt--ddoowwnn
Boxes indicate control actions such as turning on relays, or moving the inlet guide vanes.
Smaller cylinders indicate diagnostic checks, text indicates time-based functions, solid double arrows indicate fixed timers, and dashed double arrows indicate variable timers.
Start-up Sequence of Operation—Wye­delta
Logic circuits within the various modules will determine the starting, running, and stopping operation of the chiller. When operation of the chiller is required, the chiller mode is set at “Auto.” Using customer-supplied power, the chilled water pump relay is energized and chilled water flow must be verified within 4 minutes and 15 seconds, at the same time the oil vent line valve is opened. The UC800 decides to start the chiller based on the differential to start setpoint. With the differential to start criteria met, the UC800 then energizes condenser water pump relay
Figure 52. Sequence of operation: power up to starting
with customer-supplied power (refer to the following figure).
Based on the Restart Inhibit function and the Differential to Start setpoint, the oil and refrigerant pump is energized, and the oil vent line valve is closed to the minimum position. The oil pressure must be at least 12 psid (82.7 kPaD) for 60 continuous seconds and condenser water flow verified within 4 minutes and 15 seconds for the compressor start sequence to be initiated. After the compressor starts, the oil vent line valve begins to open; it can take between 15 and 30 minutes to fully open depending on the chiller running conditions.
The compressor motor starts in the “Wye” configuration and then, after the compressor motor has accelerated and the maximum phase current has dropped below 85 percent of the chiller nameplate RLA for 1.5 seconds, the starter transitions to the “Delta” configuration.
Now that the compressor motor is running in the “Delta” configuration, the inlet guide vanes will modulate, opening and closing to the chiller load variation by operation of the stepper vane motor actuator to satisfy chilled water setpoint. The chiller
CVHH-SVX001G-EN
continues to run in its appropriate mode of operation: Normal, Softload, Limit Mode, and so on (refer to the following figure [running]). If the oil tank temperature rises above the oil cooler setpoint while the compressor is running, the oil cooler solenoid valve
87
Starter Status is
“Running”
Limit Mode
Exit Limit Mode
Chiller Is Running
Starting
Compressor
Chiller Is Running
Chiller Is Running—Limit Chiller Is Running
Modulate IGV/AFD for LWT control
Modulate IGV/AFD for LWT control
Modulate IGV/AFD for Limit control
Enforce All Running Mode Diagnostics
Note: If the Oil Tank Temperature rises above the Oil Cooler Control Setpoint whilte the compressor is running, the Oil Cooler Solenoid Valve shall be energized to cool the unit.
SSttaarrtt--uupp aanndd SShhuutt--ddoowwnn
shall be energized to cool the oil.
If the chilled water temperature drops below the chilled water setpoint by an amount set as the differential to stop setpoint, a normal chiller stop sequence is initiated as follows:
1. The inlet guide vanes are driven closed (up to 50 seconds).
2. After the inlet guide vanes are closed, the stop relay and the condenser water pump relays open to turn off. The oil and refrigerant pump motor will
Figure 53. Sequence of operation: running
continue to run for 3 minutes post-lube while the compressor coasts to a stop. The oil vent line valve will then open. The chilled water pump will continue to run while the UC800 monitors leaving chilled water temperature, preparing for the next compressor motor start based on the differential to start setpoint.
the following figure (satisfied setpoint) illustrates this sequence.
88
CVHH-SVX001G-EN
Figure 54. Sequence of operation: satisfied setpoint
Satisfied Setpoint
Preparing Shutdown
Shutting Down Shutting Down
Running
Auto
Close IGV (0–50 sec)
Postlube 3 min
De-Energize Oil Pump
Command IGV Closed
De-Energize Compressor
Open Oil Vent Line Valve
Confirm No Oil Pressure* 5 min after oil pump is de-energized
Confirm No Compressor Currents Within 0–30 sec
Hold position of Oil Vent Line Valve
De-Energize Condenser Water Pump Relay
Enforce All Running Mode Diagnostics
*Note: No oil pressure is less than 3 psid (20.7 kPaD)
SSttaarrtt--uupp aanndd SShhuutt--ddoowwnn
If the STOP key is pressed on the operator interface, the chiller will follow the same stop sequence as described earlier except the chilled water pump relay will also open and stop the chilled water pump after the chilled water pump delay timer has timed out after compressor shut down (refer to the following figure [normal shut-down to stopped and run inhibit]).
If the immediate stop is initiated, a panic stop occurs which follows the same stop sequence as pressing the STOP key once, except the inlet guide vanes are not sequence-closed and the compressor motor is immediately turned off.
CVHH-SVX001G-EN
89
Local Stop Normal Latching Diagnostic Normal Non-Latching Diagnostic
Tracer Stop External Auto-Stop
IGV Closed
Preparing Shutdown Shutting Down
Shutting Down
Running
Stopped
Run Inhibit
Stopped
or
Run Inhibit
Evap Pump Off Delay and Postlube Complete
Close IGV (0–50 sec) Postlube 3 min
Evap Pump Off Delay Time
(0–30 min)
Command IGV Closed
Enforce All Running Mode Diagnostics
De-Energize Condenser Water Pump Relay
De-Energize Compressor
Confirm No Compressor Currents Within 8 sec
Hold position of Oil Vent Line Valve
Open Oil Vent Line Valve
De-Energize Oil Pump
Confirm No Oil Pressure* 5 min after oil pump is de-energized
De-Energize Evaporator Water Pump Relay
*Note: No oil pressure is less than 3 psid (20.7 kPaD)
SSttaarrtt--uupp aanndd SShhuutt--ddoowwnn
Figure 55. Sequence of operation: normal shut-down to stopped and run inhibit

Power Up Diagram

“Software Operation Overview Diagram,” p. 86
includes an illustration of Tracer® AdaptiViewduring a power up of the UC800. This process takes from 30 to 50 seconds depending on the number of installed options.

Ice Machine Control

The control panel provides a service level Enable or Disable menu entry for the Ice Building feature when the Ice Building option is installed. Ice Building can be entered from Front Panel or, if hardware is specified, the control panel will accept either an isolated contact closure 1K9 Terminals J2-1 and J2-2 (Ground) or a remote-communicated input (BAS) to initiate the ice building mode where the unit runs fully loaded at all times. Ice building will be terminated either by opening the contact or based on entering evaporator fluid temperature. The control panel will not permit the Ice Building mode to be entered again until the unit is
switched to the non-ice building mode and back into the ice building mode. It is not acceptable to reset the chilled water setpoint low to achieve a fully loaded compressor. When entering ice building, the compressor will be loaded at its maximum rate and when leaving ice building, the compressor will be unloaded at its maximum rate. While loading and unloading the compressor, all surge detection will be ignored. While in the ice building mode, current limit setpoints less than the maximum will be ignored. Ice Building can be terminated by one of the following means:
Front panel disable
Opening the external ice contacts/remote­communicated input (BAS)
Satisfying an evaporator entering fluid temperature setpoint (default is 27°F [-2.8°C])
Surging for seven minutes at full open inlet guide vanes (IGV)
90
CVHH-SVX001G-EN
Figure 56. Sequence of operation: ice building: running to ice building
Ice Making Command:
1. Front Panel
2. Tracer
3. External Input
Evap Leaving Water Temp Rises Above the Diff To Stop
Ice Making Command Withdrawn
Running
Running
Running
(Ice Building)
Running (Ice to Normal
Transition)
Running
Ice to Normal Transition Timer
(0–10 min)
Head Relief Request Relay
Delay (1–60 min)
Head Relief Request Relay
Delay (1–60 min)
Open IGV at Max Rate/ Max AFD Frequency
Ignore Softloading and Set CLS=100%
Energize Ice Building Relay
Close IGV/Min AFD Frequency
De-Energize Ice Building Relay
Modulate IGV/AFD for LWT control
De-Energize Head Relief Request Relay
Energize Head Relief Request Relay
Enforce All Limits and Running Mode Diagnostics
SSttaarrtt--uupp aanndd SShhuutt--ddoowwnn
CVHH-SVX001G-EN
91
Ice Making Command:
1. Front Panel
2. Tracer
3. External Input
Evap Entering Water Temp Falls Below the Ice Termination Setpoint
Auto
Run Inhibit (Ice Building Complete)
Starting
Compressor
Running
(Ice Building)
Preparing to
Shut Down
Shutting
Down
Run
Inhibit
Open IGV at Max Rate/ Max AFD Frequency
Close IGV
(0–50 sec)
Postlube
(3 min)
Heat Relief Request Relay
Delay (1–60 min)
Ignore Evap Pump
Off Delay Time
for Ice Building
Close IGV/Min AFD Frequency
De-Energize Oil Pump
Open Oil Vent Line Valve
Hold position of Oil Vent Line Valve
De-Energize Condenser Water Pump Relay
De-Energize Evaporator Water Pump Relay
De-Energize Compressor
Con
firm No Compressor Currents
Within 8
sec
Ignore Softloading and Set CLS=100%
Energize Ice Building Relay
Begin Oil Vent Line Valve low limit venting
Enforce All Limits and Running Mode Diagnostics
De-Energize Ice Building Relay
De-Energize Heat Relief Request Relay
Energize Head Relief Request Relay
SSttaarrtt--uupp aanndd SShhuutt--ddoowwnn
Figure 57. Sequence of operation: ice building: stopped to ice to ice building complete

Free Cooling Cycle

Based on the principle that refrigerant migrates to the coldest area in the system, the free cooling option adapts the basic chiller to function as a simple heat exchanger. However, it does not provide control of the leaving chilled water temperature.
If condenser water is available at a temperature lower than the required leaving chilled water temperature, the operator interface must remain in AUTO and the operator starts the free cooling cycle by enabling the Free Cooling mode in the Tracer® AdaptiView Feature Settings group of the operator interface, or by means of a BAS request. The following components must be factory- or field-installed to equip the unit for free cooling operation:
a refrigerant gas line, and electrically-actuated shutoff valve, between the evaporator and condenser, and
a valved liquid return line, and electrically-actuated shutoff valve, between the condenser sump and the evaporator.
When the chiller is changed over to the free cooling mode, the compressor will shut down if running and the shutoff valves in the liquid and gas lines open; unit control logic prevents the compressor from energizing
92
during free cooling. Since the temperature and pressure of the refrigerant in the evaporator are higher than in the condenser (i.e., because of the difference in water temperature), the refrigerant in the evaporator vaporizes and travels to the condenser, cooling tower water causes the refrigerant to condense on the condenser tubes, and flow (again, by gravity) back to the evaporator.
This compulsory refrigerant cycle is sustained as long as a temperature differential exists between condenser and evaporator water. The actual cooling capacity provided by the free cooling cycle is determined by the difference between these temperatures which, in turn, determines the rate of refrigerant flow between the evaporator and condenser shells.
If the system load exceeds the available free cooling capacity, the operator must manually initiate changeover to the mechanical cooling mode by disabling the free cooling mode of operation. The gas and liquid line valves then close and compressor operation begins (refer to the figure in “Start-up
Sequence of Operation—Wye-delta,” p. 87 [power up
to starting], beginning at Auto mode). Refrigerant gas is drawn out of the evaporator by the compressor, where it is then compressed and discharged to the condenser.
CVHH-SVX001G-EN
SSttaarrtt--uupp aanndd SShhuutt--ddoowwnn

Hot Water Control

Occasionally, CenTraVacchillers are selected to provide heating as a primary mission. With hot water temperature control, the chiller can be used as a heating source or cooling source. This feature provides greater application flexibility. In this case, the operator selects a hot water temperature and the chiller capacity is modulated to maintain the hot water setpoint. Heating is the primary mission and cooling is a waste product or is a secondary mission. This type of operation requires an endless source of evaporator load (heat), such as well or lake water. The chiller has only one condenser.
NNoottee:: Hot Water Temperature Control mode does NOT
convert the chiller to a heat pump. Heat pump refers to the capability to change from a cooling­driven application to a heating-driven application by changing the refrigerant path on the chiller. This is impractical for centrifugal chillers as it would be much easier to switch over the water side.
This is NOT heat recovery. Although this feature could be used to recover heat in some form, a heat recovery unit has a second heat exchanger on the condenser side.
The Tracer® AdaptiViewprovides the Hot Water Temperature Control mode as standard. The leaving condenser water temperature is controlled to a hot water setpoint between 80°F and 140°F (26.7°C and
60.0°C). The leaving evaporator water temperature is
left to drift to satisfy the heating load of the condenser. In this application, the evaporator is normally piped into a lake, well, or other source of constant temperature water for the purpose of extracting heat. In Hot Water Temperature Control mode, all the limit modes and diagnostics operate as in normal cooling with one exception: the leaving condenser water temperature sensor is an MMR diagnostic when in Hot Water Temperature Control mode. (It is an informational warning in the Normal Cooling mode.)
In the Hot Water Temperature Control mode, the differential-to-start and differential-to-stop setpoints are used with respect to the hot water setpoint instead of with the chilled water setpoint. The control panel provides a separate entry at the Tracer® AdaptiView to set the hot water setpoint; Tracer® AdaptiViewis also able to set the hot water setpoint. In the Hot Water mode, the external chilled water setpoint is the external hot water setpoint; that is, a single analog input is shared at the 1K6-J2-5 to 6 (ground).
An external binary input to select external Hot Water Control mode is on the EXOP OPTIONAL module 1K8 terminals J2-3 to J2-4 (ground). Tracer® AdaptiView also has a binary input to select chilled water control or hot water temperature control. There is no additional leaving hot water temperature cutout; the HPC and condenser limit provide for high temperature and pressure protection.
In Hot Water Temperature Control, the softloading pulldown rate limit operates as a softloading pullup rate limit. The setpoint for setting the temperature rate limit is the same setpoint for normal cooling as it is for hot water temperature control. The hot water temperature control feature is not designed to run with HGBP, AFD, free cooling, or ice-building.
The factory set PID tuning values for the leaving water temperature control are the same settings for both normal cooling and hot water temperature control.
Control Panel Devices and Unit­Mounted Devices

Unit Control Panel

Safety and operating controls are housed in the unit control panel, the starter panel, and the purge control panel. The control panel operator interface and UC800 is called Tracer® AdaptiViewand is located on an adjustable arm connected to the base of the control panel. For more information about operating Tracer® AdaptiView, refer to Tracer AdaptiView Display for
Water-Cooled CenTraVac Chillers Operations Guide
(CTV-SVU01*-EN).
The control panel houses several other controls modules called panel-mounted Low Level Intelligent Devices (LLIDs), power supply, terminal block, fuse, circuit breakers, and transformer. The inter-processor communication (IPC) bus allows the communications between LLIDs and the UC800. Unit-mounted devices are called frame-mounted LLIDs and can be temperature sensors or pressure transducers. These and other functional switches provide analog and binary inputs to the control system.

User-Defined Language Support

Tracer® AdaptiViewis capable of displaying English text or any of 26 other languages. Switching languages is simply accomplished from a Language Settings menu. The following languages are available:
Arabic (Gulf Regions)
Chinese—China
Chinese—Taiwan
Czech
Dutch
English
French
French (Canada)
German
Greek
Hebrew
Hungarian
Indonesian
CVHH-SVX001G-EN
93
SSttaarrtt--uupp aanndd SShhuutt--ddoowwnn
Italian
Japanese
Korean
Norwegian
Polish
Portuguese (Portugal)
Portuguese (Brazil)
Russian
Romanian
Spanish (Europe)
Spanish (Latin America)
Swedish
Thai

Unit Start-up and Shut-down Procedures

WWAARRNNIINNGG
LLiivvee EElleeccttrriiccaall CCoommppoonneennttss!!
FFaaiilluurree ttoo ffoollllooww aallll eelleeccttrriiccaall ssaaffeettyy pprreeccaauuttiioonnss wwhheenn eexxppoosseedd ttoo lliivvee eelleeccttrriiccaall ccoommppoonneennttss ccoouulldd rreessuulltt iinn ddeeaatthh oorr sseerriioouuss iinnjjuurryy.. WWhheenn iitt iiss nneecceessssaarryy ttoo wwoorrkk wwiitthh lliivvee eelleeccttrriiccaall ccoommppoonneennttss,, hhaavvee aa qquuaalliiffiieedd lliicceennsseedd eelleeccttrriicciiaann oorr ootthheerr iinnddiivviidduuaall wwhhoo hhaass bbeeeenn pprrooppeerrllyy ttrraaiinneedd iinn hhaannddlliinngg lliivvee eelleeccttrriiccaall ccoommppoonneennttss ppeerrffoorrmm tthheessee ttaasskkss..
WWAARRNNIINNGG
TTooxxiicc HHaazzaarrddss!!
AA ssiiggnniiffiiccaanntt rreelleeaassee ooff rreeffrriiggeerraanntt iinnttoo aa ccoonnffiinneedd ssppaaccee dduuee ttoo aa rruuppttuurree ddiisskk ffaaiilluurree ccoouulldd ddiissppllaaccee aavvaaiillaabbllee ooxxyyggeenn ttoo bbrreeaatthhee aanndd ccaauussee ppoossssiibbllee aasspphhyyxxiiaattiioonn.. FFaaiilluurree ttoo ffoollllooww iinnssttrruuccttiioonnss bbeellooww ccoouulldd rreessuulltt iinn ddeeaatthh oorr sseerriioouuss iinnjjuurryy.. SShhoouulldd aa rruuppttuurree ddiisskk ffaaiill,, eevvaaccuuaattee tthhee aarreeaa iimmmmeeddiiaatteellyy aanndd ccoonnttaacctt tthhee aapppprroopprriiaattee rreessccuuee oorr rreessppoonnssee aauutthhoorriittyy..
WWhhiillee tthhee uunniitt iiss ooffff,, ddoo nnoott aallllooww tthhee cchhiilllleerr ttoo eexxcceeeedd 111100°°FF ((4433..33°°CC)) ffoorr mmooddeellss CCDDHHFF,, CCDDHHGG,, CCVVHHEE,, CCVVHHFF,, CCVVHHGG,, CCVVHHLL,, CCVVHHMM,, aanndd CCVVHHSS oorr aabboovvee 113300°°FF ((5544..44°°CC)) ffoorr mmooddeellss CCDDHHHH aanndd CCVVHHHH.. FFaaiilluurree ttoo pprreevveenntt hhiigghh cchhiilllleerr tteemmppeerraattuurree wwiillll ccaauussee tthhee iinnssiiddee pprreessssuurree ttoo rriissee::
•• DDoo nnoott rruunn eevvaappoorraattoorr wwaatteerr ppuummpp lloonnggeerr tthhaann 3300 mmiinnuutteess aafftteerr tthhee cchhiilllleerr iiss sshhuutt ddoowwnn..
•• EEnnssuurree tthhaatt tthhee eevvaappoorraattoorr iiss iissoollaatteedd ffrroomm tthhee hhoott wwaatteerr lloooopp bbeeffoorree cchhaannggeeoovveerr ttoo hheeaattiinngg mmooddee.. TThhee rruuppttuurree ddiisskk iiss ddeessiiggnneedd ttoo rreelliieevvee aanndd ddiisscchhaarrggee tthhee rreeffrriiggeerraanntt ffrroomm tthhee uunniitt iiff tthhee pprreessssuurree iinn tthhee eevvaappoorraattoorr eexxcceeeeddss 1155 ppssiigg ((110033..44 kkPPaaGG)) ffoorr mmooddeellss CCDDHHFF,, CCDDHHGG,, CCVVHHEE,, CCVVHHFF,, CCVVHHGG,, CCVVHHLL,, CCVVHHMM,, aanndd CCVVHHSS oorr 5500 ppssiigg ((334444..77 kkPPaaGG)) ffoorr mmooddeellss CCDDHHHH aanndd CCVVHHHH..
94
CVHH-SVX001G-EN
X39003892001A
NNoottee:: Graphic labels (shown above) are used for CE
application only.
IImmppoorrttaanntt::
Before servicing, disconnect all power sources and allow at least 30 minutes for capacitors to discharge.
All electrical enclosures—unit or remote —are IP2X.

Daily Unit Start-up

1. Verify the chilled water pump and condenser water pump starter are in ON or AUTO.
2. Verify the cooling tower is in ON or AUTO.
3. Check the oil tank oil level; the level must be visible in or above the lower sight glass. Also, check the oil tank temperature; normal oil tank temperature before start-up is 128°F to 133°F (53.3°C to 56.1°C).
4. Check the chilled water setpoint and readjust it, if necessary, in the Chiller Settings menu.
5. If necessary, readjust the current limit setpoint in the Chiller Setpoints menu.
6. Press AUTO.
The control panel also checks compressor motor winding temperature and a start is initiated after a minimum restart inhibit time if the winding temperature is less than 265°F (129.4°C). The chilled water pump relay is energized and evaporator water flow is proven. Next, the control panel checks the leaving evaporator water temperature and compares it
SSttaarrtt--uupp aanndd SShhuutt--ddoowwnn
to the chilled water setpoint. If the difference between these values is less than the start differential setpoint, cooling is not needed.
If the control panel determines that the difference between the evaporator leaving water temperature and chilled water setpoint exceeds the start differential setpoint, the unit enters the initiate Start Mode and the oil and refrigerant pump and the condenser water pump are started. If flow is not initially established within 4 minutes 15 seconds of the condenser pump relay energization, an automatically resetting diagnostic “Condenser Water Flow Overdue” shall be generated, which terminates the prestart mode and de­energizes the condenser water pump relay. This diagnostic is automatically reset if flow is established at any later time.
NNoottee:: This diagnostic does NOT automatically reset if
Tracer
®
AdaptiView™is in control of the condenser pump through its condenser pump relay, since it is commanded off at the time of the diagnostic. It may reset and allow normal chiller operation if the pump was controlled from some external source.
If the compressor motor starts and accelerates successfully, Running appears on the display. If the purge is set to AUTO, the purge will start running and will run as long as the chiller is running.
NNoottee:: If a manual reset diagnostic condition is detected
during start-up, unit operation will be locked out and a manual reset is required before the start­up sequence can begin again. If the fault condition has not cleared, the control panel will not permit restart.
When the cooling requirement is satisfied, the control panel originates a Shutting down signal. The inlet guide vanes are driven closed for 50 seconds, the compressor stops, and the unit enters a 3-minute post­lube period. The evaporator pump may continue to run for the amount of time set using Tracer® AdaptiView.
After the post-lube cycle is done, the unit returns to auto mode.

Seasonal Unit Start-up

1. Close all drain valves, and reinstall the drain plugs in the evaporator and condenser headers.
2. Service the auxiliary equipment according to the start-up and maintenance instructions provided by the respective equipment manufacturers.
3. Fill and vent the cooling tower, if used, as well as the condenser and piping. At this point, all air must be removed from the system (including each pass). Then, close the vents in the condenser waterboxes.
4. Open all of the valves in the evaporator chilled water circuit.
5. If the evaporator was previously drained, fill and vent the evaporator and chilled water circuit. After
CVHH-SVX001G-EN
95
SSttaarrtt--uupp aanndd SShhuutt--ddoowwnn
all air is removed from the system (including each pass), close the vent valves in the evaporator waterboxes.
6. Lubricate the external vane control linkage as needed.
7. Check the adjustment and operation of each safety and operating control.
8. Close all disconnect switches.
9. Perform instructions listed in “Daily Unit Start-
up,” p. 95.

Daily Unit Shut-down

NNoottee:: Also refer to the figure (satisfied setpoint) in
“Start-up Sequence of Operation—Wye-delta,” p.
87.
1. Press STOP.
2. After compressor and water pumps shut down, the operator may turn Pump Contactors to OFF or open pump disconnects.

Seasonal Unit Shut-down

IImmppoorrttaanntt:: Control power disconnect switch must
remain closed to allow oil sump heater operation. Failure to do this will allow refrigerant to condense in the oil pump.
1. Open all disconnect switches except the control power disconnect switch.
2. Drain the condenser piping and cooling tower, if used. Rinse with clean water.
3. Remove the drain and vent plugs from the condenser headers to drain the condenser. Air-dry bundle of residual water.
4. Once the unit is secured for the season, the maintenance procedures described in “Normal
Operation,” p. 106 (tables for recommended
maintenance of standard and optional features) should be performed by qualified Trane service technicians.
NNoottee:: During extended shut-down periods, be sure to
operate the purge unit for a two-hour period every two weeks. This will prevent the accumulation of air and non-condensables in the machine. To start the purge, change the purge mode to ON in the unit control “Settings Purge” menu. Remember to turn the purge mode to “Adaptive” after the two-hour run time.

EarthWise Purge

Sequence of Operations

A Tracer® UC800 controller that is configured to control a purge system uses the operational sequences described in this section.
Purge Operating Modes
Purge operating mode options are as follows:
SSttoopp.. The purge condensing unit does not run in this mode.
OOnn.. The purge condensing unit runs continuously in this mode, regardless of the chiller’s operational status.
AAuuttoo.. The purge condensing unit runs in this mode if the main compressor of the chiller is operating.
AAddaappttiivvee.. The purge condensing unit operation depends on past purge activity.
Adaptive Mode
The objectives of operating the unit in the Adaptive mode are to:
Enable purge system operation.
Enable the refrigeration circuit to effectively accumulate non-condensables whether or not the chiller is running.
Provide information to an operator regarding whether leakage is on the high-pressure or low­pressure side of the chiller.
Decrease energy usage by running the purge refrigeration circuit only when needed to remove non-condensables, rather than running it continuously.
The Adaptive mode requires historical operating data so that the controller can make optimal decisions regarding how to run the purge refrigeration circuit in the future. On initial start-up of a chiller that is in Adaptive mode, the purge refrigeration circuit runs continuously for 168 hours (7 days). The chiller compressor may or may not be running during this period.
Following the initial data collection period, the Adaptive mode customizes the purge refrigeration circuit operation during two distinct chiller operating conditions:
Chiller compressor On
Chiller compressor Off
Adaptive Mode Process—Chiller Compressor On
The following figure illustrates the process described in this subsection.
When the chiller compressor starts, the purge refrigeration circuit starts. The purge refrigeration circuit continues to run until 60 consecutive minutes of running occur without any pump-out of non­condensables. The Pumpout Time is the greater of the following two values that the controller has been tracking:
The pump-out time with the chiller On, over the last 24 hours
96
CVHH-SVX001G-EN
The average daily pump-out time with the chiller
First chiller power-up.
Purge operates
continuously for 168
hours to collect data.
Chiller On or Off.
Chiller and
purge start.
Purge runs.
No
Has purge
run 60
minutes
without any
pump-out?
Yes
The purge control reviews
the historical data and
determines the Pumpout
Time with the chiller On
(Pumpout Time from last
24 hours daily average
over last 7 days, whichever
is greater.
Is Pumpout
Time greater
than 8
minutes?
No
Yes
Is Pumpout
Time greater
than 5
minutes?
No
Yes
No
Yes
No
Yes
Is Pumpout
Time greater
than 3
minutes?
Is Pumpout
Time greater
than 1
minute?
Turn purge unit Off for
4 hours, then restart.
Turn purge unit Off for
3 hours, then restart.
Turn purge unit Off for
2 hours, then restart.
Turn purge unit Off for
1 hour, then restart.
On, over the last 7 days
Figure 58. Adaptive chiller ON flow chart
SSttaarrtt--uupp aanndd SShhuutt--ddoowwnn
The purge then shuts down for a corresponding period of time, as shown in the following table:
Pumpout Time with chiller On (over the last 24 hours or daily average over the last 7 days, whichever is greater)
Pumpout Time ≤ 1 minute
1 minute < Pumpout Time ≤ 3 minutes
3 minutes < Pumpout Time ≤ 5 minutes
5 minutes < Pumpout Time ≤ 8 minutes
Pumpout Time > 8 minutes No Off cycle
Purge Off cycle duration
4 hours
3 hours
2 hours
1 hour
CVHH-SVX001G-EN
97
First chiller power-
up. Purge operates
continuously for 168
hours to collect data.
Chiller On or Off.
Chiller Off. Purge Off.
The purge control reviews the
historical pump-out data for
“chiller On” and “chiller Off” and
determines the Pumpout Time (from the last 24 hours, or the
daily average over the last 7 days,
whichever is greater).
Turn purge Off.
Is purge
running for
60 minutes
without
purging?
Yes
No
Hold purge Off
for 6 hours.
No
No
No
Yes
Yes
Yes
Is Pumpout
Time less than
5 minutes?
Is Pumpout
Time less than
3 minutes?
Is Pumpout
Time less than
1 minute?
Hold purge Off
for 3 days.
Hold purge Off
for 2 days.
Hold purge Off
for 1 day.
Run purge.
SSttaarrtt--uupp aanndd SShhuutt--ddoowwnn
During the purge refrigeration circuit Off cycle, the time remaining is displayed as Time Until Next Purge Run in the Log Sheet that you can view from the Tracer® AdaptiViewdisplay.
If the compressor is turned Off during the purge refrigeration circuit Off cycle, the purge transfers to Adaptive Mode Procedure—Chiller Compressor Off.“Adaptive Mode Procedure—Chiller Compressor
Off,” p. 98 includes an illustration of this process.
Adaptive Mode Procedure—Chiller Compressor Off
Refer to the following figure for an illustration of the process described in this subsection.
Figure 59. Adaptive chiller OFF flow chart
If the chiller compressor is turned Off, the purge refrigeration circuit Off cycle is determined by the purge control. The purge Off-cycle duration is determined by the pump-out time, which is the greater of the following two values:
Daily Pumpout—24 hours (the pump-out time over the last 24 hours whether the chiller is On or Off)
Average Daily Pumpout—7 days (the pump-out time with the chiller On over the last 7 days)
NNoottee:: These two values can be seen on the Tracer
AdaptiView™display.
®
The purge will be shut down for a corresponding period of time, as shown in the following table:
98
CVHH-SVX001G-EN
SSttaarrtt--uupp aanndd SShhuutt--ddoowwnn
Pumpout Time with chiller On or Off (over the last 24 hours or daily average over the last 7 days, whichever is greater)
Pumpout Time ≤ 1 minute 3 days
1 minute < Pumpout Time ≤ 3 minutes 2 days
3 minutes < Pumpout Time ≤ 5 minutes 1 day
Pumpout Time > 5 minutes
Purge Off cycle duration
6 hours
During the purge refrigeration circuit Off cycle, the time remaining is displayed as the Time Until Next Purge Run in the purge report of the Tracer® AdaptiView display.
If the controls determine it is necessary to run the purge while the chiller compressor is Off, the purge will be started and run until 60 consecutive minutes have passed without any pump-out of non-condensables.
If the chiller compressor starts before the purge Off cycle has elapsed, the purge starts and transfers to Adaptive Mode Procedure—Chiller Compressor On.
“Adaptive Mode Process—Chiller Compressor On,” p. 96 includes an illustration of this process.
Submodes
You can view submodes from the Purge Settings screen. The available purge submodes are:
RReeffrriiggeerraattiioonn CCiirrccuuiitt OOnn.. Appears if the purge condensing unit/compressor is operating.
RReeffrriiggeerraattiioonn CCiirrccuuiitt IIddllee.. Appears if the purge condensing unit/compressor is not operating.
PPuummppiinngg OOuutt.. Appears if the purge refrigeration circuit is On and pump-out has been initiated by the purge unit controls.
EExxhhaauusstt CCiirrccuuiitt CChheecckk.. Appears if a pump-out has been initiated by an operator.
PPuummppoouutt IInnhhiibbiitteedd.. Appears if the purge refrigeration circuit is On but pump-out has been inhibited by a low condenser saturation temperature.
DDaaiillyy PPuummppoouutt LLiimmiitt DDiissaabblleedd.. Appears if the purge refrigeration circuit is On but the daily pump­out limit has been disabled.
RReeggeenneerraattiinngg.. Appears if the purge carbon system is in its regeneration mode. Pump-out is not allowed in this submode.
AAllaarrmm––CChheecckk DDiiaaggnnoossttiiccss.. Appears if a new diagnostic occurs.
PPuurrggee DDiiaagg SShhuuttddoowwnn.. Appears if the purge system has shut down in response to a latching diagnostic.
RReeggeenn DDiissaabblleedd.. Appears if carbon regeneration is not allowed.
Typical Purge Refrigeration Circuit Operating Cycle
The purge condensing-unit compressor suction temperature varies with the amount of non­condensables collected in the purge tank. If the amount of non-condensables collected in the purge tank limits the available condensing surface in the tank, the condensing-unit compressor suction temperature begins to fall.
The purge controller initiates a pump-out cycle when the suction temperature reaches the pump-out initiate value that is calculated within the purge control. During the pump-out cycle, the small pump-out compressor pulls any non-condensables from the purge tank and discharges them through the carbon tank. As the non­condensables are removed from the purge tank, the condensing-unit compressor suction temperature increases. The purge controller monitors the compressor suction temperature and cycles or stops the pump-out, depending on the temperature that is present.
The 1/4 hp air-cooled condensing unit of the refrigeration system operates effectively when it is in the operating range shown in the following figure.
CVHH-SVX001G-EN
99
120 (48.8)
100 (37.8)
80 (26.7)
60 (15.6)
40 (4.4)
20 (-6.7)
0 (-17.8)
0
(-17.8)20(-6.7)40(4.4)60(15.6)80(26.7)
100
(37.8)
120
(48.8)
140
(60.0)
160
(71.1)
Ambient Temperature, °F (°C)
Chiller Condenser Saturation Temperature, °F (°C)
Operating envelope extremes
Typical operation
Pumpout can be inhibited in this range according to control settings.
SSttaarrtt--uupp aanndd SShhuutt--ddoowwnn
Figure 60. Purge operating limits

Air Removal

If no air is in the purge tank, the refrigerant returning to the purge condensing unit compressor suction has a high superheat (heat added past the point of evaporation), because of the heat removed from the condensing chiller refrigerant vapor in the purge tank. As air accumulates in the purge tank, it displaces the chiller refrigerant vapor and decreases the amount of coil surface that is exposed to the vapor. Less heat is removed from the vapor, and the available superheat at the purge condensing unit compressor suction consequently falls. When the purge refrigerant compressor suction temperature falls far enough to reach the pump-out initiate value, the purge control activates the solenoids and the pump-out compressor to remove the accumulated air.
As air is removed from the purge tank, the inside coil is once again exposed to chiller refrigerant vapor. As more chiller refrigerant vapor condenses on the coil, more heat is removed from the vapor, and the purge refrigerant compressor suction temperature rises. The purge control cycles or stops the pump-out process in response to the compressor suction temperature.

Pump-out Operating Sequence

As the purge control system detects the presence of non-condensables in the purge tank, it initiates a pump-out cycle. The pump-out solenoid valve, the exhaust solenoid valve, and the pump-out compressor cycle On and Off as needed to remove the non­condensables.
Non-condensable Pump-out Algorithm
The controller uses the non-condensable pump-out algorithm to determine when to initiate, control, and terminate a pump-out cycle to remove air from the purge tank. The purge refrigerant compressor suction
100
temperature sensor serves as the feedback to this control algorithm. The compressor suction temperature pump-out initiate and pump-out terminate values are calculated by the purge control and are a function of the purge liquid temperature.
The refrigerant used in the purge refrigeration circuit, R-513A, is metered into the purge tank coil by a constant-pressure regulating expansion valve. The valve automatically controls the purge suction pressure at a constant value of 21.5 psia (148.2 kPaA). Therefore, refrigerant is metered into the coil as a two-phase refrigerant mixture at a constant saturation temperature of approximately -3°F (-19.4°C).
The cold coil creates a low vapor pressure near its outside surface, which draws refrigerant from the chiller condenser into the purge tank and to the coil surface. When the refrigerant gets close enough to the coil surface, it condenses into a liquid. Since liquid refrigerant requires less volume than it does in a gaseous form, additional refrigerant enters the purge tank to fill the void and, in turn, condenses. This mechanism is known as a thermal siphon.
As the chiller refrigerant condenses, heat is transferred into the purge coil through the latent heat of condensation. The compressor suction temperature sensor monitors this heat transfer.
Air and other gases carried with the chiller refrigerant vapor do not condense on the coil. Instead, they accumulate in the purge tank, effectively acting to insulate and inhibit the flow of refrigerant to the cold coil surface. The thermal siphon rate is reduced and, consequently, so is the amount of heat transfer. A corresponding reduction occurs in the temperature of the purge refrigerant exiting the coil. The compressor suction temperature sensor monitors this temperature.
CVHH-SVX001G-EN
Loading...