Trane CVHE, CVHF, CVHG, CVHE-SVX02M-EN Installation, Operation And Maintenance Manual

Installation, Operation, and Maintenance
With Tracer® AdaptiView™ Control
CVHE CVHF CVHG
X39641075120
SSAAFFEETTYY WWAARRNNIINNGG
Only qualified personnel should install and service the equipment. The installation, starting up, and servicing of heating, ventilating, and air-conditioning equipment can be hazardous and requires specific knowledge and training. Improperly installed, adjusted or altered equipment by an unqualified person could result in death or serious injury. When working on the equipment, observe all precautions in the literature and on the tags, stickers, and labels that are attached to the equipment.
March 2017
CCVVHHEE--SSVVXX0022MM--EENN
Introduction
Read this manual thoroughly before operating or servicing this unit.
Warnings, Cautions, and Notices
Safety advisories appear throughout this manual as required. Your personal safety and the proper operation of this machine depend upon the strict observance of these precautions.
The three types of advisories are defined as follows:
Indicates a potentially hazardous situation which, if not avoided, could result in death or serious injury.
Indicates a potentially hazardous situation which, if not avoided, could result in minor or moderate injury. It could also be used to alert against unsafe practices.
Indicates a situation that could result in equipment or property-damage only accidents.
Important Environmental Concerns
Scientific research has shown that certain man-made chemicals can affect the earth’s naturally occurring stratospheric ozone layer when released to the atmosphere. In particular, several of the identified chemicals that may affect the ozone layer are refrigerants that contain Chlorine, Fluorine and Carbon (CFCs) and those containing Hydrogen, Chlorine, Fluorine and Carbon (HCFCs). Not all refrigerants containing these compounds have the same potential impact to the environment. Trane advocates the responsible handling of all refrigerants-including industry replacements for CFCs and HCFCs such as saturated or unsaturated HFCs and HCFCs.
Important Responsible Refrigerant Practices
Trane believes that responsible refrigerant practices are important to the environment, our customers, and the air conditioning industry. All technicians who handle refrigerants must be certified according to local rules. For the USA, the Federal Clean Air Act (Section
608) sets forth the requirements for handling, reclaiming, recovering and recycling of certain refrigerants and the equipment that is used in these service procedures. In addition, some states or municipalities may have additional requirements that must also be adhered to for responsible management of refrigerants. Know the applicable laws and follow them.
WWAARRNNIINNGG
PPrrooppeerr FFiieelldd WWiirriinngg aanndd GGrroouunnddiinngg RReeqquuiirreedd!!
FFaaiilluurree ttoo ffoollllooww ccooddee ccoouulldd rreessuulltt iinn ddeeaatthh oorr sseerriioouuss iinnjjuurryy.. AAllll ffiieelldd wwiirriinngg MMUUSSTT bbee ppeerrffoorrmmeedd bbyy qquuaalliiffiieedd ppeerrssoonnnneell.. IImmpprrooppeerrllyy iinnssttaalllleedd aanndd ggrroouunnddeedd ffiieelldd wwiirriinngg ppoosseess FFIIRREE aanndd EELLEECCTTRROOCCUUTTIIOONN hhaazzaarrddss.. TToo aavvooiidd tthheessee hhaazzaarrddss,, yyoouu MMUUSSTT ffoollllooww rreeqquuiirreemmeennttss ffoorr ffiieelldd wwiirriinngg iinnssttaallllaattiioonn aanndd ggrroouunnddiinngg aass ddeessccrriibbeedd iinn NNEECC aanndd yyoouurr llooccaall// ssttaattee//nnaattiioonnaall eelleeccttrriiccaall ccooddeess..
WWAARRNNIINNGG
PPeerrssoonnaall PPrrootteeccttiivvee EEqquuiippmmeenntt ((PPPPEE)) RReeqquuiirreedd!!
FFaaiilluurree ttoo wweeaarr pprrooppeerr PPPPEE ffoorr tthhee jjoobb bbeeiinngg uunnddeerrttaakkeenn ccoouulldd rreessuulltt iinn ddeeaatthh oorr sseerriioouuss iinnjjuurryy.. TTeecchhnniicciiaannss,, iinn oorrddeerr ttoo pprrootteecctt tthheemmsseellvveess ffrroomm ppootteennttiiaall eelleeccttrriiccaall,, mmeecchhaanniiccaall,, aanndd cchheemmiiccaall hhaazzaarrddss,, MMUUSSTT ffoollllooww pprreeccaauuttiioonnss iinn tthhiiss mmaannuuaall aanndd oonn tthhee ttaaggss,, ssttiicckkeerrss,, aanndd llaabbeellss,, aass wweellll aass tthhee iinnssttrruuccttiioonnss bbeellooww::
•• BBeeffoorree iinnssttaalllliinngg//sseerrvviicciinngg tthhiiss uunniitt,, tteecchhnniicciiaannss MMUUSSTT ppuutt oonn aallll PPPPEE rreeqquuiirreedd ffoorr tthhee wwoorrkk bbeeiinngg uunnddeerrttaakkeenn ((EExxaammpplleess;; ccuutt rreessiissttaanntt gglloovveess//sslleeeevveess,, bbuuttyyll gglloovveess,, ssaaffeettyy ggllaasssseess,, hhaarrdd hhaatt//bbuummpp ccaapp,, ffaallll pprrootteeccttiioonn,, eelleeccttrriiccaall PPPPEE aanndd aarrcc ffllaasshh ccllootthhiinngg)).. AALLWWAAYYSS rreeffeerr ttoo aapppprroopprriiaattee MMaatteerriiaall SSaaffeettyy DDaattaa SShheeeettss ((MMSSDDSS))//SSaaffeettyy DDaattaa SShheeeettss ((SSDDSS)) aanndd OOSSHHAA gguuiiddeelliinneess ffoorr pprrooppeerr PPPPEE..
•• WWhheenn wwoorrkkiinngg wwiitthh oorr aarroouunndd hhaazzaarrddoouuss cchheemmiiccaallss,, AALLWWAAYYSS rreeffeerr ttoo tthhee aapppprroopprriiaattee MMSSDDSS//SSDDSS aanndd OOSSHHAA//GGHHSS ((GGlloobbaall HHaarrmmoonniizzeedd SSyysstteemm ooff CCllaassssiiffiiccaattiioonn aanndd LLaabbeelllliinngg ooff CChheemmiiccaallss)) gguuiiddeelliinneess ffoorr iinnffoorrmmaattiioonn oonn aalllloowwaabbllee ppeerrssoonnaall eexxppoossuurree lleevveellss,, pprrooppeerr rreessppiirraattoorryy pprrootteeccttiioonn aanndd hhaannddlliinngg iinnssttrruuccttiioonnss..
•• IIff tthheerree iiss aa rriisskk ooff eenneerrggiizzeedd eelleeccttrriiccaall ccoonnttaacctt,, aarrcc,, oorr ffllaasshh,, tteecchhnniicciiaannss MMUUSSTT ppuutt oonn aallll PPPPEE iinn aaccccoorrddaannccee wwiitthh OOSSHHAA,, NNFFPPAA 7700EE,, oorr ootthheerr ccoouunnttrryy--ssppeecciiffiicc rreeqquuiirreemmeennttss ffoorr aarrcc ffllaasshh pprrootteeccttiioonn,, PPRRIIOORR ttoo sseerrvviicciinngg tthhee uunniitt.. NNEEVVEERR PPEERRFFOORRMM AANNYY SSWWIITTCCHHIINNGG,, DDIISSCCOONNNNEECCTTIINNGG,, OORR VVOOLLTTAAGGEE TTEESSTTIINNGG WWIITTHHOOUUTT PPRROOPPEERR EELLEECCTTRRIICCAALL PPPPEE AANNDD AARRCC FFLLAASSHH CCLLOOTTHHIINNGG.. EENNSSUURREE EELLEECCTTRRIICCAALL MMEETTEERRSS AANNDD EEQQUUIIPPMMEENNTT AARREE PPRROOPPEERRLLYY RRAATTEEDD FFOORR IINNTTEENNDDEEDD VVOOLLTTAAGGEE..
©2017 Ingersoll Rand All rights reserved
CVHE-SVX02M-EN
IInnttrroodduuccttiioonn
WWAARRNNIINNGG
FFoollllooww EEHHSS PPoolliicciieess!!
FFaaiilluurree ttoo ffoollllooww iinnssttrruuccttiioonnss bbeellooww ccoouulldd rreessuulltt iinn ddeeaatthh oorr sseerriioouuss iinnjjuurryy..
•• AAllll IInnggeerrssoollll RRaanndd ppeerrssoonnnneell mmuusstt ffoollllooww IInnggeerrssoollll RRaanndd EEnnvviirroonnmmeennttaall,, HHeeaalltthh aanndd SSaaffeettyy ((EEHHSS)) ppoolliicciieess wwhheenn ppeerrffoorrmmiinngg wwoorrkk ssuucchh aass hhoott wwoorrkk,, eelleeccttrriiccaall,, ffaallll pprrootteeccttiioonn,, lloocckkoouutt//ttaaggoouutt,, rreeffrriiggeerraanntt hhaannddlliinngg,, eettcc.. AAllll ppoolliicciieess ccaann bbee ffoouunndd oonn tthhee BBOOSS ssiittee.. WWhheerree llooccaall rreegguullaattiioonnss aarree mmoorree ssttrriinnggeenntt tthhaann tthheessee ppoolliicciieess,, tthhoossee rreegguullaattiioonnss ssuuppeerrsseeddee tthheessee ppoolliicciieess..
•• NNoonn--IInnggeerrssoollll RRaanndd ppeerrssoonnnneell sshhoouulldd aallwwaayyss ffoollllooww llooccaall rreegguullaattiioonnss..
WWAARRNNIINNGG
RReeffrriiggeerraanntt MMaayy BBee UUnnddeerr PPoossiittiivvee PPrreessssuurree!!
FFaaiilluurree ttoo ffoollllooww iinnssttrruuccttiioonnss bbeellooww ccoouulldd rreessuulltt iinn aann eexxpplloossiioonn wwhhiicchh ccoouulldd rreessuulltt iinn ddeeaatthh oorr sseerriioouuss iinnjjuurryy oorr eeqquuiippmmeenntt ddaammaaggee.. SSyysstteemm ccoonnttaaiinnss rreeffrriiggeerraanntt aanndd mmaayy bbee uunnddeerr ppoossiittiivvee pprreessssuurree;; ssyysstteemm mmaayy aallssoo ccoonnttaaiinn ooiill.. RReeccoovveerr rreeffrriiggeerraanntt ttoo rreelliieevvee pprreessssuurree bbeeffoorree ooppeenniinngg tthhee ssyysstteemm.. SSeeee uunniitt nnaammeeppllaattee ffoorr rreeffrriiggeerraanntt ttyyppee.. DDoo nnoott uussee nnoonn--aapppprroovveedd rreeffrriiggeerraannttss,, rreeffrriiggeerraanntt ssuubbssttiittuutteess,, oorr nnoonn-­aapppprroovveedd rreeffrriiggeerraanntt aaddddiittiivveess..
NNOOTTIICCEE
EEqquuiippmmeenntt DDaammaaggee!!
MMiixxiinngg rreeffrriiggeerraannttss oorr ooiillss ccoouulldd rreessuulltt iinn eeqquuiippmmeenntt ddaammaaggee iinncclluuddiinngg bbeeaarriinngg ddaammaaggee,, iinnttrroodduuccttiioonn ooff aacciiddss iinnttoo tthhee cchhiilllleerr,, oorr ccoonnttiinnuuoouuss ppuurrggee ppuummpp--oouutt iinn hhiigghh--hheeaadd//hhiigghh aammbbiieenntt aapppplliiccaattiioonnss.. CCeennTTrraaVVaacc cchhiilllleerrss aarree mmaannuuffaaccttuurreedd wwiitthh ddiiffffeerreenntt rreeffrriiggeerraanntt//ooiill ssyysstteemmss:: RR--112233 cchhiilllleerrss uussiinngg OOIILL0000002222 aanndd RR--551144AA cchhiilllleerrss uussiinngg OOIILL0000333344//OOIILL0000333355.. VVeerriiffyy pprrooppeerr rreeffrriiggeerraanntt aanndd ooiill ffoorr yyoouurr cchhiilllleerr aanndd ddoo NNOOTT mmiixx rreeffrriiggeerraannttss oorr ooiillss!!
This Installation, Operation, and Maintenance manual applies to CenTraVac™ chillers with two different refrigerant and oil systems:
R-123 and OIL00022
R-514A and OIL00334/OIL00335
IImmppoorrttaanntt:: Verify proper refrigerant and oil for your
chiller before proceeding!
NNOOTTIICCEE
DDoo NNoott UUssee NNoonn--CCoommppaattiibbllee PPaarrttss oorr MMaatteerriiaallss!!
UUssee ooff nnoonn--ccoommppaattiibbllee ppaarrttss oorr mmaatteerriiaallss ccoouulldd rreessuulltt iinn eeqquuiippmmeenntt ddaammaaggee.. OOnnllyy ggeennuuiinnee TTrraannee®® rreeppllaacceemmeenntt ccoommppoonneennttss wwiitthh iiddeennttiiccaall TTrraannee ppaarrtt nnuummbbeerrss sshhoouulldd bbee uusseedd iinn TTrraannee CCeennTTrraaVVaacc cchhiilllleerrss.. TTrraannee aassssuummeess nnoo rreessppoonnssiibbiilliittyy ffoorr ddaammaaggeess rreessuullttiinngg ffrroomm tthhee uussee ooff nnoonn--ccoommppaattiibbllee ppaarrttss oorr mmaatteerriiaallss..
Factory Warranty Information
Compliance with the following is required to preserve the factory warranty:
AAllll UUnniitt IInnssttaallllaattiioonnss
Startup MUST be performed by Trane, or an authorized agent of Trane, to VALIDATE this WARRANTY. Contractor must provide a two-week startup notification to Trane (or an agent of Trane specifically authorized to perform startup).
AAddddiittiioonnaall RReeqquuiirreemmeennttss ffoorr UUnniittss RReeqquuiirriinngg DDiissaasssseemmbbllyy aanndd RReeaasssseemmbbllyy
When a new chiller is shipped and received from our Trane manufacturing location and, for any reason, it requires disassembly or partial disassembly, and reassembly— which could include but is not limited to the evaporator, condenser, control panel, compressor/ motor, economizer, purge, factory-mounted starter or any other components originally attached to the fully assembled unit— compliance with the following is required to preserve the factory warranty:
Trane, or an agent of Trane specifically authorized to perform start-up and warranty of Trane® products, will perform or have direct on-site technical supervision of the disassembly and reassembly work.
The installing contractor must notify Trane—or an agent of Trane specifically authorized to perform startup and warranty of Trane® products—two weeks in advance of the scheduled disassembly work to coordinate the disassembly and reassembly work.
Start-up must be performed by Trane or an agent of Trane specifically authorized to perform startup and warranty of Trane® products.
Trane, or an agent of Trane specifically authorized to perform start-up and warranty of Trane® products, will provide qualified personnel and standard hand tools to perform the disassembly and reassembly work at a location specified by the contractor. The contractor shall provide the rigging equipment such as chain falls, gantries, cranes, forklifts, etc. necessary for the disassembly and reassembly work and the required qualified personnel to operate the necessary rigging equipment.
CVHE-SVX02M-EN
3
IInnttrroodduuccttiioonn
Revision History
Updates to:
“Water Flow Detection Controller and Sensor,” p.
28 (ifm efector® flow detection sensor)
“CenTraVac™ Chiller Installation Completion and
Request for Trane Service,” p. B–1
“CVHE, CVHF, and CVHG CenTraVac™ Chiller
Annual Inspection List,” p. D–1
Running edits
Copyright
This document and the information in it are the property of Trane, and may not be used or reproduced in whole or in part without written permission. Trane reserves the right to revise this publication at any time, and to make changes to its content without obligation to notify any person of such revision or change.
Trademarks
All trademarks referenced in this document are the trademarks of their respective owners.
4
CVHE-SVX02M-EN
Table of Contents
Unit Nameplate. . . . . . . . . .. . . . . . . . . .. . . . . . . . . 8
Model Number Descriptions. . . . . . . . . . .. . . . . 9
Pre-Installation . .. . . . . . . . . .. . . . . . . . . . .. . . . . 10
ASHRAE Standard 15 Compliance . . . . . . . . 10
Unit Shipment. . . . . . . . . . . . . . . . . . . . . . . . . . . 10
Installation Requirements and
Contractor Responsibilities . . . . . . . . . . . . . . . 10
Storage Requirements . . . . . . . . . . . . . . . . . . . 12
Unit Components. . . . . . . . . . . . . . . . . . . . . . . . 14
Unit Clearances and Weights . . . . . . .. . . . . . . 15
Recommended Unit Clearances. . . . . . . . . . . 15
General Weights. . . . . . . . . . . . . . . . . . . . . . . . . 16
Weights (lb) . . . . . . . . . . . . . . . . . . . . . . . . . 16
Weights (kg) . . . . . . . . . . . . . . . . . . . . . . . . . 19
Installation: Mechanical . . . . . . . . . . . . . .. . . . . 22
Operating Environment . . . . . . . . . . . . . . . . . . 22
Foundation Requirements . . . . . . . . . . . . . . . . 22
Rigging . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
Standard Chiller Lift . . . . . . . . . . . . . . . . . . 22
Special Lift Requirements. . . . . . . . . . . . . 24
Unit Isolation. . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
Isolation Pads . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
Spring Isolators . . . . . . . . . . . . . . . . . . . . . . . . . 24
Leveling the Unit . . . . . . . . . . . . . . . . . . . . . . . . 26
Installation: Water Piping. . . . . . . . . . .. . . . . . . 27
Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
Water Treatment . . . . . . . . . . . . . . . . . . . . . . . . 27
Pressure Gauges . . . . . . . . . . . . . . . . . . . . . . . . 27
Valves—Drains and Vents . . . . . . . . . . . . . . . . 27
Strainers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
Required Flow-Sensing Devices. . . . . . . . . . . 28
Paddle Switches . . . . . . . . . . . . . . . . . . . . . 28
Water Flow Detection Controller and
Sensor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
Evaporator and Condenser Water
Piping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
Water Piping Connections . . . . . . . . . . . . . . . . 31
Waterbox Locations . . . . . . . . . . . . . . . . . . . . . 32
Grooved Pipe Coupling . . . . . . . . . . . . . . . . . . 32
Flange-connection Adapters. . . . . . . . . . . . . . 32
Victaulic Gasket Installation . . . . . . . . . . . . . . 33
Bolt-Tightening Sequence for Water
Piping Connections . . . . . . . . . . . . . . . . . . . . . . 34
Flanges with 4, 8, or 12 Bolts . . . . . . . . . . 35
Flanges with 16, 20, or 24 Bolts. . . . . . . . 35
Flanges with More than 24 Bolts. . . . . . . 35
Evaporator Waterbox Covers . . . . . . . . . 36
Pressure Testing Waterside Piping . . . . . . . . 36
Vent Piping . . . . . . . . . . . .. . . . . . . . . .. . . . . . . . . . 37
Refrigerant Vent Line . . . . . . . . . . . . . . . . . . . . 37
General Requirements. . . . . . . . . . . . . . . . 37
Purge Discharge . . . . . . . . . . . . . . . . . . . . . 37
Vent Line Materials. . . . . . . . . . . . . . . . . . . 37
Vent Line Sizing. . . . . . . . . . . . . . . . . . . . . . 37
Vent Line Installation. . . . . . . . . . . . . . . . . . . . . 38
Vent Line Sizing Reference . . . . . . . . . . . . . . . 41
Insulation. .. . . . . . . . . .. . . . . . . . . .. . . . . . . . . . . . 44
Unit Insulation Requirements. . . . . . . . . . . . . 44
Insulation Thickness Requirements . . . . . . . 44
Factory Applied Insulation . . . . . . . . . . . . 44
Installation: Controls . . . . . . .. . . . . . . . . .. . . . . 46
UC800 Specifications . . . . . . . . . . . . . . . . . . . . 46
Power Supply. . . . . . . . . . . . . . . . . . . . . . . . 46
Wiring and Port Descriptions. . . . . . . . . . 46
Communication Interfaces . . . . . . . . . . . . 47
Rotary Switches . . . . . . . . . . . . . . . . . . . . . 47
LED Description and Operation. . . . . . . . 47
Installing the Tracer AdaptiView
Display . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
Adjusting the Tracer AdaptiView Display
Arm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
Electrical Requirements . . . . . . . . . . . . .. . . . . . 53
Installation Requirements . . . . . . . . . . . . . . . . 53
Electrical Requirements . . . . . . . . . . . . . . . . . . 53
Trane-supplied Starter Wiring . . . . . . . . . . . . 54
CVHE-SVX02M-EN
5
TTaabbllee ooff CCoonntteennttss
Customer-supplied Remote Starter
Wiring . . . . . . . . . . . .. . . . . . . . . .. . . . . . . . . . .. . . . 55
Current Transformer and Potential
Transformer Wire Sizing . . . . . . . . . . . . . . . . . 55
Power Supply Wiring. . . . . . . . . . . . .. . . . . . . . . 57
Three-Phase Power . . . . . . . . . . . . . . . . . . . . . . 57
Circuit Breakers and Fused
Disconnects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
Power Factor Correction Capacitors
(Optional) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
Interconnecting Wiring. . . . . . . . . . . . . . . . . . . 58
Starter to Motor Wiring (Remote-
Mounted Starters Only) . . . . . . . . . . . . . . . . . . 59
Ground Wire Terminal Lugs. . . . . . . . . . . 59
Terminal Clamps. . . . . . . . . . . . . . . . . . . . . 60
Wire Terminal Lugs . . . . . . . . . . . . . . . . . . 60
Bus Bars . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
Starter to Control Panel Wiring . . . . . . . . . . . 61
10 to 13.8kV Medium Voltage Motor. . .. . . . 62
Motor Terminal Box . . . . . . . . . . . . . . . . . . . . . 62
Motor Supply Wiring. . . . . . . . . . . . . . . . . . . . . 63
Motor Terminals . . . . . . . . . . . . . . . . . . . . . 63
Ground Wire Terminal Lug. . . . . . . . . . . . 63
System Control Circuit Wiring (Field
Wiring) . . . . . . .. . . . . . . . . . .. . . . . . . . . .. . . . . . . . 64
Water Pump Interlock Circuits and Flow
Switch Input . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
Chilled Water Pump . . . . . . . . . . . . . . . . . . 65
Chilled Water Proof of Flow . . . . . . . . . . . 65
Condenser Water Pump . . . . . . . . . . . . . . 65
Condenser Water Proof of Flow . . . . . . . 65
Temperature Sensor Circuits . . . . . . . . . . . . . 65
CWR—Outdoor Option . . . . . . . . . . . . . . . 66
Optional Control and Output
Circuits. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
Optional Tracer Communication
Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
Starter Module Configuration. . . . . . . . . . . . . 66
Schematic Wiring Drawings . . . . . . . . . . . . . . 66
Operating Principles. . . . . . . . .. . . . . . . . . . . .. . 67
General Requirements . . . . . . . . . . . . . . . . . . . 67
Cooling Cycle . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
CVHE and CVHG 3-Stage
Compressor . . . . . . . . . . . . . . . . . . . . . . . . . 67
CVHF 2-Stage Compressor. . . . . . . . . . . . 67
Oil and Refrigerant Pump . . . . . . . . . . . . . . . . 68
Compressor Lubrication
System. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
Motor Cooling System . . . . . . . . . . . . . . . . . . . 70
Tracer AdaptiView Display . . . . . . . . . . . . . . . 70
Start-up and Shut-down . . . . .. . . . . . . . . .. . . . 71
Sequence of Operation. . . . . . . . . . . . . . . . . . . 71
Software Operation Overview
Diagram. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
Start-up Sequence of Operation—
Wye-delta . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
Power Up Diagram. . . . . . . . . . . . . . . . . . . 76
Ice Machine Control. . . . . . . . . . . . . . . . . . . . . . 76
Free Cooling Cycle. . . . . . . . . . . . . . . . . . . . . . . 78
Free Cooling (FRCL) . . . . . . . . . . . . . . . . . . 79
Hot Gas Bypass (HGBP) . . . . . . . . . . . . . . . . . . 79
Hot Water Control . . . . . . . . . . . . . . . . . . . . . . . 79
Heat Recovery Cycle . . . . . . . . . . . . . . . . . . . . . 80
Auxiliary Condensers . . . . . . . . . . . . . . . . . . . . 80
Control Panel Devices and Unit-Mounted
Devices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
Unit Control Panel . . . . . . . . . . . . . . . . . . . 80
User-Defined Language
Support . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
Unit Start-up and Shut-down
Procedures. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
Daily Unit Start-up . . . . . . . . . . . . . . . . . . . 81
Seasonal Unit Start-up . . . . . . . . . . . . . . . 82
Daily Unit Shut-down . . . . . . . . . . . . . . . . 82
Seasonal Unit Shut-down. . . . . . . . . . . . . 82
Recommended Maintenance . . . .. . . . . . . . . . 83
Record Keeping Forms. . . . . . . . . . . . . . . . . . . 83
Normal Operation . . . . . . . . . . . . . . . . . . . . . . . 83
Recommended Compressor Oil
Change . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
Purge System . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
6
CVHE-SVX02M-EN
TTaabbllee ooff CCoonntteennttss
Leak Checking Based on Purge Pump
Out Time . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
Long Term Unit Storage. . . . . . . . . . . . . . . . . . 86
Refrigerant Charge . . . . . . . . . . . . . . . . . . . . . . 87
Leak Testing . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
Recommended System
Maintenance . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
Condenser . . . . . . . . . . . . . . . . . . . . . . . . . . 87
Evaporator . . . . . . . . . . . . . . . . . . . . . . . . . . 88
Waterbox and Tubesheet Protective
Coatings . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
Sacrificial Anodes. . . . . . . . . . . . . . . . . . . . 88
Waterbox Removal and Installation . . . . .. . 89
Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
Procedure. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
Reassembly . . . . . . . . . . . . . . . . . . . . . . . . . 90
Torque Requirements and Waterbox
Weights . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
Connection Devices Information . . . . . . . . . . 91
Forms and Check Sheets . . . . . . . .. . . . . . . . .A–1
Unit Start-up/Commissioning. . . . . . . . . . . . A–1
CenTraVac™ Chiller Installation Completion and Request for Trane
Service . . . . . . . .. . . . . . . . . .. . . . . . . . . . .. . . . . .B–1
CVHE, CVHF, and CVHG CenTraVac™ Chiller Start-up Tasks to be Performed by
Trane . . . . . . . . . . . . .. . . . . . . . . . .. . . . . . . . . .. . .C–1
CVHE, CVHF, and CVHG CenTraVac™
Chiller Annual Inspection List. . . . . .. . . . . . .D–1
CVHE, CVHF, and CVHG CenTraVac™
Chiller Operator Log. . . . . . . . . .. . . . . . . . . .. . E–1
CVHE-SVX02M-EN
7

Unit Nameplate

The unit nameplate is located on the left side of the control panel. A typical unit nameplate is illustrated in the following figure and contains the following information:
Unit model and size descriptor
Unit electrical requirements
Correct operating charge and refrigerant type
Unit test pressures and maximum operating pressures
Unit literature
SSeerriiaall NNuummbbeerr.. The unit serial number provides the specific chiller identity. Always provide this serial number when calling for service or during parts identification.
SSeerrvviiccee MMooddeell NNuummbbeerr.. The service model represents the unit as built for service purposes. It identifies the selections of variable unit features required when ordering replacements parts or requesting service.
NNoottee:: Unit-mounted starters are identified by a
separate number found on the starter.
PPrroodduucctt DDeessccrriippttiioonn BBlloocckk.. The CenTraVac™ chiller models are defined and built using the Product Definition and Selection (PDS) system. This system describes the product offerings using a product coding block which is made up of feature categories and codes that identify all characteristics of a unit.
Figure 1. Typical unit nameplate
8
CVHE-SVX02M-EN

Model Number Descriptions

Digit 1, 2, 3 — Unit Function
Digit 4 — Development Sequence
Digit 5, 6, 7 — Nominal Tonnage
Digit 8 — Unit Voltage
Digit 9 — Unit Type
Digit 10, 11 — Design Sequence
Digit 12 — Hot Gas Bypass
Digit 13 — Starter Type
Digit 14 — Control Enclosure
Digit 15 — Compressor Motor Power (CPKW)
Digit 16, 17, 18 — Compressor Impeller Cutback
Digit 19 — Evaporator Shell Size
Digit 32 — Auxiliary Condenser Tubes
Digit 33 — Orifice Size
Digit 34 — Orifice Size
Digit 35 — Unit Option: Insulation and RuptureGuard™™
Digit 36 — Enhanced Protection
Digit 37 — Generic BAS
Digit 38 — Extended Operation
Digit 39 — Tracer Communication Interface
Digit 40 — Condenser Refrigerant Control
Digit 41 — Manufacturing Location
Digit 42 — Special Options
Digit 43 — Water Flow Control
Digit 20 — Evaporator Tube Bundle (Nominal Tons)
Digit 21 — Evaporator Tubes
Digit 22 — Evaporator Waterbox
Digit 23 — Condenser Shell Size
Digit 24 — Condenser Tube Bundle (Nominal Tons)
Digit 25 — Condenser Tubes
Digit 26 — Condenser Waterbox
Digit 27 — Heat Recovery Condenser Shell Size
Digit 28 — Heat Recovery Condenser Tube Bundle (Nominal Tons)
Digit 29 — Heat Recovery Tubes
Digit 30 — Heat Recovery Condenser Waterbox
Digit 31 — Auxiliary Condenser Size and Waterbox
Digit 44 — Chilled Water Reset
Digit 45 — Heat Recovery Temperature Sensors
Digit 46 — Gas Powered Chiller
Digit 47 — Compressor Motor Frame Size
Digit 48 — Volute Discharge Angle
Digit 49 — Operating Status
Digit 50 — Industrial Chiller Package
Digit 51 — Control Power Transformer
Digit 52 — Motor and Terminal Board Configuration
CVHE-SVX02M-EN
9

Pre-Installation

ASHRAE Standard 15 Compliance

Trane recommends that indoor CenTraVac™ chiller installations fully meet or exceed the guidelines of the current version of ASHRAE Standard 15, in addition to any applicable national, state, or local requirements. This typically includes:
A refrigerant monitor or detector that is capable of monitoring and alarming within the acceptable exposure level of the refrigerant, and that can actuate mechanical ventilation.
Audible and visual alarms, activated by the refrigerant monitor, inside the equipment room and outside of every entrance.
The equipment room should be properly vented to the outdoors, using mechanical ventilation that can be activated by the refrigerant monitor.
The purge discharge and the rupture disk must be properly piped to the outdoors.
If required by local or other codes, a self-contained breathing apparatus should be available in close proximity to the equipment room.
Refer to the latest copy of ASHRAE Standard 15 for specific guidelines. Trane assumes no responsibility for any economic, health, or environmental issues that may result from an equipment room’s design or function.
NNoottee:: The holding charge should register
approximately 5 psig (34.5 kPaG) at 72°F (22.2°C). Place a gauge on the access valve provided (indicated by arrow and circle in the following figure) on the refrigerant pump discharge line to verify the holding charge. If the charge has escaped, contact your local Trane sales office for instructions.
3. The loose parts box and isolator pads ship on top of the control panel box.
4. Check the oil sump sight glasses to verify that the sump was factory-charged with 9 gallons (34.1 L) of oil. If no oil level is visible, contact your local Trane sales office.
IImmppoorrttaanntt:: If isolation springs are installed, do NOT
block oil tank serviceability.
Figure 2. Refrigerant pump discharge line access valve

Unit Shipment

Inspect unit while it is still on the truck for any shipping damage. The chiller ships shrink-wrapped in a 0.010-in. (0.254 mm) recyclable film protective covering. Do NOT remove shrink-wrap for inspection! Inspect for damage to the shrink-wrap and determine if physical damage has occurred.
Each chiller ships from the factory as a hermetically assembled package; it is factory-assembled, -wired, and -tested. All openings except for the waterbox vent and drain holes are covered or plugged to prevent contamination during shipment and handling. Figure
3, p. 14 shows an illustration of a typical unit and its
components. As soon as the unit arrives at the job site, inspect it thoroughly for damage and material shortages. In addition:
1. Verify the hermetic integrity of the unit by checking the chiller pressure for an indication of holding charge pressure.
2. To prevent damaging moisture from entering the unit and causing corrosion, each chiller is pressurized with 3 to 5 psig (20.7 to 34.5 kPaG) of dry nitrogen before shipment.

Installation Requirements and Contractor Responsibilities

A list of the contractor responsibilities typically associated with the unit installation process is provided.
WWAARRNNIINNGG
CCoommbbuussttiibbllee MMaatteerriiaall!!
FFaaiilluurree ttoo ffoollllooww iinnssttrruuccttiioonnss bbeellooww ccoouulldd rreessuulltt iinn ddeeaatthh oorr sseerriioouuss iinnjjuurryy oorr eeqquuiippmmeenntt ddaammaaggee.. SShhrriinnkk--wwrraapp iiss aa ccoommbbuussttiibbllee mmaatteerriiaall.. AAvvooiidd ooppeenn ffllaammeess aanndd hhoott ssppaarrkkss..
10
CVHE-SVX02M-EN
NNoottee:: The chiller should remain within its protective
shrink-wrap covering during storage.
Type of Requirement
Foundation
Rigging
Disassembly/Reassembly (as required)
Isolation
Electrical
Water piping
Trane Supplied Trane Installed
Trane will perform or have direct on-site supervision of the disassembly and reassembly work (contact your local Trane office for pricing)
Circuit breakers or fusible disconnects (optional)
Unit-mounted starter (optional)
Power factor correction capacitors (PFCCs) (optional)
Trane Supplied Field Installed
Isolation pads or spring
Jumper bars
Temperature sensor
Flow switches (may be
Remote-mounted
Flow sensing devices
isolators
(optional outdoor air)
field supplied); for installation instructions for the ifm efector® flow detection controller and sensor, refer to
“Water Flow Detection Controller and Sensor,” p. 28 or Trane
literature that shipped with the device
starter (optional)
(may be field supplied)
PPrree--IInnssttaallllaattiioonn
Field Supplied Field Installed
Meet foundation requirements
Safety chains
Clevis connectors
Lifting beam
Isolation pads or spring isolators
Optional spring isolators, when required, are installed by others; do NOT overload springs and do NOT install isolation springs if they block serviceable parts such as the oil tank system, service valves, etc.
Circuit breakers or fusible disconnects (optional)
Electrical connections to unit-mounted starter (optional)
Electrical connections to remote-mounted starter (optional)
Wiring sizes per submittal and National Electric Code (NEC)
PFCCs (remote mounted starter optional only)
Terminal lugs
Ground connection(s)
Jumper bars
BAS wiring (optional)
Inter-processor communication (IPC) wiring (AFD and remote-mounted starters only)
Control voltage wiring (AFD and remote-mounted starters only)
Oil pump interlock wiring (AFD and remote mounted starters only)
High condenser pressure interlock wiring (AFD and remote-mounted starters only)
Chilled water pump contactor and wiring including interlock
Condenser water pump contactor and wiring including interlock
Option relays and wiring
Tracer® SC communication wiring (optional)
Taps for flow sensing devices
Taps for thermometers and gauges
Thermometers
Strainers (as required)
Water flow pressure gauges
Isolation and balancing valves in water piping
Vents and drain on waterbox valves (one each per pass)
Pressure relief valves (for waterboxes as required)
CVHE-SVX02M-EN
11
PPrree--IInnssttaallllaattiioonn
Type of Requirement
Relief
Insulation
Water Piping Connection Components
Other Materials
“CenTraVac™ Chiller Installation Completion and Request for Trane Service,” p. B–1 (CTV-
ADF001*-EN; refer to
“Forms and Check Sheets,” p. A–1)
Chiller start-up commissioning
Post-commissioning transport of empty refrigerant containers for return or recycling
(a)
Start-up must be performed by Trane or an agent of Trane specifically authorized to perform start-up and warranty of Trane® products. Contractor shall provide Trane (or an agent of Trane specifically authorized to perform start-up) with notice of the scheduled start-up at least two weeks prior to the scheduled start-up.
(a)
Trane Supplied Trane Installed
Rupture disk assembly
Insulation (optional)
Flanged (optional)
Welded on flange for 300 psig (2068.4 kPaG) waterboxes
Trane, or an agent of Trane specifically authorized to perform start-up of Trane® products
Trane Supplied Field Installed
RuptureGuard™ (optional); refer to
Installation, Operation, and Maintenance: RuptureGuard Pressure Relief System Option
(CTV-SVX06*-EN)
Flanged (optional)
Victaulic® to flange adapter for 150 psig (1034.2 kPaG) waterboxes
Field Supplied Field Installed
Vent line and flexible connector and vent line from rupture disk to atmosphere
Insulation
Chiller feet insulation
Victaulic®
Victaulic® coupling for 150 psig (1034.2 kPaG) and 300 psig (2068.4 kPaG) waterboxes
Fasteners for flanged-type connections (optional)
Trace gas (1 lb [0.45 kg] maximum per machine as needed to perform leak testing)
Dry nitrogen (8 psig [55.2 kPaG] maximum per machine as needed)
To be completed by installing contractor prior to contacting Trane for start-up
Move empty refrigerant containers to an easily accessible point of loading

Storage Requirements

NNOOTTIICCEE
IInnssuullaattiioonn DDaammaaggee!!
FFaaiilluurree ttoo ffoollllooww tthheessee iinnssttrruuccttiioonnss ccoouulldd rreessuulltt iinn iinnssuullaattiioonn ddaammaaggee.. TToo pprreevveenntt ddaammaaggee ttoo ffaaccttoorryy iinnssttaalllleedd iinnssuullaattiioonn::
•• DDoo nnoott aallllooww tthhee iinnssuullaattiioonn ttoo bbee eexxppoosseedd ttoo eexxcceessssiivvee ssuunnlliigghhtt.. SSttoorree iinnddoooorrss oorr ccoovveerr wwiitthh ccaannvvaass ttoo pprreevveenntt eexxppoossuurree..
•• DDoo nnoott uussee tthhiinnnneerrss aanndd ssoollvveennttss oorr ootthheerr ttyyppeess ooff ppaaiinntt.. UUssee oonnllyy wwaatteerr bbaassee llaatteexx..
Less than 1 month 1–6 months Greater than 6 months
Location requirements:
Solid foundation
Vibration free
Dry
Temperature range -40°F to 158°F (-40°C to 70°C)
Do not remove any plastic coverings Do not remove any plastic coverings Do not remove any plastic coverings
Do not charge the chiller with refrigerant
If additional refrigerant is on site, follow manufacturer’s storage requirements
Location requirements:
Solid foundation
Vibration free
Dry
Temperature range -40°F to 158°F (-40°C to 70°C)
Do not charge the chiller with refrigerant
If additional refrigerant is on site, follow manufacturer’s storage requirements
Location requirements:
Solid foundation
Vibration free
Dry
Temperature range -40°F to 158°F (-40°C to 70°C)
Do not charge the chiller with refrigerant
If additional refrigerant is on site, follow manufacturer’s storage requirements
12
CVHE-SVX02M-EN
PPrree--IInnssttaallllaattiioonn
Less than 1 month 1–6 months Greater than 6 months
Verify dry nitrogen pressure using gauge located on the evaporator shell reads 3 to 5 psig (20.7 to 34.5 kPaG)
Notify the local Trane office if charge has escaped
Do not operate purge unit Do not operate purge unit Do not operate purge unit
(a)
If the chiller will be stored for more than six months after production, contact your local Trane Service Agency for required extended storage actions to minimize impact to the chiller and preserve the warranty.
Verify dry nitrogen pressure using gauge located on the evaporator shell reads 3 to 5 psig (20.7 to 34.5 kPaG)
Notify the local Trane office if charge has escaped
Verify waterbox and tube bundles are clean and dry
Verify dry nitrogen pressure using gauge located on the evaporator shell reads 3 to 5 psig (20.7 to 34.5 kPaG)
Notify the local Trane office if charge has escaped
Verify waterbox and tube bundles are clean and dry
Conduct an oil analysis and verify no oil breakdown
(a)
Repeat yearly
Replace oil if breakdown has occurred
If no oil analysis program has been followed, replace oil prior to start-up
Every six months, check unit pressure or vacuum and take note of changes that could indicate a leak; contact your local Trane office if any leaks occur
Every six months, start the oil pump and rotate compressor shaft about 450° to prevent potential bearing issues
(a)
; contact your local
Trane Service Agency to perform this task
If the chiller will be stored for more than six months after production, contact your local Trane Service Agency for required extended storage actions to minimize impact to the chiller and preserve the warranty.
Chillers stored five years or longer should be inspected for leaks every five years by a qualified service organization
CVHE-SVX02M-EN
13
PPrree--IInnssttaallllaattiioonn

Unit Components

NNoottee:: The control panel side of the unit is always
designated as the front side of the unit.
Figure 3. Typical CVHF CenTraVac™™ chiller
1. Suction Elbow
2. Compressor
3. Terminal Box
4. Control Panel
5. Condenser
6. Motor Housing
7. Economizer
8. Oil Tank Assembly
9. Purge
10. Evaporator
11. Display Panel
14
CVHE-SVX02M-EN

Unit Clearances and Weights

Recommended Unit Clearances

Adequate clearances around and above the chiller are required to allow sufficient access for service and maintenance operations. Specific unit clearance requirements are indicated in the submittal package provided for your unit.
Do NOT install piping or conduit above the compressor motor assembly or behind the suction elbow of the unit.
Minimum vertical clearance above the unit is 3 ft (92 cm).
Figure 4. Clearance requirements
Use a housekeeping pad to provide better service clearances; refer to submittal for more information.
Per National Electric Code (NEC) Article 110: Unit mounted starters from 0 to 600V require a 42 inch (107 cm) clearance, 601 to 2500V require a 48 inch (122 cm) clearance, and 2501 to 9000V require a 60 inch (152 cm) clearance. Refer to NEC and local electrical codes for starter and control panel clearance requirements.
Table 1. Clearance requirements
Evaporator Size
032 Short/Long
050 Short/Long
080 Short/Long
CVHE-SVX02M-EN
Shell Combo
Short/Short
Short/Long
Long/Long
Short/Short
Short/Long
Long/Long
Short/Short
Short/Long
A B C D E
in.
45 114 141 358 321 815 34 86 53 134
77 195 219 556 431 1094 34 86 53 134
45 114 187 474 411 1043 34 86 53 134
45 114 141 358 321 815 40 101 62 157
78 198 219 556 431 1094 40 101 62 157
45 114 187 474 411 1043 40 101 62 157
53 134 141 358 329 835 36 91 76 193
85 215 219 556 439 1115 36 91 76 193
cm
in.
cm
in.
cm
in.
cm
in.
cm
15
UUnniitt CClleeaarraanncceess aanndd WWeeiigghhttss
Table 1. Clearance requirements (continued)
Evaporator Size
142 Medium/Long/
Extended 210 Long
250 Extended
NNoottee:: All dimensions are approximate; refer to the unit submittal package for exact dimensions for your unit.
Shell Combo
Long/Long
Medium/Long
Long/Long
Extended/Long
Long/Long
Extended/Long
A B C D E
in.
53 134 187 474 419 1064 36 91 76 193
78 198 207 525 444 1127 44 111 92 233
58 147 187 474 424 1076 44 111 92 233
58 147 209 530 469 1191 44 111 92 233
59 149 187 474 426 1082 47 119 102 259
63 160 209 530 475 1206 43 109 115 292
cm
in.
cm
in.
cm

General Weights

Weights (lb)

IImmppoorrttaanntt:: The weight information provided here
should be used for general information only. Trane does not recommend using this weight information for considerations relative to chiller handling, rigging, or placement. The large number of variances between chiller selections drives variances in chiller weights that are not recognized in these tables. For specific weights for your chiller, refer to your submittal package.
in.
cm
in.
cm
Table 2. Representative weights, 60 Hz chillers (lb)
Model
CVHE
CVHF
Comp Size
NTON EVSZ CDSZ
230–320
230–320 289 032S 032L 15433 13924 17113 15604
230–320 289 032L 032L 16277 14574 17957 16254
230–320 289 050S 050S 20035 17599 21715 19279
230–320 289 050S 050L 21001 18356 22681 20036
230–320 289 050L 050L 22352 19304 24032 20984
360–500 455 050S 050S 20717 18281 22397 19961
360–500 455 050S 050L 21683 19038 23363 20718
360–500 455 050L 050L 23034 19986 24714 21666
360–500 455 050S 080S 23200 20265 24880 21945
360–500 455 050L 080L 26793 22976 28473 24656
360–500 455 080S 080S 29854 25634 31534 27314
360–500 455 080S 080L 31442 26917 33122 28597
360–500 455 080L 080L 33463 28333 35143 30013
350–570 588 050S 050S 20487 17984 22167 19664
350–570 588 050S 050L 21453 18741 23133 20421
350–570 588 050L 050L 22703 19567 24383 21247
350–570 588 050S 080S 22970 19968 24650 21648
350–570 588 050L 080L 26512 22557 28192 24237
350–570 588 080S 080S 31845 26997 32173 27715
CPKW
233
289 16508 15149
Evap Size
032S 032S
Cond Size
Weights without Starters Weights with Starters
Operating Shipping Operating Shipping
14828 13469
16
CVHE-SVX02M-EN
Table 2. Representative weights, 60 Hz chillers (lb) (continued)
Model
Notes:
1. TECU tubes, 0.028 in. tube wall thickness.
2. 300 psig marine waterboxes.
3. Heaviest possible bundle and motor combination.
4. Operating weights assume the largest possible refrigerant charge.
5. Weights with starters assume the heaviest possible starter (AFD when it’s an allowed option).
6. Industrial Control Panel (INDP) option, add 50 lb.
7. Control Power Transformer (CPTR) option, add 130 lb.
8. Supplemental Motor Protection (SMP) option, add 500 lb.
Comp Size
NTON EVSZ CDSZ
350–570 588 080S 080L 32131 27318 33811 28998
350–570 588 080L 080L 34319 28855 35999 30535
350–910 957 080S 080S 32843 28385 35843 31385
350–910 957 080S 080L 34481 29668 37481 32668
350–910 957 080L 080L 36669 31205 39669 34205
350–910 957 080L 142L 44814 37663 47814 40663
350–910 957 142M 142L 48446 40540 51446 43540
350–910 957 142L 142L 49667 41453 52667 44453
1070–1300 1062 080L 142L 45710 38559 48710 41559
1070–1300 1062 142M 142L 49116 41210 52116 44210
1070–1300 1062 142L 142L 50337 42123 53337 45123
1070–1300 1062 142E 142L 51762 43109 54762 46109
1070–1300 1062 142M 210L 55062 46057 58062 49057
1070–1300 1062 142L 210L 56333 46970 59333 49970
1070–1300 1062 142E 210L 57758 47956 60758 50956
1070–1300 1062 210L 210L 61899 51929 64899 54929
1070–1300 1062 250E 250L 76152 63330 79152 66330
1470 1340 210L 210L 64550 54580 67550 57580
1470–1720 1340 142L 210L 58984 49621 61984 52621
1470–1720 1340 250E 250L 78803 65981 81803 68981
CPKW
Evap Size
Cond Size
Weights without Starters Weights with Starters
Operating Shipping Operating Shipping
UUnniitt CClleeaarraanncceess aanndd WWeeiigghhttss
Table 3. Representative weights, 50 Hz chillers (lb)
Model
CVHE
CVHE-SVX02M-EN
Comp Size
NTON EVSZ CDSZ
190–320
190–320
190–320
190–320
190–320
190–320
CPKW
215
231 16456 15097
215
231 17061 15552
215
231 17905 16202
215
231 21419 18918
215
231 22435 19675
215
231 23636 20502
300–500 360 050S 050S 21307 18806
Evap Size
032S 032S
032S 032L
032L 032L
050S 050S
050S 050L
050L 050L
Cond Size
Weights without Starters Weights with Starters
Operating Shipping Operating Shipping
14785 13426
15390 13881
16234 14531
19696 17195
20712 17952
21829 18682
17
UUnniitt CClleeaarraanncceess aanndd WWeeiigghhttss
Table 3. Representative weights, 50 Hz chillers (lb) (continued)
Model
Comp Size
NTON EVSZ CDSZ
CPKW
379 22608 20107
300–500
300–500
300–500
300–500
300–500
300–500
360
379 23624 20864
360
379 24825 21691
360
379 26224 22890
360
379 32041 27821
360
379 33629 29104
360
379 35650 30520
480–565 489 050S 050S 22258 19747 22815 20304
480–565 489 050S 050L 23274 20504 23831 21061
480–565 489 050L 050L 24391 21244 24948 21801
480–565 489 050S 080S 25874 22538 26431 23095
480–565 489 050L 080L 28712 24647 29269 25204
480–565 489 080S 080L 33279 28754 33836 29311
670–780 621 080S 080S 32952 28732 33509 29289
670–780 621 080S 080L 34540 30015 35097 30572
670–780 621 080L 080L 36561 31431 37118 31988
CVHG
670–780 621 080L 142L 45020 38203 45577 38760
670–780 621 142M 142L 49518 41562 50075 42119
670–780 621 142L 142L 50789 42475 51346 43032
920–1100 621 080L 142L 46086 39269 46643 39826
920–1100 892 142M 142L 50988 43032 51545 43589
920–1100 892 142L 142L 52259 43945 52816 44502
920–1100 892 142M 210L 56984 47879 57541 48436
920–1100 892 142L 210L 58205 48792 58762 49349
920–1100 892 142E 210L 59630 49778 60187 50335
920–1100 892 210L 210L 63821 53751 64378 54308
Notes:
1. TECU tubes, 0.028 in. tube wall thickness.
2. 300 psig marine waterboxes.
3. Heaviest possible bundle and motor combination.
4. Operating weights assume the largest possible refrigerant charge.
5. Weights with starters assume the heaviest possible starter (AFD when it’s an allowed option).
6. Industrial Control Panel (INDP) option, add 50 lb.
7. Control Power Transformer (CPTR) option, add 130 lb.
8. Supplemental Motor Protection (SMP) option, add 500 lb.
Evap Size
Cond Size
050S 050L
050L 050L
050S 080S
080S 080S
080S 080L
080L 080L
Weights without Starters Weights with Starters
Operating Shipping Operating Shipping
22323 19563
23524 20390
24923 21589
30740 26520
32328 27803
34349 29219
18
CVHE-SVX02M-EN
UUnniitt CClleeaarraanncceess aanndd WWeeiigghhttss

Weights (kg)

IImmppoorrttaanntt:: The weight information provided here
should be used for general information only. Trane does not recommend using this weight information for considerations relative to chiller handling, rigging, or
Table 4. Representative weights, 60 Hz chillers (kg)
Model
CVHE
CVHF
Comp Size
NTON EVSZ CDSZ
230–320
230–320 289 032S 032L 7000 6316 7762 7078
230–320 289 032L 032L 7383 6611 8145 7373
230–320 289 050S 050S 9088 7983 9850 8745
230–320 289 050S 050L 9526 8326 10288 9088
230–320 289 050L 050L 10139 8756 10901 9518
360–500 455 050S 050S 9397 8292 10159 9054
360–500 455 050S 050L 9835 8635 10597 9398
360–500 455 050L 050L 10448 9065 11210 9828
360–500 455 050S 080S 10523 9192 11285 9954
360–500 455 050L 080L 12153 10422 12915 11184
360–500 455 080S 080S 13542 11627 14304 12389
360–500 455 080S 080L 14262 12209 15024 12971
360–500 455 080L 080L 15179 12852 15941 13614
350–570 588 050S 050S 9293 8157 10055 8919
350–570 588 050S 050L 9731 8501 10493 9263
350–570 588 050L 050L 10298 8875 11060 9637
350–570 588 050S 080S 10419 9057 11181 9819
350–570 588 050L 080L 12026 10232 12788 10994
350–570 588 080S 080S 14445 12246 14593 12571
350–570 588 080S 080L 14574 12391 15336 13153
350–570 588 080L 080L 15567 13088 16329 13850
350–910 957 080S 080S 14897 12875 16258 14236
350–910 957 080S 080L 15640 13457 17001 14818
350–910 957 080L 080L 16633 14154 17994 15515
350–910 957 080L 142L 20327 17084 21688 18444
350–910 957 142M 142L 21975 18389 23336 19749
350–910 957 142L 142L 22529 18803 23889 20164
1070–1300 1062 080L 142L 20734 17490 22094 18851
1070–1300 1062 142M 142L 22279 18693 23639 20053
1070–1300 1062 142L 142L 22832 19107 24193 20467
1070–1300 1062 142E 142L 23479 19554 24840 20915
1070–1300 1062 142M 210L 24976 20891 26336 22252
1070–1300 1062 142L 210L 25552 21305 26913 22666
1070–1300 1062 142E 210L 26199 21752 27559 23113
1070–1300 1062 210L 210L 28077 23555 29438 24915
CPKW
233
289 7488 6871
Evap Size
032S 032S
Cond Size
placement. The large number of variances between chiller selections drives variances in chiller weights that are not recognized in these tables. For specific weights for your chiller, refer to your submittal package.
Weights without Starters Weights with Starters
Operating Shipping Operating Shipping
6726 6109
CVHE-SVX02M-EN
19
UUnniitt CClleeaarraanncceess aanndd WWeeiigghhttss
Table 4. Representative weights, 60 Hz chillers (kg) (continued)
Model
Notes:
1. TECU tubes, 0.71 mm tube wall thickness.
2. 2068.4 kPaG non-marine waterboxes.
3. Heaviest possible bundle and motor combination.
4. Operating weights assume the largest possible refrigerant charge.
5. Weights with starters assume the heaviest possible starter (AFD when it’s an allowed option).
6. Industrial Control Panel (INDP) option, add 23 kg.
7. Control Power Transformer (CPTR) option, add 59 kg.
8. Supplemental Motor Protection (SMP) option, add 227 kg.
Comp Size
NTON EVSZ CDSZ
1070–1300 1062 250E 250L 34542 28726 35903 30087
1470 1340 210L 210L 29279 24757 30640 26118
1470–1720 1340 142L 210L 26755 22508 28115 23868
1470–1720 1340 250E 250L 35744 29928 37105 31289
CPKW
Table 5. Weights, 50 Hz chillers (kg)
Model
CVHE
CVHG
Comp Size
NTON EVSZ CDSZ
190–320
190–320
190–320
190–320
190–320
190–320
300–500
300–500
300–500
300–500
300–500
300–500
300–500
480–565 489 050S 050S 10096 8957 10349 9210
480–565 489 050S 050L 10557 9300 10810 9553
480–565 489 050L 050L 11064 9636 11316 9889
CPKW
215
231 7464 6848
215
231 7739 7054
215
231 8122 7349
215
231 9715 8581
215
231 10176 8924
215
231 10721 9300
360
379 10255 9120
360
379 10716 9464
360
379 11260 9839
360
379 11895 10383
360
379 14534 12619
360
379 15254 13201
360
379 16171 13844
Evap Size
Evap Size
032S 032S
032S 032L
032L 032L
050S 050S
050S 050L
050L 050L
050S 050S
050S 050L
050L 050L
050S 080S
080S 080S
080S 080L
080L 080L
Cond Size
Cond Size
Weights without Starters Weights with Starters
Operating Shipping Operating Shipping
Weights without Starters Weights with Starters
Operating Shipping Operating Shipping
6706 6090
6981 6296
7364 6591
8934 7800
9395 8143
9901 8474
9665 8530
10126 8874
10670 9249
11305 9793
13943 12029
14664 12611
15580 13254
20
CVHE-SVX02M-EN
Table 5. Weights, 50 Hz chillers (kg) (continued)
Model
Comp Size
NTON EVSZ CDSZ
480–565 489 050S 080S 11736 10223 11989 10476
480–565 489 050L 080L 13024 11180 13276 11432
480–565 489 080S 080L 15095 13043 15348 13295
670–780 621 080S 080S 14947 13033 15199 13285
670–780 621 080S 080L 15667 13615 15920 13867
670–780 621 080L 080L 16584 14257 16836 14510
670–780 621 080L 142L 20421 17329 20673 17581
670–780 621 142M 142L 22461 18852 22714 19105
670–780 621 142L 142L 23038 19266 23290 19519
920–1100 621 080L 142L 20904 17812 21157 18065
920–1100 892 142M 142L 23128 19519 23380 19772
920–1100 892 142L 142L 23704 19933 23957 20186
920–1100 892 142M 210L 25848 21718 26100 21970
920–1100 892 142L 210L 26401 22132 26654 22384
920–1100 892 142E 210L 27048 22579 27300 22832
920–1100 892 210L 210L 28949 24381 29201 24634
CPKW
These representative chiller weight values are based on the following:
Notes:
1. TECU tubes, 0.71 mm tube wall thickness.
2. 2068.4 kPaG non-marine waterboxes.
3. Heaviest possible bundle and motor combination.
4. Operating weights assume the largest possible refrigerant charge.
5. Weights with starters assume the heaviest possible starter (AFD when it’s an allowed option).
6. Industrial Control Panel (INDP) option, add 23 kg.
7. Control Power Transformer (CPTR) option, add 59 kg.
8. Supplemental Motor Protection (SMP) option, add 227 kg.
Evap Size
Cond Size
Weights without Starters Weights with Starters
Operating Shipping Operating Shipping
UUnniitt CClleeaarraanncceess aanndd WWeeiigghhttss
CVHE-SVX02M-EN
21

Installation: Mechanical

Operating Environment

IImmppoorrttaanntt::
The standard chiller is designed for indoor use only and as such has NEMA Type 1 enclosures.
For chillers in unheated equipment rooms, contact your local Trane Service Agency for methods to ensure that the oil temperature is maintained suitable for proper operation of the chiller.
NNOOTTIICCEE
EEqquuiippmmeenntt FFaaiilluurree!!
UUnniitt ooppeerraattiinngg aatt aammbbiieenntt tteemmppeerraattuurreess eexxcceeeeddiinngg 110044°°FF ((4400°°CC)) ccoouulldd rreessuulltt iinn AAFFDD//ssttaarrtteerr ccoommppoonneenntt ddaammaaggee dduuee ttoo tthhee ppaanneell’’ss iinnaabbiilliittyy ttoo ddiissssiippaattee hheeaatt aaddeeqquuaatteellyy.. FFoorr CCDDHHFF,, CCDDHHGG,, CCVVHHEE,, CCVVHHFF,, CCVVHHGG,, CCVVHHLL,, aanndd CCVVHHSS CCeennTTrraaVVaacc cchhiilllleerrss,, uunniittss ooppeerraattiinngg aatt tthheessee tteemmppeerraattuurreess ccoouulldd aallssoo ffaattiigguuee tthhee uunniitt’’ss rruuppttuurree ddiisskk,, ccaauussiinngg iitt ttoo bbrreeaakk aatt aa rreedduucceedd rreeffrriiggeerraanntt pprreessssuurree ((<<1155 ppssiigg [[<<110033..44 kkPPaaGG]])).. IIff aannyy ooff tthheessee aaddvveerrssee ooppeerraattiinngg ccoonnddiittiioonnss aarree pprreesseenntt,, ttaakkee nneecceessssaarryy aaccttiioonn ttoo iimmpprroovvee tthhee eeqquuiippmmeenntt rroooomm eennvviirroonnmmeenntt..
To ensure that electrical components operate properly, do NOT locate the chiller in an area exposed to dust, dirt, corrosive fumes, or excessive heat and humidity. The maximum ambient temperature for chiller operation is 104°F (40°C).

Foundation Requirements

Chiller mounting surface must be:
rigid non-warping mounting pads or a concrete foundation, and
able to support the chiller at its full operating weight (including completed piping and full operating charges of refrigerant, oil, and water).
For proper unit operation, the chiller must be level within 1/16 in. (1.6 mm) over its length and width when set into place on the mounting surface. “Weights
(lb),” p. 16 and “Weights (kg),” p. 19 show
approximate weights for various chiller sizes and options in pounds and kilograms, respectively.
NNoottee:: For specific weight information, refer to the unit
submittal package.
IImmppoorrttaanntt:: Trane will not assume responsibility for
equipment problems resulting from an improperly designed or constructed foundation.

Rigging

Lifting is the recommended method for moving chillers. Suggested lifting arrangements for standard units are described in “Standard Chiller Lift,” p. 22.
NNoottee:: The lifting beam used for CVHE, CVHF, and
CVHG CenTraVac (4.9 m) long.
HHeeaavvyy OObbjjeecctt!!
FFaaiilluurree ttoo ffoollllooww iinnssttrruuccttiioonnss bbeellooww ccoouulldd rreessuulltt iinn uunniitt ddrrooppppiinngg wwhhiicchh ccoouulldd rreessuulltt iinn ddeeaatthh oorr sseerriioouuss iinnjjuurryy,, aanndd eeqquuiippmmeenntt oorr pprrooppeerrttyy--oonnllyy ddaammaaggee.. EEnnssuurree tthhaatt aallll tthhee lliiffttiinngg eeqquuiippmmeenntt uusseedd iiss pprrooppeerrllyy rraatteedd ffoorr tthhee wweeiigghhtt ooff tthhee uunniitt bbeeiinngg lliifftteedd.. EEaacchh ooff tthhee ccaabblleess ((cchhaaiinnss oorr sslliinnggss)),, hhooookkss,, aanndd sshhaacckklleess uusseedd ttoo lliifftt tthhee uunniitt mmuusstt bbee ccaappaabbllee ooff ssuuppppoorrttiinngg tthhee eennttiirree wweeiigghhtt ooff tthhee uunniitt.. LLiiffttiinngg ccaabblleess ((cchhaaiinnss oorr sslliinnggss)) mmaayy nnoott bbee ooff tthhee ssaammee lleennggtthh.. AAddjjuusstt aass nneecceessssaarryy ffoorr eevveenn uunniitt lliifftt..
IImmpprrooppeerr UUnniitt LLiifftt!!
FFaaiilluurree ttoo pprrooppeerrllyy lliifftt uunniitt ccoouulldd rreessuulltt iinn uunniitt ddrrooppppiinngg aanndd ppoossssiibbllyy ccrruusshhiinngg ooppeerraattoorr// tteecchhnniicciiaann wwhhiicchh ccoouulldd rreessuulltt iinn ddeeaatthh oorr sseerriioouuss iinnjjuurryy,, aanndd eeqquuiippmmeenntt oorr pprrooppeerrttyy--oonnllyy ddaammaaggee.. TTeesstt lliifftt uunniitt aapppprrooxxiimmaatteellyy 2244 iinncchheess ((6611 ccmm)) ttoo vveerriiffyy pprrooppeerr cceenntteerr ooff ggrraavviittyy lliifftt ppooiinntt.. TToo aavvooiidd ddrrooppppiinngg ooff uunniitt,, rreeppoossiittiioonn lliiffttiinngg ppooiinntt iiff uunniitt iiss nnoott lleevveell..
WWiirriinngg DDaammaaggee!!
DDaammaaggee ttoo uunniitt wwiirriinngg ccoouulldd rreessuulltt iinn eeqquuiippmmeenntt ffaaiilluurree.. CCaarree mmuusstt bbee ttaakkeenn dduurriinngg rriiggggiinngg,, aasssseemmbbllyy aanndd ddiissaasssseemmbbllyy ttoo aavvooiidd ddaammaaggiinngg uunniitt wwiirriinngg..

Standard Chiller Lift

1. Insert clevis connections at the points indicated in the following figure. A 2 in. (50.8 mm) diameter lifting hole is provided at each of these points.
2. Attach the lifting chains or cables.
3. Once the lifting cables are in place, attach a safety chain or cable between the first-stage casing of the compressor and the lifting beam.
IImmppoorrttaanntt:: There should NOT be tension on this
safety cable; the cable is used only to prevent the unit from rolling during the lift.
chillers must be at least 16 ft
WWAARRNNIINNGG
WWAARRNNIINNGG
NNOOTTIICCEE
22
CVHE-SVX02M-EN
IInnssttaallllaattiioonn:: MMeecchhaanniiccaall
4. Position isolator pads or spring isolators beneath the chiller feet (refer to “Unit Isolation,” p. 24 for instructions).
NNoottee:: Follow instructions provided by the spring
isolator manufacturer, being careful to not
5. Once the isolators are in place, lower the chiller— working from end to end—in small increments to maintain stability.
6. When lift is complete, detach the clevis connections and safety chain.
damage isolator adjustment bolt.
Figure 5. Typical rigging arrangements for CVHE, CVHF, and CVHG CenTraVac™™ chillers
CVHE-SVX02M-EN
23
IInnssttaallllaattiioonn:: MMeecchhaanniiccaall

Special Lift Requirements

NNOOTTIICCEE
OOiill LLoossss!!
FFaaiilluurree ttoo pprreevveenntt ooiill mmiiggrraattiioonn oouutt ooff tthhee ooiill ttaannkk ccoouulldd rreessuulltt iinn eeqquuiippmmeenntt ffaaiilluurree oorr pprrooppeerrttyy--oonnllyy ddaammaaggee.. TToo pprreevveenntt ooiill mmiiggrraattiioonn oouutt ooff tthhee ooiill ttaannkk dduurriinngg lliiffttiinngg pprroocceedduurreess,, rreemmoovvee tthhee ooiill ffrroomm tthhee ooiill ttaannkk iiff tthhee uunniitt wwiillll bbee lliifftteedd aatt aannyy aannggllee ggrreeaatteerr tthhaann 1155°° ffrroomm hhoorriizzoonnttaall eenndd--ttoo--eenndd.. IIff ooiill iiss aalllloowweedd ttoo rruunn oouutt ooff tthhee ooiill ttaannkk iinnttoo ootthheerr aarreeaass ooff tthhee cchhiilllleerr,, iitt wwiillll bbee eexxttrreemmeellyy ddiiffffiiccuulltt ttoo rreettuurrnn tthhee ooiill ttoo tthhee ooiill ttaannkk eevveenn dduurriinngg ooppeerraattiioonn..
NNOOTTIICCEE
EEqquuiippmmeenntt DDaammaaggee!!
MMoovviinngg tthhee cchhiilllleerr uussiinngg aa ffoorrkk lliifftt ccoouulldd rreessuulltt iinn eeqquuiippmmeenntt oorr pprrooppeerrttyy--oonnllyy ddaammaaggee.. DDoo nnoott uussee aa ffoorrkk lliifftt ttoo mmoovvee tthhee cchhiilllleerr!!
NNOOTTIICCEE
CCoommpprreessssoorr AAlliiggnnmmeenntt!!
FFaaiilluurree ttoo pprreesseerrvvee ccoommpprreessssoorr aalliiggnnmmeenntt ccoouulldd rreessuulltt iinn eeqquuiippmmeenntt oorr pprrooppeerrttyy--oonnllyy ddaammaaggee.. LLiiffttiinngg tthhee ccoommpprreessssoorr//mmoottoorr aasssseemmbbllyy ffrroomm tthhee sshheellllss wwiitthhoouutt ffaaccttoorryy--iinnssttaalllleedd ddoowweelliinngg iinn tthhee ccoommpprreessssoorr ccaassttiinngg ffllaannggeess ccoouulldd rreessuulltt iinn mmiissaalliiggnnmmeenntt ooff tthhee ccoommpprreessssoorr ccaassttiinnggss..
If the chiller cannot be moved using a standard chiller lift, consider the following:
When job site conditions require rigging of the chiller at an angle greater than 45° from horizontal (end-to-end), the unit may require removal of the compressor. Contact Trane or an agent of Trane specifically authorized to perform start-up and warranty of Trane® products regarding the disassembly and reassembly work. For more information, refer to “Factory Warranty
Information,” p. 3.
NNoottee:: Disassembly and reassembly work includes
dowel-pinning the compressor and removing it from the unit. Contact Trane or an agent of Trane specifically authorized to perform start­up and warranty of Trane specific rigging instructions. Do NOT attempt to rotate the chiller onto its side.
When lifting the chiller is either impractical or undesirable, attach cables or chains to the jacking slots shown in Figure 5, p. 23; then push or pull the unit across a smooth surface. Should the chiller be on a shipping skid, it is not necessary to remove the skid from the chiller before moving it into place.
If removal of the compressor or economizer assembly is necessary to move the chiller to the
®
products for
operating location, contact Trane. Also refer to
“Factory Warranty Information,” p. 3.

Unit Isolation

To minimize sound and vibration transmission through the building structure and to ensure proper weight distribution over the mounting surface, always install isolation pads or spring isolators under the chiller feet.
NNoottee:: Isolation pads (refer to Figure 6, p. 24) are
provided with each chiller unless spring isolators are specified on the sales order.
Specific isolator loading data is provided in the unit submittal package. If necessary, contact your local Trane sales office for further information.
IImmppoorrttaanntt:: When determining placement of isolation
pads or spring isolators, remember that the control panel side of the unit is always designated as the front side of the unit.

Isolation Pads

When the unit is ready for final placement, position isolation pads (18-in. [457.2-mm] sides) end for end under the full length of the chiller leg. The pads measure 9 in. × 18 in. (228.6 mm x 457.2 mm) and on some units there may be small gaps between pads. Pads are provided to cover entire foot. Place pad flush with the outside edge of the chiller foot and leave excess material under the chiller.
Figure 6. Isolation pad and dimensions
A = 3/8 in. (9.5 mm)
B = 18 in. (457.2 mm)
C = 9 in. (228.6 mm)
Remember that the chiller must be level within 1/16 in. (1.6 mm) over its length and width after it is lowered onto the isolation pads. In addition, all piping connected to the chiller must be properly isolated and supported so that it does not place any stress on the unit.

Spring Isolators

Spring isolators should be considered whenever chiller installation is planned for an upper story location. Base isolator placement is shown in the following figure.
24
CVHE-SVX02M-EN
IInnssttaallllaattiioonn:: MMeecchhaanniiccaall
Figure 7. Isolation spring placement by shell size, and evaporator and condenser length
Spring isolators typically ship assembled and ready for installation. To install and adjust the isolators properly, follow the provided instructions.
NNoottee:: Do NOT adjust the isolators until the chiller is
piped and charged with refrigerant and water.
IImmppoorrttaanntt:: Do NOT block any serviceable components
such as the lubrication system with field­installed devices such as spring isolators.
1. Position the spring isolators under the chiller as shown in the preceding figure. Ensure that each isolator is centered in relation to the tube sheet.
NNoottee:: Spring isolators shipped with the chiller may
not be identical. Compare the data provided in the unit submittal package to determine proper isolator placement.
2. Set the isolators on the sub-base; shim as necessary to provide a flat, level surface at the same elevation for the end supports.
IImmppoorrttaanntt:: Support the full underside of the
isolator base plate; do NOT straddle gaps or small shims.
3. If required, bolt the isolators to the floor through the slots provided, or cement the pads.
NNoottee:: Fastening the isolators to the floor is not
necessary unless specified.
4. If the chiller must be fastened to the isolators, insert capscrews through the chiller base and into holes drilled and tapped in the upper housing of each isolator.
IImmppoorrttaanntt:: Do NOT allow the screws to protrude
below the underside of the isolator upper housing, or interfere with the adjusting bolts. An alternative method of fastening the chiller to the isolators is to cement the neoprene pads.
5. Set the chiller on the isolators; refer to “Standard
Chiller Lift,” p. 22. The weight of the chiller will
force down the upper housing of each isolator, and could cause it to rest on the isolator’s lower housing (refer to the following figure).
6. Check the clearance on each isolator. If this dimension is less than 1/4 in. (6.35 mm) on any isolator, use a wrench to turn the adjusting bolt one complete revolution upward.
NNoottee:: When the load is applied to the isolators
(refer to Step 5), the top plate of each isolator moves down to compress the springs until either the springs support the load or the top plate rests on the bottom housing of the isolator. If the springs are supporting the load, screwing down on the adjusting bolt (refer to
Step 7) will raise the chiller.
7. Turn the adjusting bolt on each of the remaining isolators to obtain the required minimum clearance of 1/4 in. (6.35 mm).
8. Once the minimum required clearance is obtained on each of the isolators, level the chiller by turning the adjusting bolt on each of the isolators on the low side of the unit. Work from one isolator to the next.
IImmppoorrttaanntt:: The chiller must be level to within 1/
16 in. (1.6 mm) over its length and width, and the clearance of each isolator must be at least 1/4 in. (6.35 mm).
CVHE-SVX02M-EN
25
IInnssttaallllaattiioonn:: MMeecchhaanniiccaall
Figure 8. Chiller foot and isolator orientation IImmppoorrttaanntt:: Do NOT install spring isolators or brackets
in such a way that they could inhibit chiller servicing such as charging or evacuation, oil tank service, etc.

Leveling the Unit

The chiller must be set level within 1/16 in. (1.6 mm).
1. Measure and make a punch mark an equal distance up from the bottom of each foot of the chiller.
2. Suspend a clear plastic tube along the length of the chiller as shown in the following figure.
3. Fill the tube with water until the level aligns with the punch mark at one end of the chiller.
4. Check the water level at the opposite mark. If the water level does not align with the punch mark, use full length shims to raise one end of the chiller until the water level at each end of the tube aligns with the punch marks at both ends of the chiller.
5. Once the unit is level across its length, repeat the first three steps to level the unit across its width.
Figure 9. Leveling the chiller
NNoottee:: Use of a laser level is an acceptable alternative
method to level the unit.
IImmppoorrttaanntt:: Immediately report any unit damage
incurred during handling or installation at the job site to the Trane sales office.
26
CVHE-SVX02M-EN

Installation: Water Piping

Overview

The following water piping circuits must be installed and connected to the chiller:
Pipe the evaporator into the chilled water circuit.
Pipe the condenser into the cooling tower water circuit.
Optional: A heat-recovery condenser water circuit.
Optional: An auxiliary condenser water circuit.
NNoottee:: Piping must be arranged and supported to avoid
stress on the equipment. It is strongly recommended that the piping contractor does not run pipe closer than 3 ft (0.9 m) minimum to the equipment. This will allow for proper fit upon arrival of the unit at the job site. Any adjustment that is necessary can be made to the piping at that time. Expenses that result from a failure to follow this recommendation will NOT be paid by Trane.
Piping suggestions for each of the water circuits listed above are outlined in “Evaporator and Condenser
Water Piping,” p. 30. General recommendations for the
installation of field-supplied piping components (e.g., valves, flow switches, etc.) common to most chiller water circuits are listed in the following sections.

Water Treatment

The use of untreated or improperly treated water in a CenTraVac™ chiller may result in inefficient operation and possible tube damage.
IImmppoorrttaanntt:: Trane strongly recommends using the
services of a qualified water treatment specialist to determine necessary water treatment. A label with a customer disclaimer note is affixed to each unit.
NNOOTTIICCEE
PPrrooppeerr WWaatteerr TTrreeaattmmeenntt RReeqquuiirreedd!!
TThhee uussee ooff uunnttrreeaatteedd oorr iimmpprrooppeerrllyy ttrreeaatteedd wwaatteerr ccoouulldd rreessuulltt iinn ssccaalliinngg,, eerroossiioonn,, ccoorrrroossiioonn,, aallggaaee oorr sslliimmee.. UUssee tthhee sseerrvviicceess ooff aa qquuaalliiffiieedd wwaatteerr ttrreeaattmmeenntt ssppeecciiaalliisstt ttoo ddeetteerrmmiinnee wwhhaatt wwaatteerr ttrreeaattmmeenntt,, iiff aannyy,, iiss rreeqquuiirreedd.. TTrraannee aassssuummeess nnoo rreessppoonnssiibbiilliittyy ffoorr eeqquuiippmmeenntt ffaaiilluurreess wwhhiicchh rreessuulltt ffrroomm uunnttrreeaatteedd oorr iimmpprrooppeerrllyy ttrreeaatteedd wwaatteerr,, oorr ssaalliinnee oorr bbrraacckkiisshh wwaatteerr..

Pressure Gauges

Locate pressure gauge taps in a straight length of pipe. Place each tap a minimum of one pipe diameter downstream of any elbow, orifice, etc. For example, for
a 6 in. (16 cm) pipe, the tap would be at least 6 in. (16 cm) from any elbow, orifice, etc.

Valves—Drains and Vents

NNOOTTIICCEE
WWaatteerrbbooxx DDaammaaggee!!
FFaaiilluurree ttoo ffoollllooww iinnssttrruuccttiioonnss ccoouulldd rreessuulltt iinn ddaammaaggee ttoo tthhee wwaatteerrbbooxx.. DDoo nnoott oovveerr--ttiigghhtteenn oorr uussee eexxcceessssiivvee TTeefflloonn®® ppiippee ttaappee wwhheenn iinnssttaalllliinngg vvaallvveess,, ddrraaiinnss,, pplluuggss aanndd vveennttss oonn wwaatteerrbbooxxeess..
1. Install field-supplied air vents and drain valves on the waterboxes. Each waterbox is provided with a National Pipe Thread Female (NPTF) vent and drain connection; depending on the waterbox types ordered, the openings may be 1/4 in. (6.35 mm), 1/ 2 in. (12.7 mm), or 3/4 in. (19.05 mm).
NNOOTTIICCEE
WWaatteerrbbooxx DDaammaaggee!!
FFaaiilluurree ttoo ffoollllooww iinnssttrruuccttiioonnss ccoouulldd rreessuulltt iinn ddaammaaggee ttoo tthhee wwaatteerrbbooxx dduuee ttoo hhyyddrroossttaattiicc eexxppaannssiioonn.. IInnssttaallll pprreessssuurree--rreelliieeff vvaallvveess iinn tthhee ccoonnddeennsseerr aanndd eevvaappoorraattoorr wwaatteerr cciirrccuuiittss..
2. If necessary for the application, install pressure­relief valves at the drain connections on the evaporator and condenser waterboxes. To do so, add a tee with the relief valve attached to the drain valve.
To determine whether or not pressure relief valves are needed for a specific application, keep in mind that:
a. Vessels with close-coupled shutoff valves may
cause high potentially damaging hydrostatic pressures as fluid temperature rises.
b. Relief valves are required by American Society
of Mechanical Engineers (ASME) codes when the shell waterside is ASME. Follow ASME guidelines or other applicable codes to ensure proper relief valve installation.

Strainers

NNOOTTIICCEE
WWaatteerr BBoorrnn DDeebbrriiss!!
TToo pprreevveenntt ccoommppoonneennttss ddaammaaggee,, ppiippee ssttrraaiinneerrss mmuusstt bbee iinnssttaalllleedd iinn tthhee wwaatteerr ssuupppplliieess ttoo pprrootteecctt ccoommppoonneennttss ffrroomm wwaatteerr bboorrnn ddeebbrriiss.. TTrraannee iiss nnoott rreessppoonnssiibbllee ffoorr eeqquuiippmmeenntt--oonnllyy--ddaammaaggee ccaauusseedd bbyy wwaatteerr bboorrnn ddeebbrriiss..
CVHE-SVX02M-EN
27
IInnssttaallllaattiioonn:: WWaatteerr PPiippiinngg
Install a strainer in the entering side of each piping circuit to avoid possible tube plugging in the chiller with debris.

Required Flow-Sensing Devices

Use flow paddle switches (refer to “Paddle
Switches,” p. 28), differential pressure switches, or ifm
efector® flow detection controllers and sensors (refer to “Water Flow Detection Controller and Sensor,” p.
28) in conjunction with the pump interlocks to verify
evaporator and condenser water flows.
To ensure adequate chiller flow protection, wire the chiller water and condenser water proof of flow devices per the as-built schematics and submittal, and in accordance with associated notes.
Unless stated otherwise, all flow sensing devices must be field supplied. Be sure to follow the manufacturer’s recommendations for device selection and installation.
Also, review the following general flow switch installation guidelines.

Paddle Switches

Figure 10. Flow paddle switch installation
height of the coupling used to install the switch.
3. Install the flow switch using a coupling that is large enough to allow the insertion of a bushing one pipe diameter larger than the flow switch base as shown in the preceding figure. This will prevent interference with the flow switch paddle.
4. Verify that the direction-of-flow arrow on the switch points in the same direction as actual water flow through the piping circuit.
5. Remove all air from the piping circuit to prevent possible flow switch “fluttering”.
6. Adjust the flow switch to open when water flow is less than normal.

Water Flow Detection Controller and Sensor

IImmppoorrttaanntt:: Before installing the ifm efector®flow
detection controller and sensor, use a marker to draw a line on the probe at 3.5 in. (8.9 cm) from the end of the probe. Do NOT insert more than 3.5 in. (8.9 cm) of the probe length into the pipe. Refer to the following figure.
Figure 11. Installation of ifm efector®® flow detection controller and sensor
1. Flow switch body
2. One (1) pipe size larger bushing to avoid paddle interference
3. Pipe coupling
4. Flow switch paddle
5. Five (5) pipe diameters (no turns or fittings)
Paddle switch installation:
1. Mount the flow paddle switch upright in horizontal section of pipe. Allow at least five pipe diameters of straight, horizontal run on each side of the switch. Whenever possible, avoid locations adjacent to elbows, orifices, and valves.
2. To ensure that the flow switch operates as designed, adjust the length of the flow switch paddle to compensate for the pipe diameter and the
28
1. Mount the 1/2-in. NPT adapter in a horizontal or vertical section of pipe. The maximum distance from the control panel must not exceed 29.5 ft (9 m) (see item labeled “1” in the preceding figure). Allow at least five pipe diameters straight run of pipe
CVHE-SVX02M-EN
IInnssttaallllaattiioonn:: WWaatteerr PPiippiinngg
upstream of the sensor location, and three pipe diameters straight run of pipe downstream of the sensor location.
NNoottee:: In the case of a horizontal pipe, mounting the
sensor in the side of the pipe is preferred. In the case of a vertical pipe, mounting the sensor in a place where the water flows upwards is preferred.
NNOOTTIICCEE
OOvveerrttiigghhtteenniinngg!!
DDoo nnoott eexxcceeeedd ttoorrqquuee ssppeecciiffiiccaattiioonnss aass iitt ccoouulldd rreessuulltt iinn eeqquuiippmmeenntt ddaammaaggee..
2. Insert the flow sensor probe (see item labeled “2” in the preceding figure) through the 1/2-in. NPT adapter so that 3 to 3.5 in. (7.6 to 8.9 cm) of the probe’s length extends into the pipe. Tighten the 1/ 2-in. NPT adapter as needed to prevent leakage and keep the probe from backing out under pressure. DDoo NNOOTT eexxcceeeedd 4400 fftt··llbb ((5544..22 NN··mm)) ooff ttoorrqquuee oonn tthhee ffiittttiinngg.. SSeennssoorr ddaammaaggee ccaann ooccccuurr iiff iitt iiss oovveerrttiigghhtteenneedd..
NNoottee:: When installed, the tip of the ifm efector
sensor probe must be at least 1 in. (2.54 cm) away from any pipe wall. Do NOT insert more than 3.5 in. (8.9 cm) of the probe length into the pipe.
3. Install the Micro DC Cable by inserting it through the wire openings on the back side of the control panel (see item labeled “3” in the preceding figure). Install the supplied Micro DC Cable (29.5 ft [9 m] in length) to the Flow Probe and hand-tighten the connector nut.
4. Plug the other end of the Micro DC Cable into the Flow Control Monitor with the Combicon connector (see item labeled “4” in the preceding figure). Refer to the following figure for cable wiring.
®
6. Remove all air from the piping circuit prior to adjusting the low water flow setpoint.
7. Reduce the water flow to the minimum allowable flow and adjust the Flow setting on the Flow Control Monitor (see item labeled “7” in the following figure). Adjusting the “Flow” potentiometer clockwise (+) reduces the flow setting cutout and adjusting counterclockwise (-) increases the flow setting cutout.
NNoottee:: The “Temp” potentiometer on the ifm
®
efector Trane application. It is NOT necessary to make adjustments to the “Temp” potentiometer.
8. After the cutout setting is adjusted, the cutout setpoint will be indicated with a yellow light on the Flow Control Monitor LED bar graph display. When the water flows are higher than the cutout, a green light will indicate proper flow status. If the flows fall below the cutout setpoint, a red light will indicate low/no flow status.
Figure 12. ifm efector®® flow sensing device terminal connection
control module has no effect in
NNOOTTIICCEE
DDoo NNoott AAppppllyy EElleeccttrriiccaall PPoowweerr ttoo aa UUnniitt iinn aa VVaaccuuuumm!!
FFaaiilluurree ttoo ffoollllooww iinnssttrruuccttiioonnss bbeellooww ccoouulldd rreessuulltt iinn mmoottoorr aanndd ccoommpprreessssoorr ddaammaaggee.. DDoo nnoott aappppllyy eelleeccttrriiccaall ppoowweerr ttoo aa mmoottoorr iinn aa vvaaccuuuumm.. FFoorr uunniittss wwiitthh iinnssiiddee--tthhee--ddeellttaa ssoolliidd ssttaattee ssttaarrtteerrss,, ddiissccoonnnneecctt ppoowweerr ttoo uunniitt dduurriinngg eevvaaccuuaattiioonn oorr wwhheenn tthhee uunniitt iiss iinn aa ddeeeepp vvaaccuuuumm.. IInn aaddddiittiioonn,, oonn uunniittss wwiitthh iinnssiiddee--tthhee-­ddeellttaa ssoolliidd ssttaattee ssttaarrtteerrss,, aallll ppoowweerr ttoo tthhee uunniitt mmuusstt bbee ddiissccoonnnneecctteedd pprriioorr ttoo eevvaaccuuaattiinngg tthhee uunniitt aass lliinnee ppoowweerr iiss ddiirreeccttllyy aapppplliieedd ttoo tthhee mmoottoorr tteerrmmiinnaallss 44,, 55,, aanndd 66..
5. Apply power to the chiller control panel to verify the Flow Control Monitor has power and the Low Volt Broken Wire Relay light is NOT lit.
CVHE-SVX02M-EN
NNOOTTIICCEE
PPrrooooff ooff FFllooww SSwwiittcchh!!
FFaaiilluurree ttoo pprroovviiddee ffllooww sswwiittcchheess oorr jjuummppiinngg--oouutt ooff sswwiittcchheess ccoouulldd rreessuulltt iinn sseevveerree eeqquuiippmmeenntt ddaammaaggee.. EEvvaappoorraattoorr aanndd ccoonnddeennsseerr wwaatteerr cciirrccuuiittss rreeqquuiirree pprrooooff ooff ffllooww sswwiittcchheess..
•• FFaaiilluurree ttoo iinncclluuddee tthhee pprrooooff ooff ffllooww ddeevviicceess aanndd// oorr jjuummppiinngg oouutt tthheessee ddeevviicceess ccoouulldd ccaauussee tthhee uunniitt ttoo ssttoopp oonn aa sseeccoonnddaarryy lleevveell ooff pprrootteeccttiioonn..
•• FFrreeqquueenntt ccyycclliinngg oonn tthheessee hhiigghheerr lleevveell ddiiaaggnnoossttiicc ddeevviicceess ccoouulldd ccaauussee eexxcceessssiivvee tthheerrmmaall aanndd pprreessssuurree ccyycclliinngg ooff uunniitt ccoommppoonneennttss ((OO--rriinnggss,, ggaasskkeettss,, sseennssoorrss,, mmoottoorrss,, ccoonnttrroollss,, eettcc..)) aanndd//oorr ffrreeeezzee ddaammaaggee,, rreessuullttiinngg iinn pprreemmaattuurree ffaaiilluurree ooff tthhee cchhiilllleerr..
Evaporator and condenser proof of flow switches
29
IInnssttaallllaattiioonn:: WWaatteerr PPiippiinngg
(either flow or Delta-P) are required as shown on wiring diagrams. These switches are used with control logic to confirm flow prior to starting a unit and to stop a running unit if flow is lost. For troubleshooting, a viewable diagnostic is generated if a proof of flow switch does not close when flow is required.

Evaporator and Condenser Water Piping

The following two figures illustrate the recommended (typical) water piping arrangements for the evaporator and condenser.
Figure 13. Typical evaporator water piping circuit
1. Balancing valve.
2. Gate (Isolation) valve or ball valve.
3. Thermometer (if field supplied).
4. Waterbox nozzle connection.
5. Drain, vent, and anode.
6. Strainer.
7. Chilled water flow switch (5S1). Flow switch 5S1 may be installed in either the entering or leaving leg of the chilled water circuit.
8. Pump.
9. Pressure gauge. It is recommended to pipe the gauge between entering and leaving pipes. A shutoff valve on each side of the gauge allows the operator to read either entering or leaving water pressure.
Figure 14. Typical condenser water piping circuits
1. Balancing valve.
2. Gate (isolation) valve or ball valve.
3. Thermometer (if field supplied).
4. Waterbox nozzle connection.
5. Drain, vent, and anode.
6. Strainer.
7. Condenser water flow switch (5S2). Flow switch 5S2 may be installed in either the entering or leaving leg of the chilled water circuit.
8. Three-way valve (optional).
9. Condenser water pump.
10. Pressure gauge. It is recommended to pipe a single gauge between entering and leaving pipes.
NNootteess::
Some type of field-supplied temperature control device may be required to regulate the temperature of the heat-recovery condenser water circuit. For application recommendations, refer to Heat Recovery Seminar (Part 2): Systems/Equipment (AM­FND-8).
Install a bypass valve system to avoid circulating water through the auxiliary shell when the unit is shut down.
On multiple-pass condensers, entering condenser water must enter at the lowest nozzle.
Piping must be arranged and supported to avoid stress on the equipment. It is strongly recommended that the piping contractor does not run pipe closer than 3 ft (0.9 m) minimum to the equipment. This will allow for proper fit upon arrival of the unit at the job site. Any adjustment that is necessary can be made to the piping at that time. Expenses that result from a failure to follow this recommendation will NOT be paid by Trane.
Water piping connection sizes and components are identified in Table 6, p. 31, Table 7, p. 31, and Table 8,
p. 32. Remember that with many waterboxes, the
entering and leaving evaporator water can be piped to either waterbox connection when the tube bundles are split vertically. However, large evaporator waterboxes with entering and leaving connections not at the same
30
CVHE-SVX02M-EN
IInnssttaallllaattiioonn:: WWaatteerr PPiippiinngg
level must be connected with the entering water at the bottom and the leaving water at the top.
Waterboxes with multiple pass arrangements utilize a baffle to separate the passes. These baffles are designed for a maximum pressure of 20 psid (137.9 kPaD). If larger pressure drops are expected in the application, contact your local Trane representative to discuss special waterbox options.
IImmppoorrttaanntt:: Water flows must be piped in accordance
with nameplate designation.
Field-provided isolation valves for the evaporator and condenser water lines should be installed upstream and downstream of the heat exchangers, and be installed far enough away from the chiller to also provide practical service isolation for flow sensing devices, field thermometers, flexible connectors, and any removable pipe spools.
Ensure that the evaporator water piping is clear; check it after the chilled water pump is operated but before initial chiller start-up. If any partial blockages exist, they can be detected and removed to prevent possible tube damage resulting from evaporator freeze-up or erosion.
For condenser and large evaporator connections, arrange the water piping so that the water supply enters the shell at the lower connection and exits from the top connection. Operational problems may result if this piping is not correct. Some shells may be piped as desired since both connections are at the same level.
For applications that include an “infinite source” or “multiple-use” cooling condenser water supply, install a valved bypass “leg” (optional) between the supply and return pipes. This valved bypass allows the operator to short-circuit water flow through the cooling condenser when the supply water temperature is too low. For additional application information, refer to
Engineering Bulletin: Condenser Water Temperature Control - For CenTraVac Centrifugal Chiller Systems with Tracer AdaptiView Controls (CTV-PRB006*-EN).
NNootteess::
System refrigerant pressure differential must be maintained above 3 psid (20.7 kPaD) at all times. Failure to do so could result in operating problems.
Whenever a CVHE, CVHF, or CVHG CenTraVac
chiller is equipped with an auxiliary condenser, use a bypass valve system to avoid circulating water through the auxiliary shell during unit shut-down.
carry the weight of pipes and equipment. The support methods used must eliminate undue stresses on joints, piping, and other components, allow movement where required, and provide for any other special requirements (i.e., drainage, etc.).
NNoottee:: If needed, plug-type sensor extension cables are
available for purchase from Trane Parts Service. These sensor extension cables may be necessary if the waterboxes are changed or if the temperature sensors are moved out into the unit piping for better mixed temperature readings.
Table 6. Evaporator water piping connection sizes
Nominal Pipe Size
(a)
EVSZ
032 8 219.1 6 168.3 5 141.3
050 10 273.0 8 219.1 6 168.3
080 12 323.9 10 273.0 8 219.1
142 16 406.4 12 323.9 10 273.0
210 16 406.4 14 355.6 12 323.9
250 16 406.4 14 355.6 12 323.9
(a)
EVSZ = Evaporator Shell Size; S = Short Shell, L = Long Shell, E = Extended Shell
1-Pass 2-Pass 3-Pass
in.
mm
in.
mm
in.
mm
Table 7. Condenser water piping connection sizes
Nominal Pipe Size
(a)
CDSZ
in.
032 6 168.3
050 8 219.1
080 10 273.0
142 12 323.9
210 14 355.6
250 14 355.6
(a)
CDSZ =Condenser Shell Size; S = Short Shell, L = Long Shell, E = Extended Shell
2-Pass
mm

Water Piping Connections

All standard units use grooved-pipe connections. These are grooved-end NSP (Victaulic® style) pipe connections. Flanged connections are optional.
Piping joined using grooved type couplings, like all types of piping systems, requires proper support to
CVHE-SVX02M-EN
31
IInnssttaallllaattiioonn:: WWaatteerr PPiippiinngg
Figure 15. Typical grooved pipe connection

Grooved Pipe Coupling

A customer-supplied, standard flexible grooved pipe coupling (Victaulic® Style 77 or equivalent) should be used to complete the Victaulic® connection for both 150 psig (1034.2 kPaG) and 300 psig (2068.4 kPaG) waterboxes.
When a flexible coupling such as this is installed at the waterbox connections, other flexible piping connectors (i.e., braided-steel, elastomeric arch, etc.) are not usually required to attenuate vibration and/or prevent stress on the connections.
Table 8. Water piping connection components
Unit
Model
CVHE and
CVHG
CVHE,
CVHF, and
CVHG
Unit Connection
Type
Flanged
(Condenser 032–
050 150 psig
[1034.2 kPaG]
non-marine only)
Victaulic® (all
others)
Figure 16. Customer piping connection types
Customer Piping Connection
Victaulic®®
Customer
provided
Victaulic®
coupling
Customer
provided
Victaulic®
coupling
Flanged
No adapter
required
Trane provided Victaulic®-to­flange adapter

Waterbox Locations

IImmppoorrttaanntt:: Do NOT exchange positions of marine-style
waterboxes. Proper unit operation and proper water flow could be affected by repositioning marine-style waterboxes. Contact CenTraVac Service for more information.
If necessary, the non-marine-style waterboxes on each shell—whether evaporator or condenser—can be switched end-for-end to obtain the desired piping arrangement.
If removal of waterboxes is necessary, refer to
“Waterbox Removal and Installation,” p. 89.
If the waterboxes on any of the shells are exchanged end-for-end, be sure to reinstall them right-side up to maintain the correct baffle arrangements. Use a new gasket with each waterbox cover.
32
Chiller Technical
NNootteess::
Refer to the coupling manufacturer’s guidelines for specific information concerning proper piping system design and construction methods for grooved water piping systems.
Flexible coupling gaskets require proper lubrication before installation to provide a good seal. Refer to the coupling manufacturer’s guidelines for proper lubricant type and application.

Flange-connection Adapters

NNOOTTIICCEE
NNeevveerr WWeelldd ttoo CCaasstt BBooxxeess!!
WWeellddiinngg ttoo ccaasstt bbooxxeess wwiillll rreessuulltt iinn eeqquuiippmmeenntt ddaammaaggee.. AAddaapptteerrss mmuusstt bbee uusseedd ttoo ccoonnvveerrtt ffllaannggeess..
CVHE-SVX02M-EN
IInnssttaallllaattiioonn:: WWaatteerr PPiippiinngg
When flat-face flange connections are specified, flange­to-groove adapters are provided (Victaulic® Style 741 for 150 psig [1034.2 kPaG] systems; Style 743 for 300 psig [2068.4 kPaG] systems). The adapters are shipped bolted to one of the chiller end-supports. Adapter descriptions are given in Table 9, p. 34 and
Table 10, p. 34. The flange adapters provide a direct,
rigid connection of flanged components to the grooved-pipe chiller waterbox connections.
Figure 17. Typical shipping location for flange
In this case, the use of flexible type connectors (i.e., braided steel, elastomeric arch, etc.) are recommended to attenuate vibration and prevent stress at the waterbox connections. Flange adapters are not provided for CVHE, CVHF, or CVHG CenTraVac™ chillers with 300 psig (2068.4 kPaG) waterboxes that have 14 in. (355.6 mm) and 16 in. (406.4 mm) piping connections.
All flange-to-flange assembly bolts must be provided by the installer. Bolt sizes and number required are included in Table 9, p. 34 and Table 10, p. 34. The four draw-bolts needed for the 14 in. (355.6 mm) and 16 in. (406.4 mm) Style 741 (150 psig [1034.2 kPaG]) adapters are provided. The Style 741 (150 psig [1034.2 kPaG]) flange adapter requires a smooth, hard surface for a good seal.
Connection to other type flange faces (i.e., raised, serrated, rubber, etc.) requires the use of a flange washer between the faces. Refer to the flange adapter manufacturer’s guidelines for specific information.
The Style 743 (300 psig [2068.4 kPaG]) flange adapters are designed to mate with raised-face flanges. They can be used with flat-faced flanges, but only if the raised projections on the outside face of the adapter are removed; refer to the following figure. The flange­adapter gasket must be placed with the color-coded lip on the pipe and the other lip facing the mating flange.
NNOOTTIICCEE
PPiippiinngg CCoonnnneeccttiioonn LLeeaakkss!!
FFaaiilluurree ttoo pprroovviiddee eeffffeeccttiivvee sseeaall ccoouulldd rreessuulltt iinn eeqquuiippmmeenntt oorr pprrooppeerrttyy--oonnllyy ddaammaaggee.. TToo pprroovviiddee eeffffeeccttiivvee sseeaall,, ggaasskkeett ccoonnttaacctt ssuurrffaacceess ooff aaddaapptteerr mmuusstt bbee ffrreeee ooff ggoouuggeess,, uunndduullaattiioonnss oorr ddeeffoorrmmiittiieess..
Figure 18. Modifying 300 psig (2068.4 kPaG) flange adaptors for flat-faced flange application

Victaulic Gasket Installation

1. Inspect supplied gasket to be certain it is suited for intended service (code identifies gasket grade). Apply a thin coat of silicone lubricant to gasket tips and outside of gasket.
2. Install gasket, placing gasket over pipe end and making sure gasket lip does not overhang pipe end. Refer to the following figure for gasket configuration.
3. Align and bring two pipe ends together and slide gasket into position centered between the grooves on each pipe. No portion of the gasket should extend into the groove on either pipe.
4. Open fully and place hinged Victaulic® flange around the grooved pipe end with the circular key section locating into the groove.
5. Insert a standard bolt through the mating holes of the Victaulic® flange to secure the flange firmly in the groove.
6. Tighten fasteners alternately and equally until housing bolt pads are firmly together (metal-to­metal); refer to “Bolt-Tightening Sequence for
Water Piping Connections,” p. 34. Do NOT
excessively tighten fasteners.
NNoottee:: Uneven tightening may cause gasket to pinch.
CVHE-SVX02M-EN
33
IInnssttaallllaattiioonn:: WWaatteerr PPiippiinngg
Figure 19. Typical Victaulic®® flange gasket configuration
Table 9. Installation data for 150 psig (1034.2 kPaG) flange adapters (Style 741)
Nominal Pipe Size
in.
4 114.3
5 141.3
6 168.3
8 219.1
10 273.0
12 323.9
14 355.6
16 406.4
(a)
Bolt size for conventional flange-to-flange connection. Longer bolts are required when flange washer must be used.
mm
Assembly Bolt
Size
(a)
in. in.
5/8 x 3
3/4 x 3-1/2
3/4 x 3-1/2
3/4 x 3-1/2
7/8 x 1/4
7/8 x 1/4
1 x 4-1/2
1 x 4-1/2
Number of Assembly
Bolts Required
8 7.5 191 7.7 3.5
8 8.5 216 9.3 4.2
8 9.5 241 10.3 4.7
8 11.75 298 16.6 7.5
12 14.25 362 24.2 11.0
12 17 432 46.8 21.2
12 18.75 476 75 34.0
16 21.25 540 90 40.8
Bolt Pattern Diameter
mm
lb
Weight
kg
Table 10. Installation data for 300 psig (2068.4 kPaG) flange adapters (Style 743)
Nominal Pipe Size
in.
4 114.3
5 141.3
6 168.3
8 219.1
10 273.0
12 323.9
(a)
Bolt size for conventional flange-to-flange connection. Longer bolts are required when flange washer must be used.
mm

Bolt-Tightening Sequence for Water Piping Connections

This section describes a bolt-tightening sequence for
Assembly Bolt
Size
(a)
in. in.
3/4 x 3-3/4
3/4 x 4
3/4 x 4-1/2
3/4 x 4-3/4
1 x 5-1/4
1-1/8 x 5-3/4
Number of Assembly
Bolts Required
8 7.88 200 15.3 6.9
8 9.25 235 17.7 8.0
12 10.63 270 23.4 10.6
12 13 330 34.3 15.6
16 15.25 387 48.3 21.9
16 17.75 451 70.5 32.0
Bolt Pattern Diameter
Table 11. Flange bolt torque recommendations for O-
ring and flat-gasket piping connections
Bolt Size
flanges with flat gaskets or O-rings. Remember that improperly tightened flanges may leak.
NNoottee:: Before tightening any of the bolts, align the
flanges. Flange bolt torque requirements are provided in the following table.
in.
3/8
1/2
5/8
3/4
NNoottee:: Bolt size is determined by the diameter of bolt shank.
mm
9.5 25 34 12–18 16–24
13 70 95 33–50 45–68
16 150 203 70–90 95–122
19 250 339 105–155 142–210
Weight
mm
lb
kg
Gasket Type
O-Ring
Flat
ft·lb N·m ft·lb N·m
34
CVHE-SVX02M-EN
IInnssttaallllaattiioonn:: WWaatteerr PPiippiinngg

Flanges with 4, 8, or 12 Bolts

Tighten all bolts to a snug tightness, following the numerical sequence for the appropriate bolt pattern as shown in the following figure. Repeat this sequence to apply the final torque to each bolt.
Figure 20. Flange bolt tightening sequence (4, 8, or 12 bolts)

Flanges with 16, 20, or 24 Bolts

Tighten only the first half of the total number of bolts to a snug tightness, following the numerical sequence for the appropriate bolt pattern as shown in the following figure. Next, sequentially tighten the remaining half of the bolts in numerical order.
Figure 21. Flange bolt tightening sequence (16, 20, or 24 bolts)

Flanges with More than 24 Bolts

Sequentially tighten the first 12 bolts to a snug tightness, following the numerical sequence as shown in the following figure. Tighten the next 12 consecutively numbered bolts in sequence to the final torque. Then, apply final torque to the first 12 bolts and the bolts not yet tightened (i.e., unnumbered bolts in the following figure). Start with bolt “1” and move progressively around the flange in a clockwise direction.
Figure 22. Flange bolt tightening sequence (more than 24 bolts)
CVHE-SVX02M-EN
35
IInnssttaallllaattiioonn:: WWaatteerr PPiippiinngg

Evaporator Waterbox Covers

Ensure that the waterbox head rests tightly against the tube sheet, and then snugly tighten the 26 bolts in sequential order as shown in the following figure. If excessive tube sheet crown prevents the head from contacting the tube sheet, tighten the bolts located where the greatest gaps occur. Be sure to use an equal number of bolt turns from side to side. Then, apply final torque to each bolt in sequential order.
Figure 23. Evaporator waterbox cover bolt tightening sequence

Pressure Testing Waterside Piping

NNOOTTIICCEE
EEqquuiippmmeenntt DDaammaaggee!!
FFaaiilluurree ttoo ffoollllooww tthheessee iinnssttrruuccttiioonnss ccoouulldd rreessuulltt iinn eeqquuiippmmeenntt ddaammaaggee.. DDoo nnoott oovveerr pprreessssuurriizzee tthhee ssyysstteemm oorr eexxcceeeedd ddeessiiggnn pprreessssuurree.. AAllwwaayyss ppeerrffoorrmm aa hhyyddrroo pprreessssuurree tteesstt wwiitthh wwaatteerr pprreesseenntt iinn ppiippiinngg aanndd wwaatteerrbbooxxeess..
Waterside design pressure is either 150 psig (1034.2 kPaG) or 300 psig (2068.4 kPaG); refer to unit nameplate or to submittal documentation.
36
CVHE-SVX02M-EN

Vent Piping

Refrigerant Vent Line

General Requirements

State and local codes, and ASHRAE Standard 15 contain requirements for venting the relief device on the chiller to the atmosphere outside of the building. These requirements include, but are not limited to, permitted materials, sizing, and proper termination.
NNoottee:: The following information is a general outline of
vent-line installation requirements based on ASHRAE Standard 15. Most codes contain similar requirements but may vary in some significant areas. The installer must check state and local codes and follow the specific requirements applicable to the location.

Purge Discharge

To comply with ASHRAE Standard 15, the discharge piping from purge units that remove non-condensable gas from refrigerating systems must conform to the ASHRAE Standard 15 requirements for relief piping. To help meet this requirement, the purge discharge is factory-piped to the relief device assembly.

Vent Line Materials

All materials in the relief device vent system must be compatible with the refrigerant in use. Commonly used and accepted piping materials include steel and drain/ waste/vent (DWV) copper. Consult local codes for restrictions on materials. Consult with the manufacturers of any field-provided components or materials for acceptable material compatibility.
NNoottee:: PVC piping is compatible with the refrigerant but
the glue that joins the sections of plastic pipe may not be. When considering a vent system constructed of plastic piping such as PVC, ensure that both the pipe material and the adhesive have been tested for refrigerant compatibility. In addition, verify that the local codes permit PVC for refrigerant vent lines; even though ASHRAE Standard 15 doesn’t prohibit its use, some local codes do.
Testing conducted in Trane laboratories has qualified the following materials for PVC pipe construction as being compatible with the refrigerant:
Primer/Cleaner:
Hercules—PVC Primer #60-465
RECTORSEAL® PVC Cleaner—Sam™ CL-3L
Adhesives:
Hercules—Clear PVC, Medium Body/Medium Set, #60-020
RECTORSEAL®—PVC Cement, Gene™ 404L
Flexible connection devices for vibration isolation must also be compatible with the vented refrigerant. A flexible stainless-steel pump connector (such as the stainless-steel type MFP, style HNE, flexible pump connector from Vibration Mounting and Control, Inc.) or equivalent is recommended.

Vent Line Sizing

Vent line size must conform to local codes and requirements. In most cases, local codes are based on ASHRAE Standard 15. ASHRAE Standard 15 provides specific requirements for the discharge piping that allows pressure-relief devices to safely vent refrigerant to the atmosphere if over-pressurization occurs. In part, the standard mandates that:
The minimum pipe size of the vent line must equal the size of the discharge connection on the pressure-relief device. A larger vent line size may be necessary, depending on the length of the run.
Two or more relief devices can be piped together only if the vent line is sized to handle all devices that could relieve at the same time.
When two or more relief devices share a common vent line, the shared line must equal or exceed the sum of the outlet areas of all upstream relief devices, depending on the resulting back pressure.
ASHRAE Standard 15 provides guidance for determining the maximum vent line length. It also provides the equation (shown in Figure 27, p. 42) and data necessary to properly size the vent line at the outlet of a pressure-relief device or fusible plug.
The equation accounts for the relationship between pipe diameter, equivalent pipe length, and the pressure difference between the vent line inlet and outlet to help ensure that the vent line system provides sufficient flow capacity.
Table 12, p. 41 provides additional information based
on ASHRAE Standard 15, including:
Capacities of various vent line sizes and lengths. However, this data applies only to conventional pressure-relief valves and NOT to balanced relief valves, rupture members (as used on Trane® centrifugal chillers), fusible plugs, or pilot-operated valves.
A simplified method to determine the appropriate vent-line size, with Figure 27, p. 42. Enter the figure with the total CC value, read across to a pipe curve and down to find the maximum allowable length for that size pipe.
CVHE-SVX02M-EN
37
VVeenntt PPiippiinngg
NNoottee:: To determine the total CC value for a specific
unit, add the appropriate CC values for the evaporator, standard condenser, and economizer. If the unit is equipped with any options (e.g., heat recovery, free cooling, or an auxiliary condenser), add the applicable CC value(s) for those options to the total as well.
NNoottee:: Table 12, p. 41 and Figure 27, p. 42 are
applicable only for non-manifolded vent-line runs connected to a 15 psig (103.4 kPaG) rupture disk relief device. The pipe length provided by the table is in “equivalent feet.” The vent-line length in equivalent feet is the sum of the linear pipe length plus the equivalent length of the fittings (e.g., elbows).

Vent Line Installation

IImmppoorrttaanntt:: Before constructing the rupture disk vent
line, consult local codes for applicable guidelines and constraints.
All CenTraVac™ centrifugal chillers are equipped with rupture disks. If refrigerant pressure within the evaporator exceeds 15 psig (103.4 kPaG), the rupture disk breaks and shell pressure is relieved as refrigerant escapes from the chiller.
A cross-section of the rupture disk assembly appears in
Figure 24, p. 39 along with an illustration indicating the
location of the rupture disk on the suction elbow.
IImmppoorrttaanntt:: If a RuptureGuard
remove and discard the factory-installed rupture disk; for more information, refer to
Installation, Operation, and Maintenance: RuptureGuard Pressure Relief System Option (CTV-SVX06*-EN).
Several general recommendations for rupture disk vent line installation are outlined as follows.
NNoottee:: If the rupture disk was removed for service or
vent-line piping installation, the rupture disk must be reinstalled (as shown in Figure 24, p. 39). Refer to the following procedure and contact CenTraVac reinstalling the rupture disk.
Verify that the vacuum support side of the rupture disk is positioned as shown in the cross-section view that appears in Figure 24, p. 39.
– Install the two bottom bolts though the pipe
flanges.
– Install the rupture disk with a gasket on each
side between the pipe flanges. Orient the disk with the reference arrow or vacuum support bar facing the chiller side as shown in Figure 24, p.
39.
Install the two top bolts.
Center the disk and gaskets to the flange bore.
Hand-tighten all bolts assuring equal pressure.
Chiller Technical Service when
is to be installed,
– Use a torque wrench set to 240 in·lb (27.1 N·m)
with a 9/16-in. socket.
– Tighten bolts in a star pattern, one half turn
each, to maintain even pressure on the disk.
– Final torque on all bolts should be 240 in·lb
(27.1 N·m).
When attaching the vent line to the chiller, do NOT apply threading torque to the outside pipe of the rupture disk assembly.
NNOOTTIICCEE
RRuuppttuurree DDiisskk DDaammaaggee!!
FFaaiilluurree ttoo ffoollllooww iinnssttrruuccttiioonn ccoouulldd rreessuulltt iinn ddaammaaggee ttoo tthhee rruuppttuurree ddiisskk aasssseemmbbllyy.. DDoo nnoott aappppllyy tthhrreeaaddiinngg ttoorrqquuee ttoo tthhee oouuttssiiddee ppiippee..
Provide support as needed for the vent line. Do NOT use the rupture disk assembly to support the vent-line piping.
Use a flexible connection between the vent line and the rupture disk assembly to avoid placing stress on the rupture disk. (Stress can alter rupture pressure and cause the disk to break prematurely.) The flexible connector used to isolate the rupture disk from excessive vent line vibration must be compatible with the refrigerant in use. Use a flexible, steel connector (such as the stainless-steel type MFP, style HNE, flexible pump connector from Vibration Mounting and Control, Inc.), or equivalent. Refer to Figure 25, p. 40 for a recommended relief piping arrangement.
An individual vent line is normally installed for each relief device. It is permissible to manifold the rupture disks of several machines into a common vent line provided that the appropriate ASHRAE Standards and local code requirements for manifolded relief devices are followed.
NNoottee:: Figure 25, p. 40 does NOT apply for
manifolded vent lines.
WWAARRNNIINNGG
PPrreessssuurree--RReelliieeff DDeevviiccee DDiisscchhaarrggee HHaazzaarrdd!!
AAnn iimmpprrooppeerr vveenntt--lliinnee tteerrmmiinnaattiioonn ccoouulldd rreessuulltt iinn ddeeaatthh oorr sseerriioouuss iinnjjuurryy oorr eeqquuiippmmeenntt ddaammaaggee.. WWhheenn aa pprreessssuurree--rreelliieeff ddeevviiccee ooppeerraatteess,, iitt ccoouulldd ddiisscchhaarrggee aa llaarrggee aammoouunntt ooff fflluuiidd aanndd//oorr vvaappoorr.. UUnniittss MMUUSSTT bbee eeqquuiippppeedd wwiitthh aa vveenntt--lliinnee tteerrmmiinnaattiioonn tthhaatt ddiisscchhaarrggeess oouuttddoooorrss iinn aann aarreeaa tthhaatt wwiillll nnoott sspprraayy rreeffrriiggeerraanntt oonn aannyyoonnee..
38
CVHE-SVX02M-EN
VVeenntt PPiippiinngg
NNOOTTIICCEE
PPrrooppeerr RReeffrriiggeerraanntt VVeenntt LLiinnee TTeerrmmiinnaattiioonn!!
FFaaiilluurree ttoo pprrooppeerrllyy tteerrmmiinnaattee aa rreeffrriiggeerraanntt vveenntt lliinnee ccoouulldd rreessuulltt iinn eeqquuiippmmeenntt ddaammaaggee.. IImmpprrooppeerrllyy tteerrmmiinnaattiinngg aa rreeffrriiggeerraanntt vveenntt lliinnee ccoouulldd aallllooww rraaiinn ttoo eenntteerr tthhee lliinnee.. AAccccuummuullaatteedd rraaiinnwwaatteerr ccoouulldd ccaauussee tthhee rreelliieeff ddeevviiccee ttoo mmaallffuunnccttiioonn;; oorr,, iinn tthhee ccaassee ooff aa rruuppttuurree ddiisskk,, tthhee rraaiinnwwaatteerr pprreessssuurree ccoouulldd ccaauussee tthhee ddiisskk ttoo rruuppttuurree,, aalllloowwiinngg wwaatteerr ttoo eenntteerr tthhee cchhiilllleerr..
Route the vent-line piping so that it discharges outdoors in an area that will not spray refrigerant on anyone. Position the vent-line discharge at least 15 ft (4.6 m) above grade level and at least 20 ft (6.1 m) from any building opening. Provide a vent­line termination that cannot be blocked by debris or accumulate rainwater.
Provide a drip leg on the vent line (refer to Figure
25, p. 40). Provide a standard 1/4-in. FL x 1/4-in.
NPT, capped refrigerant service valve to facilitate liquid removal.
NNOOTTIICCEE
EEqquuiippmmeenntt DDaammaaggee!!
FFaaiilluurree ttoo ffoollllooww iinnssttrruuccttiioonnss bbeellooww ccoouulldd rreessuulltt iinn eeqquuiippmmeenntt ddaammaaggee.. AAllll vveenntt lliinneess mmuusstt bbee eeqquuiippppeedd wwiitthh aa ddrriipp lleegg ooff ssuuffffiicciieenntt vvoolluummee ttoo hhoolldd tthhee eexxppeecctteedd aaccccuummuullaattiioonn ooff wwaatteerr aanndd//oorr rreeffrriiggeerraanntt.. TThhee ddrriipp lleegg mmuusstt bbee ddrraaiinneedd ppeerriiooddiiccaallllyy ttoo aassssuurree tthhaatt iitt ddooeess nnoott oovveerrffllooww aanndd aallllooww fflluuiidd ttoo ffllooww iinnttoo tthhee hhoorriizzoonnttaall ppoorrttiioonn ooff tthhee vveenntt lliinnee.. TTrraannee aassssuummeess nnoo rreessppoonnssiibbiilliittyy ffoorr eeqquuiippmmeenntt ddaammaaggee ccaauusseedd bbyy iinnssuuffffiicciieenntt ddrraaiinnaaggee ooff ddrriipp lleegg..
Figure 24. Rupture disk location and cross section of rupture disk
NNoottee:: Pipe connection is 3 in. (76.2 mm) NPT, except
250E evaporator/250L condenser units with heat recovery which have a 4 in. (101.6 mm) NPT pipe connection.
Consult local regulations and codes for any additional relief line requirements and refer to appropriate refrigerant handling guidelines. For R­123 chillers, refer to Installation, Operation, and
Maintenance: R-123 Low-Pressure Refrigerant Handling Guidelines Conservation and Safe Handling of R-123 Refrigerant in Trane Chillers for Service Technicians (CTV-SVX05*-EN). For R-514A chillers, refer to Installation, Operation, and Maintenance: R-514A Low-Pressure Refrigerant Handling Guidelines Conservation and Safe Handling of R-514A Refrigerant in Trane Chillers for Service Technicians (CTV-SVX008*-EN).
CVHE-SVX02M-EN
39
VVeenntt PPiippiinngg
Figure 25. Arrangement for rupture disk relief piping
IImmppoorrttaanntt:: On the purge discharge vent line, the purge
exhaust connection point MUST be lower than the purge height. Do NOT create a U­trap; extend to drip leg if necessary to avoid a trap.
NNootteess::
If a RuptureGuard remove and discard the factory-installed rupture disk; for more information, refer to
Installation, Operation, and Maintenance: RuptureGuard Pressure Relief System Option (CTV-SVX06*-EN).
The rated flow capacity of the RuptureGuard based on having straight pipe extending past the spring mechanism downstream of the valve. Be sure there are no crosses (a derate on the rated flow capacity for this configuration is published in Engineering Bulletin: RuptureGuard Selection Guide [E/ CTV-EB-10]), elbows, tees or any other obstructions within the first 9 in. (228.6 mm) of valve discharge. Refer to ASHRAE Standard 15 for additional requirements on piping rupture disk and relief valve vent lines.
is to be installed,
disk/valve assembly is
Figure 26. RuptureGuard™™ external vent line and drip leg (not provided)
NNootteess::
Use Loctite threaded joints on chillers charged with refrigerant; use of other pipe thread sealants is NOT recommended. Ensure all threaded pipe joints are properly cleaned and prepared before assembly. An alternative to the use of Loctite inlet adapter to the pipe. Care must be taken to ensure that the flange mating surface remains flat. Do NOT weld on the Inlet Adapter flange while connected to the RuptureGuard
The drip leg is required and must be drained periodically for proper chiller purge operation.
IImmppoorrttaanntt:: If a RuptureGuard
MUST be installed properly. Failure to properly install RuptureGuard result in a start-up delays and required rework and expenses that result from a failure to properly install RuptureGuard will NOT be paid by Trane.
®
242 or Loctite®277 on all
®
is to thread and weld the
.
is to be installed, it
will likely
40
CVHE-SVX02M-EN
VVeenntt PPiippiinngg

Vent Line Sizing Reference

Table 12. “C” values used to determine rupture disk
Evap.
Size
(EVSZ)
032S 032S 50.00
032L 032L 65.09
050S 050S 64.20
050L 050L 83.17
050S 080S 69.71
050L 080L 90.52
080S 080S 86.48
080L 080L 111.50
080L 142L 117.53
142M 142L 127.49
142L 142L 134.89
142E 142L 143.11
210L 210L 149.91
vent line sizes; for use with the following figure
Cond.
Size
(CDSZ)
“C” Values for Unit Components
Total
“C”
Value
Long H.
Short
H.R.
Cond.
18.87 25.19 15.30 3.66032S 032L 61.32
23.55 31.45 15.30 5.50050S 050L 72.10
29.06 38.80 15.30 5.38080S 080L 96.22
51.01 56.80 15.30 7.13
Cond.
N/A N/A N/A N/A
N/A N/A N/A N/A
R.
Aux.
Cond.
Free
Cooling
Econ.
Table 12. “C” values used to determine rupture disk vent line sizes; for use with the following figure (continued)
Evap.
Size
(EVSZ)
250E 250L 175.74
210D 210D 112.93
250D 250D 122.62
250M 250M 146.36
250X 250X 164.74
Notes:
Cond.
Size
(CDSZ)
1. Rupture disk diameter is 3 in. (76.2 mm), with the exception of
250E evaporator/250L condenser units with heat recovery which have a rupture disk diameter of 4 in. (101.6 mm).
2. To determine the total “C” value for a specific unit, add the appropriate “C” values for the evaporator, standard condenser, and economizer. If the unit is equipped with any options (e.g., heat recovery, free cooling, or an auxiliary condenser), add the applicable “C” values to this total. With this new sum, refer to the following figure to determine the vent-line pipe diameter.
3. If piping multiple rupture disks to a common vent line, first determine the total “C” value for each rupture disk, then add all “C” values together and apply the result to the following figure.
4. RuptureGuard™ size based on “C” value: 3-in. (76.2 mm) valve: “C” value 0 to 104.20 4-in. (101.6 mm) valve: C value 104.21 to 223.9 RuptureGuard™ is not available for 250E evaporator/250L condenser units with heat recovery.
“C” Values for Unit Components
Total
“C”
Value
Long H.
Short
H.R.
Cond.
Cond.
N/A
N/A N/A
Aux.
R.
Cond.
62.12 15.30
15.30 7.13
15.30
Free
Cooling
Econ.
N/A
N/A
CVHE-SVX02M-EN
41
VVeenntt PPiippiinngg
Figure 27. Rupture disk vent pipe sizing; for use with the preceding table
NNoottee:: The preceding figure, provided as a reference, is based on ASHRAE Standard 15. Vent line size is typically
dictated by state or local code which may be different from ASHRAE Standard 15 requirements.
42
CVHE-SVX02M-EN
For CenTraVac™ chillers using a rupture disk relief:
L = equivalent length of discharge piping, ft (m)
C
= rated capacity as stamped on the relief device
r
in lb/min (kg/s), or SCFM multiplied by 0.0764 lb/ min (convert multiplier in lb/min to kg/s for SI)
C
= CC value from the preceding table (convert CC
r
in lb/min to kg/s for SI)
f = Moody friction factor in fully turbulent flow
VVeenntt PPiippiinngg
d = inside diameter of pipe or tube, in. (mm)
ln = natural logarithm
= absolute pressure at outlet of discharge piping,
P
2
psi (kPa)
P
= allowed back pressure (absolute) at the outlet
0
of pressure relief device, psi (kPa)
P
= (0.50 P) + atmospheric pressure
0
NNoottee:: For rupture disks on CenTraVac
is 15 lb (6.8 kg). Atmospheric pressure is at the elevation of the installation above sea level; a default value is the atmospheric pressure at sea level, 14.7 psi (101.34 kPa).
chillers, P
CVHE-SVX02M-EN
43

Insulation

Unit Insulation Requirements

Factory-installed insulation is available as an option for all units. Factory installation does NOT include insulation of the chiller feet; if required, insulation for chiller feet is provided by others. In applications where the chiller is not factory-insulated, install insulation over the areas outlined and highlighted with dashed lines as shown in Figure 28, p. 45.
Insulate all 1/4-in. (6.35-mm) eductor lines, one from the suction cover and one from the evaporator, to prevent sweating.
The quantities of insulation required based on unit size
NNoottee:: If the unit is not factory-insulated, install
insulation around the evaporator bulbwells and ensure that the bulbwells and connections for the waterbox drains and vents are still accessible after insulation is applied. The sensor modules (Low Level Intelligent Devices [LLIDs]) and interconnecting four-wire cable inter-processor communication (IPC) bus must be raised up above the field-installed insulation. Secure the IPC bus to the insulation top/outer surface after insulation is completed.
IImmppoorrttaanntt:: Do NOT insulate the motor housing, unit
wiring, or sensor modules.
and insulation thickness are listed in the following table. Insulation thickness is determined at normal design conditions which are:
Standard comfort-cooling leaving chilled water temperature
85°F (29.4°C) dry bulb ambient temperature
75 percent relative humidity
EEqquuiippmmeenntt DDaammaaggee!!
FFaaiilluurree ttoo rreemmoovvee tthhee ssttrraaiinn rreelliieeff wwiitthh tthhee sseennssoorr ccoouulldd rreessuulltt iinn eeqquuiippmmeenntt ddaammaaggee.. DDoo NNOOTT aatttteemmpptt ttoo ppuullll sseennssoorr bbuullbb tthhrroouugghh tthhee ssttrraaiinn rreelliieeff;; aallwwaayyss rreemmoovvee tthhee eennttiirree ssttrraaiinn rreelliieeff wwiitthh tthhee sseennssoorr..
NNOOTTIICCEE
Operation outside of normal design conditions as defined in this section may require additional insulation; contact Trane for further review.
Table 13. Evaporator insulation requirements
Standard Unit
(a)
EVSZ
032 Short 337 52 347 74
032 Long
050 Short 385 63 398 72
050 Long
080 Short 505 84 515 97
080 Long
142 Medium 555 98 555 133
142 Long
142 Extended 603 104 629 133
210 Long
250 Extended 770 97 780 133
NNoottee:: Chillers equipped with refrigerant pumps are NOT insulated on the motor or refrigerant drain lines.
(a)
3/4-in. (19.05-mm) sheet insulation is installed on the evaporator, evaporator waterboxes, suction elbow, and suction cover.
(b)
3/8-in. (9.525-mm) sheet insulation is installed on all economizers. All liquid lines and other pipes require the use of 1/2-in. (12.7-mm) pipe insulation or 3/8-in. (9.525-mm) sheet insulation. Copper oil eductor tube lines require pipe insulation.
3/4 in. (19.05 mm)
Insulation(Square
Feet)
365 52 377 74
420 63 436 72
553 84 566 97
578 98 578 133
700 98 710 133
(a)
3/8 in. (9.525 mm)
Insulation
(b)
Feet)
(Square
3/4-in. (19.05 mm)
Insulation
(Square Feet)
Free Cooling
(a)
3/8 in. (9.525 mm)
Insulation
(b)
Feet)
(Square

Insulation Thickness Requirements

Factory Applied Insulation

All low-temperature surfaces are covered with 3/4 in. (19.05 mm) Armaflex® II or equal (thermal conductivity = 0.28 Btu/h-ft
44
2
[1.59 W/m2-K]), including the
evaporator, waterboxes, and suction elbow. The economizer and motor cooling lines are insulated with 3/8 in. (9.525 mm) and 1/2 in. (12.7 mm) insulation, respectively.
The insulation is Armaflex® or equivalent closed cell elastomeric insulation to prevent the formation of condensation up to a dew point rating of 74°F (23.3°C), K = 0.25. Chillers in high humidity areas or ice storage,
CVHE-SVX02M-EN
IInnssuullaattiioonn
low leaving water temperature (less than 36°F [2.2°C] chilled water temperature/glycol) units, may require double thickness to prevent formation of condensation.
Figure 28. Recommended area for unit insulation
NNOOTTIICCEE
IInnssuullaattiioonn DDaammaaggee!!
FFaaiilluurree ttoo ffoollllooww tthheessee iinnssttrruuccttiioonnss ccoouulldd rreessuulltt iinn iinnssuullaattiioonn ddaammaaggee.. TToo pprreevveenntt ddaammaaggee ttoo ffaaccttoorryy iinnssttaalllleedd iinnssuullaattiioonn::
•• DDoo nnoott aallllooww tthhee iinnssuullaattiioonn ttoo bbee eexxppoosseedd ttoo eexxcceessssiivvee ssuunnlliigghhtt.. SSttoorree iinnddoooorrss oorr ccoovveerr wwiitthh ccaannvvaass ttoo pprreevveenntt eexxppoossuurree..
•• DDoo nnoott uussee tthhiinnnneerrss aanndd ssoollvveennttss oorr ootthheerr ttyyppeess ooff ppaaiinntt.. UUssee oonnllyy wwaatteerr bbaassee llaatteexx..
NNootteess::
Bulbwells, drain, and vent connections must be accessible after insulating.
All units with evaporator marine waterboxes wrap waterbox shell insulation with strapping and secure strapping with seal.
Evaporators with ASME nameplates must have insulation cut out around the nameplate. Do NOT glue insulation to the nameplate.
Apply 2-in. (50.8-mm) wide black tape on overlap joints. Where possible apply 3-in. (76.2-mm) wide strip of
0.38-in. (9.7-mm) thick insulation over butt joint seams.
Insulate all economizer supports.
CVHE-SVX02M-EN
45

Installation: Controls

This section covers information pertaining to the UC800 controller hardware. For information about the Tracer® AdaptiView™ display, which is used to interface with the internal chiller data and functions provided by the UC800, refer to Tracer AdaptiView
Display for Water-Cooled CenTraVac Chillers Operations Guide (CTV-SVU01*-EN).

UC800 Specifications

Power Supply

NNOOTTIICCEE
CCuussttoommeerr WWiirriinngg!!
FFaaiilluurree ttoo ffoollllooww iinnssttrruuccttiioonnss bbeellooww ccoouulldd rreessuulltt iinn eeqquuiippmmeenntt oorr pprrooppeerrttyy--oonnllyy ddaammaaggee.. OOnnllyy uussee fflleexxiibbllee ccoonndduuiitt oorr mmeettaall--ccllaadd ccaabbllee wwhheenn wwiirriinngg tthhee ccoonnttrrooll ppaanneell aanndd mmoottoorr tteerrmmiinnaall bbooxx ttoo eennssuurree aa vviibbrraattiioonn--ffrreeee iinnssttaallllaattiioonn..
The UC800 (1A22) receives 24 Vac (210 mA) power from the 1A2 power supply located in the chiller control panel.

Wiring and Port Descriptions

The following figure illustrates the UC800 controller ports, LEDs, rotary switches, and wiring terminals. The numbered list following the figure corresponds to the numbered callouts in the illustration.
46
CVHE-SVX02M-EN
IInnssttaallllaattiioonn:: CCoonnttrroollss
Figure 29. UC800 wiring locations and connection ports
4. Machine bus for existing machine LLIDs (IPC3 Tracer bus 19.200 baud). IPC3 Bus: used for Comm
®
4 using TCI or LonTalk
5. Power (210 mA at 24 Vdc) and ground terminations (same bus as Item 4). Factory wired.
6. Not used.
7. Marquee LED power and UC800 Status indicator (Table 14, p. 48).
8. Status LEDs for the BAS link, MBus link, and IMC link.
9. USB device Type B connection for the service tool (Tracer® TU).
10. The Ethernet connection can only be used with the Tracer® AdaptiView™ display.
11. USB Host (not used).
using LCI-C.

Communication Interfaces

There are four connections on the UC800 that support the communication interfaces listed. Refer to Figure
29, p. 47 for the locations of each of these ports.
BACnet® MS/TP
MODBUS® Slave
LonTalk® using LCI-C (from the IPC3 bus)
Comm 4 using TCI (from the IPC3 bus)
1. Rotary Switches for setting BACnet® MAC address or MODBUS® ID.
2. LINK for BACnet® MS/TP, or MODBUS® Slave (two terminals, ±). Field wired if used.
3. LINK for BACnet® MS/TP, or MODBUS® Slave (two terminals, ±). Field wired if used.

Rotary Switches

There are three rotary switches on the front of the UC800 controller. Use these switches to define a three­digit address when the UC800 is installed in a BACnet® or MODBUS® system (e.g., 107, 127, etc.).
NNoottee:: Valid addresses are 001 to 127 for BACnet
®
001 to 247 for MODBUS
.
®
and

LED Description and Operation

There are ten LEDs on the front of the UC800. The following figure shows the locations of each LED and the following table describes their behavior in specific instances.
CVHE-SVX02M-EN
47
IInnssttaallllaattiioonn:: CCoonnttrroollss
Figure 30. LED locations Table 14. LED behavior
LED UC800 Status
Powered. If the Marquee LED is green solid, the
UC800 is powered and no problems exist.
Marquee LED
LINK, MBUS,
IMC
Ethernet Link
Service
IImmppoorrttaanntt:: Maintain at least 6 in. (16 cm) between low-
Low power or malfunction. If the Marquee LED is red solid, the UC800 is powered but there are problems present. Alarm. The Marquee LED blinks red when an alarm exists.
The TX LED blinks green at the data transfer rate when the UC800 transfers data to other devices on the link. The RX LED blinks yellow at the data transfer rate when the UC800 receives data from other devices on the link.
The LINK LED is solid green if the Ethernet link is connected and communicating. The ACT LED blinks yellow at the data transfer rate when data flow is active on the link.
The Service LED is solid green when pressed. For qualified service technicians only. Do NOT use.
voltage (less than 30V) and high voltage circuits. Failure to do so could result in electrical noise that could distort the signals carried by the low-voltage wiring, including inter-processor communication (IPC).
48
CVHE-SVX02M-EN
IInnssttaallllaattiioonn:: CCoonnttrroollss
Figure 31. Standard control panel: Tracer®® AdaptiView™™ main unit assembly (showing low voltage and higher voltage areas for proper routing of field wiring)
CVHE-SVX02M-EN
49
IInnssttaallllaattiioonn:: CCoonnttrroollss
Figure 32. Optional control panel: Tracer®® AdaptiView™™ main unit assembly (showing low voltage and higher voltage areas for proper routing of field wiring)
50
CVHE-SVX02M-EN
IInnssttaallllaattiioonn:: CCoonnttrroollss

Installing the Tracer AdaptiView Display

During shipment, the Tracer® AdaptiView™ display is boxed, shrink-wrapped, and located behind the control panel. The display must be installed at the site.
IImmppoorrttaanntt:: For best results, Trane, or an agent of
Trane, must install the Tracer AdaptiView™display and display arm.
1. Unwrap the control panel and display arm. Locate the box containing the Tracer® AdaptiView™ display behind the control panel (labeled A in
Figure 33, p. 51).
2. After the box containing the display has been removed, remove the shipping bracket from the back of the control panel (labeled B in Figure 33, p.
51).
3. Remove the display from the box.
NNoottee:: Screws are M4 (metric size 4), 6 to 8 mm long,
and are shipped with the display.
4. Plug the power cable (labeled C in Figure 34, p. 51) and the Ethernet cable (labeled D in Figure 34, p.
51) into the bottom of the display.
NNoottee:: Both cables are already present and extend
from the end of the display arm.
5. Adjust the Tracer® AdaptiView™ display support arm so the base plate that attaches to the display is horizontal.
®
holes in the display support arm base plate.
8. Attach the Tracer® AdaptiView™ display to the display support arm base plate (labeled E in Figure
35, p. 52) using the M4 (metric size 4) screws
referenced in “Step 3,” p. 51.
Figure 33. Tracer®® AdaptiView™™ shipping location
Figure 34. Power cable and Ethernet cable connections
CCAAUUTTIIOONN
TTeennssiioonn iinn DDiissppllaayy SSuuppppoorrtt AArrmm!!
FFaaiilluurree ttoo ffoollllooww iinnssttrruuccttiioonnss bbeellooww ccoouulldd rreessuulltt iinn uunneexxppeecctteedd mmoovveemmeenntt ooff tthhee sspprriinngg-­llooaaddeedd ssuuppppoorrtt aarrmm wwhhiicchh ccoouulldd rreessuulltt iinn mmiinnoorr ttoo mmooddeerraattee iinnjjuurryy.. EEnnssuurree tthhaatt tthhee ssuuppppoorrtt aarrmm iiss iinn tthhee ffuullll uupprriigghhtt ppoossiittiioonn wwhheenn rreemmoovviinngg tthhee TTrraacceerr AAddaappttiiVViieeww ddiissppllaayy ffrroomm tthhee ssuuppppoorrtt aarrmm..
NNoottee:: Review “Adjusting the Tracer AdaptiView
Display Arm,” p. 52 before attaching the
display as some adjustments may be required prior to attaching the display to the support arm base.
6. Position the Tracer® AdaptiView™ display—with the LCD screen facing up—on top of the display support arm base plate.
NNoottee:: Ensure the Trane logo is positioned so that it
will be at the top when the display is attached to the display support arm.
IImmppoorrttaanntt:: Use care when positioning the Tracer
AdaptiView™display on top of the support arm base plate and do NOT drop the display.
7. Align the four holes in the display with the bolt
®
CVHE-SVX02M-EN
51
IInnssttaallllaattiioonn:: CCoonnttrroollss
Figure 35. Display attachments to the support arm base plate

Adjusting the Tracer AdaptiView Display Arm

The Tracer® AdaptiView™ display arm may become too loose or too tight and may need adjustment. There are three joints on the display arm that allow the display to be positioned at a variety of heights and angles (refer to items labeled 11, 22, and 33 in the following figure).
Figure 36. Joint locations on the display arm
To adjust the tension on the display arm:
At each joint in the display arm, there is either a hex bolt (11 and 22) or hex screw (33). Turn the hex bolt or screw in the proper direction to increase or decrease tension.
NNoottee:: Each hex bolt or screw is labeled with
lloooosseenn/ttiigghhtteenn or ++/-- indicators.
Joint 33 has a 6 mm hex screw controlling the tension on a gas spring, which allows the Tracer® AdaptiView™ display to tilt up and down.
Joints 11 and 22 are covered by a plastic cap. Remove the plastic cap to access the hex bolt. Adjust using a 13 mm wrench as necessary.
To adjust the swivel rotation tension of the Tracer® AdaptiView™ display, adjust the hex bolt located in the support arm base plate, as described in the final step in “Installing the Tracer AdaptiView
Display,” p. 51. This adjustment must be done prior
to attaching the display to the support arm base.
Use a 14 mm wrench to adjust the tension.
To adjust the left/right swivel of the entire display arm, use a 13 mm wrench to adjust the bolt labeled 44 in the preceding figure.
52
CVHE-SVX02M-EN

Electrical Requirements

Installation Requirements

WWAARRNNIINNGG
PPrrooppeerr FFiieelldd WWiirriinngg aanndd GGrroouunnddiinngg RReeqquuiirreedd!!
FFaaiilluurree ttoo ffoollllooww ccooddee ccoouulldd rreessuulltt iinn ddeeaatthh oorr sseerriioouuss iinnjjuurryy.. AAllll ffiieelldd wwiirriinngg MMUUSSTT bbee ppeerrffoorrmmeedd bbyy qquuaalliiffiieedd ppeerrssoonnnneell.. IImmpprrooppeerrllyy iinnssttaalllleedd aanndd ggrroouunnddeedd ffiieelldd wwiirriinngg ppoosseess FFIIRREE aanndd EELLEECCTTRROOCCUUTTIIOONN hhaazzaarrddss.. TToo aavvooiidd tthheessee hhaazzaarrddss,, yyoouu MMUUSSTT ffoollllooww rreeqquuiirreemmeennttss ffoorr ffiieelldd wwiirriinngg iinnssttaallllaattiioonn aanndd ggrroouunnddiinngg aass ddeessccrriibbeedd iinn NNEECC aanndd yyoouurr llooccaall// ssttaattee//nnaattiioonnaall eelleeccttrriiccaall ccooddeess..
Unit-mounted starters are available as an option on most units. While this option eliminates most field­installed wiring requirements, the electrical contractor must still complete the electrical connection for the following:
power supply wiring to the starter,
other unit control options present, and
any field-supplied control devices.
As you review this manual along with the wiring instructions presented in this section, keep in mind that:
All field-installed wiring must conform to National Electric Code (NEC) guidelines, and any applicable local, state, and national codes. Be sure to satisfy proper equipment grounding requirements per NEC.
Compressor motor and unit electrical data (including motor kW, voltage utilization range, rated load amps, and locked rotor amps) is listed on the chiller nameplate.
All field-installed wiring must be checked for proper terminations, and for possible shorts or grounds.
NNoottee:: Always refer to the actual wiring diagrams
that shipped with the chiller or the unit submittal for specific as-built electrical schematic and connection information.
NNOOTTIICCEE
AAddaappttiivvee FFrreeqquueennccyy DDrriivvee ((AAFFDD))// SSttaarrtteerr CCoommppoonneenntt DDaammaaggee!!
FFaaiilluurree ttoo rreemmoovvee ddeebbrriiss ffrroomm iinnssiiddee tthhee AAFFDD// ssttaarrtteerr ppaanneell ccoouulldd rreessuulltt iinn aann eelleeccttrriiccaall sshhoorrtt aanndd ccoouulldd ccaauussee sseerriioouuss AAFFDD//ssttaarrtteerr ccoommppoonneenntt ddaammaaggee..
Do NOT modify or cut enclosure to provide electrical access. Removable panels have been provided, and any modification should be done away from the enclosure. If the starter enclosure must be cut to
provide electrical access, exercise care to prevent debris from falling inside the enclosure. Refer to installation information shipped with the starter or submittal drawings.

Electrical Requirements

Before wiring begins, observe the following electrical requirements:
Follow all lockout/tagout procedures prior to performing installation and/or service on the unit.
Always wear appropriate personal protective equipment.
Wait the required time to allow the capacitor(s) to discharge; this could be up to 30 minutes.
Verify that all capacitors are discharged prior to service using a properly rated volt meter.
Use appropriate capacitor discharge tool when necessary.
Comply with the safety practices recommended in PROD-SVB06*-EN.
WWAARRNNIINNGG
HHaazzaarrddoouuss VVoollttaaggee ww//CCaappaacciittoorrss!!
FFaaiilluurree ttoo ddiissccoonnnneecctt ppoowweerr aanndd ddiisscchhaarrggee ccaappaacciittoorrss bbeeffoorree sseerrvviicciinngg ccoouulldd rreessuulltt iinn ddeeaatthh oorr sseerriioouuss iinnjjuurryy.. DDiissccoonnnneecctt aallll eelleeccttrriicc ppoowweerr,, iinncclluuddiinngg rreemmoottee ddiissccoonnnneeccttss aanndd ddiisscchhaarrggee aallll mmoottoorr ssttaarrtt//rruunn ccaappaacciittoorrss bbeeffoorree sseerrvviicciinngg.. FFoollllooww pprrooppeerr lloocckkoouutt//ttaaggoouutt pprroocceedduurreess ttoo eennssuurree tthhee ppoowweerr ccaannnnoott bbee iinnaaddvveerrtteennttllyy eenneerrggiizzeedd.. FFoorr vvaarriiaabbllee ffrreeqquueennccyy ddrriivveess oorr ootthheerr eenneerrggyy ssttoorriinngg ccoommppoonneennttss pprroovviiddeedd bbyy TTrraannee oorr ootthheerrss,, rreeffeerr ttoo tthhee aapppprroopprriiaattee mmaannuuffaaccttuurreerr’’ss lliitteerraattuurree ffoorr aalllloowwaabbllee wwaaiittiinngg ppeerriiooddss ffoorr ddiisscchhaarrggee ooff ccaappaacciittoorrss.. VVeerriiffyy wwiitthh aann aapppprroopprriiaattee vvoollttmmeetteerr tthhaatt aallll ccaappaacciittoorrss hhaavvee ddiisscchhaarrggeedd..
FFoorr aaddddiittiioonnaall iinnffoorrmmaattiioonn rreeggaarrddiinngg tthhee ssaaffee ddiisscchhaarrggee ooff ccaappaacciittoorrss,, sseeee PPRROODD--SSVVBB0066**--EENN..
WWAARRNNIINNGG
PPeerrssoonnaall PPrrootteeccttiivvee EEqquuiippmmeenntt ((PPPPEE)) RReeqquuiirreedd!!
FFaaiilluurree ttoo wweeaarr PPPPEE aanndd ffoollllooww pprrooppeerr hhaannddlliinngg gguuiiddeelliinneess ccoouulldd rreessuulltt iinn ddeeaatthh oorr sseerriioouuss iinnjjuurryy.. AAllwwaayyss wweeaarr aapppprroopprriiaattee ppeerrssoonnaall pprrootteeccttiivvee eeqquuiippmmeenntt iinn aaccccoorrddaannccee wwiitthh aapppplliiccaabbllee rreegguullaattiioonnss aanndd//oorr ssttaannddaarrddss ttoo gguuaarrdd aaggaaiinnsstt ppootteennttiiaall eelleeccttrriiccaall sshhoocckk aanndd ffllaasshh hhaazzaarrddss..
CVHE-SVX02M-EN
53
EElleeccttrriiccaall RReeqquuiirreemmeennttss
WWAARRNNIINNGG
LLiivvee EElleeccttrriiccaall CCoommppoonneennttss!!
FFaaiilluurree ttoo ffoollllooww aallll eelleeccttrriiccaall ssaaffeettyy pprreeccaauuttiioonnss wwhheenn eexxppoosseedd ttoo lliivvee eelleeccttrriiccaall ccoommppoonneennttss ccoouulldd rreessuulltt iinn ddeeaatthh oorr sseerriioouuss iinnjjuurryy.. WWhheenn iitt iiss nneecceessssaarryy ttoo wwoorrkk wwiitthh lliivvee eelleeccttrriiccaall ccoommppoonneennttss,, hhaavvee aa qquuaalliiffiieedd lliicceennsseedd eelleeccttrriicciiaann oorr ootthheerr iinnddiivviidduuaall wwhhoo hhaass bbeeeenn pprrooppeerrllyy ttrraaiinneedd iinn hhaannddlliinngg lliivvee eelleeccttrriiccaall ccoommppoonneennttss ppeerrffoorrmm tthheessee ttaasskkss..

Trane-supplied Starter Wiring

Table 15. Standard field power wiring requirements
Power Supply Wiring
to Starter Panel
3-Phase Line Voltage 2X3-L1, L2, L3, and Ground
3-Phase Line Voltage: Circuit Breaker 2Q1-L1, L2, L3, and Ground
Starter to Motor Power Wiring
Remote Starter to Chiller Motor Junction Box
Starter to Control Panel
120 Vac Control Wiring
120 Vac Power Supply (from Starter to
High Pressure Cutout to Starter
Inter-processor Communications (IPC)
Notes:
1. All wiring to be in accordance with National Electrical Code (NEC) and any local codes.
2. Oil pump motor: 1 Ph, 3/4 HP, 11.7 full load amps at 115 Vac.
3. Auxiliary equipment must be powered from other sources as the chiller control panel power supplies are sized for the chiller loads only.
(a)
Ground lug for a unit-mounted solid state starter or wye-delta starter is sized to accept 14 AWG solid to 8 AWG strand wire. If local codes require different lug size, it must be field-supplied and -installed.
(b)
Wires, lugs, and fuses/breakers are sized based on National Electric Code NEC [NFPA 70] and UL 1995.
(c)
1Q1 Circuit Breaker to Starter connects to 2X16 Starter Panel Terminal for all starter types except the AFDG (Trane-supplied remote Danfoss AFD); for the AFDG, 1Q1 Circuit Breaker to Starter connects to 2X13 Starter Panel Terminal.
(d)
Must be separated from 120 Vac and higher wiring.
Control Panel)
1Q1 Circuit Breaker to Starter
Oil Pump Interlock 2X1-7, 2X1-8 1A7-J2-4, 1A7-J2-2
Low Voltage Circuits
Less Than 30 Vac
Standard Circuits
Remote-Mounted
(d)
Starter Panel
Terminals
(a)
Starter Motor
T1 through T6 T1 through T6
Starter Panel
Terminals
2X1-1, 2X1-2
2X1-20 (Ground)
2X1-4 1X1-4 14 20
(c)
Starter Panel
Terminals
2A1-J3-3-4, or
2X1-12 to 13 if Present (Do
NOT Ground Shield at Starter)
Unit Control Panel
Terminations
1X1-1, 1X1-12
1X1-18 (Ground)
1X1-3 14 20
Unit Control Panel
Terminations
1A1-J5-1-2, 3-4
Shield Ground at
1X1-22 (GND) Only
Max Terminal Wire
Size (AWG)
2-wire with Gound
Comm Link
(b)
8 40
14 20
Minimum Circuit
Ampacity
NNoottee:: Control Power Transformer (CPTR, Enhanced
Electrical Protection Package option): A unit­mounted, factory-wired, separate enclosure positioned next to the control panel is available when separate source control power is required. This permits the controls to remain powered while the three-phase line voltage is disconnected. Contact your local Trane representative for more information.
54
CVHE-SVX02M-EN

Customer-supplied Remote Starter Wiring

Table 16. Standard customer-supplied remote field wiring requirements
Power Supply Wiring to Starter Panel
Starter by Others 3-phase Power Wiring
Starter to Motor Power Wiring
Remote Starter to Chiller Motor Junction Box
Starter to Control Panel 120 Vac Control
120 Vac Power Supply (from Starter to
Power from Control Panel 1Q1
Low Voltage Circuits Less than 30 Vac
Current Transformers (refer to Table 17, p.
Potential Transformers (Required)
Solid State Stater Fault
Notes:
1. All wiring to be in accordance with National Electrical Code (NEC) and any local codes.
2. Starter by Others Specification available from your local Trane sales office.
(a)
Wires, lugs, and fuses/breakers are sized based on National Electric Code (NEC) [NFPA 70] and UL 1995.
(b)
Must be separated from 120 Vac and higher wiring.
(c)
Solid State Starter Fault input is used with low- and medium-voltage, customer-supplied solid state starters only.
Wiring
Control Panel)
Interlock Relay Signal
Start Contactor Signal
Oil Pump Interlock 5X1-7, 5X1-8 1A7-J2-4, 1A7-J2-2
Run Contactor Signal
Transition Complete
Standard Circuits
55) (Required)
(b)
(b)
(c)
Starter Panel Terminals
See Starter by Others
Schematic
Starters Motor
T1 through T6 Terminals
Starter Panel Terminals
See Starter by Others
Schematic 5X1-1, 5X1-2, 5X1-
20 (Ground)
5X1-3
5X1-4 1A23-J10-1 14 20
5X1-5 1A23-J8-1 14 20
5X1-10 1A23-J6-12 14 20
5X1-14 1A23-J12-2 14 20
Starter Panel Terminals
5CT4-white, black 5CT5-white, black 5CT6-white, black
5T17-236,237 5T18-238,239 5T19-240,241
5X1-11 5X1-12
T1 through T6
Terminals
Unit Control Panel
Terminations
1X1-1, 1X1-12, 1X1-18
(Ground)
1X1-3, 1A23-J6-3
Unit Control Panel
Terminations
1A23-J7-1,2 1A23-J7-3,4 1A23-J7-5,6 1A23-J5-1,2 1A23-J5-3,4 1A23-J5-5,6
1A24-J2-1 1A24-J2-2
Max Terminal Wire
Size (AWG)
Note: Phasing must
be maintained.
Note: Phasing must
be maintained.
Minimum Circuit
(a)
8 40
14 20
14 20
Ampacity

Current Transformer and Potential Transformer Wire Sizing

For customer-supplied starter-to-chiller unit control panel starter module 1A23; these wires must be separated from 120 Vac or higher wiring.
CVHE-SVX02M-EN
Table 17. Maximum recommended wire length for
secondary current transformer (CT) leads in dual CT system
Maximum Wire Length
Wire AWG
Notes:
1. Wire length is for copper conductors only.
2. Wire length is total one-way distance that the CT can be from
the starter module.
(a)
Wires, lugs, and fuses/breakers are sized based on National Electric Code (NEC) [NFPA 70] and UL 1995.
(a)
8 1362.8 415.5
10 856.9 261.2
12 538.9 164.3
14 338.9 103.3
16 213.1 65.0
17 169.1 51.5
18 134.1 40.9
20 84.3 25.7
Secondary CT Leads
Feet Meters
55
CCuussttoommeerr--ssuupppplliieedd RReemmoottee SSttaarrtteerr WWiirriinngg
Table 18. Maximum recommended total wire length
for potential transformers (PTs) in a single PT system
Wire AWG
Notes:
1. Wire length is for copper conductors only.
2. Wire length is maximum round trip wire length. The maximum
distance the PT can be located from the starter module is half of the listed value.
(a)
Wires, lugs, and fuses/breakers are sized based on National Electric Code (NEC) [NFPA 70] and UL 1995.
(a)
8 5339 1627
10 3357 1023
12 2112 643
14 1328 404
16 835 254
17 662 201
18 525 160
20 330 100
21 262 79
22 207 63
Maximum Lead Length
Feet Meters
Table 19. Maximum recommended total wire length
(to and from) for PT leads in a dual PT system
Wire AWG
(a)
8 3061 933 711 217
10 1924 586 447 136
12 1211 369 281 85
14 761 232 177 53
16 478 145 111 33
17 379 115 88 26
18 301 91 70 21
20 189 57 44 13
21 150 45 34 10
22 119 36 27 8
Notes:
1. Wire length is for copper conductors only.
2. Wire length is maximum round trip wire length. The maximum
distance the PT can be located from the starter module is half of the listed value.
(a)
Wires, lugs, and fuses/breakers are sized based on National Electric Code (NEC) [NFPA 70] and UL 1995.
Max Wire Length
Primary
Feet Meters Feet Meters
Max Wire Length
Secondary
56
CVHE-SVX02M-EN

Power Supply Wiring

WWAARRNNIINNGG
PPrrooppeerr FFiieelldd WWiirriinngg aanndd GGrroouunnddiinngg RReeqquuiirreedd!!
FFaaiilluurree ttoo ffoollllooww ccooddee ccoouulldd rreessuulltt iinn ddeeaatthh oorr sseerriioouuss iinnjjuurryy.. AAllll ffiieelldd wwiirriinngg MMUUSSTT bbee ppeerrffoorrmmeedd bbyy qquuaalliiffiieedd ppeerrssoonnnneell.. IImmpprrooppeerrllyy iinnssttaalllleedd aanndd ggrroouunnddeedd ffiieelldd wwiirriinngg ppoosseess FFIIRREE aanndd EELLEECCTTRROOCCUUTTIIOONN hhaazzaarrddss.. TToo aavvooiidd tthheessee hhaazzaarrddss,, yyoouu MMUUSSTT ffoollllooww rreeqquuiirreemmeennttss ffoorr ffiieelldd wwiirriinngg iinnssttaallllaattiioonn aanndd ggrroouunnddiinngg aass ddeessccrriibbeedd iinn NNEECC aanndd yyoouurr llooccaall// ssttaattee//nnaattiioonnaall eelleeccttrriiccaall ccooddeess..

Three-Phase Power

Review and follow the guidelines in this section to properly install and connect the power supply wiring to the starter panel:
Verify that the starter nameplate ratings are compatible with the power supply characteristics and with the electrical data on the unit nameplate.
NNOOTTIICCEE
AAddaappttiivvee FFrreeqquueennccyy DDrriivvee ((AAFFDD))// SSttaarrtteerr CCoommppoonneenntt DDaammaaggee!!
FFaaiilluurree ttoo rreemmoovvee ddeebbrriiss ffrroomm iinnssiiddee tthhee AAFFDD// ssttaarrtteerr ppaanneell ccoouulldd rreessuulltt iinn aann eelleeccttrriiccaall sshhoorrtt aanndd ccoouulldd ccaauussee sseerriioouuss AAFFDD//ssttaarrtteerr ccoommppoonneenntt ddaammaaggee..
Confirm that wire size is compatible with lug size stated in unit submittal.
Make sure that the incoming power wiring is properly phased; each power supply conduit run to the starter must carry the correct number of conductors to ensure equal phase representation.
NNoottee:: Connect L1, L2, and L3 (shown in the
following figure) per starter diagram provided with chiller.
When installing the power supply conduit, ensure that the position of the conduit does not interfere with the serviceability of any of the unit components, or with structural members and equipment. Ensure that the conduit is long enough to simplify any servicing that may be necessary in the future (e.g., starter).
Electrical wire torque specifications—follow starter manufacturer’s torque specifications.
Figure 37. Proper phasing for starter power supply wiring
NNOOTTIICCEE
UUssee CCooppppeerr CCoonndduuccttoorrss OOnnllyy!!
FFaaiilluurree ttoo uussee ccooppppeerr ccoonndduuccttoorrss ccoouulldd rreessuulltt iinn eeqquuiippmmeenntt ddaammaaggee aass uunniitt tteerrmmiinnaallss aarree nnoott ddeessiiggnneedd ttoo aacccceepptt ootthheerr ttyyppeess ooff ccoonndduuccttoorrss..
Do NOT modify or cut enclosure to provide electrical access. Removable panels have been provided and any modification should be done away from the enclosure. If the starter enclosure must be cut to provide electrical access, exercise care to prevent debris from falling inside the enclosure.
Use copper conductors to connect the three-phase power supply to the remote- or unit-mounted starter panel.
Flexible conduit connections are recommended to enhance serviceability and minimize vibration transmission.
Size the power supply wiring in accordance with National Electric Code (NEC), using the RLA value stamped on the chiller nameplate and transformer load on L1 and L2.
CVHE-SVX02M-EN

Circuit Breakers and Fused Disconnects

Any field-supplied circuit breaker or fused disconnect installed in power supplied to the chiller must be sized in compliance with National Electric Code (NEC) or local guidelines.

Power Factor Correction Capacitors (Optional)

Power factor correction capacitors (PFCCs) are designed to provide power factor correction for the compressor motor. PFCCs are available as an option for unit- and remote-mounted starters.
57
PPoowweerr SSuuppppllyy WWiirriinngg
NNootteess::
Verify PFCC voltage rating is greater than or equal to the compressor voltage rating stamped on the unit nameplate.
Refer to the wiring diagrams that shipped with the unit for specific PFCC wiring information.
NNOOTTIICCEE
MMoottoorr DDaammaaggee!!
FFaaiilluurree ttoo wwiirree PPFFCCCCss iinnttoo tthhee ssttaarrtteerr ccoorrrreeccttllyy ccoouulldd ccaauussee mmiissaapppplliiccaattiioonn ooff tthheessee ccaappaacciittoorrss aanndd rreessuulltt iinn aa lloossss ooff mmoottoorr oovveerrllooaadd pprrootteeccttiioonn aanndd ssuubbsseeqquueennttllyy ccaauussee mmoottoorr ddaammaaggee..
PPFFCCCCss mmuusstt bbee wwiirreedd oonnee ooff ttwwoo wwaayyss aass sshhoowwnn aass eexxppllaaiinneedd iinn tthhee ffoolllloowwiinngg ffiigguurreess aanndd aaccccoommppaannyyiinngg tteexxtt ((OOppttiioonn 11 aanndd OOppttiioonn 22))..
Figure 38. Option 1—PFCCs installed downstream of starter contactor, upstream of current transformers
WWAARRNNIINNGG
HHaazzaarrddoouuss VVoollttaaggee ww//CCaappaacciittoorrss!!
FFaaiilluurree ttoo ddiissccoonnnneecctt ppoowweerr aanndd ddiisscchhaarrggee ccaappaacciittoorrss bbeeffoorree sseerrvviicciinngg ccoouulldd rreessuulltt iinn ddeeaatthh oorr sseerriioouuss iinnjjuurryy.. DDiissccoonnnneecctt aallll eelleeccttrriicc ppoowweerr,, iinncclluuddiinngg rreemmoottee ddiissccoonnnneeccttss aanndd ddiisscchhaarrggee aallll mmoottoorr ssttaarrtt//rruunn ccaappaacciittoorrss bbeeffoorree sseerrvviicciinngg.. FFoollllooww pprrooppeerr lloocckkoouutt//ttaaggoouutt pprroocceedduurreess ttoo eennssuurree tthhee ppoowweerr ccaannnnoott bbee iinnaaddvveerrtteennttllyy eenneerrggiizzeedd.. FFoorr vvaarriiaabbllee ffrreeqquueennccyy ddrriivveess oorr ootthheerr eenneerrggyy ssttoorriinngg ccoommppoonneennttss pprroovviiddeedd bbyy TTrraannee oorr ootthheerrss,, rreeffeerr ttoo tthhee aapppprroopprriiaattee mmaannuuffaaccttuurreerr’’ss lliitteerraattuurree ffoorr aalllloowwaabbllee wwaaiittiinngg ppeerriiooddss ffoorr ddiisscchhaarrggee ooff ccaappaacciittoorrss.. VVeerriiffyy wwiitthh aann aapppprroopprriiaattee vvoollttmmeetteerr tthhaatt aallll ccaappaacciittoorrss hhaavvee ddiisscchhaarrggeedd..
FFoorr aaddddiittiioonnaall iinnffoorrmmaattiioonn rreeggaarrddiinngg tthhee ssaaffee ddiisscchhaarrggee ooff ccaappaacciittoorrss,, sseeee PPRROODD--SSVVBB0066**--EENN..
eventually develop. This overprotection causes poor voltage regulation (i.e., voltage is high when the circuit is unloaded, then drops as loads are added).
Figure 39. Option 2—PFCC wires routed through current transformers
Size motor overload protection to account for capacitor-supplied current. Overloads are typically set to measure the total current drawn by the motor. When PFCCs are used, they become the source of part of that current. If the current they provide is not registered by the overload protectors, potentially damaging amperage can reach the motor. The simplest way to ensure that the overloads detect all current supplied to the motor is to position the PFCCs upstream of the current transformers as shown in Figure 38, p. 58. If the capacitor connection points are downstream of the current transformers, route the PFCC leads through the current transformers as shown in Figure 39, p. 58. This ensures that the overloads register both line and capacitor-supplied current.

Interconnecting Wiring

Typical equipment room conduit layouts with and without unit-mounted starters are shown in the following two figures.
IImmppoorrttaanntt:: The interconnecting wiring between the
starter panel, compressor, and control panel is factory-installed with unit-mounted starters. However, when a remote-mounted starter is used, the interconnecting wiring must be field-installed.
NNoottee:: Refer to starter submittal drawing for location of
incoming wiring to the starter.
Simultaneously disconnect capacitors and load from line power. If the capacitors are not switched offline when the load is disconnected, they continue to add capacitance to the electrical distribution system. A leading power factor—too much capacitance—may
58
CVHE-SVX02M-EN
PPoowweerr SSuuppppllyy WWiirriinngg
Figure 40. Typical equipment room layout for units with unit-mounted starters
1. Line side power conduits
2. Unit-mounted starter
3. Unit control panel
Figure 41. Typical equipment room layout for units with remote-mounted starters
1. Line side power conduits
2. Remote-mounted starter
3. Unit control panel
4. Inter-processor communication (IPC) circuit conduit less than 30V (and current transformer/potential transformer [CT/PT] wiring for starters by others)
NNoottee:: Must enter the low voltage Class 2 portion of the
unit control panel (1000 feet [304.8 m] maximum).
5. Motor terminal box
6. 115V control conduit
NNoottee:: Must enter the higher than 30 Vdc Class 1 portion
of the until control panel.
7. Lead power wiring
NNoottee:: Refer to the unit field connection diagram for
approximate unit control panel knock out locations. To prevent damage to the unit control panel components, do NOT route control conduit into the top of the box.

Starter to Motor Wiring (Remote-Mounted Starters Only)

CVHE-SVX02M-EN

Ground Wire Terminal Lugs

Ground wire lugs are provided in the motor terminal box and in the starter panel.
59
PPoowweerr SSuuppppllyy WWiirriinngg

Terminal Clamps

NNOOTTIICCEE
UUssee CCooppppeerr CCoonndduuccttoorrss OOnnllyy!!
FFaaiilluurree ttoo uussee ccooppppeerr ccoonndduuccttoorrss ccoouulldd rreessuulltt iinn eeqquuiippmmeenntt ddaammaaggee aass uunniitt tteerrmmiinnaallss aarree nnoott ddeessiiggnneedd ttoo aacccceepptt ootthheerr ttyyppeess ooff ccoonndduuccttoorrss..
Terminal clamps are supplied with the motor terminals to accommodate either bus bars or standard motor terminal wire lugs. Terminal clamps provide additional surface area to minimize the possibility of improper electrical connections.

Wire Terminal Lugs

NNOOTTIICCEE
CCoommppoonneenntt DDaammaaggee!!
FFaaiilluurree ttoo eennssuurree tthhee ppoowweerr ssuuppppllyy wwiirriinngg aanndd oouuttppuutt ttoo mmoottoorr wwiirriinngg aarree ccoonnnneecctteedd ttoo tthhee pprrooppeerr tteerrmmiinnaallss ccoouulldd ccaauussee ccaattaassttrroopphhiicc ffaaiilluurree ooff tthhee ssttaarrtteerr aanndd//oorr mmoottoorr..
Wire terminal lugs must be field supplied.
Use field-provided, crimp-type wire terminal lugs properly sized for the application.
NNoottee:: Wire size ranges for the starter line and load-
side lugs are listed on the starter submittal drawings supplied by the starter manufacturer or Trane. Carefully review the submitted wire lug sizes for compatibility with the conductor sizes specified by the electrical engineer or contractor.
On 4160V and below, a terminal clamp with a 3/8-in. (9.525-mm) bolt is provided on each motor terminal stud; use the factory-supplied Belleville washers on the wire lug connections. The following figure illustrates the junction between a motor terminal stud and terminal lug.
Torque for this assembly is 24 ft·lb (32.5 N·m).
Install but do NOT connect the power leads between the starter and compressor motor. (These connections will be completed under supervision of a qualified Trane service engineer after the pre-start inspection.)
Figure 42. Terminal stud, clamp, and lug assembly
(4160V and below)
1. Belleville washer
2. Terminal lugs
3. Terminal clamp
4. Motor terminal stud
5. 3/8-in. bolt

Bus Bars

NNOOTTIICCEE
CCoommppoonneenntt DDaammaaggee!!
FFaaiilluurree ttoo ffoollllooww iinnssttrruuccttiioonnss bbeellooww ccoouulldd ccaauussee aann eelleeccttrriiccaall sshhoorrtt wwhhiicchh ccoouulldd rreessuulltt iinn ccoommppoonneenntt ddaammaaggee.. RReemmoovvee ddeebbrriiss ffrroomm iinnssiiddee tthhee CCPPTTRR ooppttiioonn eenncclloossuurree ppaanneell bbeeffoorree ttuurrnniinngg tthhee ppoowweerr oonn..
Bus bars and extra nuts are available as a Trane option.
Install the bus bars between the motor terminals when using a starter that is:
A low-voltage Adaptive Frequency™ Drive (AFD)
Across-the-line
Primary reactor/resistor
Autotransformer
Customer-supplied
Connect T1 to T6, T2 to T4, and T3 to T5.
NNoottee:: Bus bars are not needed in medium-voltage or
high-voltage applications since only three terminals are used in the motor and starter.
When attaching starter leads to 6.6 to 7kV motor terminals, the 1/2-in.-13 brass jam nuts should be tightened to a maximum torque of 18 to 22 ft·lb (24.4 to
29.8 N·m). Always use a second wrench to backup the
60
CVHE-SVX02M-EN
PPoowweerr SSuuppppllyy WWiirriinngg
assembly and prevent applying excessive torque to the terminal shaft.

Starter to Control Panel Wiring

The unit submittal includes the field wiring connection diagram and the starter-to-control-panel connection diagram (showing the electrical connections required between the remote-mounted starter and the control panel).
NNoottee:: Install separate conduit into the low voltage
(30 volts) section of the control panel.
When sizing and installing the electrical conductors for these circuits, follow the guidelines listed. Use 14 AWG for 120V control circuits unless otherwise specified.
NNOOTTIICCEE
AAddaappttiivvee FFrreeqquueennccyy DDrriivvee ((AAFFDD))// SSttaarrtteerr CCoommppoonneenntt DDaammaaggee!!
FFaaiilluurree ttoo rreemmoovvee ddeebbrriiss ffrroomm iinnssiiddee tthhee AAFFDD// ssttaarrtteerr ppaanneell ccoouulldd rreessuulltt iinn aann eelleeccttrriiccaall sshhoorrtt aanndd ccoouulldd ccaauussee sseerriioouuss AAFFDD//ssttaarrtteerr ccoommppoonneenntt ddaammaaggee..
IImmppoorrttaanntt:: Maintain at least 6 in. (16 cm) between low-
voltage (less than 30V) and high-voltage circuits. Failure to do so could result in electrical noise that may distort the signals carried by the low-voltage wiring, including the inter-processor communication (IPC) wiring.
To wire the starter to the control panel, use these guidelines:
If the starter enclosure must be cut to provide electrical access, exercise care to prevent debris from falling inside the enclosure. Do NOT cut the Adaptive Frequency™ Drive (AFD) enclosure.
Use only shielded, twisted-pair wiring for the inter­processsor communication (IPC) circuit between the starter and the control panel on remote­mounted starters.
NNoottee:: Recommended wire is Beldon Type 8760,
18 AWG for runs up to 1000 ft (304.8 m). The polarity of the IPC wiring is critical for proper operation.
Separate low-voltage (less than 30V; refer to Table
15, p. 54 and Table 16, p. 55) wiring from the 115V
wiring by running each in its own conduit.
When routing the IPC circuit out of the starter enclosure, ensure that it is at least 6 in. (16 cm) from all wires carrying a higher voltage.
WWAARRNNIINNGG
PPrrooppeerr FFiieelldd WWiirriinngg aanndd GGrroouunnddiinngg RReeqquuiirreedd!!
FFaaiilluurree ttoo ffoollllooww ccooddee ccoouulldd rreessuulltt iinn ddeeaatthh oorr sseerriioouuss iinnjjuurryy.. AAllll ffiieelldd wwiirriinngg MMUUSSTT bbee ppeerrffoorrmmeedd bbyy qquuaalliiffiieedd ppeerrssoonnnneell.. IImmpprrooppeerrllyy iinnssttaalllleedd aanndd ggrroouunnddeedd ffiieelldd wwiirriinngg ppoosseess FFIIRREE aanndd EELLEECCTTRROOCCUUTTIIOONN hhaazzaarrddss.. TToo aavvooiidd tthheessee hhaazzaarrddss,, yyoouu MMUUSSTT ffoollllooww rreeqquuiirreemmeennttss ffoorr ffiieelldd wwiirriinngg iinnssttaallllaattiioonn aanndd ggrroouunnddiinngg aass ddeessccrriibbeedd iinn NNEECC aanndd yyoouurr llooccaall// ssttaattee//nnaattiioonnaall eelleeccttrriiccaall ccooddeess..
IImmppoorrttaanntt::
The IPC wiring shield should be grounded on one end only at control panel end. The other end should be un­terminated and taped back on the cable sheath to prevent any contact between shield and ground.
Oil Pump Interlock: All starters must provide an interlock (normally open) contact with the chiller oil pump connected to the control panel at terminals 1A7-2-4 and 1A7-J2-2 (14 AWG) The purpose of this interlock is to maintain the oil pump signal in the event that a starter failure, such as welded contacts, keeps the chiller motor running after the controller interrupts the run signal.
CVHE-SVX02M-EN
61

10 to 13.8kV Medium Voltage Motor

WWAARRNNIINNGG
HHaazzaarrddoouuss VVoollttaaggee!!
FFaaiilluurree ttoo ddiissccoonnnneecctt ppoowweerr bbeeffoorree sseerrvviicciinngg ccoouulldd rreessuulltt iinn ddeeaatthh oorr sseerriioouuss iinnjjuurryy.. DDiissccoonnnneecctt aallll eelleeccttrriicc ppoowweerr,, iinncclluuddiinngg rreemmoottee ddiissccoonnnneeccttss bbeeffoorree sseerrvviicciinngg.. FFoollllooww pprrooppeerr lloocckkoouutt//ttaaggoouutt pprroocceedduurreess ttoo eennssuurree tthhee ppoowweerr ccaann nnoott bbee iinnaaddvveerrtteennttllyy eenneerrggiizzeedd.. VVeerriiffyy tthhaatt nnoo ppoowweerr iiss pprreesseenntt wwiitthh aa vvoollttmmeetteerr..
All electrical circuits shall be treated as energized until all lockout/tagout procedures are in place and the circuit has been tested to verify that it is de-energized. The medium-voltage motor terminal box cover must NOT be removed if power is present, or if there is a possibility that power may be present. Working on energized medium-voltage circuits is not an approved practice for normal HVAC maintenance or service.
The motor is suitable for remote-mounted across-the­line (including circuit breaker starting), primary reactor, autotransformer, or solid-state starting. Refer to the unit nameplate for motor data including RLA, LRA, etc.
In all cases of non-Trane supplied starters, the Trane
Engineering Specification for UC800 Starter By Others
(available through your local Trane office) must be followed in order to ensure proper function and protection of the chiller. A disconnecting means and short-circuit protection must be installed ahead of the starter, unless they are included as part of the starter.
NNoottee:: Trane assumes no responsibility for the design,
documentation, construction, compatibility, installation, start-up, or long term support of starters provided by others.

Motor Terminal Box

A large steel motor terminal box is provided to allow for the field connection of the motor power supply wire to the motor.
Figure 43. Motor terminal box dimensions, in. (mm)
Motor terminal box cover-only weight is 55 lb (25 kg).
Two 7/8-in. (22.225 mm) lifting holes are provided in the cover.
Motor terminal box weight without the cover is 215 lb (97.5 kg).
Two 3/8-in.–16 weld nuts are provided on the top of the terminal box to allow the use of properly rated lifting D-rings if removal is needed for clearance purposes.
NNoottee:: If the box is removed for installation
purposes, the motor terminals MUST be protected against impact or stress damage. Field fabrication of a cover or guard is required.
The motor terminal box is large enough to accommodate the use of stress cones.
If conduit is applied, a flexible connection of the conduit to the box should be made to allow for unit serviceability and for vibration isolation. The cable should be supported or protected against abrasion and wear on any edges or surfaces. Cable or conduit openings can be cut at any location in the box sides, top, or bottom for cable entry. Always ensure that NO debris remains in the box after cutting cable entry holes.
62
CVHE-SVX02M-EN
1100 ttoo 1133..88kkVV MMeeddiiuumm VVoollttaaggee MMoottoorr

Motor Supply Wiring

WWAARRNNIINNGG
PPrrooppeerr FFiieelldd WWiirriinngg aanndd GGrroouunnddiinngg RReeqquuiirreedd!!
FFaaiilluurree ttoo ffoollllooww ccooddee ccoouulldd rreessuulltt iinn ddeeaatthh oorr sseerriioouuss iinnjjuurryy.. AAllll ffiieelldd wwiirriinngg MMUUSSTT bbee ppeerrffoorrmmeedd bbyy qquuaalliiffiieedd ppeerrssoonnnneell.. IImmpprrooppeerrllyy iinnssttaalllleedd aanndd ggrroouunnddeedd ffiieelldd wwiirriinngg ppoosseess FFIIRREE aanndd EELLEECCTTRROOCCUUTTIIOONN hhaazzaarrddss.. TToo aavvooiidd tthheessee hhaazzaarrddss,, yyoouu MMUUSSTT ffoollllooww rreeqquuiirreemmeennttss ffoorr ffiieelldd wwiirriinngg iinnssttaallllaattiioonn aanndd ggrroouunnddiinngg aass ddeessccrriibbeedd iinn NNEECC aanndd yyoouurr llooccaall// ssttaattee//nnaattiioonnaall eelleeccttrriiccaall ccooddeess..
Motor circuit wire sizing by the installer must be made in accordance with the National Electric Code (NEC) or any other applicable codes. All wiring to the CenTraVac™ chiller motor must be shielded copper, with insulation rated to a minimum of 15kV.
Three terminals are provided on the chiller for the connection of power to the motor from the starter. Power leads to motors must be in multiples of three, with equal phase representation in all conduits or wire trays. To limit the effects of corona or ionization with cables carrying more than 2000V, Trane requires that the power cable have a metallic shield, unless the cable is specifically listed or approved for non-shielded use. If the cable is shielded, the shielding must be grounded at one end (grounding is typically done at the starter or supply end).
Care must be taken while routing the incoming cables to ensure that cable loads or tensions are not applied to the terminal or premature terminal failure could result.

Motor Terminals

Field-provided, ring-type lugs, with no sharp edges or corners, must be used by a qualified installer to connect the power wiring to the motor terminals.
Follow all instructions provided with the field-provided lugs to ensure proper connections.
IImmppoorrttaanntt:: The use of stress cones is highly
recommended to reduce and control longitudinal and radial electrical stresses at the cable ends.
Prior to assembly the terminal stud, nuts, and lug should be inspected and cleaned to ensure they are not damaged or contaminated.
The terminal has a copper shaft that is threaded 9/16­in.-18 UNF2A. Brass nuts are provided on the motor terminals to retain the lugs, and the final connection should be tightened to 22 to 25 ft·lb (29.8 to 33.9 N·m) using a 7/8-in. (22.225-mm) socket on a torque wrench.
NNOOTTIICCEE
MMoottoorr TTeerrmmiinnaall DDaammaaggee!!
AAppppllyyiinngg ttoorrqquuee ttoo tthhee mmoottoorr tteerrmmiinnaall wwhheenn ttiigghhtteenniinngg lluuggss ccoouulldd rreessuulltt iinn eeqquuiippmmeenntt oorr pprrooppeerrttyy--oonnllyy ddaammaaggee.. AAllwwaayyss uussee aa sseeccoonndd wwrreenncchh ttoo bbaacckk--uupp tthhee aasssseemmbbllyy aanndd pprreevveenntt tthhee aapppplliiccaattiioonn ooff ttoorrqquuee ttoo tthhee tteerrmmiinnaall sshhaafftt..
Before beginning wiring and torquing, ensure proper motor terminal care and do NOT apply any excess stress.

Ground Wire Terminal Lug

A ground wire lug is provided in the motor terminal box to allow the field connection of an earth ground. The lug will accept a field-supplied ground wire of #8 to #2 AWG. After completing the field connection of wiring, inspect and clean the motor terminals and motor housing, and remove any debris before reinstalling the motor terminal box cover. The cover must be re-installed onto the motor terminal box and all bolts installed. Do NOT operate the chiller with the motor terminal box cover removed or with any loose or missing cover bolts.
CVHE-SVX02M-EN
63

System Control Circuit Wiring (Field Wiring)

Table 20. Unit control panel wiring 120 Vac
Standard Control Circuits: Unit
Control Panel Control Wiring
Chilled Water Flow Proving Input
Condenser Water Flow Proving
Chilled Water Pump Relay Output
Condenser Water Pump Relay
Optional Control Circuits (120
Alarm Relay MAR (Non-Latching)
Alarm Relay MMR (Latching) Output
Compressor Running Relay Output
Maximum Capacity Relay Output
Head Relief Request Relay Output
Standard Low Voltage Circuits
Optional Low Voltage Circuits
External Base Loading Enable Input
External Hot Water Control Enable
External Ice Machine Control
External Free Cooling Input Enable
External Condenser Pressure
Evaporator/Condenser Differential
Condenser Head Pressure Control 1A15-J2-4 to 6
External Current Limit Setpoint
External Chilled Water Setpoint
External Base Loading Setpoint
Generic Refrigerant Monitor Input
Outdoor Air Temperature Sensor
NNoottee:: All wiring to be in accordance with National Electrical Code (NEC) and any local codes.
(a)
If the Chilled Water Flow Proving Input is a factory-installed ifm efector® flow-sensing device, the secondary field device (recommended with 38°F [3.3° C] and lower leaving chilled water temperatures) for proof of flow connects from 1X1-5 to 1K26-4 (binary input; normally open, closure with flow). Remove factory jumper when used.
(120 Vac)
(b)
Input
Output
Vac)
Output
Limit Warning Relay Output
Purge Alarm Relay Output
Ice Making Relay Output
Free Cooling Relay Output
(Less than 30 Vac)
External Auto Stop Input
Emergency Stop Input
Input
Enable Input
Input
% RLA Compressor Output
Output
Pressure Output
Input
Input
Input
Tracer® Comm Interface or
LonTalk®
BACnet® or MODBUS®
Tracer® SC Module
(c)
Unit Control Terminations
(a)
1X1-5 to 1A6-J3-2
1X1-6 to 1A6-J2-2
1A5-J2-4 to 6
1A5-J2-1 to 3
Note: Defaults are factory programmed; alternates can be selected at start-up using the service tool.
1A8-J2-1 to 3
1A8-J2-4 to 6
1A8-J2-7 to 9
1A8-J2-10 to 12
1A9-J2-1 to 3
1A9-J2-4 to 6
1A9-J2-7 to 9
1A5-J2-10 to 12
1A11-J2-4 to 6
Unit Control Panel Terminations
1A13-J2-1 to 2
1A13-J2-3 to 4
1A18-J2-1 to 2
1A18-J2-3 to 4
1A19-J2-1 to 2
1A20-J2-1 to 2
1A15-J2-1 to 3
1A15-J2-4 to 6
1A15-J2-4 to 6
1A16-J2-2 to 3
1A16-J2-5 to 6
1A17-J2-2 to 3
1A17-J2-5 to 6
Inter-processor Communication
(IPC) Bus Connection and Sensor
1A14-J2-1(+) to 2(-) 1A14-J2-3(+) to 4(-)
1A22, 5(+) to 6(-)
1A10
Input or Output Type
Binary Input Normally Open, Closure with Flow
Binary Input Normally Open, Closure with Flow
Binary Output Normally Open
Binary Output Normally Open
Binary Output Normally Open
Binary Output Normally Open
Binary Output Normally Open
Binary Output Normally Open
Binary Output Normally Open
Binary Output Normally Open
Binary Output Normally Open
Binary Output Normally Open
Binary Output Normally Open
Input or Output Type
Binary Input
Binary Input
Binary Input Normally Open
Binary Input Normally Open
Binary Input Normally Open
Binary Input Normally Open
Analog Output
Analog Output
Analog Output
Analog Output
Analog Input 2–10 Vdc, or 4–20 mA
Analog Input 2–10 Vdc, or 4–20 mA
Analog Input 2–10 Vdc, or 4–20 mA
Analog Input 2–10 Vdc, or 4–20 mA
Communication and Sensor
Communication to Tracer®
Communication to BACnet® or
Communication to Tracer® SC
or LonTalk®
MODBUS®
Module
Closure Required for Normal
Closure Required for Normal
(As Ordered; See Sales Order)
(As Ordered; See Sales Order)
Contacts
Contacts
Operation
Operation
2–10 Vdc
2–10 Vdc
2–10 Vdc
2–10 Vdc
64
CVHE-SVX02M-EN
SSyysstteemm CCoonnttrrooll CCiirrccuuiitt WWiirriinngg ((FFiieelldd WWiirriinngg))
Table 20. Unit control panel wiring 120 Vac (continued)
(b)
If the Condenser Water Flow Proving Input is a factory-installed ifm efector® flow-sensing device, the secondary (optional) field device for proof of flow connects from 1X1-6 to 1K27-4 (binary input; normally open, closure with flow). Remove factory jumper when used.
(c)
Standard low-voltage circuits (less than 30 Vac) must be separated from 120 Vac or higher wiring.

Water Pump Interlock Circuits and Flow Switch Input

WWAARRNNIINNGG
HHaazzaarrddoouuss VVoollttaaggee!!
FFaaiilluurree ttoo ddiissccoonnnneecctt ppoowweerr bbeeffoorree sseerrvviicciinngg ccoouulldd rreessuulltt iinn ddeeaatthh oorr sseerriioouuss iinnjjuurryy.. DDiissccoonnnneecctt aallll eelleeccttrriicc ppoowweerr,, iinncclluuddiinngg rreemmoottee ddiissccoonnnneeccttss bbeeffoorree sseerrvviicciinngg.. FFoollllooww pprrooppeerr lloocckkoouutt//ttaaggoouutt pprroocceedduurreess ttoo eennssuurree tthhee ppoowweerr ccaann nnoott bbee iinnaaddvveerrtteennttllyy eenneerrggiizzeedd.. VVeerriiffyy tthhaatt nnoo ppoowweerr iiss pprreesseenntt wwiitthh aa vvoollttmmeetteerr..
NNoottee:: The circuits for the chilled water proof of flow
and the condenser water proof of flow do NOT require external power. Refer to the wiring diagrams that shipped with the chiller.

Chilled Water Pump

1. Wire the evaporator water pump contactor (5K1) to a separate 120 volt single-phase power supply with 14 AWG, 600V copper wire.
2. Connect circuit to 1A5-J2-6.
3. Use 1A5-J2-4 120 Vac output to allow the control panel to control the evaporator water pump, or wire the 5K1 contactor to operate remotely and independently of the control panel.

Chilled Water Proof of Flow

When this circuit is installed properly and the evaporator pump is running and providing the required minimum flow, this circuit will prove the evaporator water flow for the chiller controls. Proof of evaporator water flow is required before the start sequence will be allowed to proceed and a loss of evaporator water flow during chiller operation will result in a chiller shut­down.
Refer to as-built schematics on the inside of the control panel for field wiring. This is a dry binary input; normally-open, closure for flow. Apply no external power.
1. With factory-installed ifm efector® flow-sensing devices, a field-provided secondary flow-sensing device is recommended with applications having 38°F (3.3°C) and below leaving evaporator water temperatures. When a secondary flow-sensing device is used, remove the factory jumper and install its contacts between 1X1-5 to 1K26-4; this places the secondary flow sensing device in series with the ifm efector® flow-sensing device.
2. For field-provided primary proof of flow devices,
connect the primary proof of flow device between terminals 1X1-5 to 1A6-J3-2. A secondary field device is recommended with applications having 38°F (3.3°C) and below leaving evaporator water temperatures, and must be field-wired in series with the primary proof of flow device.

Condenser Water Pump

1. Wire the condenser water pump contactor (5K2) to a separate 120-volt, single-phase power supply with 14 AWG, 600-volt copper wire.
2. Connect circuit to control panel terminals 1A5-J2-3.
3. Use 1A5-J2-1 120 Vac output to allow the control panel to control the condenser pump.

Condenser Water Proof of Flow

When this circuit is installed properly and the condenser pump is running and providing the required minimum condenser water flow, this circuit will prove the condenser water flow for the chiller controls. Proof of condenser water flow is also required for the start sequence will be allowed to proceed and a loss of condenser water flow during chiller operation will result in a chiller shut-down.
Refer to as-built schematics on the inside of the control panel for field wiring. This is a dry binary input; normally-open, closure for flow. Apply no external power.
1. With factory-installed ifm efector® flow-sensing devices, a secondary field-provided flow-sensing device is optional. When a secondary flow-sensing device is used, remove the factory jumper, and install its contacts between 1X1-5 to 1K27-4; this places the secondary flow sensing device in series with the ifm efector® flow-sensing device.
2. For field-provided primary proof of flow devices, connect the primary proof of flow device between terminals 1X1-6 to 1A6-J2-2. The secondary field provided flow sensing device is optional; however, when it is present, it must be field-wired in series with the primary proof of flow device.

Temperature Sensor Circuits

All temperature sensors are factory installed except the optional outdoor air temperature sensor. This sensor is required for the outdoor air temperature type of chilled water reset. Use the following guidelines to locate and mount the outdoor air temperature sensor. Mount the sensor probe where needed; however, mount the sensor module in the control panel.
CVHE-SVX02M-EN
65
SSyysstteemm CCoonnttrrooll CCiirrccuuiitt WWiirriinngg ((FFiieelldd WWiirriinngg))

CWR—Outdoor Option

The outdoor temperature sensor is similar to the unit­mounted temperature sensors in that it consists of the sensor probe and the module. A four-wire inter­processor communication (IPC) bus is connected to the module for 24 Vdc power and the communications link. Trane recommends mounting the sensor module within the control panel and the sensor two wire leads be extended and routed to the outdoor temperature sensor probe sensing location. This ensures the four­wire inter-processor control (IPC) bus protection and provides access to the module for configuration at start-up.
The sensor probe lead wire between the sensor probe and the module can be separated by cutting the two­wire probe lead leaving equal lengths of wire on each device: the sensor probe and the sensor module.
NNoottee:: This sensor and module are matched and must
remain together or inaccuracy may occur.
These wires can then be spliced with two 14 to 18 AWG 600V wires of sufficient length to reach the desired outdoor location with a maximum length 1000 ft (304.8 m). The module four-wire bus must be connected to the control panel four-wire bus using the Trane-approved connectors provided.
The sensor will be configured (given its identity and become functional) at start-up when the Trane service technician performs the start-up configuration. It will NOT be operational until that time.
NNoottee:: If shielded cable is used to extend the sensor
leads, be sure to cover the shield wire with tape at the junction box and ground it at the control panel. If the added length is run in conduit, do NOT run them in the same conduit with other circuits carrying 30 or more volts.
IImmppoorrttaanntt:: Maintain at least 6 in. (15.24 cm) between
low-voltage (less than 30V) and high voltage circuits. Failure to do so could result in electrical noise that may distort the signals carried by the low-voltage wiring, including the IPC.

Optional Control and Output Circuits

Install various optional wiring as required by the owner’s specifications (see Table 20, p. 64).

Optional Tracer Communication Interface

This control option allows the control panel to exchange information—such as chiller status and operating set points—with a Tracer® system.
NNoottee:: The circuit must be run in separate conduit to
prevent electrical noise interference.
Additional information about the Tracer® communication interface option is published in the Installation and Operation manual that ships with the Tracer® communication interface

Starter Module Configuration

The starter module configuration settings will be checked (and configured for remote starters) during start-up commissioning.
NNoottee:: To configure starter modules and perform other
starter checks, it is recommended that the line voltage three-phase power be turned off and secured (locked out), and then that a separate source control power (115 Vac) be utilized to power up the control circuits.
Use the as-built starter schematic to ensure correct fuse and terminals. Verify that the correct fuse is removed and that the control circuit connections are correct; then apply the 115 Vac separate source power to service the controls.

Schematic Wiring Drawings

Please refer to the submittals and drawings that shipped with the unit. Additional wiring drawings for CenTraVac™ chillers are available from your local Trane office.
66
CVHE-SVX02M-EN

Operating Principles

General Requirements

Operation and maintenance information for CVHE, CVHF, and CVHG CenTraVac™ chillers are covered in this section. This includes both 50 and 60 Hz centrifugal chillers equipped with the Tracer® AdaptiView™ UC800 control system. This information pertains to all chiller types unless differences exist, in which case the sections are listed by chiller type as applicable and described separately. By carefully reviewing this information and following the instructions given, the owner or operator can successfully operate and maintain a CenTraVac™ chiller. If mechanical problems do occur, however, contact a Trane service technician to ensure proper diagnosis and repair of the unit.
IImmppoorrttaanntt:: Although CenTraVac
through surge, it is NOT recommended to operate them through repeated surges over long durations. If repeated surges of long durations occur, contact your Trane Service Agency to resolve the issue.
chillers can operate

Cooling Cycle

When in the cooling mode, liquid refrigerant is distributed along the length of the evaporator and sprayed through small holes in a distributor (i.e., running the entire length of the shell) to uniformly coat each evaporator tube. Here, the liquid refrigerant absorbs enough heat from the system water circulating through the evaporator tubes to vaporize. The gaseous refrigerant is then drawn through the eliminators (which remove droplets of liquid refrigerant from the gas) and the first-stage variable inlet guide vanes, and into the first-stage impeller.
further cooling the liquid refrigerant. This flash gas is then drawn directly from the first and second stages of the economizer into the third- and second-stage impellers of the compressor, respectively. All remaining liquid refrigerant flows through another orifice plate to the evaporator.
Figure 44. Pressure enthalpy curve, 3-stage
Figure 45. Refrigerant flow, 3-stage

CVHE and CVHG 3-Stage Compressor

Compressed gas from the first-stage impeller flows through the fixed, second-stage inlet vanes and into the second-stage impeller. Here, the refrigerant gas is again compressed, and then discharged through the third-stage variable guide vanes and into the third­stage impeller. After the gas is compressed a third time, it is discharged into the condenser. Baffles within the condenser shell distribute the compressed refrigerant gas evenly across the condenser tube bundle. Cooling tower water circulated through the condenser tubes absorbs heat from the refrigerant, causing it to condense. The liquid refrigerant then passes through an orifice plate and into the economizer.
The economizer reduces the energy requirements of the refrigerant cycle by eliminating the need to pass all gaseous refrigerant through three stages of compression (refer to Figure 45, p. 67). Notice that some of the liquid refrigerant flashes to a gas because of the pressure drop created by the orifice plates, thus
CVHE-SVX02M-EN

CVHF 2-Stage Compressor

Compressed gas from the first-stage impeller is discharged through the second-stage variable guide vanes and into the second-stage impeller. Here, the refrigerant gas is again compressed, and then discharged into the condenser. Baffles within the condenser shell distribute the compressed refrigerant gas evenly across the condenser tube bundle. Cooling tower water circulated through the condenser tubes absorbs heat from the refrigerant, causing it to condense. The liquid refrigerant then flows out of the bottom of the condenser, passing through an orifice plate and into the economizer.
The economizer reduces the energy requirements of the refrigerant cycle by eliminating the need to pass all
67
OOppeerraattiinngg PPrriinncciipplleess
gaseous refrigerant through both stages of compression (refer to Figure 47, p. 68). Notice that some of the liquid refrigerant flashes to a gas because of the pressure drop created by the orifice plate, thus further cooling the liquid refrigerant. This flash gas is then drawn directly from the economizer into the second-stage impellers of the compressor. All remaining liquid refrigerant flows out of the economizer, passing through another orifice plate and into the evaporator.
Figure 46. Pressure enthalpy curve

Oil and Refrigerant Pump

Compressor Lubrication System

A schematic diagram of the compressor lubrication system is illustrated in the following figure. Oil is pumped from the oil tank (by a pump and motor located within the tank) through an oil pressure regulating valve designed to maintain a net oil pressure of 18 to 22 psid (124.1 to 151.7 kPaD). It is then filtered and sent to the oil cooler located in the economizer and on to the compressor motor bearings. From the bearings, the oil drains back to the manifold and separator under the motor and then on to the oil tank.
Figure 47. Refrigerant flow, 2-stage
68
CVHE-SVX02M-EN
Figure 48. Oil refrigerant pump
OOppeerraattiinngg PPrriinncciipplleess
1. Motor coolant return to condenser, 2.125 in. (53.975 mm) OD
2. Oil tank vent to evaporator
3. Oil separator and tank vent manifold
4. Tank vent line
5. Condenser
6. High pressure condenser gas to drive oil reclaim eductors, 0.375 in. (9.525 mm) OD
7. Oil return to tank
8. Oil tank
9. Oil cooler within economizer 0.625 in. (15.875 mm) OD coiled tubing
10. Oil reclaim from evaporator (second eductor), 0.25 in. (6.35 mm) OD
11. Liquid refrigerant to pump, 1.625 in. (41.275 mm) OD
12. Economizer
13. Oil supply to bearings, 0.625 in. (15.875 mm) OD
14. Purge
15. Compressor
16. Liquid refrigerant motor coolant supply, 1.125 in. (28.575 mm) OD
17. Liquid refrigerant to economizer
18. Liquid refrigerant to evaporator
19. Evaporator
CVHE-SVX02M-EN
69
OOppeerraattiinngg PPrriinncciipplleess
20. Oil reclaim from suction cover (first eductor), 0.25 in. (6.35 mm) OD
21. Motor coolant filter
CCAAUUTTIIOONN
HHoott SSuurrffaaccee!!
FFaaiilluurree ttoo ffoollllooww iinnssttrruuccttiioonnss bbeellooww ccoouulldd rreessuulltt iinn mmooddeerraattee iinnjjuurryy.. SSuurrffaaccee tteemmppeerraattuurreess ccaann rreeaacchh 115500°°FF ((6666°°CC)).. TToo aavvooiidd ppoossssiibbllee sskkiinn bbuurrnnss,, ssttaayy cclleeaarr ooff tthheessee ssuurrffaacceess.. IIff ppoossssiibbllee,, aallllooww ssuurrffaacceess ttoo ccooooll bbeeffoorree sseerrvviicciinngg.. IIff sseerrvviicciinngg iiss nneecceessssaarryy wwhhiillee ssuurrffaaccee tteemmppeerraattuurreess aarree ssttiillll eelleevvaatteedd,, yyoouu MMUUSSTT ppuutt oonn aallll PPeerrssoonnaall PPrrootteeccttiivvee EEqquuiippmmeenntt ((PPPPEE))..
To ensure proper lubrication and prevent refrigerant from condensing in the oil tank, a 750-watt heater is in a well in the oil tank. The heater is used to warm the oil while the unit is off. With the default settings for R-123, the oil heater is de-energized when the unit starts. With the default settings for R-514A, Running Oil Temperature Control is enabled, and the Running Oil Temperature Setpoint is factory-programmed at 100°F (37.8°C). With either refrigerant, the heater energizes as needed to maintain 140°F to 145°F (60.0°C to 62.8°C) when the chiller is not running.
With R-123 and mineral oil, when the chiller is operating, the temperature of the oil tank is typically 100°F to 160°F (37.8°C to 71.1°C). With R-514A, solid state oil heater control is installed and enabled. The oil return lines from the thrust and journal bearings transport oil and some seal leakage refrigerant. The oil return lines are routed into a manifold and separator under the motor. Gas flow exits the top of the manifold and is vented to the evaporator. Oil exits the bottom of the manifold and returns to the tank. Separation of the seal leakage gas in the separator keeps this gas out of the tank.
A dual eductor system is used to reclaim oil from the suction cover and the evaporator, and deposit it back into the oil tank. These eductors use high-pressure condenser gas to draw the oil from the suction cover and evaporator to the eductors and then discharge into the oil tank. The evaporator eductor line has a shut-off valve mounted by the evaporator.The shut-off valve will be set during commissioning, but may be adjusted
later by a qualified technician as necessary for oil return. A normal operating setting for the valve may range from full closed to two turns open.
NNoottee:: Depending on operating conditions, the oil
sump’s normal operating oil level may vary from just below the bottom sight glass to near the top of the upper sight glass.
Liquid refrigerant is used to cool the oil supply to both the thrust bearing and journal bearings. On refrigerant pump units, the oil cooler is located inside the economizer and uses refrigerant passing from the condenser to evaporator to cool the oil. Oil leaves the oil cooler and flows to both the thrust and journal bearings.

Motor Cooling System

Compressor motors are cooled with liquid refrigerant (refer to Figure 48, p. 69). The refrigerant pump is located on the front of the oil tank (motor inside the oil tank). The refrigerant pump inlet is connected to the well at the bottom of the condenser. The connection is on the side where a weir ensures a preferential supply of liquid refrigerant. Refrigerant is delivered to the motor via the pump. An in-line filter is installed (replace the in-line filter only with major service). Motor refrigerant drain lines are routed to the condenser.

Tracer AdaptiView Display

Information is tailored to operators, service technicians, and owners.
When operating a chiller, there is specific information you need on a day-to-day basis—setpoints, limits, diagnostic information, and reports.
Day-to-day operational information is presented at the display. Logically organized groups of information— chiller modes of operation, active diagnostics, settings, graphs, and reports put information conveniently at your fingertips. For more information, refer to Tracer
AdaptiView Display for Water-Cooled CenTraVac Chillers Operations Guide (CTV-SVU01*-EN).
70
CVHE-SVX02M-EN

Start-up and Shut-down

This section provides basic information on chiller operation for common events.

Sequence of Operation

Adaptive control algorithms are used on CenTraVac™ chillers. This section illustrates common control sequences.

Software Operation Overview Diagram

The following figure is a diagram of the five possible software states. This diagram can be thought of as a state chart, with the arrows and arrow text, depicting the transitions between states:
The text in the circles are the internal software designations for each state.
Figure 49. Software operation overview
The first line of text in the circles are the visible top level operating modes that can be displayed in Tracer® AdaptiView™.
The shading of each software state circle corresponds to the shading on the time lines that show the state that the chiller is in.
There are five generic states that the software can be in:
Power Up
Stopped
Starting
Running
Stopping
CVHE-SVX02M-EN
71
SSttaarrtt--uupp aanndd SShhuutt--ddoowwnn
Figure 50. Sequence of operation: Tracer®® AdaptiView™™ power up
In the following diagrams:
The time line indicates the upper level operating mode, as it would be viewed in the Tracer® AdaptiView™.
The shading color of the cylinder indicates the software state.
Text in parentheses indicates sub-mode text as viewed in the Tracer® AdaptiView™.
Text above the time line cylinder is used to illustrate inputs to the UC800. This may include user input to the Tracer® AdaptiView™ touch screen, control inputs from sensors, or control inputs from a generic BAS.
Boxes indicate control actions such as turning on relays, or moving the inlet guide vanes.
Smaller cylinders indicate diagnostic checks, text indicates time-based functions, solid double arrows indicate fixed timers, and dashed double arrows indicate variable timers.
Start-up Sequence of Operation—Wye­delta
Logic circuits within the various modules will
determine the starting, running, and stopping operation of the chiller. When operation of the chiller is required, the chiller mode is set at “Auto.” Using customer-supplied power, the chilled water pump relay is energized and chilled water flow must be verified within 4 minutes and 15 seconds. The UC800 decides to start the chiller based on the differential to start setpoint. With the differential to start criteria met, the UC800 then energizes condenser water pump relay with customer-supplied power (refer to Figure 51, p.
73).
Based on the Restart Inhibit function and the Differential to Start setpoint, the oil and refrigerant pump is energized. The oil pressure must be at least 12 psid (82.7 kPaD) for 60 continuous seconds and condenser water flow verified within 4 minutes and 15 seconds for the compressor start sequence to be initiated.
The compressor motor starts in the “Wye” configuration and then, after the compressor motor has accelerated and the maximum phase current has dropped below 85 percent of the chiller nameplate RLA for 1.5 seconds, the starter transitions to the “Delta” configuration.
72
CVHE-SVX02M-EN
Figure 51. Sequence of operation: power up to starting
SSttaarrtt--uupp aanndd SShhuutt--ddoowwnn
Now that the compressor motor is running in the “Delta” configuration, the inlet guide vanes will modulate, opening and closing to the chiller load variation by operation of the stepper vane motor actuator to satisfy chilled water setpoint. The chiller continues to run in its appropriate mode of operation: Normal, Softload, Limit Mode, and so on (refer to
Figure 52, p. 74).
If the chilled water temperature drops below the chilled water setpoint by an amount set as the differential to stop setpoint, a normal chiller stop sequence is initiated as follows:
1. The inlet guide vanes are driven closed (up to
50 seconds).
2. After the inlet guide vanes are closed, the stop relay and the condenser water pump relays open to turn off. The oil and refrigerant pump motor will continue to run for 3 minutes post-lube while the compressor coasts to a stop. The chilled water pump will continue to run while the UC800 monitors leaving chilled water temperature, preparing for the next compressor motor start based on the differential to start setpoint.
Figure 53, p. 74 illustrates this sequence.
CVHE-SVX02M-EN
73
SSttaarrtt--uupp aanndd SShhuutt--ddoowwnn
Figure 52. Sequence of operation: running
Figure 53. Sequence of operation: satisfied setpoint
If the STOP key is pressed on the operator interface, the chiller will follow the same stop sequence as described earlier except the chilled water pump relay will also open and stop the chilled water pump after the chilled water pump delay timer has timed out after compressor shut down (see Figure 55, p. 76).
74
If the immediate stop is initiated, a panic stop occurs which follows the same stop sequence as pressing the STOP key once, except the inlet guide vanes are not sequence-closed and the compressor motor is immediately turned off.
CVHE-SVX02M-EN
Figure 54. Sequence of operation: Fast restart within postlube
SSttaarrtt--uupp aanndd SShhuutt--ddoowwnn
CVHE-SVX02M-EN
75
SSttaarrtt--uupp aanndd SShhuutt--ddoowwnn
Figure 55. Sequence of operation: normal shut-down to stopped and run inhibit

Power Up Diagram

Figure 51, p. 73 illustrates Tracer® AdaptiView™
during a power up of the UC800. This process takes from 30 to 50 seconds depending on the number of installed options.

Ice Machine Control

The control panel provides a service level Enable or Disable menu entry for the Ice Building feature when the Ice Building option is installed. Ice Building can be entered from Front Panel or, if hardware is specified, the control panel will accept either an isolated contact closure 1A19 Terminals J2-1 and J2-2 (Ground) or a remote-communicated input (BAS) to initiate the ice building mode where the unit runs fully loaded at all times. Ice building will be terminated either by opening the contact or based on entering evaporator fluid temperature. The control panel will not permit the Ice Building mode to be entered again until the unit is
switched to the non-ice building mode and back into the ice building mode. It is not acceptable to reset the chilled water setpoint low to achieve a fully loaded compressor. When entering ice building, the compressor will be loaded at its maximum rate and when leaving ice building, the compressor will be unloaded at its maximum rate. While loading and unloading the compressor, all surge detection will be ignored. While in the ice building mode, current limit setpoints less than the maximum will be ignored. Ice Building can be terminated by one of the following means:
Front panel disable
Opening the external ice contacts/remote­communicated input (BAS)
Satisfying an evaporator entering fluid temperature setpoint (default is 27°F [-2.8°C])
Surging for seven minutes at full open inlet guide vanes (IGV)
76
CVHE-SVX02M-EN
Figure 56. Sequence of operation: ice making: running to ice making
SSttaarrtt--uupp aanndd SShhuutt--ddoowwnn
CVHE-SVX02M-EN
77
SSttaarrtt--uupp aanndd SShhuutt--ddoowwnn
Figure 57. Sequence of operation: ice making: stopped to ice to ice building complete

Free Cooling Cycle

Based on the principle that refrigerant migrates to the coldest area in the system, the free cooling option adapts the basic chiller to function as a simple heat exchanger. However, it does not provide control of the leaving chilled water temperature.
If condenser water is available at a temperature lower than the required leaving chilled water temperature, the operator interface must remain in AUTO and the operator starts the free cooling cycle by enabling the Free Cooling mode in the Tracer® AdaptiView™ Feature Settings group of the operator interface, or by means of a BAS request. The following components must be factory- or field-installed to equip the unit for free cooling operation:
a refrigerant gas line, and electrically-actuated shutoff valve, between the evaporator and condenser,
a valved liquid return line, and electrically-actuated shutoff valve, between the condenser sump and the evaporator,
a liquid refrigerant storage vessel (larger economizer), and
additional refrigerant.
When the chiller is changed over to the free cooling mode, the compressor will shut down if running and the shutoff valves in the liquid and gas lines open; unit control logic prevents the compressor from energizing during free cooling. Liquid refrigerant then drains (by gravity) from the storage tank into the evaporator and floods the tube bundle. Since the temperature and pressure of the refrigerant in the evaporator are higher than in the condenser (i.e., because of the difference in water temperature), the refrigerant in the evaporator vaporizes and travels to the condenser, cooling tower water causes the refrigerant to condense on the condenser tubes, and flow (again, by gravity) back to the evaporator.
This compulsory refrigerant cycle is sustained as long as a temperature differential exists between condenser and evaporator water. The actual cooling capacity provided by the free cooling cycle is determined by the difference between these temperatures which, in turn, determines the rate of refrigerant flow between the evaporator and condenser shells.
If the system load exceeds the available free cooling capacity, the operator must manually initiate changeover to the mechanical cooling mode by disabling the free cooling mode of operation. The gas and liquid line valves then close and compressor operation begins (refer to Figure 51, p. 73, beginning at
78
CVHE-SVX02M-EN
SSttaarrtt--uupp aanndd SShhuutt--ddoowwnn
Auto mode). Refrigerant gas is drawn out of the evaporator by the compressor, where it is then compressed and discharged to the condenser. Most of the condensed refrigerant initially follows the path of least resistance by flowing into the storage tank. This tank is vented to the economizer sump through a small bleed line; when the storage tank is full, liquid refrigerant must flow through the bleed line restriction. Because the pressure drop through the bleed line is greater than that of the orifice flow control device, the liquid refrigerant flows normally from the condenser through the orifice system and into the economizer.

Free Cooling (FRCL)

To enable Free Cooling mode:
1. Install and commission Free Cooling.
2. Enable the Free Cooling mode in the Tracer® AdaptiView™ Settings menu.
3. Press AUTO, and if used, close the external binary input switch (connected to 1A20 J2-1 to 2) while the chiller is in AUTO.
NNoottee:: Free Cooling cannot be entered if the chiller is in
“STOP”.
If the chiller is in AUTO and not running, the condenser water pump will start. After condenser water flow is proven, Relay Module 1A11 will energize operating the Free Cooling Valves 4B12 and 4B13. The Free Cooling Valves End Switches must open within 3 minutes, or an MMR diagnostic will be generated. Once the Free Cooling Valves End Switches open, the unit is in the Free Cooling mode. If the chiller is in AUTO and running powered cooling, the chiller will initiate a friendly shut down first (Run: Unload, Post Lube, and drive vanes closed). After the vanes have been overdriven closed and condenser water flow proven, the Free Cooling relays will be energized. To disable Free Cooling and return to Powered Cooling, either disable the Free Cooling Mode in the Tracer® AdaptiView™ Settings menu if used to enable Free Cooling, or OPEN the external binary input switch to the 1A20 Module if it was used to enable Free Cooling. Once Free Cooling is disabled, the Free Cooling relays Relay Module 1A11 will de-energize allowing the Free Cooling valves to close. The Free Cooling valves’ end switches must close within 3 minutes or an MMR diagnostic is generated. After the end switches close, the chiller will return to AUTO and powered cooling will resume if there is a call for cooling based on the differential to start.
NNootteess::
The manual control of the inlet guide vanes is disabled while in the Free Cooling mode and the compressor is prevented from starting by the control logic.
The relay at 1A11-J2-4 to 6 is a FC auxiliary relay and can be used as required.

Hot Gas Bypass (HGBP)

The hot gas bypass (HGBP) control option is designed to minimize machine cycling by allowing the chiller to operate stably under minimum load conditions. In these situations, the inlet guide vanes are locked at a preset minimum position, and unit capacity is governed by the HGBP valve actuator. Control circuitry is designed to allow both the inlet guide vanes and the HGBP valve to close for unit shut-down. After a chiller starts and is running, the inlet guide vanes will pass through the HGBP Cut-In-Vane position as the chiller starts to load. As the chiller catches the load and starts to unload, the inlet guide vanes will close to the Hot Gas Bypass Cprsr Ctrl Command position. At this point, the movement of the inlet guide vanes is stopped and further loading/unloading of the chiller is controlled by the opening/closing of the HGBP Valve (4M5). When the control algorithm determines the chiller to be shut down, the inlet guide vanes will be driven fully closed and the HGBP valve will be driven closed. After the inlet guide vanes are fully closed, the chiller will shut down in the Friendly mode. Chillers with HGBP have a discharge temperature sensor (4R16) monitoring the discharge gas temperature from the compressor. If this temperature exceeds the High Cprsr Rfgt Discharge Temp Cutout 200°F (93.3°C) default, the chiller will shut off on a MAR diagnostic. The chiller will reset automatically when this temperature drops 50°F (10.0° C) below the trip-point. HGBP is enabled in the Features Menu Settings group of the Tracer® AdaptiView™ menus by enabling the option. The setting of the HGBP Cut-In Vane Position is set-up at unit commissioning via the service tool.

Hot Water Control

Occasionally, CenTraVac™ chillers are selected to provide heating as a primary mission. With hot water temperature control, the chiller can be used as a heating source or cooling source. This feature provides greater application flexibility. In this case, the operator selects a hot water temperature and the chiller capacity is modulated to maintain the hot water setpoint. Heating is the primary mission and cooling is a waste product or is a secondary mission. This type of operation requires an endless source of evaporator load (heat), such as well or lake water. The chiller has only one condenser.
NNoottee:: Hot Water Temperature Control mode does NOT
convert the chiller to a heat pump. Heat pump refers to the capability to change from a cooling­driven application to a heating-driven application by changing the refrigerant path on the chiller. This is impractical for centrifugal chillers as it would be much easier to switch over the water side.
This is NOT heat recovery. Although this feature could be used to recover heat in some form, a heat recovery
CVHE-SVX02M-EN
79
SSttaarrtt--uupp aanndd SShhuutt--ddoowwnn
unit has a second heat exchanger on the condenser side.
The Tracer® AdaptiView™ provides the Hot Water Temperature Control mode as standard. The leaving condenser water temperature is controlled to a hot water setpoint between 80°F and 140°F (26.7°C and
60.0°C). The leaving evaporator water temperature is left to drift to satisfy the heating load of the condenser. In this application, the evaporator is normally piped into a lake, well, or other source of constant temperature water for the purpose of extracting heat. In Hot Water Temperature Control mode, all the limit modes and diagnostics operate as in normal cooling with one exception: the leaving condenser water temperature sensor is an MMR diagnostic when in Hot Water Temperature Control mode. (It is an informational warning in the Normal Cooling mode.)
In the Hot Water Temperature Control mode, the differential-to-start and differential-to-stop setpoints are used with respect to the hot water setpoint instead of with the chilled water setpoint. The control panel provides a separate entry at the Tracer® AdaptiView™ to set the hot water setpoint; Tracer® AdaptiView™ is also able to set the hot water setpoint. In the Hot Water mode, the external chilled water setpoint is the external hot water setpoint; that is, a single analog input is shared at the 1A16-J2-5 to 6 (ground).
An external binary input to select external Hot Water Control mode is on the EXOP OPTIONAL module 1A18 terminals J2-3 to J2-4 (ground). Tracer® AdaptiView™ also has a binary input to select chilled water control or hot water temperature control. There is no additional leaving hot water temperature cutout; the HPC and condenser limit provide for high temperature and pressure protection.
In Hot Water Temperature Control, the softloading pulldown rate limit operates as a softloading pullup rate limit. The setpoint for setting the temperature rate limit is the same setpoint for normal cooling as it is for hot water temperature control. The hot water temperature control feature is not designed to run with HGBP, AFD, free cooling, or ice making.
The factory set PID tuning values for the leaving water temperature control are the same settings for both normal cooling and hot water temperature control.

Heat Recovery Cycle

Heat recovery is designed to salvage the heat that is normally rejected to the atmosphere through the cooling tower and put it to beneficial use. For example, a high-rise office building may require simultaneous heating and cooling during the winter months. With the addition of a heat recovery cycle, heat removed from the building cooling load can be transferred to areas of the building that require heat.
NNoottee:: The heat recovery cycle is possible only if a
cooling load exists to act as a heat source.
To provide a heat recovery cycle, a heat-recovery condenser is added to the unit. Though physically identical to the standard cooling condenser, the heat­recovery condenser is piped into a heat circuit rather than to the cooling tower. During the heat recovery cycle, the unit operates just as it does in the cooling only mode except that the cooling load heat is rejected to the heating water circuit rather than to the cooling tower water circuit. When hot water is required, the heating water circuit pumps energize. Water circulated through the heat-recovery (or auxiliary) condenser tube bundle by the pumps absorbs cooling load from the compressed refrigerant gas discharged by the compressor. The heated water is then used to satisfy heating requirements.

Auxiliary Condensers

Unlike the heat-recovery condenser (which is designed to satisfy comfort heating requirements), the auxiliary condenser serves a preheat function only and is used in those applications where hot water is needed for use in kitchens, lavatories, etc. While the operation of the auxiliary condenser is physically identical to that of the heat-recovery condenser, it is comparatively smaller in size and its heating capacity is not controlled. Trane does not recommend operating the auxiliary condenser alone because of its small size.
Control Panel Devices and Unit­Mounted Devices

Unit Control Panel

Safety and operating controls are housed in the unit control panel, the starter panel, and the purge control panel. The control panel operator interface and UC800 is called Tracer® AdaptiView™ and is located on an adjustable arm connected to the base of the control panel. For more information about operating Tracer® AdaptiView™, refer to Tracer AdaptiView Display for
Water-Cooled CenTraVac Chillers Operations Guide
(CTV-SVU01*-EN).
The control panel houses several other controls modules called panel-mounted Low Level Intelligent Devices (LLIDs), power supply, terminal block, fuse, circuit breakers, and transformer. The inter-processor communication (IPC) bus allows the communications between LLIDs and the UC800. Unit-mounted devices are called frame-mounted LLIDs and can be temperature sensors or pressure transducers. These and other functional switches provide analog and binary inputs to the control system.

User-Defined Language Support

Tracer® AdaptiView™ is capable of displaying English text or any of 26 other languages. Switching languages is simply accomplished from a Language Settings menu. The following languages are available:
80
CVHE-SVX02M-EN
SSttaarrtt--uupp aanndd SShhuutt--ddoowwnn
Arabic (Gulf Regions)
Chinese—China
Chinese—Taiwan
Czech
Dutch
English
French
French (Canada)
German
Greek
Hebrew
Hungarian
Indonesian
Italian
Japanese
Korean
Norwegian
Polish
Portuguese (Portugal)
Portuguese (Brazil)
Russian
Romanian
Spanish (Europe)
Spanish (Latin America)
Swedish
Thai

Unit Start-up and Shut-down Procedures

WWAARRNNIINNGG
LLiivvee EElleeccttrriiccaall CCoommppoonneennttss!!
FFaaiilluurree ttoo ffoollllooww aallll eelleeccttrriiccaall ssaaffeettyy pprreeccaauuttiioonnss wwhheenn eexxppoosseedd ttoo lliivvee eelleeccttrriiccaall ccoommppoonneennttss ccoouulldd rreessuulltt iinn ddeeaatthh oorr sseerriioouuss iinnjjuurryy.. WWhheenn iitt iiss nneecceessssaarryy ttoo wwoorrkk wwiitthh lliivvee eelleeccttrriiccaall ccoommppoonneennttss,, hhaavvee aa qquuaalliiffiieedd lliicceennsseedd eelleeccttrriicciiaann oorr ootthheerr iinnddiivviidduuaall wwhhoo hhaass bbeeeenn pprrooppeerrllyy ttrraaiinneedd iinn hhaannddlliinngg lliivvee eelleeccttrriiccaall ccoommppoonneennttss ppeerrffoorrmm tthheessee ttaasskkss..
WWAARRNNIINNGG
TTooxxiicc HHaazzaarrddss!!
AA ssiiggnniiffiiccaanntt rreelleeaassee ooff rreeffrriiggeerraanntt iinnttoo aa ccoonnffiinneedd ssppaaccee dduuee ttoo aa rruuppttuurree ddiisskk ffaaiilluurree ccoouulldd ddiissppllaaccee aavvaaiillaabbllee ooxxyyggeenn ttoo bbrreeaatthhee aanndd ccaauussee ppoossssiibbllee aasspphhyyxxiiaattiioonn.. FFaaiilluurree ttoo ffoollllooww iinnssttrruuccttiioonnss bbeellooww ccoouulldd rreessuulltt iinn ddeeaatthh oorr sseerriioouuss iinnjjuurryy.. SShhoouulldd aa rruuppttuurree ddiisskk ffaaiill,, eevvaaccuuaattee tthhee aarreeaa iimmmmeeddiiaatteellyy aanndd ccoonnttaacctt tthhee aapppprroopprriiaattee rreessccuuee oorr rreessppoonnssee aauutthhoorriittyy..
WWhhiillee tthhee uunniitt iiss ooffff,, ddoo nnoott aallllooww tthhee cchhiilllleerr ttoo eexxcceeeedd 111100°°FF ((4433..33°°CC)) ffoorr mmooddeellss CCDDHHFF,, CCDDHHGG,, CCVVHHEE,, CCVVHHFF,, CCVVHHGG,, CCVVHHSS,, oorr CCVVHHLL oorr aabboovvee 113300°°FF ((5544..44°°CC)) ffoorr mmooddeellss CCDDHHHH aanndd CCVVHHHH.. FFaaiilluurree ttoo pprreevveenntt hhiigghh cchhiilllleerr tteemmppeerraattuurree wwiillll ccaauussee tthhee iinnssiiddee pprreessssuurree ttoo rriissee::
•• DDoo nnoott rruunn eevvaappoorraattoorr wwaatteerr ppuummpp lloonnggeerr tthhaann 3300 mmiinnuutteess aafftteerr tthhee cchhiilllleerr iiss sshhuutt ddoowwnn..
•• EEnnssuurree tthhaatt tthhee eevvaappoorraattoorr iiss iissoollaatteedd ffrroomm tthhee hhoott wwaatteerr lloooopp bbeeffoorree cchhaannggeeoovveerr ttoo hheeaattiinngg mmooddee..
TThhee rruuppttuurree ddiisskk iiss ddeessiiggnneedd ttoo rreelliieevvee aanndd ddiisscchhaarrggee tthhee rreeffrriiggeerraanntt ffrroomm tthhee uunniitt iiff tthhee pprreessssuurree iinn tthhee eevvaappoorraattoorr eexxcceeeeddss 1155 ppssiigg ((110033..44 kkPPaaGG)) ffoorr mmooddeellss CCDDHHFF,, CCDDHHGG,, CCVVHHEE,, CCVVHHFF,, CCVVHHGG,, CCVVHHSS,, oorr CCVVHHLL oorr 5500 ppssiigg ((334444..77 kkPPaaGG)) ffoorr mmooddeellss CCDDHHHH aanndd CCVVHHHH..

Daily Unit Start-up

1. Verify the chilled water pump and condenser water pump starter are in ON or AUTO.
2. Verify the cooling tower is in ON or AUTO.
3. Check the oil tank oil level; the level must be visible in or above the lower sight glass. Also, check the oil tank temperature; normal oil tank temperature before start-up is 140°F to 145°F (60.0°C to 62.8°C).
NNootteess::
The oil heater is energized during the compressor off cycle. During unit operation, the oil tank heater may be de­energized.
If the chiller is equipped with the free cooling option, ensure that the free cooling option is disabled in the Chiller Settings menu.
4. Check the chilled water setpoint and readjust it, if necessary, in the Chiller Settings menu.
5. If necessary, readjust the current limit setpoint in the Chiller Setpoints menu.
6. Press AUTO.
The control panel also checks compressor motor winding temperature and a start is initiated after a minimum restart inhibit time if the winding temperature is less than 265°F (129.4°C). The chilled water pump relay is energized and evaporator water
CVHE-SVX02M-EN
81
SSttaarrtt--uupp aanndd SShhuutt--ddoowwnn
flow is proven. Next, the control panel checks the leaving evaporator water temperature and compares it to the chilled water setpoint. If the difference between these values is less than the start differential setpoint, cooling is not needed.
If the control panel determines that the difference between the evaporator leaving water temperature and chilled water setpoint exceeds the start differential setpoint, the unit enters the initiate Start Mode and the oil refrigerant pump and the condenser water pump are started. If flow is not initially established within 4 minutes 15 seconds of the condenser pump relay energization, an automatically resetting diagnostic “Condenser Water Flow Overdue” shall be generated, which terminates the prestart mode and de-energizes the condenser water pump relay. This diagnostic is automatically reset if flow is established at any later time.
NNoottee:: This diagnostic does NOT automatically reset if
Tracer
®
AdaptiView™is in control of the condenser pump through its condenser pump relay, since it is commanded off at the time of the diagnostic. It may reset and allow normal chiller operation if the pump was controlled from some external source.
When less than 5 seconds remain on the restart inhibit, the pre-start starter test is conducted on wye-delta starters. If faults are detected, the unit’s compressor will not start and a diagnostic will be generated. If the compressor motor starts and accelerates successfully, Running appears on the display. If the purge is set to AUTO, the purge will start running and will run as long as the chiller is running.
NNoottee:: If a manual reset diagnostic condition is detected
during start-up, unit operation will be locked out and a manual reset is required before the start­up sequence can begin again. If the fault condition has not cleared, the control panel will not permit restart.
When the cooling requirement is satisfied, the control panel originates a Shutting down signal. The inlet guide vanes are driven closed for 50 seconds, the compressor stops, and the unit enters a 3-minute post­lube period. The evaporator pump may continue to run for the amount of time set using Tracer® AdaptiView™.
After the post-lube cycle is done, the unit returns to auto mode.

Seasonal Unit Start-up

1. Close all drain valves, and reinstall the drain plugs in the evaporator and condenser headers.
2. Service the auxiliary equipment according to the start-up and maintenance instructions provided by the respective equipment manufacturers.
3. Fill and vent the cooling tower, if used, as well as the condenser and piping. At this point, all air must be removed from the system (including each pass). Then, close the vents in the condenser waterboxes.
4. Open all of the valves in the evaporator chilled water circuit.
5. If the evaporator was previously drained, fill and vent the evaporator and chilled water circuit. After all air is removed from the system (including each pass), close the vent valves in the evaporator waterboxes.
6. Lubricate the external vane control linkage as needed.
7. Check the adjustment and operation of each safety and operating control.
8. Close all disconnect switches.
9. Perform instructions listed in “Daily Unit Start-
up,” p. 81.

Daily Unit Shut-down

NNoottee:: Also refer to Figure 53, p. 74.
1. Press STOP.
2. After compressor and water pumps shut down, the operator may turn Pump Contactors to OFF or open pump disconnects.

Seasonal Unit Shut-down

IImmppoorrttaanntt:: Control power disconnect switch must
remain closed to allow oil sump heater operation. Failure to do this will allow refrigerant to condense in the oil pump.
1. Open all disconnect switches except the control power disconnect switch.
2. Drain the condenser piping and cooling tower, if used. Rinse with clean water.
3. Remove the drain and vent plugs from the condenser headers to drain the condenser. Air-dry bundle of residual water.
4. Once the unit is secured for the season, the maintenance procedures described Table 22, p. 84 and Table 23, p. 85 should be performed by qualified Trane service technicians.
NNoottee:: During extended shut-down periods, be sure to
operate the purge unit for a two-hour period every two weeks. This will prevent the accumulation of air and non-condensables in the machine. To start the purge, change the purge mode to ON in the unit control “Settings Purge” menu. Remember to turn the purge mode to “Adaptive” after the two-hour run time.
82
CVHE-SVX02M-EN

Recommended Maintenance

WWAARRNNIINNGG
HHaazzaarrddoouuss VVoollttaaggee ww//CCaappaacciittoorrss!!
FFaaiilluurree ttoo ddiissccoonnnneecctt ppoowweerr aanndd ddiisscchhaarrggee ccaappaacciittoorrss bbeeffoorree sseerrvviicciinngg ccoouulldd rreessuulltt iinn ddeeaatthh oorr sseerriioouuss iinnjjuurryy.. DDiissccoonnnneecctt aallll eelleeccttrriicc ppoowweerr,, iinncclluuddiinngg rreemmoottee ddiissccoonnnneeccttss aanndd ddiisscchhaarrggee aallll mmoottoorr ssttaarrtt//rruunn ccaappaacciittoorrss bbeeffoorree sseerrvviicciinngg.. FFoollllooww pprrooppeerr lloocckkoouutt//ttaaggoouutt pprroocceedduurreess ttoo eennssuurree tthhee ppoowweerr ccaannnnoott bbee iinnaaddvveerrtteennttllyy eenneerrggiizzeedd.. FFoorr vvaarriiaabbllee ffrreeqquueennccyy ddrriivveess oorr ootthheerr eenneerrggyy ssttoorriinngg ccoommppoonneennttss pprroovviiddeedd bbyy TTrraannee oorr ootthheerrss,, rreeffeerr ttoo tthhee aapppprroopprriiaattee mmaannuuffaaccttuurreerr’’ss lliitteerraattuurree ffoorr aalllloowwaabbllee wwaaiittiinngg ppeerriiooddss ffoorr ddiisscchhaarrggee ooff ccaappaacciittoorrss.. VVeerriiffyy wwiitthh aann aapppprroopprriiaattee vvoollttmmeetteerr tthhaatt aallll ccaappaacciittoorrss hhaavvee ddiisscchhaarrggeedd..
FFoorr aaddddiittiioonnaall iinnffoorrmmaattiioonn rreeggaarrddiinngg tthhee ssaaffee ddiisscchhaarrggee ooff ccaappaacciittoorrss,, sseeee PPRROODD--SSVVBB0066**--EENN..
NNOOTTIICCEE
CChheecckk PPuurrggee RRuunn--TTiimmee ffoorr UUnniitt HHeerrmmeettiicc IInntteeggrriittyy!!
FFaaiilluurree ttoo ffoollllooww iinnssttrruuccttiioonnss bbeellooww ccoouulldd rreessuulltt iinn cchhiilllleerr ddaammaaggee.. IIff ffrreeqquueenntt ppuurrggiinngg iiss rreeqquuiirreedd,, mmoonniittoorr ppuurrggee ppuummppoouutt rraattee,, aanndd iiddeennttiiffyy aanndd ccoorrrreecctt ssoouurrccee ooff aaiirr oorr wwaatteerr lleeaakk aass ssoooonn aass ppoossssiibbllee ttoo pprreevveenntt mmooiissttuurree ccoonnttaammiinnaattiioonn ccaauusseedd bbyy lleeaakkaaggee..
This section describes the basic chiller preventive maintenance procedures, and recommends the intervals at which these procedures should be performed. Use of a periodic maintenance program is important to ensure the best possible performance and efficiency from a CenTraVac™ chiller.
For R-123 chillers, recommended purge maintenance procedures are detailed in Operation and Maintenance
Guide: EarthWise Purge System with Tracer AdaptiView Control for Water-Cooled CenTraVac Chillers with R-123 Refrigerant (PRGD-SVX01*-EN). For
R-514A chillers, recommended purge maintenance procedures are detailed in Operation and Maintenance
Guide: Purge System with Tracer AdaptiView Control for Water-Cooled CenTraVac Chillers with R-514A Refrigerant (PRGE-SVX001*-EN).

Record Keeping Forms

An important aspect of the chiller maintenance program is the regular completion of records. Refer to
“Forms and Check Sheets,” p. A–1 for copies of the
recommended forms. When filled out accurately by the machine operator, the completed logs can be reviewed to identify any developing trends in the chiller’s operating conditions. For example, if the machine operator notices a gradual increase in condensing pressure during a month’s time, she can systematically check and then correct the possible cause of this condition.
NNOOTTIICCEE
DDoo NNoott UUssee NNoonn--CCoommppaattiibbllee PPaarrttss oorr MMaatteerriiaallss!!
UUssee ooff nnoonn--ccoommppaattiibbllee ppaarrttss oorr mmaatteerriiaallss ccoouulldd rreessuulltt iinn eeqquuiippmmeenntt ddaammaaggee.. OOnnllyy ggeennuuiinnee TTrraannee®® rreeppllaacceemmeenntt ccoommppoonneennttss wwiitthh iiddeennttiiccaall TTrraannee ppaarrtt nnuummbbeerrss sshhoouulldd bbee uusseedd iinn TTrraannee CCeennTTrraaVVaacc cchhiilllleerrss.. TTrraannee aassssuummeess nnoo rreessppoonnssiibbiilliittyy ffoorr ddaammaaggeess rreessuullttiinngg ffrroomm tthhee uussee ooff nnoonn--ccoommppaattiibbllee ppaarrttss oorr mmaatteerriiaallss..

Normal Operation

Table 21. Normal operation
Operating Characteristic Normal Reading
Approximate Evaporator Pressure
Approximate Condenser
(a),(b)
Pressure
Oil Sump Temperature Unit not running Oil Sump Temperature Unit running Oil Sump Differential Oil Pressure
(c)
6 to 9 psia (41.4 to 62.1 kPaA) /
-9 to -6 psig (-62.1 to -41.4 kPaG) 17 to 27 psia (117.2 to 182.2 kPaA) / 2 to 12 psig (13.8 to 82.7 kPaG) (standard condenser)
140°F to 176°F (60.0°C to 80.0°C)
95°F to 162°F (35.0°C to 72.2°C)
18 to 22 psid (124.1 to 151.7 kPaD)
Table 21. Normal operation (continued)
(a)
Condenser pressure is dependent on condenser water temperature, and should equal the saturation pressure of the refrigerant at a temperature above that of leaving condenser water at full load.
(b)
Normal pressure readings for ASME condenser exceed 12 psig (82.7 kPaG).
(c)
Oil tank pressure: -9 to -6 psig (-62.1 to -41.4 kPaG). Discharge oil pressure: 7 to 15 psig (48.3 to 103.4 kPaG).
CVHE-SVX02M-EN
83
RReeccoommmmeennddeedd MMaaiinntteennaannccee
NNOOTTIICCEE
EEqquuiippmmeenntt DDaammaaggee!!
FFaaiilluurree ttoo rreemmoovvee tthhee ssttrraaiinn rreelliieeff wwiitthh tthhee sseennssoorr ccoouulldd rreessuulltt iinn eeqquuiippmmeenntt ddaammaaggee.. DDoo NNOOTT aatttteemmpptt ttoo ppuullll sseennssoorr bbuullbb tthhrroouugghh tthhee ssttrraaiinn rreelliieeff;; aallwwaayyss rreemmoovvee tthhee eennttiirree ssttrraaiinn rreelliieeff wwiitthh tthhee sseennssoorr..
Table 22. Recommended maintenance
Daily Every 3 months Every 6 months Annually
Check the chiller’s evaporator and condenser pressures, oil tank pressure, differential oil pressure, and discharge oil pressure. Compare the readings with the values provided in the preceding table.
Check the oil level in the chiller oil sump using the two sight glasses provided in the oil sump head. When the unit is operating, the oil level should be visible in the lower sight glass.
Complete logs on a daily basis.
Clean all water strainers in the water piping system.
Lubricate the vane control linkage bearings, ball joints, and pivot points. Lubricate vane operator tang O­rings. Operate the tang operators manually and check for any abnormalities.
Lubricate the oil filter shutoff valve O-rings. Drain contents of the rupture disk and purge discharge vent-line drip-leg into an evacuated waste container. Do this more often if the purge is operated excessively. Apply oil to any exposed metal parts to prevent rust.
Shut down the chiller once each year to check the items listed on the “CVHE, CVHF, and CVHG
CenTraVac™ Chiller Annual Inspection List,” p. D– 1 (refer to “Forms and Check Sheets,” p. A–1).
For R-123 chillers, perform the annual maintenance procedures referred to in Operation
and Maintenance Guide: EarthWise Purge System with Tracer AdaptiView Control for Water-Cooled CenTraVac Chillers with R-123 Refrigerant
(PRGD-SVX01*-EN). For R-514A chillers, perform the annual maintenance procedures referred to in
Operation and Maintenance Guide: Purge System with Tracer AdaptiView Control for Water-Cooled CenTraVac Chillers with R-514A Refrigerant
(PRGE-SVX001*-EN). Use an ice water bath to verify the accuracy of the evaporator refrigerant temperature sensor (4R10). If the sensor is exposed to temperature extremes outside its normal operating range (0°F to 90°F [-17.8°C to 32.2°C]), check its accuracy at six-month intervals.
Inspect the condenser tubes for fouling; clean if necessary. Inspect and clean the ifm efector® flow detection sensors. Use Scotch-Brite® or other non-abrasive material to clean scale; do NOT use steel wool, which could cause the probe to rust.
(a),(b)
84
CVHE-SVX02M-EN
RReeccoommmmeennddeedd MMaaiinntteennaannccee
Table 22. Recommended maintenance (continued)
Daily Every 3 months Every 6 months Annually
Submit a sample of the compressor oil to a Trane­qualified laboratory for comprehensive analysis. Measure the compressor motor winding resistance to ground; a qualified service technician should conduct this check to ensure that the findings are properly interpreted. Contact a qualified service organization to leak-test the chiller; this procedure is especially important if
(a)
Every three years, use a non-destructive tube test to inspect the condenser and evaporator tubes. It may be desirable to perform tube tests on these components at more frequent intervals depending upon chiller application. This is especially true of critical process equipment.
(b)
Contact a qualified service organization to determine when to conduct a complete examination of the unit to discern the condition of the compressor and internal components. Check the following: chronic air leaks (which can cause acidic conditions in the compressor oil and result in premature bearing wear) and evaporator or condenser water tube leaks (water mixed with the compressor oil can result in bearing pitting, corrosion, or excessive wear).
the system requires frequent purging.
Table 23. Recommended maintenance of optional features
Feature
Waterbox Coatings
Waterbox Anodes
Gantries
Hinges
Every 3 months Every 6 months Annually
Inspect waterbox coatings within the first 1–3 months to determine a required maintenance schedule for your job site. Refer to “Waterbox and
Tubesheet Protective Coatings,” p. 88
for more information. Inspect waterbox anodes within the first
1–3 months to determine a required maintenance schedule for your job site. Refer to “Sacrificial Anodes,” p. 88 for more information.
Lubricate the gantries annually. Use ConocoPhillips MegaPlex® XD3 (gray in color), LPS® MultiPlex Multi­Purpose (blue in color), or equivalent. Lubricate the hinges annually. Use ConocoPhillips MegaPlex® XD3 (gray in color), LPS® MultiPlex Multi­Purpose (blue in color), or equivalent.
(a),(b)

Recommended Compressor Oil Change

NNOOTTIICCEE
EEqquuiippmmeenntt DDaammaaggee!!
MMiixxiinngg rreeffrriiggeerraannttss oorr ooiillss ccoouulldd rreessuulltt iinn eeqquuiippmmeenntt ddaammaaggee iinncclluuddiinngg bbeeaarriinngg ddaammaaggee,, iinnttrroodduuccttiioonn ooff aacciiddss iinnttoo tthhee cchhiilllleerr,, oorr ccoonnttiinnuuoouuss ppuurrggee ppuummpp--oouutt iinn hhiigghh--hheeaadd//hhiigghh aammbbiieenntt aapppplliiccaattiioonnss.. CCeennTTrraaVVaacc cchhiilllleerrss aarree mmaannuuffaaccttuurreedd wwiitthh ddiiffffeerreenntt rreeffrriiggeerraanntt//ooiill ssyysstteemmss:: RR--112233 cchhiilllleerrss uussiinngg OOIILL0000002222 aanndd RR--551144AA cchhiilllleerrss uussiinngg OOIILL0000333344//OOIILL0000333355.. VVeerriiffyy pprrooppeerr rreeffrriiggeerraanntt aanndd ooiill ffoorr yyoouurr cchhiilllleerr aanndd ddoo NNOOTT mmiixx rreeffrriiggeerraannttss oorr ooiillss!!
This manual applies to CenTraVac™ chillers with two different refrigerant and oil systems:
R-123 and OIL00022
R-514A and OIL00334/OIL00335
IImmppoorrttaanntt:: Verify proper refrigerant and oil for your
chiller before proceeding!
After the first six months of accumulated operation or after 1000 hours operation—whichever comes first—it
is recommended to change the oil and filter. After this oil change, it is recommended to subscribe to the Trane annual oil analysis program rather than automatically change the oil as part of scheduled maintenance. Change the oil only if indicated by the oil analysis. Using an oil analysis program will reduce the chiller’s overall lifetime waste oil generation and minimize refrigerant emissions. The analysis determines system moisture content, acid level, and wear metal content of the oil, and can be used as a diagnostic tool. The oil analysis should be performed by a qualified laboratory that is experienced in refrigerant and oil chemistry and in the servicing of Trane® centrifugal chillers.
In conjunction with other diagnostics performed by a qualified service technician, oil analyses can provide valuable information on the performance of the chiller to help minimize operating and maintenance costs and maximize its operating life. A valve is installed next to the oil filter for the purpose of obtaining oil samples.
CVHE-SVX02M-EN
85
RReeccoommmmeennddeedd MMaaiinntteennaannccee
NNootteess::
Use only Trane oil and verify proper refrigerant and oil for your chiller before proceeding! A full oil change is 9 gallons (34.1 L) of oil.
– For R-123 chillers, use OIL00022
(2.5 gallon [9.5 L] containers).
– For R-514A chillers, use OIL00334
(1 gallon [3.8 L] containers)/OIL00335 (5 gallon [18.9 L] containers).
One spare oil filter is provided with each new chiller. If not used earlier, use at first recommended oil and filter change.
This recommended oil change is NOT covered by factory warranty.

Purge System

The use of low-pressure refrigerant in CenTraVac™ chillers permits any section of the unit to be below atmospheric pressure, regardless of whether the unit is running. This creates an environment in which air or moisture could enter the unit. If these non­condensables are allowed to accumulate while the chiller is running, they become trapped in the condenser; this situation increases condensing pressure and compressor power requirements, and reduces the chiller’s efficiency and cooling capacity. Therefore, proper maintenance of the purge system is required.
The purge is designed to remove non-condensable gases and water from the refrigeration system. For R­123 chillers, purge operation, maintenance, and troubleshooting procedures are detailed in Operation
and Maintenance Guide: EarthWise Purge System with Tracer AdaptiView Control for Water-Cooled CenTraVac Chillers with R-123 Refrigerant (PRGD-
SVX01*-EN). For R-514A chillers, purge operation, maintenance, and troubleshooting procedures are detailed in Operation and Maintenance Guide: Purge
System with Tracer AdaptiView Control for Water­Cooled CenTraVac Chillers with R-514A Refrigerant
(PRGE-SVX001*-EN).

Leak Checking Based on Purge Pump Out Time

Use the following formula to calculate the annual refrigerant leakage rate based on the daily purge pump-out time and the unit refrigerant charge.
Formula: % annual leakage rate = [(X min/day)* (0.0001 lb of refrigerant/min)/(Y lb)]*100
X = minutes/day of purge pump out operation
Y = initial refrigerant charge
The following figure has been developed to aid in determining when to do a leak check of a chiller based on the purge pump-out time and unit size. This figure
depicts normal purge pump-out times, small leaks, and large leaks based on chiller tonnage.
If the purge pump-out time is in the small leak region, then a leak check should be performed and all leaks repaired at the earliest convenience. If the purge pump­out time is in the large leak region, a thorough leak check of the unit should be performed immediately to find and fix the leaks.
Figure 58. Purge operation under typical and leak conditions

Long Term Unit Storage

If the chiller will be stored for more than six months after production, contact your local Trane Service Agency for required extended storage actions to minimize impact to the chiller and preserve the warranty. In addition, contact your local Trane Service Agency for recommendations for storage requirements for chillers to be removed from service in excess of a normal seasonal shut-down.
WWAARRNNIINNGG
RReeffrriiggeerraanntt MMaayy BBee UUnnddeerr PPoossiittiivvee PPrreessssuurree!!
FFaaiilluurree ttoo ffoollllooww iinnssttrruuccttiioonnss bbeellooww ccoouulldd rreessuulltt iinn aann eexxpplloossiioonn wwhhiicchh ccoouulldd rreessuulltt iinn ddeeaatthh oorr sseerriioouuss iinnjjuurryy oorr eeqquuiippmmeenntt ddaammaaggee.. SSyysstteemm ccoonnttaaiinnss rreeffrriiggeerraanntt aanndd mmaayy bbee uunnddeerr ppoossiittiivvee pprreessssuurree;; ssyysstteemm mmaayy aallssoo ccoonnttaaiinn ooiill.. RReeccoovveerr rreeffrriiggeerraanntt ttoo rreelliieevvee pprreessssuurree bbeeffoorree ooppeenniinngg tthhee ssyysstteemm.. SSeeee uunniitt nnaammeeppllaattee ffoorr rreeffrriiggeerraanntt ttyyppee.. DDoo nnoott uussee nnoonn--aapppprroovveedd rreeffrriiggeerraannttss,, rreeffrriiggeerraanntt ssuubbssttiittuutteess,, oorr nnoonn-­aapppprroovveedd rreeffrriiggeerraanntt aaddddiittiivveess..
NNOOTTIICCEE
CChhiilllleerr DDaammaaggee!!
FFaaiilluurree ttoo eennssuurree tthhaatt wwaatteerr iiss nnoott pprreesseenntt iinn ttuubbeess dduurriinngg eevvaaccuuaattiioonn ccoouulldd rreessuulltt iinn ffrreeeezziinngg ttuubbeess,, ddaammaaggiinngg tthhee cchhiilllleerr..
86
CVHE-SVX02M-EN
RReeccoommmmeennddeedd MMaaiinntteennaannccee

Refrigerant Charge

WWAARRNNIINNGG
RReeffrriiggeerraanntt MMaayy BBee UUnnddeerr PPoossiittiivvee PPrreessssuurree!!
FFaaiilluurree ttoo ffoollllooww iinnssttrruuccttiioonnss bbeellooww ccoouulldd rreessuulltt iinn aann eexxpplloossiioonn wwhhiicchh ccoouulldd rreessuulltt iinn ddeeaatthh oorr sseerriioouuss iinnjjuurryy oorr eeqquuiippmmeenntt ddaammaaggee.. SSyysstteemm ccoonnttaaiinnss rreeffrriiggeerraanntt aanndd mmaayy bbee uunnddeerr ppoossiittiivvee pprreessssuurree;; ssyysstteemm mmaayy aallssoo ccoonnttaaiinn ooiill.. RReeccoovveerr rreeffrriiggeerraanntt ttoo rreelliieevvee pprreessssuurree bbeeffoorree ooppeenniinngg tthhee ssyysstteemm.. SSeeee uunniitt nnaammeeppllaattee ffoorr rreeffrriiggeerraanntt ttyyppee.. DDoo nnoott uussee nnoonn--aapppprroovveedd rreeffrriiggeerraannttss,, rreeffrriiggeerraanntt ssuubbssttiittuutteess,, oorr nnoonn-­aapppprroovveedd rreeffrriiggeerraanntt aaddddiittiivveess..
NNOOTTIICCEE
EEqquuiippmmeenntt DDaammaaggee!!
MMiixxiinngg rreeffrriiggeerraannttss oorr ooiillss ccoouulldd rreessuulltt iinn eeqquuiippmmeenntt ddaammaaggee iinncclluuddiinngg bbeeaarriinngg ddaammaaggee,, iinnttrroodduuccttiioonn ooff aacciiddss iinnttoo tthhee cchhiilllleerr,, oorr ccoonnttiinnuuoouuss ppuurrggee ppuummpp--oouutt iinn hhiigghh--hheeaadd//hhiigghh aammbbiieenntt aapppplliiccaattiioonnss.. CCeennTTrraaVVaacc cchhiilllleerrss aarree mmaannuuffaaccttuurreedd wwiitthh ddiiffffeerreenntt rreeffrriiggeerraanntt//ooiill ssyysstteemmss:: RR--112233 cchhiilllleerrss uussiinngg OOIILL0000002222 aanndd RR--551144AA cchhiilllleerrss uussiinngg OOIILL0000333344//OOIILL0000333355.. VVeerriiffyy pprrooppeerr rreeffrriiggeerraanntt aanndd ooiill ffoorr yyoouurr cchhiilllleerr aanndd ddoo NNOOTT mmiixx rreeffrriiggeerraannttss oorr ooiillss!!
This manual applies to CenTraVac™ chillers with two different refrigerant and oil systems:
R-123 and OIL00022
R-514A and OIL00334/OIL00335
IImmppoorrttaanntt:: Verify proper refrigerant and oil for your
chiller before proceeding!
For R-123 chillers, refer to Installation, Operation, and Maintenance: R-123 Low-Pressure Refrigerant Handling Guidelines Conservation and Safe Handling of R-123 Refrigerant in Trane Chillers for Service Technicians
(CTV-SVX05*-EN). For R-514A chillers, refer to
Installation, Operation, and Maintenance: R-514A Low­Pressure Refrigerant Handling Guidelines Conservation and Safe Handling of R-514A Refrigerant in Trane Chillers for Service Technicians (CTV-SVX008*-EN).
WWAARRNNIINNGG
HHaazzaarrddoouuss PPrreessssuurreess!!
FFaaiilluurree ttoo ffoollllooww iinnssttrruuccttiioonnss bbeellooww ccoouulldd rreessuulltt iinn aa vviioolleenntt eexxpplloossiioonn,, wwhhiicchh ccoouulldd rreessuulltt iinn ddeeaatthh oorr sseerriioouuss iinnjjuurryy.. IIff aa hheeaatt ssoouurrccee iiss rreeqquuiirreedd ttoo rraaiissee tthhee ttaannkk pprreessssuurree dduurriinngg rreemmoovvaall ooff rreeffrriiggeerraanntt ffrroomm ccyylliinnddeerrss,, uussee oonnllyy wwaarrmm wwaatteerr oorr hheeaatt bbllaannkkeettss ttoo rraaiissee tthhee ttaannkk tteemmppeerraattuurree.. DDoo nnoott eexxcceeeedd aa tteemmppeerraattuurree ooff 115500°°FF.. DDoo nnoott uunnddeerr aannyy cciirrccuummssttaanncceess aappppllyy ddiirreecctt ffllaammee ttoo aannyy ppoorrttiioonn ooff tthhee ccyylliinnddeerr..
IImmppoorrttaanntt:: If leak testing is required, contact a Trane
Service Agency.

Recommended System Maintenance

NNOOTTIICCEE
PPrrooppeerr WWaatteerr TTrreeaattmmeenntt RReeqquuiirreedd!!
TThhee uussee ooff uunnttrreeaatteedd oorr iimmpprrooppeerrllyy ttrreeaatteedd wwaatteerr ccoouulldd rreessuulltt iinn ssccaalliinngg,, eerroossiioonn,, ccoorrrroossiioonn,, aallggaaee oorr sslliimmee.. UUssee tthhee sseerrvviicceess ooff aa qquuaalliiffiieedd wwaatteerr ttrreeaattmmeenntt ssppeecciiaalliisstt ttoo ddeetteerrmmiinnee wwhhaatt wwaatteerr ttrreeaattmmeenntt,, iiff aannyy,, iiss rreeqquuiirreedd.. TTrraannee aassssuummeess nnoo rreessppoonnssiibbiilliittyy ffoorr eeqquuiippmmeenntt ffaaiilluurreess wwhhiicchh rreessuulltt ffrroomm uunnttrreeaatteedd oorr iimmpprrooppeerrllyy ttrreeaatteedd wwaatteerr,, oorr ssaalliinnee oorr bbrraacckkiisshh wwaatteerr..

Condenser

Condenser tube fouling is indicated when the approach temperature (the difference between the condensing refrigerant temperature and the leaving condenser water temperature) is higher than predicted.
If the annual condenser tube inspection indicates that the tubes are fouled, two cleaning methods— mechanical and chemical—can be used to rid the tubes of contaminants. Use the mechanical cleaning method to remove sludge and loose material from smooth-bore tubes.
To clean other types of tubes including internally­enhanced types, consult a qualified service organization for recommendations.

Leak Testing

WWAARRNNIINNGG
EExxpplloossiioonn HHaazzaarrdd!!
FFaaiilluurree ttoo ffoollllooww ssaaffee lleeaakk tteesstt pprroocceedduurreess bbeellooww ccoouulldd rreessuulltt iinn ddeeaatthh oorr sseerriioouuss iinnjjuurryy oorr eeqquuiippmmeenntt oorr pprrooppeerrttyy--oonnllyy--ddaammaaggee.. NNeevveerr uussee aann ooppeenn ffllaammee ttoo ddeetteecctt ggaass lleeaakkss.. UUssee aa lleeaakk tteesstt ssoolluuttiioonn ffoorr lleeaakk tteessttiinngg..
CVHE-SVX02M-EN
87
RReeccoommmmeennddeedd MMaaiinntteennaannccee
Figure 59. Typical chemical cleaning setup
1. Follow all instructions in “Waterbox Removal and
Installation,” p. 89 to remove waterbox covers.
2. Work a round nylon or brass bristled brush (attached to a rod) in and out of each of the condenser water tubes to loosen the sludge.
3. Thoroughly flush the condenser water tubes with clean water.
4. Scale deposits are best removed by chemical means. Be sure to consult any qualified chemical house in the area (one familiar with the local water supply’s chemical mineral content) for a recommended cleaning solution suitable for the job.
NNoottee:: A standard condenser water circuit is
composed solely of copper, cast iron, and steel.
NNOOTTIICCEE
UUnniitt CCoorrrroossiioonn DDaammaaggee!!
FFaaiilluurree ttoo ffoollllooww iinnssttrruuccttiioonnss bbeellooww ccoouulldd rreessuulltt iinn ccoorrrroossiioonn ddaammaaggee ttoo tthhee uunniitt aanndd ttuubbeess.. FFoollllooww pprrooppeerr pprroocceedduurreess wwhheenn uussiinngg ccoorrrroossiivvee cchheemmiiccaallss ttoo cclleeaann wwaatteerr ssiiddee ooff uunniitt.. IIff uunnssuurree,, iitt iiss rreeccoommmmeennddeedd tthhaatt tthhee sseerrvviicceess ooff aa qquuaalliiffiieedd cchheemmiiccaall cclleeaanniinngg ffiirrmm bbee uusseedd..
IImmppoorrttaanntt:: All of the materials used in the external
circulation system, the quantity of the solution, the duration of the cleaning period, and any required safety precautions should be approved by the company furnishing the materials or performing the cleaning. Remember, however, that whenever the chemical tube cleaning method is used, it must be followed up with mechanical tube cleaning, flushing, and inspection.

Evaporator

Since the evaporator is typically part of a closed circuit, it may not accumulate appreciable amounts of scale or sludge. Normally, cleaning every three years is sufficient. However, periodic inspection and cleaning is recommended on open evaporator systems, such as air washers.

Waterbox and Tubesheet Protective Coatings

Trane recommends that coated waterboxes/tubesheets —regardless of the type of protective coating included —be taken out of service within the first one to three months of operation for inspection. Any voids or defects identified upon inspection must be repaired. If the water quality is known to be highly supportive of corrosion (i.e., sea water, etc.), inspect the coating system at one month; if the water quality is known to be relatively benign (i.e., normal treated and clean condenser water), inspect the coating system within three months. Only when initial inspections show no problems are present should subsequent maintenance intervals be increased.

Sacrificial Anodes

The replacement schedule for the optional zinc or magnesium anodes can vary greatly with the aggressiveness of the water that is in the system. Some sites could require anode replacement every two to three months while other sites may require anode replacement every two to three years. Trane recommends inspection of anodes for wear sometime within the first several months of the anodes being placed into service. If the observed loss of anode material is small, then the interval between subsequent inspections can be lengthened. Replace the anode and/ or shorten the inspection interval if the anode has lost 50 percent or more of its original mass. If anode depletion occurs very quickly, consult a water treatment specialist to determine if the anode material selected is correct for the application.
NNOOTTIICCEE
EEqquuiippmmeenntt DDaammaaggee!!
FFaaiilluurree ttoo ffoollllooww iinnssttrruuccttiioonnss ccoouulldd rreessuulltt iinn eeqquuiippmmeenntt ddaammaaggee.. DDoo NNOOTT uussee TTeefflloonn--bbaasseedd ttaappee oorr ppaassttee oonn aannooddee;; aa ssmmaallll aammoouunntt ooff lliiqquuiidd sseeaallaanntt ((LLooccttiittee®® 224422 oorr eeqquuiivvaalleenntt)) mmaayy bbee aapppplliieedd ttoo pprreevveenntt lleeaakkaaggee wwhheenn iinnssttaalllliinngg aann aannooddee,, bbuutt ddoo nnoott aappppllyy ssoo mmuucchh sseeaallaanntt tthhaatt iitt pprreevveennttss tthhee nneecceessssaarryy eelleeccttrriiccaall ccoonnnneeccttiioonn bbeettwweeeenn tthhee aannooddee aanndd tthhee wwaatteerrbbooxx..
As needed after draining the waterbox, use a 2-1/2 in. (63.5 mm) wrench to remove/install Trane-supplied waterbox anodes.
88
CVHE-SVX02M-EN

Waterbox Removal and Installation

IImmppoorrttaanntt:: Only qualified technicians should perform
the installation and servicing of this equipment.

Discussion

This section will discuss recommended hoist ring/ clevises and lifting. Proper lifting technique will vary based on mechanical room layout.
It is the responsibility of the person(s) performing the work to be properly trained in the safe practice of rigging, lifting, securing, and fastening of the waterbox.
It is the responsibility of the person(s) providing and using the rigging and lifting devices to inspect these devices to ensure they are free from defect and are rated to meet or exceed the published weight of the waterbox.
Always use rigging and lifting devices in accordance with the applicable instructions for such device.

Procedure

WWAARRNNIINNGG
HHeeaavvyy OObbjjeeccttss!!
FFaaiilluurree ttoo pprrooppeerrllyy lliifftt wwaatteerrbbooxx ccoouulldd rreessuulltt iinn ddeeaatthh oorr sseerriioouuss iinnjjuurryy.. EEaacchh ooff tthhee iinnddiivviidduuaall ccaabblleess ((cchhaaiinnss oorr sslliinnggss)) uusseedd ttoo lliifftt tthhee wwaatteerrbbooxx mmuusstt bbee ccaappaabbllee ooff ssuuppppoorrttiinngg tthhee eennttiirree wweeiigghhtt ooff tthhee wwaatteerrbbooxx.. TThhee ccaabblleess ((cchhaaiinnss oorr sslliinnggss)) mmuusstt bbee rraatteedd ffoorr oovveerrhheeaadd lliiffttiinngg aapppplliiccaattiioonnss wwiitthh aann aacccceeppttaabbllee wwoorrkkiinngg llooaadd lliimmiitt.. RReeffeerr ttoo tthhee ttaabbllee ffoorr wwaatteerrbbooxx wweeiigghhttss..
NNoottee:: Refer to Table 25, p. 90 for waterbox weights.
WWAARRNNIINNGG
SSttrraaiigghhtt VVeerrttiiccaall LLiifftt RReeqquuiirreedd!!
FFaaiilluurree ttoo pprrooppeerrllyy lliifftt wwaatteerrbbooxx iinn ssttrraaiigghhtt vveerrttiiccaall lliifftt ccoouulldd ccaauussee tthhee eeyyeebboollttss ttoo bbrreeaakk wwhhiicchh ccoouulldd rreessuulltt iinn ddeeaatthh oorr sseerriioouuss iinnjjuurryy ffrroomm oobbjjeecctt ddrrooppppiinngg.. TThhee pprrooppeerr uussee aanndd rraattiinnggss ffoorr eeyyeebboollttss ccaann bbee ffoouunndd iinn AANNSSII//AASSMMEE ssttaannddaarrdd BB1188..1155.. MMaaxxiimmuumm llooaadd rraattiinngg ffoorr eeyyeebboollttss aarree bbaasseedd oonn aa ssttrraaiigghhtt vveerrttiiccaall lliifftt iinn aa ggrraadduuaallllyy iinnccrreeaassiinngg mmaannnneerr.. AAnngguullaarr lliiffttss wwiillll ssiiggnniiffiiccaannttllyy lloowweerr mmaaxxiimmuumm llooaaddss aanndd sshhoouulldd bbee aavvooiiddeedd wwhheenneevveerr ppoossssiibbllee.. LLooaaddss sshhoouulldd aallwwaayyss bbee aapppplliieedd ttoo eeyyeebboollttss iinn tthhee ppllaannee ooff tthhee eeyyee,, nnoott aatt ssoommee aannggllee ttoo tthhiiss ppllaannee..
waterboxes.
1. Determine the type and size of chiller being serviced. Refer to Trane® nameplate located on chiller control panel.
IImmppoorrttaanntt:: This section contains rigging and lifting
information only for Trane CenTraVac chillers built in La Crosse. For Trane CenTraVac United States, refer to literature provided by the applicable manufacturing location.
2. Select the proper lift connection device from Table
26, p. 91. The rated lifting capacity of the selected
lift connection device must meet or exceed the published weight of the waterbox. Verify the waterbox weight from the latest published literature.
3. Ensure that the lift connection device has the correct connection for the waterbox (e.g., thread type [course/fine, English/metric] and bolt diameter [English/metric]).
4. Properly connect the lift connection device to the waterbox. Refer to the following figure and ensure that the lift connection device is securely fastened.
Install hoist ring on to the lifting connection on the waterbox. Torque to 100 ft·lb (135.6 N·m) for 3/4-in. (19.05-mm) threaded connections and 28 ft·lb (38.0 N·m) for 1/2-in. (12.7-mm) threaded connections.
5. Disconnect water pipes, if connected.
6. Remove waterbox bolts.
7. Lift the waterbox away from the shell.
chillers built outside the
WWAARRNNIINNGG
OOvveerrhheeaadd HHaazzaarrdd!!
FFaaiilluurree ttoo ffoollllooww iinnssttrruuccttiioonnss ccoouulldd rreessuulltt iinn ddeeaatthh oorr sseerriioouuss iinnjjuurriieess.. NNeevveerr ssttaanndd bbeellooww oorr iinn cclloossee pprrooxxiimmiittyy ttoo hheeaavvyy oobbjjeeccttss wwhhiillee tthheeyy aarree ssuussppeennddeedd ffrroomm,, oorr bbeeiinngg lliifftteedd bbyy,, aa lliiffttiinngg ddeevviiccee iinn ccaassee tthhee oobbjjeecctt ddrrooppss..
8. Store waterbox in a safe and secure location and position.
NNoottee:: Do NOT leave waterbox suspended from
lifting device.
Review mechanical room limitations and determine the safest method or methods of rigging and lifting the
CVHE-SVX02M-EN
89
WWaatteerrbbooxx RReemmoovvaall aanndd IInnssttaallllaattiioonn
Figure 60. Waterbox rigging and lifting—condenser and evaporator connections

Reassembly

Once service is complete, the waterbox should be reinstalled on the shell following all previous procedures in reverse. Use new O-rings or gaskets on all joints after thoroughly cleaning each joint.
IImmppoorrttaanntt:: Torque waterbox bolts (refer to Table 24, p.
90).

Torque Requirements and Waterbox Weights

Table 24. CenTraVac™™ chiller bolt torques
Bolt Size
in.
3/8
1/2
5/8
3/4
Table 25. Waterbox weights
Shell
Size
Evaporator, 150 psig
Evaporator, 300 psig
032
Condenser, 150 psig
Condenser, 300 psig
Evaporator, 150 psig
050
Gasket type O-ring
mm
9.525 25 33.9 12–18 16.3–24.4
12.7 70 94.9 33–50 44.7–67.8
15.875 150 203.4 70–90 94.9–122.0
19.05 250 339.0 105–155
Description
(1034.2 kPaG)
(2068.4 kPaG)
(1034.2 kPaG)
(2068.4 kPaG)
(1034.2 kPaG)
ft·lb N·m ft·lb N·m
Fabricated Non-Marine Waterbox, Welded Flat
Weight
lb
265 120
265 120
397 180
Plate
kg
176 80
Flat
142.4–
Lifting
Connection
3/4 - 10
3/4 - 10
3/4 - 10
210.2
Weight
lb
397 180
Non-Marine Cast
Waterbox
kg
176 80
221 100
Lifting
Connection
1/2 - 13
Lifting Fixture
Fabricated Non-
Marine Waterbox
Welded Dome
Weight
kg
lb
176 80
265 120
Lifting
Connection
Marine Style Waterbox
Weight
lb
Cover
kg
Lifting
Connection
1/2 - 13
1/2 - 13
1/2 - 13
1/2 - 13
90
CVHE-SVX02M-EN
WWaatteerrbbooxx RReemmoovvaall aanndd IInnssttaallllaattiioonn
Table 25. Waterbox weights (continued)
Fabricated Non-Marine Waterbox, Welded Flat
Shell
Size
Description
Weight
lb
Evaporator, 300 psig
(2068.4 kPaG)
Condenser, 150 psig
(1034.2 kPaG)
Condenser, 300 psig
(2068.4 kPaG)
Evaporator, 150 psig
(1034.2 kPaG)
Evaporator, 300 psig
080
142
210
250
NNoottee:: Refer to product block identifier on the model number plate which identifies the evaporator and condenser shell sizes and the rated pressure. The designators are as follows: Weights shown are maximum for waterbox size. Verify the waterbox from the latest published literature.
(2068.4 kPaG)
Condenser, 150 psig
(1034.2 kPaG)
Condenser, 300 psig
(2068.4 kPaG)
Evaporator, 150 psig
(1034.2 kPaG)
Evaporator, 300 psig
(2068.4 kPaG)
Condenser, 150 psig
(1034.2 kPaG)
Condenser, 300 psig
(2068.4 kPaG)
Evaporator, 150 psig
(1034.2 kPaG)
Evaporator, 300 psig
(2068.4 kPaG)
Condenser, 150 psig
(1034.2 kPaG)
Condenser, 300 psig
(2068.4 kPaG)
Evaporator, 150 psig
(1034.2 kPaG)
Evaporator, 300 psig
(2068.4 kPaG)
Condenser, 150 psig
(1034.2 kPaG)
Condenser, 300 psig
(2068.4 kPaG)
353 160
265 120
551 250
662 300
882 400
551 250
882 400
882 400
1323 600
1543 700
1985 900
1544 700
2205 1000
2205 1000
2867 1300
1985 900
3087 1400
2867 1300
3528 1600
Plate
kg
Lifting
Connection
3/4 - 10
1/2 - 13
3/4 - 10
3/4 - 10
3/4 - 10
3/4 - 10
3/4 - 10
3/4 - 10
3/4 - 10
3/4 - 10
3/4 - 10
3/4 - 10
3/4 - 10
3/4 - 10
3/4 - 10
3/4 - 10
3/4 - 10
3/4 - 10
3/4 - 10
Non-Marine Cast
Waterbox
Weight
lb
265 120
265 120
441 200
662 300
551 250
551 250
882 400
662 300
882 400
441 200
1764 800
1323 600
1764 800
662 300
2426 1100
1544 700
2205 1000
662 300
3087 1400
Connection
kg
Lifting Fixture
Lifting
1/2 - 13
3/4 - 10
Fabricated Non-
Marine Waterbox
Marine Style Waterbox
Welded Dome
Weight
kg
lb
265 120
441 200
441 200
Lifting
Connection
3/4 - 10
3/4 - 10
3/4 - 10
Weight
lb
1323 600
1764 800
2205 1000
Cover
kg
Lifting
Connection
1/2 - 13
1/2 - 13
1/2 - 13
3/4 - 10
3/4 - 10
1/2 - 13
3/4 - 10
3/4 - 10
3/4 - 10
3/4 - 10
3/4 - 10
3/4 - 10
3/4 - 10
3/4 - 10
3/4 - 10
3/4 - 10
3/4 - 10
3/4 - 10
3/4 - 10

Connection Devices Information

Table 26. Connection devices
Unit Product
CTV
CTV
CTV
Safety Hoist Ring 3/4-10 Safety Hoist Ring 1/2-13
Evap Lifting
Fixture
CVHE-SVX02M-EN
Part
Number
RNG01884
RNG01885
BAR00400
Order Information
Contact Trane Parts
Department
Contact Trane Parts
Department
Contact Trane Parts
Department
91

Appendix A. Forms and Check Sheets

The following forms and check sheets are included for use with Trane start-up of CVHE, CVHF, and CVHG CenTraVac™ chillers. Forms and check sheets are used, as appropriate, for installation completion verification before Trane start-up is scheduled, and for reference during the Trane start-up.
Where the form or check sheet also exists outside of this publication as standalone literature, the literature order number is also listed.
“CenTraVac™ Chiller Installation Completion and
Request for Trane Service,” p. B–1 (CTV-ADF001*-
EN)
“CVHE, CVHF, and CVHG CenTraVac™ Chiller Start-
up Tasks to be Performed by Trane,” p. C–1
“CVHE, CVHF, and CVHG CenTraVac™ Chiller
Annual Inspection List,” p. D–1
“CVHE, CVHF, and CVHG CenTraVac™ Chiller
Operator Log,” p. E–1

Unit Start-up/ Commissioning

IImmppoorrttaanntt:: Start-up must be performed by Trane or an
agent of Trane specifically authorized to perform start-up and warranty of Trane products. Contractor shall provide Trane (or an agent of Trane specifically authorized to perform start-up) with notice of the scheduled start-up at least two weeks prior to the scheduled start-up.
®
CVHE-SVX02M-EN
A–1
Appendix B. CenTraVac™™ Chiller Installation Completion and Request for Trane Service
IImmppoorrttaanntt:: A copy of this completed form must be
submitted to the Trane Service Agency that will be responsible for the start-up of the chiller. Start-up will NOT proceed unless applicable items listed in this form have been satisfactorily completed.
TO:
TRANE SERVICE OFFICE:
S.O. NUMBER:
SERIAL NUMBERS:
JOB/PROJECT NAME:
ADDRESS:
The following items are being installed and will be completed by:
IImmppoorrttaanntt:: Start-up must be performed by Trane or an
agent of Trane specifically authorized to perform start-up and warranty of Trane products. Contractor shall provide Trane (or an agent of Trane specifically authorized to perform start-up) with notice of the scheduled start-up at least two weeks prior to the scheduled start-up. EEqquuiippmmeenntt nnoott ssttaarrtteedd bbyy TTrraannee iiss nnoott wwaarrrraanntteedd bbyy TTrraannee..
NNootteess:: Improper installation of CenTraVac
including optional components, can result in start-up delay and required rework. Follow all provided instructions and in use particular care with optional devices:
Follow installation procedures for RuptureGuard for CDHF, CDHG, CVHE, CVHF, CVHG, CVHL, and CVHS models, refer to CDHH-SVX001*­EN for CDHH models, and refer to CVHH­SVX001*-EN for CVHH CenTraVac models.
Do NOT over-insert or over-torque the probe of the ifm efector and sensor; refer to PART-SVN223*-EN or the CenTraVac Operation, and Maintenance manual.
Do NOT block serviceable parts when installing isolation springs.
Expenses that result in improper installation of CenTraVac components, will NOT be paid by Trane.
Check box if the task is complete or if the answer is “yes”.
1. CCeennTTrraaVVaacc™™ CChhiilllleerr
; refer to CTV-SVX06*-EN
flow detection controller
chiller Installation,
chillers, including optional
chillers,
chiller
®
In place and piped.
NNoottee:: Do not insulate the CenTraVac
adjacent piping prior to the chiller commissioning by Trane service personnel. The contractor is responsible for any foreign material left in the unit.
2. PPiippiinngg
Chilled water piping connected to:
CenTraVac™ chiller
Air handling units
Pumps
Optional ifm efector® flow detection controller and sensor properly installed
Condenser and heat recovery condenser (as applicable) piping connected to:
CenTraVac™ chiller
Pumps
Cooling tower
Heating loop (as applicable)
Additional piping:
Make-up water connected to cooling tower
Water supply connected to filling system
Systems filled
Pumps run, air bled from system
Strainers cleaned
Rupture disk or RuptureGuard™ ventilation piping properly installed
Optional RuptureGuard™ properly installed
3. FFllooww bbaallaanncciinngg vvaallvveess iinnssttaalllleedd
Leaving chilled water
Leaving condenser water
Optional heat recovery or auxiliary condenser water
4. GGaauuggeess,, tthheerrmmoommeetteerrss,, aanndd aaiirr vveennttss
Installed on both sides of evaporator
Installed on both sides of condenser and heat recovery condenser (as applicable)
5. WWiirriinngg
Compressor motor starter has been furnished by Trane, or has been configured and installed in compliance with the appropriate Trane
Engineering Specification for Starter by Others
(available from your local Trane Sales Office)
Full power available
chiller or
CVHE-SVX02M-EN
B–1
CCeennTTrraaVVaacc™™ CChhiilllleerr IInnssttaallllaattiioonn CCoommpplleettiioonn aanndd RReeqquueesstt ffoorr TTrraannee SSeerrvviiccee
Interconnecting wiring, starter to panel (as required)
External interlocks (flow switch, pumps auxiliary, etc.)
Chiller motor connection (remote starters)
NNoottee:: Do not make final remote starter-to
compressor motor connections until requested to do so by the Trane service representative!
Chilled water pump (connected and tested)
Condenser water pump (connected and tested)
Optional ifm efector® flow detection controller and sensor cable properly installed and secured for non-stress at probe connector
Cooling tower fan rotation checked
Heat recovery condenser water pump (as applicable)
115 Vac power available for service tools
All controls installed and connected
All magnetic starters installed and connected
6. TTeessttiinngg
Dry nitrogen available for pressure testing (for disassembled units)
Material and equipment available for leak testing, if necessary
7. RReeffrriiggeerraanntt
For CDHH and CVHH chillers: Verify supplied refrigerant is “Solstice ZD” Refrigeration Grade by checking certificates provided with tanks.
Refrigerant on job site and in close proximity to chiller.
Total amount in cylinders/drums: ___________ (specify lb or kg) and fill in specifics below:
Number of cylinders/drums _____ of size _____ (specify lb or kg)
Number of cylinders/drums _____ of size _____ (specify lb or kg)
NNoottee:: After commissioning is complete, it is the
installer’s responsibility to transport empty refrigerant containers to an easily accessible point of loading to facilitate container return or recycling.
8. SSyysstteemm
Systems can be operated under load conditions
9. AAvvaaiillaabbiilliittyy
Electrical, control man, and contractor’s representative are available to evacuate, charge,
and test the CenTraVac™ chiller under serviceman’s supervision
10. EEqquuiippmmeenntt rroooomm
Does the equipment room have a refrigerant monitor/sensor capable of monitoring and alarming within the allowable exposure level of the refrigerant?
Does the installation have properly placed and operating audible and visual refrigerant alarms?
Does the equipment room have proper mechanical ventilation?
If it is required by local code, is a self-contained breathing apparatus available?
11. OOwwnneerr aawwaarreenneessss
Has the owner been fully instructed on the proper use and handling of refrigerant?
Does the owner have a copy of the MSDS for refrigerant?
NNoottee:: Additional time required to properly complete
the start-up and commissioning, due to any incompleteness of the installation, will be invoiced at prevailing rates.
This is to certify that the Trane equipment has been properly and completely installed, and that the applicable items listed above have been satisfactorily completed.
Checklist Completed by (Print Name):
SIGNATURE:
DATE:
In accordance with your quotation and our purchase order number ______________, we therefore require the presence of Trane service on this site, for the purpose of start-up and commissioning, by ______________ (date).
NNoottee:: Minimum of two week advance notification is
required to allow for scheduling of the chiller start-up.
ADDITIONAL COMMENTS/INSTRUCTIONS
B–2
CVHE-SVX02M-EN
Appendix C. CVHE, CVHF, and CVHG CenTraVac™™ Chiller Start-up Tasks to be Performed by Trane
WWAARRNNIINNGG
SSaaffeettyy AAlleerrtt!!
FFaaiilluurree ttoo ffoollllooww iinnssttrruuccttiioonnss bbeellooww ccoouulldd rreessuulltt iinn ddeeaatthh oorr sseerriioouuss iinnjjuurryy.. IInn aaddddiittiioonn ttoo tthhee ffoolllloowwiinngg ttaasskkss,, yyoouu MMUUSSTT::
•• FFoollllooww aallll iinnssttrruuccttiioonnss iinn tthhee uunniitt’’ss
IInnssttaallllaattiioonn,, OOppeerraattiioonn,, aanndd MMaaiinntteennaannccee
mmaannuuaall,, iinncclluuddiinngg wwaarrnniinnggss,, ccaauuttiioonnss,, aanndd nnoottiicceess..
•• PPeerrffoorrmm aallll rreeqquuiirreedd ttaasskkss iinn aannyy aapppplliiccaabbllee SSeerrvviiccee AAlleerrttss aanndd SSeerrvviiccee BBuulllleettiinnss..
•• RReevviieeww aanndd uunnddeerrssttaanndd aallll iinnffoorrmmaattiioonn pprroovviiddeedd iinn SSuubbmmiittttaallss aanndd DDeessiiggnn SSppeecciiffiiccaattiioonnss..
1. GGeenneerraall
Inspect chiller for damage (shipping or rigging).
Verify and record unit nitrogen holding charge pressure.
Inspect water piping for proper installation.
Inspect strainers, flow sensing devices, isolation valves, pressure gauges, thermometer wells, flow balancing valves, vent cocks, and drains.
Inspect cooling tower piping.
Verify proper clearances.
Power wiring meets size requirement.
Verify proper voltage and amperage rating.
Verify proper foundation installation.
Verify unit isolator pads/springs have been installed.
Verify low voltage circuits are isolated from high voltage circuits.
Check equipment room for ventilation, refrigerant monitor, rupture disk piping, and Personal Protective Equipment (PPE).
NNoottee:: All conditions which do not conform to the
established requirements for unit installation MUST be corrected prior to start-up. Any non­conforming condition which is not corrected prior to start-up must be noted in the Non- Compliance Form (PROD-ADF001*-EN) by the start-up technician; this information must also be signed by responsible site personnel before start-up and the completed Non-Compliance Form will become part of the start-up record, submitted with a Start-up Check Sheet and a
Chiller Service Report.
2. PPrree--SSttaarrtt OOppeerraattiioonnss
Verify nitrogen holding charge.
Calibrate the high pressure cutout control (HPC).
Meg compressor motor.
Confirm proper oil pump operation.
Evacuate unit.
Check condenser installation.
Check evaporator installation.
NNOOTTIICCEE
DDoo NNoott AAppppllyy EElleeccttrriiccaall PPoowweerr ttoo aa UUnniitt iinn aa VVaaccuuuumm!!
FFaaiilluurree ttoo ffoollllooww iinnssttrruuccttiioonnss bbeellooww ccoouulldd rreessuulltt iinn mmoottoorr aanndd ccoommpprreessssoorr ddaammaaggee.. DDoo nnoott aappppllyy eelleeccttrriiccaall ppoowweerr ttoo aa mmoottoorr iinn aa vvaaccuuuumm.. FFoorr uunniittss wwiitthh iinnssiiddee--tthhee--ddeellttaa ssoolliidd ssttaattee ssttaarrtteerrss,, ddiissccoonnnneecctt ppoowweerr ttoo uunniitt dduurriinngg eevvaaccuuaattiioonn oorr wwhheenn tthhee uunniitt iiss iinn aa ddeeeepp vvaaccuuuumm.. IInn aaddddiittiioonn,, oonn uunniittss wwiitthh iinnssiiddee--tthhee--ddeellttaa ssoolliidd ssttaattee ssttaarrtteerrss,, aallll ppoowweerr ttoo tthhee uunniitt mmuusstt bbee ddiissccoonnnneecctteedd pprriioorr ttoo eevvaaccuuaattiinngg tthhee uunniitt aass lliinnee ppoowweerr iiss ddiirreeccttllyy aapppplliieedd ttoo tthhee mmoottoorr tteerrmmiinnaallss 44,, 55,, aanndd 66..
Check electrical and controls.
Inspect motor starter and control panel.
Confirm all wiring connections are tight, free of abrasion and have no sharp bends in panel and on compressors.
Inspect contactors and relays.
Verify unit wiring (low and high voltage) is correctly isolated, phased, and properly grounded.
Connect external 120 Vac power to power up the control panel.
Run the oil pump to verify pump can provide
CVHE-SVX02M-EN
C–1
CCVVHHEE,, CCVVHHFF,, aanndd CCVVHHGG CCeennTTrraaVVaacc™™ CChhiilllleerr SSttaarrtt--uupp TTaasskkss ttoo bbee PPeerrffoorrmmeedd bbyy TTrraannee
18 to 22 psid (124.1 to 151.7 kPaD) net pressure.
Verify and record control parameters.
Verify all control interlocks are installed and properly functioning.
Dry run starter (non-Adaptive Frequency™ Drive [AFD]).
Measure condenser pressures and flow.
Adjust condenser flow sensing device.
Measure evaporator pressures and flow.
Adjust evaporator flow sensing device.
Inspect motor starter panel and perform starter panel checkout procedures.
Confirm proper phase check incoming power.
Inspect control panel.
Apply separate source 120 Vac power to control to perform control panel checkout procedure.
Review and record unit configuration parameters.
Confirm oil pump pressure—regulating valve setting.
Verify vane operator is working properly and moves without binding.
Dry run test starter (non-AFD).
Remove separate source power and reconnect wiring.
3. PPrreeppaarraattiioonn ffoorr SSttaarrtt--uupp
Relieve nitrogen holding charge.
Evacuate and charge the system.
Apply power to the starter panel.
Verify current to the oil sump heater.
4. CChhiilllleerr SSttaarrtt--uupp
Set Purge mode to “On.”
Bump-start the compressor and verify compressor motor rotation.
Start chiller.
Verify no unusual noises or vibrations and observe operating conditions.
If necessary, adjust oil pressure regulator between 18 to 22 psid (124.1 to 151.7 kPaD) net.
Measure and verify refrigerant pump pressure.
When chiller is stable, take system log three times at 15-minute intervals.
Set Purge mode to “Adaptive.”
Reset the “Starter Energy Consumption” resettable.
Record a Chiller Service Report.
Review “AdaptiView Display Customer Training Checklist.”
Equipment Description
Stopping/Starting Chiller Operation
Alarms
Reports
Data Graphs
Equipment Settings
Display Settings
Security Settings
Basic Troubleshooting
C–2
CVHE-SVX02M-EN
Appendix D. CVHE, CVHF, and CVHG CenTraVac™™ Chiller Annual Inspection List
Follow the annual maintenance instructions provided in the text of this manual, including but not limited to:
1. CCoommpprreessssoorr//MMoottoorr
Motor continuity.
Motor meg test.
Check motor terminals.
Inspect motor terminal board.
Check inlet guide vanes (IGV) for abnormalities.
2. SSttaarrtteerr oorr AAddaappttiivvee FFrreeqquueennccyy™™ DDrriivvee
Inspect starter contacts.
Check all connections per manufacturer specifications.
Follow all manufacturer recommendations for starter or Adaptive Frequency™ Drive (AFD) maintenance.
Inspect/clean/service the AFD cooling system (water- or air-cooled AFD).
Record all applicable starter or starter component settings.
3. OOiill SSyysstteemm
Annual oil analysis (follow recommendations).
Clean and lubricate oil system as required.
Electrical inspection.
Pump motor continuity check.
Run oil pump and check differential oil pressure.
4. CCoonnddeennsseerr
Inspect for fouling and scaling in tubes.
Check operation of condenser water flow sensing device.
Factory recommendation to eddy current test tubes every three years.
5. EEvvaappoorraattoorr
Inspect for fouling and scaling in tubes.
Check operation of evaporator water flow sensing device.
Factory recommendation to eddy current test tubes every three years.
6. CCoonnttrrooll CCiirrccuuiittss
Verify control parameters.
Test appropriate sensors for accuracy.
Ensure sensors are properly seated in wells with thermopaste installed.
Check evaporator leaving water temperature low temperature cutout setpoint.
Condenser high pressure switch check-out.
Check adjustment and operation of the inlet guide vane actuator.
7. LLeeaakk TTeesstt CChhiilllleerr
Check purge times and unit performance logs. If warranted, pressure leak test.
Review oil analysis. If required, submit refrigerant sample for analysis.
Inspect unit for any signs of refrigerant or oil leakage.
Check unit for any loose bolts on flange, volutes, or casing.
8. PPuurrggee UUnniitt
Review the purge Installation, Operation, and Maintenance manual and follow maintenance and/or inspection items identified.
Review purge pump-out data.
Review overall operation of purge and service as necessary.
9. EExxtteerriioorr
Inlet guide vane linkage.
Clean and touch-up painted surfaces as needed.
Repair deteriorated, torn, or missing insulation.
10. OOppttiioonnaall AAcccceessssoorriieess
If applicable, lubricate factory-installed gantries.
After the first month of operation, inspect Heresite® or Belzona® coated waterboxes; thereafter, inspect as needed.
Inspect anodes.
Inspect and lubricate hinged waterboxes.
With water flow sensing option, bleed tubing from waterboxes to transformers.
CVHE-SVX02M-EN
D–1
Appendix E. CVHE, CVHF, and CVHG CenTraVac™™ Chiller Operator Log
Water-Cooled CVHE, CVHF and CVHG CenTraVac™™ Chillers with UC800 Controller
Tracer®® AdaptiView™™ Reports—Log Sheet Log 1 Log 2 Log 3
Evaporator
Entering
Leaving
Saturated
Refrig. Press
Approach
Flow Sw Status
Condenser
Entering
Leaving
Saturated
Refrig. Press
Approach
Flow Sw Status
Compressor
Starts
Running Time
Oil Tank Press
Oil Discharge Press
Oil Diff Press
Oil Tank Temp
IGV Position %
IGV Steps
Motor
% RLA L1, L2, L3
Amps L1, L2, L3
Volts AB, BC, CA
Power KW
Load PF
Winding #1 Temp
Winding #2 Temp
Winding #3 Temp
IGV Steps
With AFD only
AFD Freq
AFD Speed
AFD Transistor Temp
Purge
Time Until Next Purge Run
Daily Pumpout—24 hrs
Avg. Daily Pumpout—7 days
Daily Pumpout Limit/Alarm
Chiller On—7 days
Pumpout Chiller On—7 days
Pumpout Chiller Off—7 days
Pumpout—Life
CVHE-SVX02M-EN
E–1
CCVVHHEE,, CCVVHHFF,, aanndd CCVVHHGG CCeennTTrraaVVaacc™™ CChhiilllleerr OOppeerraattoorr LLoogg
Water-Cooled CVHE, CVHF and CVHG CenTraVac™™ Chillers with UC800 Controller
Tracer®® AdaptiView™™ Reports—Log Sheet Log 1 Log 2 Log 3
Purge Rfgt Cprsr Suction Temp.
Purge Liquid Temp.
Carbon Tank Temp. (if present)
Date:
Technician:
Owner:
E–2
CVHE-SVX02M-EN
Ingersoll Rand (NYSE: IR) advances the quality of life by creating comfortable, sustainable and efficient environments. Our people and our family of brands —including Club Car
®
Trane
—work together to enhance the quality and comfort of air in homes and buildings; transport and protect
®
, Ingersoll Rand®, Thermo King®and
food and perishables; and increase industrial productivity and efficiency. We are a global business committed to a world of sustainable progress and enduring results.
ingersollrand.com
Ingersoll Rand has a policy of continuous product and product data improvements and reserves the right to change design and specifications without notice. We are committed to using environmentally conscious print practices.
CVHE-SVX02M — EN 27 Mar 2017
Supersedes CVHE-SVX02L-EN (November 2016)
©2017 Ingersoll Rand | all rights reserved
Loading...