: Fan motor
: Indoor temp. sensor
: Temp. sensor
: Temp. sensor
: Drain pump motor
: Float switch
: Drain control relay
RED
WHI
321
Indoor unit
earth screw
321
Outdoor unit
earth screw
Serial
NL
signal
Single phase 220V, 50Hz
17
Closed-end
connector
1 233
1 2
Reactor
Color
Identification
BLACK
:
BLK
BLUE
:
BLU
RED
:
RED
GRAY
:
GRY
PINK
:
PNK
GREEN
:
GRN
WHITE
:
WHI
BROWN
:
BRW
ORANGE
:
ORN
YELLOW
:
YEL
5-2. Outdoor Unit
RAV-SM560AT-E
Q200
BLU
P17 P18
P21
P22
P23
RED
WHI
BLK
2 1
4
2331
CM
COMPRESSOR
CN301
IGBT MODULE
BZBYBXEWBWEVBVEUBU
P.C. BOARD
(MCC-813)
5
5
GRY
4 3
PNK
2 1
YEL
3
3
BLK
2 1
2 1
WHI
RED
2 1
4 3
FM
FAN MOTOR
Q300
CN300
BRW
P19P20
P14
PUR
REACTOR
DB01
CONVERTER
MODULE
~
~
–
+
ELECTRONIC
STARTER
–
–
–
F04
FUSE
T3. 15A
250V~
P13
P12
2 1
2 1
+
+
+
P11
C12
C13
C14
2
GEA
P10
POWER
RELAY
3
P02
1
TO
INDOOR
UNIT
REACTOR
ORN
P09
P08P07
CT
FUSE
T25A
250V~
P03
ORN
WHI
2
3
L
POWER
SUPPLY
220V
50Hz
2 1
2 1
RELAY
VARISTOR
F01
P01
BLK
N
~
CN500
2 1
2 1
CN600
CN601
CN602
CN603
CN701
P06
SURGE
ABSORBER
2
WHITE (S)
1
THERMOSTAT
FOR
COMPRESSOR
TE
11
22
TD
11
22
33
TO
11
22
TS
11
22
33
11
22
33
COIL FOR
11
22
33
44
55
66
BLK
YEL
RED
ORN
RED
GRY
4-WAY VALVE
PMV
PULSE
MODULATING
VALVE
BLACK (C)
RED (R)
BLK
CN703
TERMINAL OF COMPRESSOR
The sign in ( ) is displayed
in the terminal cover
Check
items
1
2
3
4
SIMPLE CHECK POINTS FOR DIAGNOSING FAULTS
Diagnosis result
TERMINAL BLOCK
There is no supply voltage
(AC220V) between L - N , 1 - 2
There is no voltage (DC15 to 25V) 2 - 3
FUSE
T25A 250V to fuse (F01) blown
T3.15A 250V to fuse (F04) blown
ELECTROLYTIC CAPACITOR VOLTAGE (C12, C13, C14)
DC320V not available between
+ – terminal of electrolytic capacitor
INVERTER OUTPUT (Inverter and compressor connector out of position)
(Please confirm within six minutes after instructing in the drive.)
Voltage between each line of in v erter side
connector pins are not equal.
Power supply and connecting
cable check
Converter module (DB01) and
electrolytic capacitor (C12 to C14) check
IGBT module (Q200) check
Fan motor check
ELECTROLYTIC CAPACITOR VOLTAGE (C10, C11, C12, C13)
DC320V not available between
+ – terminal of electrolytic capacitor
INVERTER OUTPUT (CN09, CN10, CN11)
(Please confirm within six minutes after instructing in the drive.)
Voltage between each line of in v erterside
connector pins are not equal.
Connecting cable check
Converter module (DB01) and electrolytic
capacitor (C10 to C13) check
IGBT module (Q200) check, Fan motor check
SUB P.C. board chec k
Output (Rated) 120 W, 220–240 V
Output (Rated) 120 W, 220–240 V
10 kΩ at 25°C
10 kΩ at 25°C
10 kΩ at 25°C
10 mH, 1 A
Specifications
Output (Rated) 40 W
3 phase, 4P, 1100 W
10 mH, 16A
10 kΩ at 25°C
10 kΩ at 25°C
10 kΩ at 25°C
50 kΩ at 25°C
T3.15 A, AC 250 V
25 A, AC 250 V
ON : 90 ± 5°C, OFF : 125 ± 4°C
RAV-SM800AT-E
No.
1
Fan motor
2
Compressor
3
Reactor
4
Outdoor temp. sensor (To-sensor)
5
Heat exchanger sensor (Te-sensor)
6
Suction temp. sensor (Ts-sensor)
7
Discharge temp. sensor (Td-sensor)
8
Fuse (Switching power (Protect))
9
Fuse (Inverter, input (Current protect))
10
4-way valve solenoid coil
11
Compressor thermo. (Protection)
Parts name
Type
ICF-140-63-1 or ICF-140-63-2
DA220A2F-20L
CH-47
—
—
—
—
DKV-M0ZS743B0
US-622
21
Specifications
Output (Rated) 63 W
3 phase, 4P, 1600 W
8 mH, 16 A
10 kΩ at 25°C
10 kΩ at 25°C
10 kΩ at 25°C
50 kΩ at 25°C
T3.15 A, AC 250 V
25 A, AC 250 V
ON : 90 ± 5°C, OFF : 125 ± 4°C
RAV-SM1100AT-E
No.
1
Fan motor
2
Compressor
3
Reactor
4
Outdoor temp. sensor (To-sensor)
5
Heat exchanger sensor (Te-sensor)
6
Suction temp. sensor (Ts-sensor)
7
Discharge temp. sensor (Td-sensor)
8
Fuse (Switching power (Protect))
9
Fuse (Inverter, input (Current protect)
10
4-way valve solenoid coil
11
Compressor thermo. (Protection)
RAV-SM1400AT-E
No.
1
Fan motor
2
Compressor
Parts name
Parts name
Type
ICF-140-63-2
ICF-140-43-2
DA220A2F-20L
CH-56
—
—
—
—
VHV-01AJ502E1
US-622
Type
ICF-140-63-2
DA420A3F-21M
Specifications
Output (Rated) 63 W
Output (Rated) 43 W
3 phase, 4P, 2000 W
6 mH, 18.5 A
10 kΩ at 25°C
10 kΩ at 25°C
10 kΩ at 25°C
50 kΩ at 25°C
T3.15 A, AC 250 V
25 A, AC 250 V
AC 220 – 240 V
ON : 90 ± 5°C, OFF : 125 ± 4°C
Specifications
Output (Rated) 63 W
3 phase, 4P, 3500 W
3
Reactor
4
Outdoor temp. sensor (To-sensor)
5
Heat exchanger sensor (Te-sensor)
6
Suction temp. sensor (Ts-sensor)
7
Discharge temp. sensor (Td-sensor)
8
Fuse (Switching power (Protect))
9
Fuse (Inverter, input (Current protect))
10
4-way valve solenoid coil
11
Compressor thermo. (Protection)
CH-56
—
—
—
—
VHV-01AJ502E1
US-622
6 mH, 18.5 A
10 kΩ at 25°C
10 kΩ at 25°C
10 kΩ at 25°C
50 kΩ at 25°C
T3.15 A, AC 250 V
25 A, AC 250 V
AC 220 V
ON : 90 ± 5°C, OFF : 125 ± 4°C
22
7. REFRIGERANT R410A
This air conditioner adopts the new refrigerant HFC
(R410A) which does not damage the ozone layer.
The working pressure of the new refrigerant R410A
is 1.6 times higher than conventional refrigerant
(R22). The refrigerating oil is also changed in
accordance with change of refrigerant, so be careful
that water, dust, and existing refrigerant or refrigerating oil are not entered in the refrigerant cycle of the
air conditioner using the new refrigerant during
installation work or servicing time.
The next section describes the precautions for air
conditioner using the new refrigerant. Conforming to
contents of the next section together with the
general cautions included in this manual, perform
the correct and safe work.
7-1. Safety During Installation/Servicing
As R410A’s pressure is about 1.6 times higher than
that of R22, improper installation/servicing may
cause a serious trouble. By using tools and materials exclusiv e for R410A, it is necessary to carry out
installation/servicing safely while taking the following
precautions into consideration.
(1) Never use refrigerant other than R410A in an air
conditioner which is designed to operate with
R410A.
If other refrigerant than R410A is mixed, pressure in the refrigeration cycle becomes abnormally high, and it may cause personal injury, etc.
by a rupture.
(2) Confirm the used refrigerant name, and use
tools and materials exclusiv e for the refrigerant
R410A.
The refrigerant name R410A is indicated on the
visible place of the outdoor unit of the air conditioner using R410A as refrigerant. To prevent
mischarging, the diameter of the service port
differs from that of R22.
(3) If a refrigeration gas leakage occurs during
installation/servicing, be sure to ventilate fully.
If the refrigerant gas comes into contact with fire,
a poisonous gas may occur.
(4) When installing or removing an air conditioner,
do not allow air or moisture to remain in the
refrigeration cycle. Otherwise, pressure in the
refrigeration cycle may become abnormally high
so that a rupture or personal injury may be
caused.
(5) After completion of installation work, check to
make sure that there is no refrigeration gas
leakage.
If the refrigerant gas leaks into the room, coming
into contact with fire in the fan-driven heater,
space heater, etc., a poisonous gas may occur.
(6) When an air conditioning system charged with a
large volume of refrigerant is installed in a small
room, it is necessary to exercise care so that,
even when refrigerant leaks , its concentration
does not exceed the marginal level.
If the refrigerant gas leakage occurs and its
concentration exceeds the marginal level, an
oxygen starvation accident may result.
(7) Be sure to carry out installation or removal
according to the installation manual.
Improper installation may cause refrigeration
trouble, water leakage, electric shock, fire, etc.
(8) Unauthorized modifications to the air conditioner
may be dangerous. If a breakdown occurs
please call a qualified air conditioner technician
or electrician.
Improper repair’s may result in water leakage,
electric shock and fire, etc.
7-2. Refrigerant Piping Installation
7-2-1. Piping Materials and Joints Used
For the refrigerant piping installation, copper pipes
and joints are mainly used. Copper pipes and joints
suitable for the refrigerant must be chosen and
installed. Furthermore, it is necessary to use clean
copper pipes and joints whose interior surfaces are
less affected by contaminants.
(1) Copper Pipes
It is necessary to use seamless copper pipes
which are made of either copper or copper alloy
and it is desirable that the amount of residual oil
is less than 40 mg/10 m. Do not use copper
pipes having a collapsed, deformed or discolored portion (especially on the interior surface).
Otherwise, the expansion valve or capillary tube
may become blocked with contaminants.
As an air conditioner using R410A incurs
pressure higher than when using R22, it is
necessary to choose adequate materials.
Thicknesses of copper pipes used with R410A
are as shown in Table 7-2-1. Never use copper
pipes thinner than 0.8 mm even when it is
available on the market.
23
Table 7-2-1 Thicknesses of annealed copper pipes
Thickness (mm)
Nominal diameter
1/4
3/8
1/2
5/8
(2) Joints
For copper pipes, flare joints or socket joints are
used. Prior to use, be sure to remove all contaminants.
a) Flare Joints
Flare joints used to connect the copper pipes
cannot be used for pipings whose outer
diameter exceeds 20 mm. In such a case,
socket joints can be used.
Sizes of flare pipe ends, flare joint ends and
flare nuts are as shown in Tables 7-2-3 to 72-6 below .
Outer diameter (mm)
6.35
9.52
12.70
15.88
R410AR22
0.800.80
0.800.80
0.800.80
1.001.00
b) Socket Joints
Socket joints are such that they are brazed
for connections, and used mainly f or thick
pipings whose diameter is larger than 20 mm.
Thicknesses of socket joints are as shown in
Table 7-2-2.
Table 7-2-2 Minimum thicknesses of socket joints
Nominal diameter
1/4
3/8
1/2
5/8
Reference outer diameter of
copper pipe jointed (mm)
7-2-2. Processing of Piping Materials
When performing the refrigerant piping installation,
care should be taken to ensure that water or dust
does not enter the pipe interior, that no other oil
other than lubricating oils used in the installed air
conditioner is used, and that refrigerant does not
leak. When using lubricating oils in the piping
processing, use such lubricating oils whose water
content has been removed. When stored, be sure to
seal the container with an airtight cap or any other
cover.
6.35
9.52
12.70
15.88
Minimum joint thickness
(mm)
0.50
0.60
0.70
0.80
(1) Flare Processing Procedures and Precautions
a) Cutting the Pipe
By means of a pipe cutter, slowly cut the pipe
so that it is not deformed.
b) Removing Burrs and Chips
If the flared section has chips or burrs,
refrigerant leakage may occur. Carefully
remove all b urrs and clean the cut surface
before installation.
24
c) Insertion of Flare Nut
d) Flare Processing
Make certain that a clamp bar and copper
pipe have been cleaned.
By means of the clamp bar, perform the flare
processing correctly.
Use either a flare tool for R410A or conventional flare tool.
Table 7-2-3 Dimensions related to flare processing for R410A
Flare processing dimensions differ according
to the type of flare tool. When using a conventional flare tool, be sure to secure “dimen-
sion A” by using a gauge for size adjustment.
ØD
A
Fig. 7-2-1 Flare processing dimensions
Nominal
diameter
1/4
3/8
1/2
5/8
Nominal
diameter
1/4
3/8
Outer
diameter
(mm)
6.35
9.52
12.70
15.88
Thickness
(mm)
0.8
0.8
0.8
1.0
Flare tool for
R410A clutch type
0 to 0.5
0 to 0.5
0 to 0.5
0 to 0.5
Table 7-2-4 Dimensions related to flare processing for R22
Outer
diameter
(mm)
6.35
9.52
Thickness
(mm)
0.8
0.8
Flare tool for
R22 clutch type
0 to 0.5
0 to 0.5
A (mm)
Conventional flare tool
Clutch typeWing nut type
1.0 to 1.51.5 to 2.0
1.0 to 1.51.5 to 2.0
1.0 to 1.52.0 to 2.5
1.0 to 1.52.0 to 2.5
A (mm)
Conventional flare tool
Clutch typeWing nut type
0.5 to 1.01.0 to 1.5
0.5 to 1.01.0 to 1.5
1/2
5/8
Nominal
diameter
1/4
3/8
1/2
5/8
12.70
15.88
Table 7-2-5 Flare and flare nut dimensions for R410A
Outer diameter
(mm)
6.35
9.52
12.70
15,88
0.8
1.0
Thickness
(mm)
0.8
0.8
0.8
1.0
0 to 0.5
0 to 0.5
0.5 to 1.01.5 to 2.0
0.5 to 1.01.5 to 2.0
Dimension (mm)
ABCD
9.1 9.2 6.513
13.213.5 9.720
16.616.012.923
19.719.016.025
25
Flare nut
width (mm)
17
22
26
29
Table 7-2-6 Flare and flare nut dimensions for R22
Fig. 7-2-2 Relations between flare nut and flare seal surface
(2) Flare Connecting Procedures and Precautions
a) Make sure that the flare and union portions
do not have any scar or dust, etc.
b) Correctly align the processed flare surface
with the union axis.
c) Tighten the flare with designated torque by
means of a torque wrench. The tightening
torque for R410A is the same as that for
conventional R22. Incidentally, when the
torque is weak, the gas leakage may occur.
Table 7-2-7 Tightening torque of flare for R410A [Reference values]
NominalOuter diameterTightening torque
diameter(mm)N•m (kgf•cm)
1/46.3514 to 18 (140 to 180)
When it is strong, the flare nut may crack and
may be made non-removable. When choosing
the tightening torque, comply with values
designated by manufacturers. Table 7-2-7
shows reference v alues.
NOTE:
When applying oil to the flare surface, be sure to use
oil designated by the manufacturer. If any other oil is
used, the lubricating oils may deteriorate and cause
the compressor to burn out.
Tightening torque of torque
wrenches available on the market
N•m (kgf•cm)
16 (160), 18 (180)
3/8 9.5233 to 42 (330 to 420)
1/212.7050 to 62 (500 to 620)
5/815.8863 to 77 (630 to 770)
26
42 (420)
55 (550)
65 (650)
7-3. Tools
7-3-1. Required T ools
The service port diameter of packed v alve of the outdoor unit in the air conditioner using R410A is changed to
prevent mixing of other refrigerant. To reinforce the pressure-resisting strength, flare processing dimensions and
opposite side dimension of flare nut (For Ø12.7 copper pipe) of the refrigerant piping are lengthened.
The used refrigerating oil is changed, and mixing of oil may cause a trouble such as generation of sludge,
clogging of capillary, etc. Accordingly, the tools to be used are classified into the following three types.
(1) Tools e xclusive for R410A (Those which cannot be used for conventional refrigerant (R22))
(2) Tools exclusive for R410A, but can be also used for conventional refrigerant (R22)
(3) Tools commonly used for R410A and for conventional refrigerant (R22)
The table below shows the tools exclusive for R410A and their interchangeability.
Tools exclusive for R410A (The following tools for R410A are required.)
Tools whose specifications are changed for R410A and their interchangeability
(Opposite side 4mm)
(11) Tape measure
(12) Metal saw
Also prepare the following equipments for other installation method and run check.
(1) Clamp meter
(2) Thermometer
(3) Insulation resistance tester
(4) Electroscope
27
7-4. Recharging of Refrigerant
When it is necessary to recharge refrigerant, charge the specified amount of new refrigerant according to the
following steps .
Recover the refrigerant, and check no refrigerant
remains in the equipment.
Connect the charge hose to packed valve service
port at the outdoor unit’s gas side.
When the compound gauge’s pointer has indicated
–0.1 Mpa (–76 cmHg), place the handle Low in the
fully closed position, and turn off the vacuum pump’s
power switch.
Connect the charge hose of the vacuum pump
adapter.
Open fully both packed valves at liquid and gas
sides.
Place the handle of the gauge manifold Low in the
fully opened position, and turn on the vacuum pump’s
power switch. Then, evacuating the refrigerant in the
cycle.
Nev er charge refrigerant exceeding the specified amount.
If the specified amount of refrigerant cannot be charged, charge refrigerant bit by bit in COOL mode.
Do not carry out additional charging.
Keep the status as it is for 1 to 2 minutes, and ensure
that the compound gauge’s pointer does not return.
Set the refrigerant cylinder to the electronic balance,
connect the connecting hose to the cylinder and the
connecting port of the electronic balance, and charge
liquid refrigerant.
(For refrigerant charging, see the figure below.)
When additional charging is carried out if refrigerant leaks, the refrigerant composition changes in the
refrigeration cycle, that is characteristics of the air conditioner changes, refrigerant exceeding the
specified amount is charged, and working pressure in the refrigeration cycle becomes abnormally high
pressure, and may cause a rupture or personal injury.
(INDOOR unit)
Refrigerant cylinder
(With siphon pipe)
Check valve
Open/Close valve
for charging
Electronic balance for refrigerant charging
Fig. 7-4-1 Configuration of refrigerant charging
(Liquid side)
(Gas side)
28
(OUTDOOR unit)
Opened
Closed
Service port
Loading...
+ 96 hidden pages
You need points to download manuals.
1 point = 1 manual.
You can buy points or you can get point for every manual you upload.