Texas Instruments TSB12LV23PZ Datasheet

TSB12LV23 OHCI-Lynx PCI-Based
IEEE 1394 Host Controller
Data Manual
Literature Number: SLLS328A
April 1999
Printed on Recycled Paper
IMPORTANT NOTICE
Texas Instruments and its subsidiaries (TI) reserve the right to make changes to their products or to discontinue any product or service without notice, and advise customers to obtain the latest version of relevant information to verify , before placing orders, that information being relied on is current and complete. All products are sold subject to the terms and conditions of sale supplied at the time of order acknowledgement, including those pertaining to warranty, patent infringement, and limitation of liability.
TI warrants performance of its semiconductor products to the specifications applicable at the time of sale in accordance with TI’s standard warranty. Testing and other quality control techniques are utilized to the extent TI deems necessary to support this warranty . Specific testing of all parameters of each device is not necessarily performed, except those mandated by government requirements.
CERTAIN APPLICATIONS USING SEMICONDUCTOR PRODUCTS MAY INVOLVE POTENTIAL RISKS OF DEATH, PERSONAL INJURY, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE (“CRITICAL APPLICATIONS”). TI SEMICONDUCTOR PRODUCTS ARE NOT DESIGNED, AUTHORIZED, OR WARRANTED TO BE SUIT ABLE FOR USE IN LIFE-SUPPORT DEVICES OR SYSTEMS OR OTHER CRITICAL APPLICATIONS. INCLUSION OF TI PRODUCTS IN SUCH APPLICATIONS IS UNDERSTOOD TO BE FULLY AT THE CUSTOMER’S RISK.
In order to minimize risks associated with the customer’s applications, adequate design and operating safeguards must be provided by the customer to minimize inherent or procedural hazards.
TI assumes no liability for applications assistance or customer product design. TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right of TI covering or relating to any combination, machine, or process in which such semiconductor products or services might be or are used. TI’s publication of information regarding any third party’s products or services does not constitute TI’s approval, warranty or endorsement thereof.
Copyright 1999, Texas Instruments Incorporated
Contents
Section Title Page
1 Introduction 1–1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
1.1 Description 1–1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
1.2 Features 1–1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
1.3 Related Documents 1–2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
1.4 Ordering Information 1–2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2 Terminal Descriptions 2–1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
3 TSB12LV23 Controller Programming Model 3–1. . . . . . . . . . . . . . . . . . . . . . . . .
3.1 PCI/CardBus Configuration Registers 3–3. . . . . . . . . . . . . . . . . . . . . . . . . .
3.2 Vendor ID Register 3–3. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
3.3 Device ID Register 3–4. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
3.4 PCI Command Register 3–4. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
3.5 PCI Status Register 3–5. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
3.6 Class Code and Revision ID Register 3–6. . . . . . . . . . . . . . . . . . . . . . . . . .
3.7 Latency Timer and Class Cache Line Size Register 3–6. . . . . . . . . . . . . .
3.8 Header Type and BIST Register 3–7. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
3.9 OHCI Base Address Register 3–7. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
3.10 TI Extension Base Address Register 3–8. . . . . . . . . . . . . . . . . . . . . . . . . . .
3.11 CIS Base Address Register 3–8. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
3.12 CardBus CIS Pointer Register 3–9. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
3.13 PCI Subsystem Identification Register 3–9. . . . . . . . . . . . . . . . . . . . . . . . . .
3.14 PCI Power Management Capabilities Pointer Register 3–10. . . . . . . . . . . .
3.15 Interrupt Line and Pin Registers 3–10. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
3.16 MIN_GNT and MAX_LAT Register 3–11. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
3.17 PCI OHCI Control Register 3–11. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
3.18 Capability ID and Next Item Pointer Registers 3–12. . . . . . . . . . . . . . . . . . .
3.19 Power Management Capabilities Register 3–13. . . . . . . . . . . . . . . . . . . . . .
3.20 Power Management Control and Status Register 3–14. . . . . . . . . . . . . . . .
3.21 Power Management Extension Registers 3–14. . . . . . . . . . . . . . . . . . . . . . .
3.22 PCI Miscellaneous Configuration Register 3–15. . . . . . . . . . . . . . . . . . . . . .
3.23 Link Enhancement Control Register 3–16. . . . . . . . . . . . . . . . . . . . . . . . . . . .
3.24 Subsystem Access Register 3–17. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
3.25 GPIO Control Register 3–18. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
4 OHCI Registers 4–1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
4.1 OHCI Version Register 4–4. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
4.2 GUID ROM Register 4–5. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
4.3 Asynchronous Transmit Retries Register 4–6. . . . . . . . . . . . . . . . . . . . . . .
4.4 CSR Data Register 4–6. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
iii
4.5 CSR Compare Register 4–7. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
4.6 CSR Control Register 4–7. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
4.7 Configuration ROM Header Register 4–8. . . . . . . . . . . . . . . . . . . . . . . . . . .
4.8 Bus Identification Register 4–8. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
4.9 Bus Options Register 4–9. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
4.10 GUID High Register 4–10. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
4.11 GUID Low Register 4–10. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
4.12 Configuration ROM Mapping Register 4–11. . . . . . . . . . . . . . . . . . . . . . . . . .
4.13 Posted Write Address Low Register 4–11. . . . . . . . . . . . . . . . . . . . . . . . . . . .
4.14 Posted Write Address High Register 4–12. . . . . . . . . . . . . . . . . . . . . . . . . . .
4.15 Vendor ID Register 4–12. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
4.16 Host Controller Control Register 4–13. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
4.17 Self ID Buffer Pointer Register 4–14. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
4.18 Self ID Count Register 4–14. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
4.19 Isochronous Receive Channel Mask High Register 4–15. . . . . . . . . . . . . .
4.20 Isochronous Receive Channel Mask Low Register 4–16. . . . . . . . . . . . . . .
4.21 Interrupt Event Register 4–18. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
4.22 Interrupt Mask Register 4–20. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
4.23 Isochronous Transmit Interrupt Event Register 4–21. . . . . . . . . . . . . . . . . .
4.24 Isochronous Transmit Interrupt Mask Register 4–22. . . . . . . . . . . . . . . . . . .
4.25 Isochronous Receive Interrupt Event Register 4–22. . . . . . . . . . . . . . . . . . .
4.26 Isochronous Receive Interrupt Mask Register 4–23. . . . . . . . . . . . . . . . . . .
4.27 Fairness Control Register 4–23. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
4.28 Link Control Register 4–24. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
4.29 Node Identification Register 4–25. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
4.30 PHY Layer Control Register 4–26. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
4.31 Isochronous Cycle Timer Register 4–27. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
4.32 Asynchronous Request Filter High Register 4–28. . . . . . . . . . . . . . . . . . . . .
4.33 Asynchronous Request Filter Low Register 4–30. . . . . . . . . . . . . . . . . . . . .
4.34 Physical Request Filter High Register 4–32. . . . . . . . . . . . . . . . . . . . . . . . . .
4.35 Physical Request Filter Low Register 4–34. . . . . . . . . . . . . . . . . . . . . . . . . .
4.36 Physical Upper Bound Register (Optional Register) 4–36. . . . . . . . . . . . . .
4.37 Asynchronous Context Control Register 4–37. . . . . . . . . . . . . . . . . . . . . . . .
4.38 Asynchronous Context Command Pointer Register 4–38. . . . . . . . . . . . . .
4.39 Isochronous Transmit Context Control Register 4–39. . . . . . . . . . . . . . . . . .
4.40 Isochronous Transmit Context Command Pointer Register 4–40. . . . . . . .
4.41 Isochronous Receive Context Control Register 4–40. . . . . . . . . . . . . . . . . .
4.42 Isochronous Receive Context Command Pointer Register 4–41. . . . . . . .
4.43 Isochronous Receive Context Match Register 4–42. . . . . . . . . . . . . . . . . . .
5 GPIO Interface 5–1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
6 Serial EEPROM Interface 6–1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
7 Electrical Characteristics 7–1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
7.1 Absolute Maximum Ratings Over Operating
Temperature Ranges 7–1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
iv
7.2 Recommended Operating Conditions 7–2. . . . . . . . . . . . . . . . . . . . . . . . . .
7.3 Electrical Characteristics Over Recommended
Operating Conditions 7–3. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
7.4 Switching Characteristics for PCI Interface 7–3. . . . . . . . . . . . . . . . . . . . . .
7.5 Switching Characteristics for PHY-Link Interface 7–3. . . . . . . . . . . . . . . . .
8 Mechanical Information 8–1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
List of Illustrations
Figure Title Page
2–1 Terminal Assignments 2–1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
3–1 TSB12LV23 Block Diagram 3–2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
5–1 GPIO2 and GPIO3 5–1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
List of Tables
Table Title Page
2–1 Signals Sorted by Pin Number 2–2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2–2 Power Supply 2–2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2–3 PCI System 2–3. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2–4 PCI Address and Data 2–3. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2–5 PCI Interface Control 2–4. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2–6 IEEE1394 PHY/Link 2–4. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2–7 Miscellaneous 2–5. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
3–1 Bit Field Access Tag Descriptions 3–1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
3–2 PCI Configuration Register Map 3–3. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
3–3 PCI Command Register Description 3–4. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
3–4 PCI Status Register Description 3–5. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
3–5 Class Code and Revision ID Register Description 3–6. . . . . . . . . . . . . . . . . . . . .
3–6 Latency Timer and Class Cache Line Size Register Description 3–6. . . . . . . . .
3–7 Header Type and BIST Register Description 3–7. . . . . . . . . . . . . . . . . . . . . . . . . .
3–8 OHCI Base Address Register Description 3–7. . . . . . . . . . . . . . . . . . . . . . . . . . . .
3–9 CIS Base Address Register Description 3–8. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
3–10 CardBus CIS Pointer Register Description 3–9. . . . . . . . . . . . . . . . . . . . . . . . . .
3–11 PCI Subsystem Identification Register Description 3–9. . . . . . . . . . . . . . . . . . . .
3–12 Interrupt Line and Pin Registers Description 3–10. . . . . . . . . . . . . . . . . . . . . . . . .
3–13 MIN_GNT and MAX_LAT Register Description 3–11. . . . . . . . . . . . . . . . . . . . . . .
3–14 PCI OHCI Control Register Description 3–11. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
3–15 Capability ID and Next Item Pointer Registers Description 3–12. . . . . . . . . . . . .
3–16 Power Management Capabilities Register Description 3–13. . . . . . . . . . . . . . . .
3–17 Power Management Control and Status Register Description 3–14. . . . . . . . . .
3–18 Power Management Extension Registers Description 3–14. . . . . . . . . . . . . . . . .
v
3–19 PCI Miscellaneous Configuration Register 3–15. . . . . . . . . . . . . . . . . . . . . . . . . .
3–20 Link Enhancement Control Register Description 3–16. . . . . . . . . . . . . . . . . . . . .
3–21 Subsystem Access Register Description 3–17. . . . . . . . . . . . . . . . . . . . . . . . . . . .
3–22 General-Purpose Input/Output Control Register Description 3–18. . . . . . . . . . .
4–1 OHCI Register Map 4–1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
4–2 OHCI Version Register Description 4–4. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
4–3 GUID ROM Register Description 4–5. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
4–4 Asynchronous Transmit Retries Register Description 4–6. . . . . . . . . . . . . . . . . .
4–5 CSR Control Register Description 4–7. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
4–6 Configuration ROM Header Register Description 4–8. . . . . . . . . . . . . . . . . . . . . .
4–7 Bus Options Register Description 4–9. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
4–8 Configuration ROM Mapping Register Description 4–11. . . . . . . . . . . . . . . . . . . . .
4–9 Posted Write Address Low Register Description 4–11. . . . . . . . . . . . . . . . . . . . . . .
4–10 Posted Write Address High Register Description 4–12. . . . . . . . . . . . . . . . . . . . .
4–11 Host Controller Control Register Description 4–13. . . . . . . . . . . . . . . . . . . . . . . . .
4–12 Self ID Count Register Description 4–14. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
4–13 Isochronous Receive Channel Mask High Register Description 4–15. . . . . . . .
4–14 Isochronous Receive Channel Mask Low Register Description 4–16. . . . . . . . .
4–15 Interrupt Event Register Description 4–18. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
4–16 Interrupt Mask Register Description 4–20. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
4–17 Isochronous Transmit Interrupt Event Register Description 4–21. . . . . . . . . . . .
4–18 Isochronous Receive Interrupt Event Register Description 4–22. . . . . . . . . . . . .
4–19 Fairness Control Register Description 4–23. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
4–20 Link Control Register Description 4–24. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
4–21 Node Identification Register Description 4–25. . . . . . . . . . . . . . . . . . . . . . . . . . . .
4–22 PHY Control Register Description 4–26. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
4–23 Isochronous Cycle Timer Register Description 4–27. . . . . . . . . . . . . . . . . . . . . . .
4–24 Asynchronous Request Filter High Register Description 4–28. . . . . . . . . . . . . . .
4–25 Asynchronous Request Filter Low Register Description 4–30. . . . . . . . . . . . . . .
4–26 Physical Request Filter High Register Description 4–32. . . . . . . . . . . . . . . . . . . .
4–27 Physical Request Filter Low Register Description 4–34. . . . . . . . . . . . . . . . . . . .
4–28 Asynchronous Context Control Register Description 4–37. . . . . . . . . . . . . . . . . .
4–29 Asynchronous Context Command Pointer Register Description 4–38. . . . . . . .
4–30 Isochronous Transmit Context Control Register Description 4–39. . . . . . . . . . .
4–31 Isochronous Receive Context Control Register Description 4–40. . . . . . . . . . . .
4–32 Isochronous Receive Context Match Register Description 4–42. . . . . . . . . . . . .
6–1 Registers and Bits Loadable through Serial EEPROM 6–1. . . . . . . . . . . . . . . . .
6–2 Serial EEPROM Map 6–2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
vi
1 Introduction
1.1 Description
The Texas Instruments TSB12LV23 is a PCI-to-1394 host controller compatible with the latest
Bus Power Management Interface
chip provides the IEEE 1394 link function, and is compatible with serial bus data rates of 100 Mbits/s, 200 Mbits/s, and 400 Mbits/s.
As required by the registers are memory mapped and non-prefetchable. The PCI configuration header is accessed through configuration cycles specified by PCI, and provides Plug-and-Play (PnP) compatibility . Furthermore, the TSB12LV23 is compliant with the supports the D0, D2, and D3 power states.
The TSB12L V23 design provides PCI bus master bursting, and is capable of transferring a cacheline of data at 132 Mbytes/s after connection to the memory controller. Since PCI latency can be large even on a PCI Revision 2.1 system, deep FIFOs are provided to buffer 1394 data.
The TSB12L V23 provides physical write posting buffers and a highly tuned physical data path for SBP-2 performance. The TSB12L V23 also provides multiple isochronous contexts, multiple cacheline burst transfers, advanced internal arbitration, and bus holding buffers on the PHY/Link interface, thus, making the TSB12L V23 the best-in-class 1394 OHCI solution.
An advanced CMOS process is used to achieve low power consumption while operating at PCI clock rates up to 33 MHz.
1394 Open Host Controller Interface
PCI Bus Power Management Interface Specification
,
IEEE 1394-1995
, and
1394 Open Host Controller Interface Specifications
(OHCI) and
IEEE 1394A
, per the
PC 98
Specifications, internal control
requirements. TSB12L V23
PCI Local Bus, PCI
. The
1.2 Features
The TSB12LV23 supports the following features:
3.3-V core logic with universal PCI interfaces compatible with 3.3-V and 5-V PCI signaling environments
Supports serial bus data rates of 100, 200, and 400 Mbits/s
Provides bus-hold buffers on physical interface for low-cost single capacitor isolation
Supports physical write posting of up to three outstanding transactions
Serial ROM interface supports 2-wire devices
Supports external cycle timer control for customized synchronization
Implements PCI burst transfers and deep FIFOs to tolerate large host latency
Provides two general-purpose I/Os
Fabricated in advanced low-power CMOS process
Packaged in 100 LQFP (PZ)
Supports CLKRUN
Drop-in replacement for the TSB12LV22
Supports PCI and CardBus applications
1–1
1.3 Related Documents
1394 Open Host Controller Interface Specification
IEEE 1394-1995 and Compatible with Proposal 1394A
PC 98
PCI Bus Power Management Interface Specification (Revision 1.1)
PCI Local Bus Specification (Revision 2.2)
1.4 Ordering Information
ORDERING NUMBER NAME VOLTAGE PACKAGE
TSB12L V23 OHCI-Lynx PCI-Based IEEE 1394 Host Controller 3.3 V, 5-V Tolerant I/Os 100-pin LQFP
1–2
2 Terminal Descriptions
This section provides the terminal descriptions for the TSB12LV23.
PZ PACKAGE
(TOP VIEW)
GND GPIO2 GPIO3
SCL
SDA
V
CCP
CLKRUN
PCI_INTA/CINT
3.3 V
CC
G_RST
GND
PCI_CLK
3.3 V
CC
PCI_GNT PCI_REQ
V
CCP
PCI_PME/CSTSCHG
PCI_AD31 PCI_AD30
3.3 V
CC
PCI_AD29 PCI_AD28 PCI_AD27
GND
PCI_AD26
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
GND
PHY_LPS
PHY_LINKON
98
99
100
28
27
26
CC
PHY_SCLK
3.3 V
95
96
31
30
GND
94
32
PHY_LREQ
97
29
CC
PHY_CTL1
PHY_CTL0
93
33
92
34
PHY_DATA0
3.3 V
90
91
36
35
PHY_DATA1
89
37
PHY_DATA2
88
38
CCP
V
87
39
PHY_DATA3
86
40
CC
PHY_DATA6
44
82
PHY_DATA7
81
45
3.3 V
79
80
47
46
RST
CARDBUS/CYCLEOUT
CYCLEIN
ISOLATED
76
77
78
75
GND
74
PCI_AD0
73
PCI_AD1
72
PCI_AD2
71
PCI_AD3
70
3.3 V
69
PCI_AD4
68
PCI_AD5
67
PCI_AD6
66
PCI_AD7
65
PCI_C/BE0 PCI_AD8
64 63
V
62
PCI_AD9
61
PCI_AD10
60
GND
59
PCI_AD11
58
PCI_AD12
57
PCI_AD13
56
PCI_AD14
55
3.3 V
54
PCI_AD15
53
PCI_C/BE1
52
PCI_PAR
51
PCI_SERR
50
49
48
CC
CCP
CC
PHY_DATA5
GND
PHY_DATA4
83
84
85
43
42
41
GND
CC
3.3 V
PCI_AD25
PCI_AD24
PCI_C/BE3
PCI_IDSEL
PCI_AD23
PCI_AD20
PCI_AD21
PCI_AD18
PCI_AD19
PCI_AD22
Figure 2–1. Terminal Assignments
CCP
V
PCI_AD17
PCI_AD16
PCI_C/BE2
GND
PCI_IRDY
PCI_FRAME
CC
3.3 V
PCI_TRDY
PCI_STOP
PCI_DEVSEL
GND
PCI_PERR
2–1
Table 2–1. Signals Sorted by Pin Number
I/O
DESCRIPTION
NO. TERMINAL NAME NO. TERMINAL NAME NO. TERMINAL NAME NO. TERMINAL NAME
1 GND 26 PCI_AD25 51 PCI_SERR 76 RST 2 GPIO2 27 PCI_AD24 52 PCI_PAR 77 CARDBUS/CYCLEOUT 3 GPIO3 28 PCI_C/BE3 53 PCI_C/BE1 78 CYCLEIN 4 SCL 29 PCI_IDSEL 54 PCI_AD15 79 ISOLATED 5 SDA 30 GND 55 3.3 V 6 V 7 CLKRUN 32 PCI_AD22 57 PCI_AD13 82 PHY_DATA6 8 PCI_INTA/CINT 33 PCI_AD21 58 PCI_AD12 83 GND
9 3.3 V 10 G_RST 35 3.3 V 11 GND 36 PCI_AD19 61 PCI_AD10 86 PHY_DA TA3 12 PCI_CLK 37 PCI_AD18 62 PCI_AD9 87 V 13 3.3 V 14 PCI_GNT 39 V 15 PCI_REQ 40 PCI_AD16 65 PCI_C/BE0 90 PHY_DATA0 16 V 17 PCI_PME/CSTSCHG 42 GND 67 PCI_AD6 92 PHY_CTL1 18 PCI_AD31 43 PCI_FRAME 68 PCI_AD5 93 PHY_CTL0 19 PCI_AD30 44 PCI_IRDY 69 PCI_AD4 94 GND 20 3.3 V 21 PCI_AD29 46 3.3 V 22 PCI_AD28 47 PCI_DEVSEL 72 PCI_AD2 97 PHY_LREQ 23 PCI_AD27 48 PCI_STOP 73 PCI_AD1 98 PHY_LINKON 24 GND 49 PCI_PERR 74 PCI_AD0 99 PHY_LPS 25 PCI_AD26 50 GND 75 GND 100 GND
CCP
CC
CC
CCP
CC
31 PCI_AD23 56 PCI_AD14 81 PHY_DATA7
34 PCI_AD20 59 PCI_AD11 84 PHY_DATA5
CC
38 PCI_AD17 63 V
CCP
41 PCI_C/BE2 66 PCI_AD7 91 3.3 V
45 PCI_TRDY 70 3.3 V
CC
60 GND 85 PHY_DATA4
64 PCI_AD8 89 PHY_DATA1
71 PCI_AD3 96 3.3 V
CC
CCP
CC
80 3.3 V
88 PHY_DATA2
95 PHY_SCLK
CC
CCP
CC
CC
The terminals are grouped in tables by functionality, such as PCI system function, power supply function, etc. The terminal numbers are also listed for convenient reference.
Table 2–2. Power Supply
TERMINAL
NAME NO.
1, 11, 24, 30,
CC
42, 50, 60, 75,
83, 94, 100
9, 13, 20, 35,
46, 55, 70, 80,
91, 96
6, 16, 39, 63,
87
I Device ground terminals
I 3.3-V power supply terminals
I PCI signaling clamp voltage power input. PCI signals are clamped per the
PCI Local Bus Specification
.
GND
3.3 V
V
CCP
2–2
TERMINAL
I/O
DESCRIPTION
I/O
DESCRIPTION
NAME NO.
PCI_CLK 12 I
G_RST 10 I
PCI_INTA/CINT 8 O
RST 76 I
TERMINAL
NAME NO.
PCI_AD31 PCI_AD30 PCI_AD29 PCI_AD28 PCI_AD27 PCI_AD26 PCI_AD25 PCI_AD24 PCI_AD23 PCI_AD22 PCI_AD21 PCI_AD20 PCI_AD19 PCI_AD18 PCI_AD17 PCI_AD16 PCI_AD15 PCI_AD14 PCI_AD13 PCI_AD12 PCI_AD11 PCI_AD10 PCI_AD9 PCI_AD8 PCI_AD7 PCI_AD6 PCI_AD5 PCI_AD4 PCI_AD3 PCI_AD2 PCI_AD PCI_AD0
PCI_C/BE0 PCI_C/BE1 PCI_C/BE2 PCI_C/BE3
PCI_PAR 52 I/O
18 19 21 22 23 25 26 27 31 32 33 34 36 37 38 40 54 56 57 58 59 61 62 64 66 67 68 69 71 72 73 74
65 53 41 28
I/O
I/O
Table 2–3. PCI System
PCI bus clock. Provides timing for all transactions on the PCI bus. All PCI signals are sampled at rising edge of PCLK.
Global power reset. This reset brings all of the TSB12LV23 to its default state, including those registers not reset by RST
Interrupt signal. This output indicates interrupts from the TSB12LV23 to the host. This terminal signals an interrupt based upon the CARDBUS
PCI or CardBus reset. When this bus reset is asserted, the TSB12LV23 places all output buffers in a high impedance state and resets all internal registers except device power management context- and vendor-specific bits initialized by host power on software. When asserted, the device is completely nonfunctional.
. When asserted, the device is completely nonfunctional.
input terminal.
Table 2–4. PCI Address and Data
PCI address/data bus. These signals make up the multiplexed PCI address and data bus on the PCI interface during the address phase of a PCI cycle, AD31–AD0 contain a 32-bit address or other destination information. During the data phase, AD31–AD0 contain data.
PCI bus commands and byte enables. The command and byte enable signals are multiplexed on the same PCI terminals. During the address phase of a bus cycle C/BE3 phase, this 4-bit bus is used as byte enables.
PCI parity. In all PCI bus read and write cycles, the TSB12LV23 calculates even parity across the AD and C/BE buses. As an initiator during PCI cycles, the TSB12LV23 outputs this parity indicator with a one PCLK delay. As a target during PCI cycles, the calculated parity is compared to the initiator’s parity indicator; a miscompare can result in a parity error assertion (PERR
).
–C/BE0 defines the bus command. During the data
2–3
TERMINAL
I/O
DESCRIPTION
I/O
DESCRIPTION
NAME NO.
PCI_DEVSEL 47 I/O
PCI_FRAME 43 I/O
PCI_GNT 14 I
PCI_IDSEL 29 I
PCI_IRDY 44 I/O
PCI_STOP 48 I/O
CLKRUN 7 I/O
PCI_PERR 49 I/O PCI_PME/
CSTSCHG PCI_REQ 15 O
PCI_SERR 51 O
PCI_TRDY 45 I/O
17 O
Table 2–5. PCI Interface Control
PCI device select. The TSB12LV23 asserts this signal to claim a PCI cycle as the target device. As a PCI initiator, the TSB12LV23 monitors this signal until a target responds. If no target responds before time-out occurs, then the TSB12LV23 terminates the cycle with an initiator abort.
PCI cycle frame. This signal is driven by the initiator of a PCI bus cycle. FRAME is asserted to indicate that a bus transaction is beginning, and data transfers continue until while this signal is asserted. When FRAME deasserted, the PCI bus transaction is in the final data phase.
PCI bus grant. This signal is driven by the PCI bus arbiter to grant the TSB12LV23 access to the PCI bus after the current data transaction has completed. This signal may or may not follow a PCI bus request depending upon the PCI bus parking algorithm.
Initialization device select. IDSEL selects the TSB12L V23 during configuration space accesses. IDSEL can be connected to 1 of the upper 24 PCI address lines on the PCI bus.
PCI initiator ready. IRDY indicates the PCI bus initiator’s ability to complete the current data phase of the transaction. A data phase is completed upon a rising edge of PCLK where both IRDY until which wait states are inserted.
PCI cycle stop signal. This signal is driven by a PCI target to request the initiator to stop the current PCI bus transaction. This signal is used for target disconnects, and is commonly asserted by target devices which do not support burst data transfers.
Clock run. This terminal provides clock control through the CLKRUN protocol. An internal pulldown resistor is implemented on this terminal for TSB12LV22 drop-in compatibility.
PCI parity error indicator. This signal is driven by a PCI device to indicate that calculated parity does not match PAR when enabled through the command register.
PME or card status change. This terminal indicates wake events to the host. When in a CardBus configuration, per the CARDBUS
PCI bus request. Asserted by the TSB12LV23 to request access to the bus as an initiator. The host arbiter asserts the GNT
PCI system error. Output pulsed from the TSB12LV23 when enabled indicating an address parity error has occurred. The TSB12LV23 needs not be the target of the PCI cycle to assert this signal.
PCI target ready. TRDY indicates the PCI bus target’s ability to complete the current data phase of the transaction. A data phase is completed upon a rising edge of PCLK where both IRDY until which wait states are inserted.
sample, the CSTSCHG output is an active high.
signal when the TSB12LV23 has been granted access to the bus.
and TRDY are asserted;
and TRDY are asserted;
is
Table 2–6. IEEE1394 PHY/Link
TERMINAL
NAME NO.
PHY_CTL1 PHY_CTL0
PHY_DATA7 PHY_DATA6 PHY_DATA5 PHY_DATA4 PHY_DATA3 PHY_DATA2 PHY_DATA1 PHY_DATA0
PHY_SCLK 95 I System clock. This input from the PHY provides a 49.152 MHz clock signal for data synchronization. PHY_LREQ 97 O Link request. This signal is driven by the TSB12L V23 to initiate a request for the PHY to perform some service. PHY_LINKON 98 I/O LinkOn wake indication. Used and defined by 1394A and 3.3-V signaling is required. PHY_LPS 99 I/O Link power status. Used and defined by 1394A and 3.3-V signaling is required.
2–4
92 93
81 82 84 85 86 88 89 90
Phy-link interface control. These bidirectional signals control passage of information between the two devices. The TSB12LV23 can only drive these terminals after the PHY has granted permission following a link request
I/O
(LREQ).
Phy-link interface data. These bidirectional signals pass data between the TSB12LV23 and the PHY device. These terminals are driven by the TSB12LV23 on transmissions and are driven by the PHY on reception. Only
I/O
DATA1–DATA0 are valid for 100-Mbit speeds, DATA3–DATA0 are valid for 200-Mbit speeds, and DATA7–DATA0 are valid for 400-Mbit speeds.
Table 2–7. Miscellaneous
I/O
DESCRIPTION
TERMINAL
NAME NO.
Serial data. The TSB12LV23 determines whether a two-wire serial ROM, or no serial ROM is implemented at
SDA 5 I/O
SCL 4 I/O
ISOLATED 79 I
CYCLEIN 78 I/O
CARDBUS/ CYCLEOUT
GPIO3 3 I/O General-purpose I/O [3] GPIO2 2 I/O General-purpose I/O [2]
77 I/O
reset. If a two-wire serial ROM is detected, then this terminal provides the SDA serial data signaling. This terminal must be wired low to indicate no serial ROM is present.
Serial clock. The TSB12LV23 determines whether a two-wire, or no serial ROM is implemented at reset. If a two-wire serial ROM is implemented, then this terminal provides the SCL serial clock signaling.
Phy-link isolation barrier mode. This terminal should be asserted when the PHY device is electrically isolated from the TSB12LV23. This input controls bus-hold I/Os.
The CYCLEIN terminal can provide an optional external 8 kHz clock set up as a cycle timer that can be used for synchronization with other system devices.
This terminal is sampled when G_RST is asserted, and it selects between PCI buffers and CardBus buffers. After reset, this terminal may also function as CYCLEOUT which provides an 8 kHz cycle timer synchronization signal.
2–5
2–6
3 TSB12LV23 Controller Programming Model
This section describes the internal registers used to program the TSB12LV23, including both PCI configuration registers and OHCI registers (see Section 4). All registers are detailed in the same format: a brief description for each register, followed by the register offset and a bit table describing the reset state for each register.
A bit description table, typically included, indicates bit field names, a detailed field description, and field access tags. Table 3–1 describes the field access tags.
Table 3–1. Bit Field Access Tag Descriptions
ACCESS TAG NAME MEANING
R Read Field may be read by software.
W Write Field may be written by software to any value.
S Set Field may be set by a write of 1. Writes of 0 have no effect. C Clear Field may be cleared by a write of 1. Writes of 0 have no effect. U Update Field may be autonomously updated by the TSB12LV23.
A simplified block diagram of the TSB12LV23 is provided in Figure 3–1.
3–1
PCI
Target
SM
Internal
Registers
OHCI PCI Power
Mgmt & CLKRUN
Serial
ROM
GPIOs
PCI
Host
Bus
Interface
Central Arbiter
&
PCI
Initiator
SM
ISO Transmit
Contexts
Async Transmit
Contexts
Physical DMA
& Response
Resp
Timeout
PHY
Register
Access
& Status
Monitor
Request
Filters
General
Request Receive
Transmit
FIFO
Receive
Acknowledge
Cycle Start
Generator &
Cycle Monitor
Synthesized
Bus Reset
MISC
Interface
Link
Transmit
CRC
PHY /
Link
Interface
Link
Receive
Async Response
Receive
ISO Receive
Contexts
Receive
FIFO
Figure 3–1. TSB12LV23 Block Diagram
3–2
3.1 PCI/CardBus Configuration Registers
The TSB12LV23 is a single-function PCI device that can be configured as either a PCI or CardBus device. The configuration header is compliant with the the PCI configuration header that includes both the predefined portion of the configuration space and the user definable registers. Most of the registers in this configuration have not changed from the TSB12LV22 design.
Table 3–2. PCI Configuration Register Map
Device ID Vendor ID 00h
Status Command 04h
BIST Header type Latency timer Cache line size 0Ch
Subsystem ID Subsystem vendor ID 2Ch
Maximum latency Minimum grant Interrupt pin Interrupt line 3Ch
Power management capabilities Next item pointer Capability ID 44h
PM data PMCSR_BSE Power management CSR 48h
PCI miscellaneous configuration register F0h
Subsystem ID alias Subsystem vendor ID alias F8h
GPIO3 GPIO2 Reserved FCh
PCI Local Bus Specification
REGISTER NAME OFFSET
Class code Revision ID 08h
OHCI registers base address 10h
TI extension registers base address 14h
CIS base address 18h
Reserved 1Ch Reserved 20h Reserved 24h
CardBus CIS pointer 28h
Reserved 30h
Reserved Capabilities pointer 34h
Reserved 38h
PCI OHCI control register 40h
Reserved 4C–ECh
Link_Enhancements register F4h
as a standard header. Table 3–2 illustrates
3.2 Vendor ID Register
The vendor ID register contains a value allocated by the PCI SIG and identifies the manufacturer of the PCI device. The vendor ID assigned to Texas Instruments is 104Ch.
Bit 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 Name Vendor ID Type R R R R R R R R R R R R R R R R Default 0 0 0 1 0 0 0 0 0 1 0 0 1 1 0 0
Register: Vendor ID Type: Read-only Offset: 00h Default: 104Ch
3–3
3.3 Device ID Register
The device ID register contains a value assigned to the TSB12L V23 by Texas Instruments. The device identification for the TSB12LV23 is 8019.
Bit 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 Name Device ID Type R R R R R R R R R R R R R R R R Default 1 0 0 0 0 0 0 0 0 0 0 1 1 0 0 1
Register: Device ID Type: Read-only Offset: 02h Default: 8019h
3.4 PCI Command Register
The command register provides control over the TSB12L V23 interface to the PCI bus. All bit functions adhere to the definitions in the
Bit 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 Name PCI command Type R R R R R R R R/W R R/W R R/W R R/W R/W R Default 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
PCI Local Bus Specification
, as seen in the following bit descriptions.
Register: PCI command Type: Read/Write Offset: 04h Default: 0000h
Table 3–3. PCI Command Register Description
BIT FIELD NAME TYPE DESCRIPTION
15–10 RSVD R Reserved. Bits 15–10 return 0s when read.
9 FBB_ENB R Fast back-to-back enable. The TSB12LV23 does not generate fast back-to-back transactions, thus
8 SERR_ENB R/W SERR enable. When this bit is set, the TSB12LV23 SERR driver is enabled. SERR can be asserted
7 STEP_ENB R Address/data stepping control. The TSB12LV23 does not support address/data stepping, thus this bit
6 PERR_ENB R/W Parity error enable. When this bit is set, the TSB12LV23 is enabled to drive PERR response to parity
5 VGA_ENB R VGA palette snoop enable. The TSB12L V23 does not feature VGA palette snooping. This bit returns 0
4 MWI_ENB R/W Memory write and invalidate enable. When this bit is set, the TSB12LV23 is enabled to generate MWI
3 SPECIAL R Special cycle enable. The TSB12L V23 function does not respond to special cycle transactions. This bit
2 MASTER_ENB R/W Bus master enable. When this bit is set, the TSB12LV23 is enabled to initiate cycles on the PCI bus.
1 MEMORY_ENB R/W Memory response enable. Setting this bit enables the TSB12L V23 to respond to memory cycles on the
0 IO_ENB R I/O space enable. The TSB12L V23 does not implement any I/O mapped functionality; thus, this bit re-
this bit returns 0 when read.
after detecting an address parity error on the PCI bus.
is hardwired to 0.
errors through the PERR
when read.
PCI bus commands. If this bit is reset, then the TSB12LV23 generates memory write commands instead.
returns 0 when read.
PCI bus. This bit must be set to access OHCI registers.
turns 0 when read.
signal.
3–4
3.5 PCI Status Register
The status register provides status over the TSB12LV23 interface to the PCI bus. All bit functions adhere to the definitions in the
Bit 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 Name PCI status Type RCU RCU RCU RCU RCU R R RCU R R R R R R R R Default 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0
Register: PCI status Type: Read/Clear/Update Offset: 06h Default: 0210h
BIT FIELD NAME TYPE DESCRIPTION
15 PAR_ERR RCU Detected parity error. This bit is set when a parity error is detected, either address or data parity errors. 14 SYS_ERR RCU Signaled system error. This bit is set when SERR is enabled and the TSB12LV23 has signaled a
13 MABORT RCU Received master abort. This bit is set when a cycle initiated by the TSB12LV23 on the PCI bus has been
12 TABORT_REC RCU Received target abort. This bit is set when a cycle initiated by the TSB12LV23 on the PCI bus was
11 TABORT_SIG RCU Signaled target abort. This bit is set by the TSB12LV23 when it terminates a transaction on the PCI bus
10–9 PCI_SPEED R DEVSEL timing. Bits 10–9 encode the timing of DEVSEL and are hardwired to 01b indicating that the
8 DATAPAR RCU Data parity error detected. This bit is set when the following conditions have been met:
7 FBB_CAP R Fast back-to-back capable. The TSB12L V23 cannot accept fast back-to-back transactions; thus, this
6 UDF R User definable features (UDF) supported. The TSB12L V23 does not support the UDF; thus, this bit is
5 66MHZ R 66 MHz capable. The TSB12L V23 operates at a maximum PCLK frequency of 33 MHz; therefore, this
4 CAPLIST R Capabilities list. This bit returns 1 when read, indicating that capabilities additional to standard PCI are
3–0 RSVD R Reserved. Bits 3–0 return 0s when read.
PCI Local Bus Specification
Table 3–4. PCI Status Register Description
system error to the host.
terminated by a master abort.
terminated by a target abort.
with a target abort.
TSB12L V23 asserts this signal at a medium speed on nonconfiguration cycle accesses.
a. PERR b. The TSB12LV23 was the bus master during the data parity error c. The parity error response bit is set in the command register (see Section 3.4)
bit is hardwired to 0.
hardwired to 0.
bit is hardwired to 0.
implemented. The linked list of PCI power management capabilities is implemented in this function.
was asserted by any PCI device including the TSB12LV23
, as seen in the following bit descriptions.
3–5
3.6 Class Code and Revision ID Register
The class code and revision ID register categorizes the TSB12L V23 as a serial bus controller (0Ch), controlling an IEEE1394 bus (00h), with an OHCI programming model (10h). Furthermore, the TI chip revision is indicated in the lower byte.
Bit 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 Name Class code and revision ID Type R R R R R R R R R R R R R R R R Default 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 Bit 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 Name Class code and revision ID Type R R R R R R R R R R R R R R R R Default 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0
Register: Class code and revision ID Type: Read-only Offset: 08h Default: 0C00 1000h
Table 3–5. Class Code and Revision ID Register Description
BIT FIELD NAME TYPE DESCRIPTION
31–24 BASECLASS R Base class. This field returns 0Ch when read, which broadly classifies the function as a serial bus
23–16 SUBCLASS R Subclass. This field returns 00h when read, which specifically classifies the function as controlling an
15–8 PGMIF R Programming interface. This field returns 10h when read, indicating that the programming model is
7–0 CHIPREV R Silicon revision. This field returns 00h when read, indicating the silicon revision of the TSB12LV23.
controller.
IEEE1394 serial bus.
compliant with the
1394 Open Host Controller Interface Specification
.
3.7 Latency Timer and Class Cache Line Size Register
The latency timer and class cache line size register is programmed by host BIOS to indicate system cache line size and the latency timer associated with the TSB12LV23.
Bit 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 Name Latency timer and class cache line size Type R/W R/W R/W R/W R/W R/W R/W R/W R/W R/W R/W R/W R/W R/W R/W R/W Default 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Register: Latency timer and class cache line size Type: Read/Write Offset: 0Ch Default: 0000h
Table 3–6. Latency T imer and Class Cache Line Size Register Description
BIT FIELD NAME TYPE DESCRIPTION
15–8 LATENCY_TIMER R/W PCI latency timer. The value in this register specifies the latency timer for the TSB12LV23, in units of
7–0 CACHELINE_SZ R/W Cache line size. This value is used by the TSB12L V23 during memory write and invalidate, memory
PCI clock cycles. When the TSB12LV23 is a PCI bus initiator and asserts FRAME begins counting from zero. If the latency timer expires before the TSB12LV23 transaction has terminated, then the TSB12LV23 terminates the transaction when its GNT
read line, and memory read multiple transactions.
, the latency timer
is deasserted.
3–6
3.8 Header Type and BIST Register
The header type and BIST register indicates the TSB12LV23 PCI header type, and indicates no built-in self test.
Bit 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 Name Header type and BIST Type R R R R R R R R R R R R R R R R Default 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Register: Header type and BIST Type: Read-only Offset: 0Eh Default: 0000h
Table 3–7. Header Type and BIST Register Description
BIT FIELD NAME TYPE DESCRIPTION
15–8 BIST R Built-in self test. The TSB12L V23 does not include a built-in self test; thus, this field returns 00h when
7–0 HEADER_TYPE R PCI header type. The TSB12LV23 includes the standard PCI header , and this is communicated by re-
read.
turning 00h when this field is read.
3.9 OHCI Base Address Register
The OHCI base address register is programmed with a base address referencing the memory-mapped OHCI control. When BIOS writes all 1s to this register, the value read back is FFFF F800h, indicating that at least 2K bytes of memory address space are required for the OHCI registers.
Bit 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 Name OHCI base address Type R/W R/W R/W R/W R/W R/W R/W R/W R/W R/W R/W R/W R/W R/W R/W R/W Default 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Bit 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 Name OHCI address Type R/W R/W R/W R/W R/W R R R R R R R R R R R Default 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Register: OHCI base address Type: Read/Write Offset: 10h Default: 0000 0000h
Table 3–8. OHCI Base Address Register Description
BIT FIELD NAME TYPE DESCRIPTION
31–1 1 OHCIREG_PTR R/W OHCI register pointer. Specifies the upper 21 bits of the 32-bit OHCI base address register.
10–4 OHCI_SZ R OHCI register size. This field returns 0s when read, indicating that the OHCI registers require a
2-Kbyte region of memory.
3 OHCI_PF R OHCI register prefetch. This bit returns 0 when read, indicating that the OHCI registers are
nonprefetchable.
2–1 OHCI_MEMTYPE R OHCI memory type. This field returns 0s when read, indicating that the OHCI base address register is
32 bits wide and mapping can be done anywhere in the 32-bit memory space.
0 OHCI_MEM R OHCI memory indicator. This bit returns 0 when read, indicating that the OHCI registers are mapped
into system memory space.
3–7
3.10 TI Extension Base Address Register
The TI extension base address register is programmed with a base address referencing the memory-mapped TI extension registers. Refer to the
Bit 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 Name TI extension base address Type R/W R/W R/W R/W R/W R/W R/W R/W R/W R/W R/W R/W R/W R/W R/W R/W Default 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Bit 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 Name TI extension base address Type R/W R/W R/W R/W R/W R R R R R R R R R R R Default 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
OHCI base address register
(see Section 3.9) for bit field details.
Register: TI extension base address Type: Read/Write Offset: 14h Default: 0000 0000h
3.11 CIS Base Address Register
If CARDBUS is sampled high on a PCI reset, then this 32-bit register returns 0s when read. If CARDBUS is sampled low, then this register is to be programmed with a base address referencing the memory mapped CIS. This register must be programmed with a nonzero value before the CIS may be accessed.
Bit 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 Name CIS base address Type R/W R/W R/W R/W R/W R/W R/W R/W R/W R/W R/W R/W R/W R/W R/W R/W Default 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Bit 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 Name CIS base address Type R/W R/W R/W R/W R/W R R R R R R R R R R R Default 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Register: CIS base address Type: Read/Write Offset: 18h Default: 0000 0000h
Table 3–9. CIS Base Address Register Description
BIT FIELD NAME TYPE DESCRIPTION
31–1 1 CIS_BASE R/W CIS base address. Specifies the upper 21 bits of the 32-bit CIS base address. If the CARDBUS input is
10–4 CIS_SZ R CIS address space size. This field returns 0s when read, indicating that the CIS space requires a
3 CIS_PF R CIS prefetch. This bit returns 0 when read, indicating that the CIS is nonprefetchable. Furthermore, the
2–1 CIS_MEMTYPE R CIS memory type. This field returns 0s when read, indicating that the CIS base address register is
0 CIS_MEM R CIS memory indicator. This bit returns 0 when read, indicating that the CIS is mapped into system
3–8
sampled high on a PCI reset, then this field is read-only , returning 0s when read.
2-Kbyte region of memory.
CIS is a byte-accessible address space, and double-word or 16-bit word access yields indeterminate results.
32 bits wide and mapping can be done anywhere in the 32-bit memory space.
memory space.
3.12 CardBus CIS Pointer Register
The CARDBUS input to the TSB12LV23 is sampled at PCI reset to determine the TSB12LV23 application. If CARDBUS this register is the CardBus card information structure pointer.
Bit 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 Name CardBus CIS pointer Type R R R R R R R R R R R R R R R R Default 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Bit 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 Name CardBus CIS pointer Type R R R R R R R R R R R R R R R R Default 0 0 0 0 0 0 0 0 0 0 0 0 0 0 x 0
BIT FIELD NAME TYPE DESCRIPTION
31–28 ROM_IMAGE R Since the CIS is not implemented as a ROM image, this field returns 0s when read.
27–3 CIS_OFFSET R This field indicates the offset into the CIS address space where the CIS begins, and bits 7–3 are loaded
2–0 CIS_INDICAT OR R This field indicates the address space where the CIS resides and returns 010b if CARDBUS is
is sampled high, then this register is read-only returning 0s when read. If CARDBUS is sampled low , then
Register: CardBus CIS pointer Type: Read-only Offset: 28h Default: 0000 000xh
Table 3–10. CardBus CIS Pointer Register Description
from the serial ROM field CIS_Offset (7–3). This implementation allows the TSB12LV23 to produce serial ROM addresses equal to the lower PCI address byte to acquire data from the serial ROM.
sampled asserted during a PCI reset. If CARDBUS returns 000b when read. Thus, bit 1 is implemented as the logical inverse of the CARDBUS
is sampled high during a PCI reset, then this field
input.
3.13 PCI Subsystem Identification Register
The PCI subsystem identification register is used for system and option card identification purposes. This register can be initialized from the serial EEPROM or programmed via the subsystem ID and subsystem vendor ID alias registers at offset 0XFC.
Bit 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 Name PCI subsystem identification Type RU RU RU RU RU RU RU RU RU RU RU RU RU RU RU RU Default 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Bit 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 Name PCI subsystem identification Type RU RU RU RU RU RU RU RU RU RU RU RU RU RU RU RU Default 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Register: PCI subsystem identification Type: Read/Update Offset: 2Ch Default: 0000 0000h
Table 3–11. PCI Subsystem Identification Register Description
BIT FIELD NAME TYPE DESCRIPTION
31–16 OHCI_SSID RU Subsystem device ID. This field indicates the subsystem device ID.
15–0 OHCI_SSVID RU Subsystem vendor ID. This field indicates the subsystem vendor ID.
3–9
3.14 PCI Power Management Capabilities Pointer Register
The PCI power management capabilities pointer register provides a pointer into the PCI configuration header where the PCI power management register block resides. The TSB12LV23 configuration header double-words at offsets 44h and 48h provide the power management registers. This register is read-only and returns 44h when read.
Bit 7 6 5 4 3 2 1 0 Name PCI power management capabilities pointer Type R R R R R R R R Default 0 1 0 0 0 1 0 0
Register: PCI power management capabilities pointer Type: Read-only Offset: 34h Default: 44h
3.15 Interrupt Line and Pin Registers
The interrupt line and pin register is used to communicate interrupt line routing information.
Bit 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 Name Interrupt line and pin Type R R R R R R R R R/W R/W R/W R/W R/W R/W R/W R/W Default 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0
Register: Interrupt line and pin Type: Read/Write Offset: 3Ch Default: 0100h
Table 3–12. Interrupt Line and Pin Registers Description
BIT FIELD NAME TYPE DESCRIPTION
15–8 INTR_PIN R Interrupt pin register. This register returns 01h when read, indicating that the TSB12LV23 PCI function
7–0 INTR_LINE R/W Interrupt line register. This register is programmed by the system and indicates to software to which
signals interrupts on the INTA
interrupt line the TSB12LV23 INTA
pin.
is connected.
3–10
3.16 MIN_GNT and MAX_LAT Register
The MIN_GNT and MAX_LA T register is used to communicate to the system the desired setting of the latency timer register (see Section 3.7). If a serial ROM is detected, then the contents of this register are loaded through the serial ROM interface after a PCI reset. If no serial ROM is detected, then this register returns a default value that corresponds to the MIN_GNT = 2, MAX_LAT = 4.
Bit 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 Name MIN_GNT and MAX_LAT Type RU RU RU RU RU RU RU RU RU RU RU RU RU RU RU RU Default 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0
Register: MIN_GNT and MAX_LAT Type: Read/Update Offset: 3Eh Default: 0202h
Table 3–13. MIN_GNT and MAX_LAT Register Description
BIT FIELD NAME TYPE DESCRIPTION
15–8 MAX_LAT RU Maximum latency. The contents of this register may be used by host BIOS to assign an arbitration
7–0 MIN_GNT RU Minimum grant. The contents of this register may be used by host BIOS to assign a latency timer register
priority-level to the TSB12LV23. The default for this register indicates that the TSB12LV23 may need to access the PCI bus as often as every 0.25 µs; thus, an extremely high priority level is requested. The contents of this field may also be loaded through the serial ROM.
value to the TSB12LV23. The default for this register indicates that the TSB12LV23 may need to sustain burst transfers for nearly 64 µs; thus, requesting a large value be programmed in the TSB12LV23 latency timer register (see Section 3.7).
3.17 PCI OHCI Control Register
The PCI OHCI control register is defined by the bit for big endian PCI support.
Bit 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 Name PCI OHCI control Type R R R R R R R R R R R R R R R R Default 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Bit 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 Name PCI OHCI control Type R R R R R R R R R R R R R R R R/W Default 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Register: PCI OHCI control Type: Read/Write Offset: 40h Default: 0000 0000h
Table 3–14. PCI OHCI Control Register Description
BIT FIELD NAME TYPE DESCRIPTION
31–1 RSVD R Reserved. Bits 31–1 return 0s when read.
0 GLOBAL_SWAP R/W When this bit is set, all quadlets read from and written to the PCI interface are byte swapped (big
endian).
1394 Open Host Controller Interface Specification
and provides a
3–11
3.18 Capability ID and Next Item Pointer Registers
The capability ID and next item pointer register identifies the linked list capability item and provides a pointer to the next capability item.
Bit 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 Name Capability ID and next item pointer Type R R R R R R R R R R R R R R R R Default 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
Register: Capability ID and next item pointer Type: Read-only Offset: 44h Default: 0001h
Table 3–15. Capability ID and Next Item Pointer Registers Description
BIT FIELD NAME TYPE DESCRIPTION
15–8 NEXT_ITEM R Next item pointer. The TSB12LV23 supports only one additional capability that is communicated to
7–0 CAPABILITY_ID R Capability identification. This field returns 01h when read, which is the unique ID assigned by the PCI
the system through the extended capabilities list; thus, this field returns 00h when read.
SIG for PCI power management capability.
3–12
Loading...
+ 59 hidden pages