The TPS2045 and TPS2055 power-distribution switches are intended for applications where heavy capacitive
loads and short circuits are likely. Each of these 135-mΩ N-channel MOSFET high-side power switches is
controlled by a logic enable compatible with 5-V and 3-V logic. Gate drive is provided by an internal charge pump
that controls the power-switch rise times and fall times to minimize current surges during switching. The charge
pump requires no external components and allows operation from supplies as low as 2.7 V.
OUT
8
OUT
7
OUT
6
5
OC
When the output load exceeds the current-limit threshold or a short is present, the TPS2045 and TPS2055 limit
the output current to a safe level by switching into a constant-current mode, pulling the overcurrent (OC
) logic
output low. When continuous heavy overloads and short circuits increase the power dissipation in the switch,
causing the junction temperature to rise, a thermal protection circuit shuts off the switch in overcurrent to prevent
damage. Recovery from a thermal shutdown is automatic once the device has cooled sufficiently. Internal
circuitry ensures the switch remains off until valid input voltage is present.
The TPS2045 and TPS2055 are designed to limit at0.44-A load. These power-distribution switches, available
in 8-pin small-outline integrated circuit (SOIC) and 8-pin plastic dual-in-line packages (PDIP), operate over an
ambient temperature range of –40°C to 85°C.
AVAILABLE OPTIONS
RECOMMENDED
T
A
–40°C to 85°CActive low0.250.44TPS2045DTPS2045P
–40°C to 85°CActive high0.250.44TPS2055DTPS2055P
†
The D package is available taped and reeled. Add an R suffix to device type (e.g., TPS2045DR)
Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of
Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.
ENABLE
LOAD CURRENT
(A)
TYPICAL SHORT-CIRCUIT
CURRENT LIMIT AT 25°C
(A)
PACKAGED DEVICES
SOIC
(D)
†
PDIP
(P)
This document contains information on products in more than one phase
of development. The status of each device is indicated on the page(s)
specifying its electrical characteristics.
POST OFFICE BOX 655303 • DALLAS, TEXAS 75265
Copyright 1999, Texas Instruments Incorporated
1
TPS2045, TPS2055
I/O
DESCRIPTION
CURRENT-LIMITED POWER-DISTRIBUTION SWITCHES
SLVS182 – APRIL 1999
TPS2045 functional block diagram
Power Switch
IN
Charge
Pump
CS
†
OUT
EN
GND
†
Current Sense
Driver
UVLO
Thermal
Sense
Current
Limit
Terminal Functions
TERMINAL
NO.
NAME
EN4–IEnable input. Logic low turns on power switch.
EN–4IEnable input. Logic high turns on power switch.
GND11IGround
IN2, 32, 3IInput voltage
OC55OOver current. Logic output active low
OUT6, 7, 86, 7, 8OPower-switch output
D OR P
TPS2045TPS2055
OC
2
POST OFFICE BOX 655303 • DALLAS, TEXAS 75265
detailed description
power switch
TPS2045, TPS2055
CURRENT-LIMITED POWER-DISTRIBUTION SWITCHES
SLVS182 – APRIL 1999
The power switch is an N-channel MOSFET with a maximum on-state resistance of 135 mΩ (V
Configured as a high-side switch, the power switch prevents current flow from OUT to IN and IN to OUT when
disabled. The power switch can supply a minimum of 250 mA per switch.
charge pump
An internal charge pump supplies power to the driver circuit and provides the necessary voltage to pull the gate
of the MOSFET above the source. The charge pump operates from input voltages as low as 2.7 V and requires
very little supply current.
driver
The driver controls the gate voltage of the power switch. T o limit large current surges and reduce the associated
electromagnetic interference (EMI) produced, the driver incorporates circuitry that controls the rise times and
fall times of the output voltage. The rise and fall times are typically in the 2-ms to 4-ms range.
enable (EN or EN)
The logic enable disables the power switch and the bias for the charge pump, driver, and other circuitry to reduce
the supply current to less than 10 µA when a logic high is present on EN (TPS2045) or a logic low is present
on EN (TPS2055). A logic zero input on EN or a logic high on EN restores bias to the drive and control circuits
and turns the power on. The enable input is compatible with both TTL and CMOS logic levels.
overcurrent (OC)
The OC
encountered. The output will remain asserted until the overcurrent or overtemperature condition is removed.
current sense
open-drain output is asserted (active low) when an overcurrent or overtemperature condition is
I(IN)
= 5 V).
A sense FET monitors the current supplied to the load. The sense FET measures current more efficiently than
conventional resistance methods. When an overload or short circuit is encountered, the current-sense circuitry
sends a control signal to the driver. The driver in turn reduces the gate voltage and drives the power FET into
its saturation region, which switches the output into a constant current mode and holds the current constant
while varying the voltage on the load.
thermal sense
An internal thermal-sense circuit shuts off the power switch when the junction temperature rises to
approximately 140°C. Hysteresis is built into the thermal sense circuit. After the device has cooled
approximately 20°C, the switch turns back on. The switch continues to cycle off and on until the fault is removed.
undervoltage lockout
A voltage sense circuit monitors the input voltage. When the input voltage is below approximately 2 V , a control
signal turns off the power switch.
POST OFFICE BOX 655303 • DALLAS, TEXAS 75265
3
TPS2045, TPS2055
UNIT
CURRENT-LIMITED POWER-DISTRIBUTION SWITCHES
SLVS182 – APRIL 1999
absolute maximum ratings over operating free-air temperature range (unless otherwise noted)
Input voltage range, V
Output voltage range, V
Input voltage range, V
Continuous output current, I
Operating virtual junction temperature range, T
Storage temperature range, T
Lead temperature soldering 1,6 mm (1/16 inch) from case for 10 seconds260°C. . . . . . . . . . . . . . . . . . . . . . .
Electrostatic discharge (ESD) protection: Human body model MIL-STD-883C 2 kV. . . . . . . . . . . . . . . . . . . . .
†
Stresses beyond those listed under “absolute maximum ratings” may cause permanent damage to the device. These are stress ratings only, and
functional operation of the device at these or any other conditions beyond those indicated under “recommended operating conditions” is not
implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.
A 0.01-µF to 0.1-µF ceramic bypass capacitor between IN and GND, close to the device, is recommended.
Placing a high-value electrolytic capacitor on the output pin(s) is recommended when the output load is heavy .
This precaution reduces power-supply transients that may cause ringing on the input. Additionally , bypassing
the output with a 0.01-µF to 0.1-µF ceramic capacitor improves the immunity of the device to short-circuit
transients.
14
POST OFFICE BOX 655303 • DALLAS, TEXAS 75265
TPS2045, TPS2055
CURRENT-LIMITED POWER-DISTRIBUTION SWITCHES
SLVS182 – APRIL 1999
APPLICATION INFORMATION
overcurrent
A sense FET is employed to check for overcurrent conditions. Unlike current-sense resistors, sense FETs do
not increase the series resistance of the current path. When an overcurrent condition is detected, the device
maintains a constant output current and reduces the output voltage accordingly. Complete shutdown occurs
only if the fault is present long enough to activate thermal limiting.
Three possible overload conditions can occur. In the first condition, the output has been shorted before the
device is enabled or before V
and immediately switch into a constant-current output.
In the second condition, the short occurs while the device is enabled. At the instant the short occurs, very high
currents may flow for a short time before the current-limit circuit can react. After the current-limit circuit has
tripped (reached the overcurrent trip threshhold) the device switches into constant-current mode.
In the third condition, the load has been gradually increased beyond the recommended operating current. The
current is permitted to rise until the current-limit threshold is reached or until the thermal limit of the device is
exceeded (see Figure 7). The TPS2045 and TPS2055 are capable of delivering current up to the current-limit
threshold without damaging the device. Once the threshold has been reached, the device switches into its
constant-current mode.
has been applied (see Figure 6). The TPS2045 and TPS2055 sense the short
I(IN)
OC response
The OC open-drain output is asserted (active low) when an overcurrent or overtemperature condition is
encountered. The output will remain asserted until the overcurrent or overtemperature condition is removed.
Connecting a heavy capacitive load to an enabled device can cause momentary false overcurrent reporting from
the inrush current flowing through the device, charging the downstream capacitor. An RC filter of 500 µs (see
Figure 30) can be connected to the OC
events or extremely high capacitive loads. Using low-ESR electrolytic capacitors on the output lowers the inrush
current flow through the device during hot-plug events by providing a low impedance energy source, thereby
reducing erroneous overcurrent reporting.
TPS2045
GND
IN
IN
EN
OUT
OUT
OUT
OC
Figure 30. Typical Circuit for OC Pin and RC Filter for Damping Inrush OC Responses
pin to reduce false overcurrent reporting caused by hot-plug switching
The low on-resistance on the n-channel MOSFET allows small surface-mount packages, such as SOIC, to pass
large currents. The thermal resistances of these packages are high compared to those of power packages; it
is good design practice to check power dissipation and junction temperature. The first step is to find r
the input voltage and operating temperature. As an initial estimate, use the highest operating ambient
temperature of interest and read r
P
+
r
D
DS(on
Finally, calculate the junction temperature:
T
+
P
J
Where:
Compare the calculated junction temperature with the initial estimate. If they do not agree within a few degrees,
repeat the calculation, using the calculated value as the new estimate. Two or three iterations are generally
sufficient to get a reasonable answer.
from Figure 21. Next, calculate the power dissipation using:
DS(on)
DS(on)
at
thermal protection
Thermal protection prevents damage to the IC when heavy-overload or short-circuit faults are present for
extended periods of time. The faults force the TPS2045 and TPS2055 into constant current mode, which causes
the voltage across the high-side switch to increase; under short-circuit conditions, the voltage across the switch
is equal to the input voltage. The increased dissipation causes the junction temperature to rise to high levels.
The protection circuit senses the junction temperature of the switch and shuts it off. Hysteresis is built into the
thermal sense circuit, and after the device has cooled approximately 20 degrees, the switch turns back on. The
switch continues to cycle in this manner until the load fault or input power is removed.
undervoltage lockout (UVLO)
An undervoltage lockout ensures that the power switch is in the off state at power up. Whenever the input voltage
falls below approximately 2 V, the power switch will be quickly turned off. This facilitates the design of
hot-insertion systems where it is not possible to turn off the power switch before input power is removed. The
UVLO will also keep the switch from being turned on until the power supply has reached at least 2 V, even if
the switch is enabled. Upon reinsertion, the power switch will be turned on, with a controlled rise time to reduce
EMI and voltage overshoots.
16
POST OFFICE BOX 655303 • DALLAS, TEXAS 75265
TPS2045, TPS2055
CURRENT-LIMITED POWER-DISTRIBUTION SWITCHES
SLVS182 – APRIL 1999
APPLICATION INFORMATION
Universal Serial Bus (USB) applications
The Universal Serial Bus (USB) interface is a 12-Mb/s, or 1.5-Mb/s, multiplexed serial bus designed for
low-to-medium bandwidth PC peripherals (e.g., keyboards, printers, scanners, and mice). The four-wire USB
interface is conceived for dynamic attach-detach (hot plug-unplug) of peripherals. Two lines are provided for
differential data, and two lines are provided for 5-V power distribution.
USB data is a 3.3-V level signal, but power is distributed at 5 V to allow for voltage drops in cases where power
is distributed through more than one hub across long cables. Each function must provide its own regulated 3.3 V
from the 5-V input or its own internal power supply.
The USB specification defines the following five classes of devices, each differentiated by power-consumption
requirements:
D
Hosts/self-powered hubs (SPH)
D
Bus-powered hubs (BPH)
D
Low-power, bus-powered functions
D
High-power, bus-powered functions
D
Self-powered functions
Self-powered and bus-powered hubs distribute data and power to downstream functions. The TPS2045 and
TPS2055 can provide power-distribution solutions for many of these classes of devices.
Bus-powered hubs obtain all power from upstream ports and often contain an embedded function. The hubs
are required to power up with less than one unit load. The BPH usually has one embedded function, and power
is always available to the controller of the hub. If the embedded function and hub require more than 100 mA
on power up, the power to the embedded function may need to be kept off until enumeration is completed. This
can be accomplished by removing power or by shutting off the clock to the embedded function. Power switching
the embedded function is not necessary if the aggregate power draw for the function and controller is less than
one unit load. The total current drawn by the bus-powered device is the sum of the current to the controller, the
embedded function, and the downstream ports, and it is limited to 500 mA from an upstream port.
low-power bus-powered functions and high-power bus-powered functions
Both low-power and high-power bus-powered functions obtain all power from upstream ports; low-power
functions always draw less than 100 mA; high-power functions must draw less than 100 mA at power up and
can draw up to 500 mA after enumeration. If the load of the function is more than the parallel combination of
44 Ω and 10 µF at power up, the device must implement inrush current limiting (see Figure 31).
USB can be implemented in several ways, and, regardless of the type of USB device being developed, several
power distribution features must be implemented.
D
Bus-Powered Hubs must:
–Enable/disable power to downstream ports
–Power up at <100 mA
–Limit inrush current (<44 Ω and 10 µF)
D
Functions must:
–Limit inrush currents
–Power up at <100 mA
The feature set of the TPS2045 and TPS2055 allows them to meet each of these requirements. The integrated
current-limiting and overcurrent reporting is required by hosts and self-powered hubs. The logic-level enable
and controlled rise times meet the need of both input and output ports on bus-power hubs, as well as the input
ports for bus-power functions (see Figure 32).
In many applications it may be necessary to remove modules or pc boards while the main unit is still operating.
These are considered hot-plug applications. Such implementations require the control of current surges seen
by the main power supply and the card being inserted. The most effective way to control these surges is to limit
and slowly ramp the current and voltage being applied to the card, similar to the way in which a power supply
normally turns on. Due to the controlled rise times and fall times of the TPS2045 and TPS2055, these devices
can be used to provide a softer start-up to devices being hot-plugged into a powered system. The UVLO feature
of the TPS2045 and TPS2055 also ensures the switch will be off after the card has been removed, and the switch
will be off during the next insertion. The UVLO feature guarantees a soft start with a controlled rise time for every
insertion of the card or module.
PC Board
Power
Supply
2.7 V to 5.5 V
1000 µF
Optimum
0.1 µF
TPS2045
GND
IN
IN
EN
OUT
OUT
OUT
OC
Block of
Circuitry
Overcurrent Response
Figure 33. Typical Hot-Plug Implementation
By placing the TPS2045 and TPS2055 between the VCC input and the rest of the circuitry , the input power will
reach these devices first after insertion. The typical rise time of the switch is approximately 2.5 ms, providng
a slow voltage ramp at the output of the device. This implementaion controls system surge currents and provides
a hot-plugging mechanism for any device.
20
POST OFFICE BOX 655303 • DALLAS, TEXAS 75265
TPS2045, TPS2055
CURRENT-LIMITED POWER-DISTRIBUTION SWITCHES
SLVS182 – APRIL 1999
MECHANICAL DATA
D (R-PDSO-G**) PLASTIC SMALL-OUTLINE PACKAGE
14 PIN SHOWN
0.050 (1,27)
14
1
0.069 (1,75) MAX
0.020 (0,51)
0.014 (0,35)
8
7
A
0.010 (0,25)
0.004 (0,10)
DIM
0.157 (4,00)
0.150 (3,81)
PINS **
0.010 (0,25)
0.244 (6,20)
0.228 (5,80)
8
M
Seating Plane
0.004 (0,10)
14
0.008 (0,20) NOM
0°–8°
16
Gage Plane
0.010 (0,25)
0.044 (1,12)
0.016 (0,40)
A MAX
A MIN
NOTES: A. All linear dimensions are in inches (millimeters).
B. This drawing is subject to change without notice.
C. Body dimensions do not include mold flash or protrusion, not to exceed 0.006 (0,15).
D. Falls within JEDEC MS-012
NOTES: A. All linear dimensions are in inches (millimeters).
B. This drawing is subject to change without notice.
C. Falls within JEDEC MS-001
0.010 (0,25)
M
0.310 (7,87)
0.290 (7,37)
Seating Plane
0°–15°
0.010 (0,25) NOM
4040082/B 03/95
22
POST OFFICE BOX 655303 • DALLAS, TEXAS 75265
IMPORTANT NOTICE
T exas Instruments and its subsidiaries (TI) reserve the right to make changes to their products or to discontinue
any product or service without notice, and advise customers to obtain the latest version of relevant information
to verify, before placing orders, that information being relied on is current and complete. All products are sold
subject to the terms and conditions of sale supplied at the time of order acknowledgement, including those
pertaining to warranty, patent infringement, and limitation of liability.
TI warrants performance of its semiconductor products to the specifications applicable at the time of sale in
accordance with TI’s standard warranty. Testing and other quality control techniques are utilized to the extent
TI deems necessary to support this warranty . Specific testing of all parameters of each device is not necessarily
performed, except those mandated by government requirements.
CERTAIN APPLICATIONS USING SEMICONDUCTOR PRODUCTS MAY INVOLVE POTENTIAL RISKS OF
DEATH, PERSONAL INJURY, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE (“CRITICAL
APPLICATIONS”). TI SEMICONDUCTOR PRODUCTS ARE NOT DESIGNED, AUTHORIZED, OR
WARRANTED TO BE SUITABLE FOR USE IN LIFE-SUPPORT DEVICES OR SYSTEMS OR OTHER
CRITICAL APPLICA TIONS. INCLUSION OF TI PRODUCTS IN SUCH APPLICATIONS IS UNDERST OOD TO
BE FULLY AT THE CUSTOMER’S RISK.
In order to minimize risks associated with the customer’s applications, adequate design and operating
safeguards must be provided by the customer to minimize inherent or procedural hazards.
TI assumes no liability for applications assistance or customer product design. TI does not warrant or represent
that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other
intellectual property right of TI covering or relating to any combination, machine, or process in which such
semiconductor products or services might be or are used. TI’s publication of information regarding any third
party’s products or services does not constitute TI’s approval, warranty or endorsement thereof.
Copyright 1999, Texas Instruments Incorporated
Loading...
+ hidden pages
You need points to download manuals.
1 point = 1 manual.
You can buy points or you can get point for every manual you upload.