Texas instruments TMS320VC5401 Data Manual

TMS320VC5401 Fixed-Point
Digital Signal Processor
Data Manual
Literature Number: SPRS153D
Literature Number: SPRS153D
December 2000 − Revised October 2008
December 2000 − Revised October 2008
                      !     !   

Revision History

REVISION HISTORY
This data sheet revision history highlights the technical changes made to the SPRS153C device-specific data sheet to make it an SPRS153D revision.
Scope: This document has been reviewed for technical accuracy; the technical content is up-to-date as of the specified release date with the following changes.
PAGE(S)
NO.
15 Table 2−2, Signal Descriptions:
− Updated DESCRIPTION of TRST
− Added footnote about TRST
80 Section 6, Mechanical Data:
− Moved “Package Thermal Resistance Characteristics” section (Section 5.4 in SPRS153C) to this section
− Added Section 6.2, Packaging Information
− Mechanical drawings will be appended to this document via an automated process
ADDITIONS/CHANGES/DELETIONS
December 2000 − Revised October 2008 SPRS153D
3
Revision History
4
December 2000 − Revised October 2008SPRS153D

Contents

Contents
Section Page
1 TMS320VC5401 Features 11. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2 Introduction 12. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2.1 Description 12. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2.2 Pin Assignments 12. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2.2.1 Terminal Assignments for the GGU Package 12. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2.2.2 Pin Assignments for the PGE Package 14. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2.3 Signal Descriptions 15. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
3 Functional Overview 20. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
3.1 Memory 20. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
3.1.1 On-Chip ROM With Bootloader 20. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
3.1.2 On-Chip RAM 21. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
3.1.3 On-Chip Memory Security 21. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
3.2 Memory Map 22. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
3.2.1 Relocatable Interrupt Vector Table 22. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
3.2.2 Extended Program Memory 24. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
3.3 On-Chip Peripherals 25. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
3.3.1 Software-Programmable Wait-State Generator 25. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
3.3.2 Programmable Bank-Switching 27. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
3.4 Parallel I/O Ports 28. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
3.4.1 Enhanced 8-Bit Host-Port Interface (HPI8) 28. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
3.5 Multichannel Buffered Serial Ports (McBSPs) 30. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
3.5.1 Programmable McBSP Functions 31. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
3.5.2 Enhanced McBSPs 31. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
3.6 Hardware Timer 32. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
3.7 Clock Generator 32. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
3.8 DMA Controller 34. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
3.8.1 Features 34. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
3.8.2 DMA Memory Map 34. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
3.8.3 DMA Priority Level 34. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
3.8.4 DMA Source/Destination Address Modification 35. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
3.8.5 DMA in Autoinitialization Mode 35. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
3.8.6 DMA Transfer Counting 35. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
3.8.7 DMA Transfer in Doubleword Mode 35. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
3.8.8 DMA Channel Index Registers 35. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
3.8.9 DMA Interrupts 36. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
3.8.10 DMA Controller Synchronization Events 36. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
3.8.11 DMA Channel Interrupt Selection 36. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
3.9 Memory-Mapped Registers 37. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
3.10 McBSP Control Registers and Subaddresses 39. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
3.11 DMA Subbank Addressed Registers 40. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
3.12 Interrupts 42. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
4 Documentation Support 44. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
4.1 Device and Development Tool Support Nomenclature 45. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
December 2000 − Revised October 2008 SPRS153D
5
Contents
Section Page
5 Electrical Specifications 46. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
5.1 Absolute Maximum Ratings 46. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
5.2 Recommended Operating Conditions 46. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
5.3 Electrical Characteristics 47. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
5.4 Timing Parameter Symbology 48. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
5.5 Internal Oscillator With External Crystal 49. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
5.6 Clock Options 50. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
5.6.1 Divide-By-Two Clock Option (PLL Disabled) 50. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
5.6.2 Multiply-By-N Clock Option (PLL Enabled) 51. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
5.7 Memory and Parallel I/O Interface Timing 52. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
5.7.1 Memory Read 52. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
5.7.2 Memory Write 54. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
5.7.3 I/O Read 56. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
5.7.4 I/O Write 57. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
5.8 Ready Timing for Externally Generated Wait States 58. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
5.9 HOLD
and HOLDA Timings 62. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
5.10 Reset, BIO, Interrupt, and MP/MC Timings 63. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
5.11 Instruction Acquisition (IAQ) and Interrupt Acknowledge (IACK) Timings 65. . . . . . . . . . . . . . . . .
5.12 External Flag (XF) and TOUT Timings 66. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
5.13 Multichannel Buffered Serial Port (McBSP) Timing 67. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
5.13.1 McBSP Transmit and Receive Timings 67. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
5.13.2 McBSP General-Purpose I/O Timing 69. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
5.13.3 McBSP Transmit and Receive Timing Using CLKR/X as a Clock Source Input
to the Sample Rate Generator (SRGR) 70. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
5.13.4 McBSP as SPI Master or Slave Timing 72. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
5.14 Host-Port Interface (HPI8) Timing 76. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
6 Mechanical Data 80. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
6.1 Package Thermal Resistance Characteristics 80. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
6.2 Packaging Information 80. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
6
December 2000 − Revised October 2008SPRS153D
Figures

List of Figures

Figure Page
2−1 144-Ball GGU MicroStar BGA (Bottom View) 12. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2−2 144-Pin PGE Low-Profile Quad Flatpack (Top View) 14. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
3−1 TMS320VC5401 Functional Block Diagram 20. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
3−2 Memory Map 22. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
3−3 Processor Mode Status (PMST) Register 23. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
3−4 Extended Program Memory 25. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
3−5 Software Wait-State Register (SWWSR) [Memory-Mapped Register (MMR) Address 0028h] 26. . .
3−6 Software Wait-State Control Register (SWCR) [MMR Address 002Bh] 27. . . . . . . . . . . . . . . . . . . . . . .
3−7 Bank-Switching Control Register (BSCR), MMR Address 0029h 27. . . . . . . . . . . . . . . . . . . . . . . . . . . .
3−8 HPI8 Memory Map 29. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
3−9 Pin Control Register (PCR) 31. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
3−10 DMA Memory Map 34. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
3−11 IFR and IMR Registers 43. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
5−1 3.3-V Test Load Circuit 48. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
5−2 Internal Oscillator With External Crystal 49. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
5−3 External Divide-by-Two Clock Timing 50. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
5−4 External Multiply-by-One Clock Timing 51. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
5−5 Memory Read (MSTRB = 0) 53. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
5−6 Memory Write (MSTRB = 0) 55. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
5−7 Parallel I/O Port Read (IOSTRB = 0) 56. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
5−8 Parallel I/O Port Write (IOSTRB = 0) 57. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
5−9 Memory Read With Externally Generated Wait States 58. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
5−10 Memory Write With Externally Generated Wait States 59. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
5−11 I/O Read With Externally Generated Wait States 60. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
5−12 I/O Write With Externally Generated Wait States 61. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
5−13 HOLD and HOLDA Timings (HM = 1) 62. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
5−14 Reset and BIO Timings 63. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
5−15 Interrupt Timing 64. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
5−16 MP/MC Timing 64. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
5−17 IAQ and IACK Timings 65. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
5−18 XF Timing 66. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
5−19 TOUT Timing 66. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
5−20 McBSP Receive Timings 68. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
5−21 McBSP Transmit Timings 68. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
5−22 McBSP General-Purpose I/O Timings 69. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
5−23 McBSP Sample Rate Generator Timings 71. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
December 2000 − Revised October 2008 SPRS153D
7
Figures
Figure Page
5−24 McBSP Timing as SPI Master or Slave: CLKSTP = 10b, CLKXP = 0 72. . . . . . . . . . . . . . . . . . . . . . . .
5−25 McBSP Timing as SPI Master or Slave: CLKSTP = 11b, CLKXP = 0 73. . . . . . . . . . . . . . . . . . . . . . . .
5−26 McBSP Timing as SPI Master or Slave: CLKSTP = 10b, CLKXP = 1 74. . . . . . . . . . . . . . . . . . . . . . . .
5−27 McBSP Timing as SPI Master or Slave: CLKSTP = 11b, CLKXP = 1 75. . . . . . . . . . . . . . . . . . . . . . . .
5−28 Using HDS
to Control Accesses (HCS Always Low) 78. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
5−29 Using HCS to Control Accesses 79. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
5−30 HINT Timing 79. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
5−31 GPIOx Timings 79. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
8
December 2000 − Revised October 2008SPRS153D
Tables

List of Tables

Table Page
2−1 Terminal Assignments for the TMS320VC5401GGU (144-Pin BGA Package) 13. . . . . . . . . . . . . . . .
2−2 Signal Descriptions 15. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
3−1 Standard On-Chip ROM Layout 21. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
3−2 Processor Mode Status (PMST) Register Bit Fields 23. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
3−3 Software Wait-State Register (SWWSR) Bit Fields 26. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
3−4 Software Wait-State Control Register (SWCR) Bit Fields 27. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
3−5 Bank-Switching Control Register (BSCR) Fields 28. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
3−6 Sample Rate Generator Clock Source Selection 32. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
3−7 Clock Mode Settings at Reset 33. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
3−8 DMA Interrupts 36. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
3−9 DMA Synchronization Events 36. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
3−10 DMA Channel Interrupt Selection 36. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
3−11 CPU Memory-Mapped Registers 37. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
3−12 Peripheral Memory-Mapped Registers 38. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
3−13 McBSP Control Registers and Subaddresses 39. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
3−14 DMA Subbank Addressed Registers 40. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
3−15 Interrupt Locations and Priorities 42. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
3−16 IFR and IMR Register Bit Fields 43. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
5−1 Input Clock Frequency Characteristics 49. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
5−2 Divide-By-2 Clock Option Timing Requirements 50. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
5−3 Divide-By-2 Clock Option Switching Characteristics 50. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
5−4 Multiply-By-N Clock Option Timing Requirements 51. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
5−5 Multiply-By-N Clock Option Switching Characteristics 51. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
5−6 Memory Read Timing Requirements 52. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
5−7 Memory Read Switching Characteristics 52. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
5−8 Memory Write Switching Characteristics 54. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
5−9 I/O Read Timing Requirements 56. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
5−10 I/O Read Switching Characteristics 56. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
5−11 I/O Write Switching Characteristics 57. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
5−12 Ready Timing Requirements for Externally Generated Wait States 58. . . . . . . . . . . . . . . . . . . . . . . . .
5−13 Ready Switching Characteristics for Externally Generated Wait States 58. . . . . . . . . . . . . . . . . . . . . .
5−14 HOLD and HOLDA Timing Requirements 62. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
5−15 HOLD and HOLDA Switching Characteristics 62. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
5−16 Reset, BIO, Interrupt, and MP/MC Timing Requirements 63. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
5−17 Instruction Acquisition (IAQ) and Interrupt Acknowledge (IACK) Switching Characteristics 65. . . .
5−18 External Flag (XF) and TOUT Switching Characteristics 66. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
5−19 McBSP Transmit and Receive Timing Requirements 67. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
5−20 McBSP Transmit and Receive Switching Characteristics 67. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
5−21 McBSP General-Purpose I/O Timing Requirements 69. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
5−22 McBSP General-Purpose I/O Switching Characteristics 69. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
5−23 McBSP Sample Rate Generator Timing Requirements 70. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
5−24 McBSP Sample Rate Generator Switching Characteristics 70. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
December 2000 − Revised October 2008 SPRS153D
9
Tables
Table Page
5−25 McBSP as SPI Master or Slave Timing Requirements (CLKSTP = 10b, CLKXP = 0) 72. . . . . . . . . .
5−26 McBSP as SPI Master or Slave Switching Characteristics (CLKSTP = 10b, CLKXP = 0) 72. . . . . .
5−27 McBSP as SPI Master or Slave Timing Requirements (CLKSTP = 11b, CLKXP = 0) 73. . . . . . . . . .
5−28 McBSP as SPI Master or Slave Switching Characteristics (CLKSTP = 11b, CLKXP = 0) 73. . . . . . .
5−29 McBSP as SPI Master or Slave Timing Requirements (CLKSTP = 10b, CLKXP = 1) 74. . . . . . . . . .
5−30 McBSP as SPI Master or Slave Switching Characteristics (CLKSTP = 10b, CLKXP = 1) 74. . . . . .
5−31 McBSP as SPI Master or Slave Timing Requirements (CLKSTP = 11b, CLKXP = 1) 75. . . . . . . . . .
5−32 McBSP as SPI Master or Slave Switching Characteristics (CLKSTP = 11b, CLKXP = 1) 75. . . . . . .
5−33 HPI8 Timing Requirements 76. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
5−34 HPI8 Switching Characteristics 77. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
6−1 Thermal Resistance Characteristics 80. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
10
December 2000 − Revised October 2008SPRS153D

1 TMS320VC5401 Features

Features
D Advanced Multibus Architecture With
Three Separate 16-Bit Data Memory Buses and One Program Memory Bus
D 40-Bit Arithmetic Logic Unit (ALU),
Including a 40-Bit Barrel Shifter and Two Independent 40-Bit Accumulators
D 17- × 17-Bit Parallel Multiplier Coupled to a
40-Bit Dedicated Adder for Non-Pipelined Single-Cycle Multiply/Accumulate (MAC) Operation
D Compare, Select, and Store Unit (CSSU) for
the Add/Compare Selection of the Viterbi Operator
D Exponent Encoder to Compute an
Exponent Value of a 40-Bit Accumulator Value in a Single Cycle
D Two Address Generators With Eight
Auxiliary Registers and Two Auxiliary Register Arithmetic Units (ARAUs)
D Data Bus With a Bus-Holder Feature D Extended Addressing Mode for 1M × 16-Bit
Maximum Addressable External Program Space
D 4K x 16-Bit On-Chip ROM D 8K x 16-Bit Dual-Access On-Chip RAM D Single-Instruction-Repeat and
Block-Repeat Operations for Program Code
D Block-Memory-Move Instructions for
Efficient Program and Data Management
D Instructions With a 32-Bit Long Word
Operand
D Instructions With Two- or Three-Operand
Reads
D Arithmetic Instructions With Parallel Store
and Parallel Load
D Conditional Store Instructions D Fast Return From Interrupt D On-Chip Peripherals
− Software-Programmable Wait-State Generator and Programmable Bank Switching
− On-Chip Phase-Locked Loop (PLL) Clock Generator With Internal Oscillator or External Clock Source
− Two Multichannel Buffered Serial Ports (McBSPs)
− Enhanced 8-Bit Parallel Host-Port Interface (HPI8)
− Two 16-Bit Timers
− Six-Channel Direct Memory Access (DMA) Controller
D Power Consumption Control With IDLE1,
IDLE2, and IDLE3 Instructions With Power-Down Modes
D CLKOUT Off Control to Disable CLKOUT D On-Chip Scan-Based Emulation Logic,
IEEE Std 1149.1† (JTAG) Boundary Scan Logic
D 20-ns Single-Cycle Fixed-Point Instruction
Execution Time (50 MIPS) for 3.3-V Power Supply (1.8-V Core)
D 144-Pin Plastic Low-Profile Quad Flatpack
(LQFP) (PGE Suffix)
D 144-Ball MicroStar BGA (GGU Suffix)
IEEE Standard 1149.1-1990 Standard Test-Access Port and Boundary Scan Architecture. TMS320C54x and MicroStar BGA are trademarks of Texas Instruments. All trademarks are the property of their respective owners.
December 2000 − Revised October 2008 SPRS153D
11
Introduction

2 Introduction

This section describes the main features of the TMS320VC5401, lists the pin assignments, and describes the function of each pin. This data manual also provides a detailed description section, electrical specifications, parameter measurement information, and mechanical data about the available packaging.
NOTE: This data manual is designed to be used in conjunction with the TMS320C54x DSP Functional Overview (literature number SPRU307).

2.1 Description

The TMS320VC5401 fixed-point, digital signal processor (DSP) (hereafter referred to as the 5401 unless otherwise specified) is based on an advanced modified Harvard architecture that has one program memory bus and three data memory buses. This processor provides an arithmetic logic unit (ALU) with a high degree of parallelism, application-specific hardware logic, on-chip memory, and additional on-chip peripherals. The basis of the operational flexibility and speed of this DSP is a highly specialized instruction set.
Separate program and data spaces allow simultaneous access to program instructions and data, providing the high degree of parallelism. Two read operations and one write operation can be performed in a single cycle. Instructions with parallel store and application-specific instructions can fully utilize this architecture. In addition, data can be transferred between data and program spaces. Such parallelism supports a powerful set of arithmetic, logic, and bit-manipulation operations that can be performed in a single machine cycle. In addition, the 5401 includes the control mechanisms to manage interrupts, repeated operations, and function calls.

2.2 Pin Assignments

Figure 2−1 illustrates the ball locations for the 144-pin ball grid array (BGA) package and is used in conjunction with Table 2−1 to locate signal names and ball grid numbers. Figure 2−2 provides the pin assignments for the 144-pin low-profile quad flatpack (LQFP) package.

2.2.1 Terminal Assignments for the GGU Package

Table 2−1 lists each signal name and BGA ball number for the 144-pin TMS320VC5401GGU package. Table 2−2 lists each terminal name, terminal function, and operating modes for the TMS320VC5401.
123456781012 1113 9
A B C D E F G H J K L M N
12
Figure 2−1. 144-Ball GGU MicroStar BGA (Bottom View)
December 2000 − Revised October 2008SPRS153D
Introduction
Table 2−1. Terminal Assignments for the TMS320VC5401GGU (144-Pin BGA Package)
SIGNAL
NAME
NC A1 NC N13 NC N1 A19 A13 NC B1 NC M13 NC N2 NC A12
V
SS
DV
DD
A10 D4 CLKMD1 K10 BCLKR0 K4 D6 D10
HD7 D3 CLKMD2 K11 BCLKR1 L4 D7 C10
A11 D2 CLKMD3 K12 BFSR0 M4 D8 B10 A12 D1 NC K13 BFSR1 N4 D9 A10 A13 E4 HD2 J10 BDR0 K5 D10 D9 A14 E3 TOUT0 J11 HCNTL1 L5 D11 C9 A15 E2 EMU0 J12 BDR1 M5 D12 B9
NC E1 EMU1/OFF J13 BCLKX0 N5 HD4 A9 HAS F4 TDO H10 BCLKX1 K6 D13 D8 V
SS
NC F2 TRST H12 HINT/TOUT1 M6 D15 B8
CV
DD
HCS G2 TMS G12 BFSX0 M7 CV
HR/W G1 NC G13 BFSX1 N7 NC A7
READY G3 CV
PS G4 HPIENA G10 DV
DS H1 V
IS H2 CLKOUT F12 HD0 M8 DV
R/W H3 HD3 F11 BDX0 L8 A0 C6
MSTRB H4 X1 F10 BDX1 K8 A1 D6
IOSTRB J1 X2/CLKIN E13 IACK N9 A2 A5
MSC J2 RS E12 HBIL M9 A3 B5
XF J3 D0 E11 NMI L9 HD6 C5
HOLDA J4 D1 E10 INT0 K9 A4 D5
IAQ K1 D2 D13 INT1 N10 A5 A4
HOLD K2 D3 D12 INT2 M10 A6 B4
BIO K3 D4 D11 INT3 L10 A7 C4
MP/MC L1 D5 C13 CV
DV
DD
V
SS
NC M1 A17 B13 NC N12 NC A2
NC M2 A18 B12 NC M12 NC B2
DVDD is the power supply for the I/O pins while CVDD is the power supply for the core CPU. VSS is the ground for both the I/O pins and the core CPU.
NC = No internal connection
BGA BALL #
C2 DV C1 V
F3 TDI H11 V
F1 TCK H13 CV
L2 A16 C12 HD1 M11 A9 B3 L3 V
SIGNAL
NAME
DD
SS
DD
SS
SS
BGA BALL #
L12 HCNTL0 M3 V L13 V
G11 HRDY L7 HDS1 C7
F13 V
C11 V
SIGNAL
NAME
SS
SS
DD
DD
SS
DD
SS
BGA BALL #
N3 DV
L6 D14 C8
N6 HD5 A8
K7 V N8 HDS2 A6
N11 A8 A3
L11 CV
SIGNAL
NAME
SS
DD
DD
SS
DD
DD
†‡
BGA BALL #
B11 A11
B7
D7
B6
C3
December 2000 − Revised October 2008 SPRS153D
13
Introduction

2.2.2 Pin Assignments for the PGE Package

The TMS320VC5401PGE 144-pin low-profile quad flatpack (LQFP) is footprint- and pin-compatible with the
5402.
NC NC
V
SS
DV
DD
A10
HD7
A11 A12 A13 A14 A15
NC HAS V
SS
NC
CV
DD
HCS
HR/W
READY
PS
DS
R/W
MSTRB
IOSTRB
MSC
XF
HOLDA
IAQ
HOLD
BIO
MP/MC
DV
DD V
SS
NC
NC
D8
115D7114
DD
SS
D6113
V
A19
NC
DV
111
112
110
109
108
A18
107
A17
106
V
SS
105
A16
104
D5
103
D4 D3
102 101
D2
100
D1
99
D0
98
RS X2/CLKIN
97 96
X1 HD3
95 94
CLKOUT V
93
SS
HPIENA
92 91
CV
DD
NC
90
TMS
89
TCK
88
TRST
87
TDI
86
TDO
85
EMU1/OFF
84
EMU0
83
TOUT0
82
HD2
81
NC
80
CLKMD3
79
CLKMD2
78
CLKMD1
77
V
76
SS
DV
75
DD
NC
74
NC
73
707172
DD
A9
NC
CV
NC
144
143
142
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22
IS
23 24 25 26 27 28 29 30 31 32 33 34 35 36
373839404142434445464748495051525354555657585960616263646566676869
141A8140A7139
A6138
A5
137
A4136
HD6135
A3
134
A2133
A1132
DD
A0
131DV130
HDS2SSV
129
128
NC
HDS1
127
126
DD
CV
125
HD5124
D15
123
D14122
D13121
HD4
120
D12119
D11
D9116
D10
118
117
14
NC
NC
V
HCNTL0SSBCLKR0
BFSR0
BCLKR1
BDR0
BFSR1
BDR1
BCLKX0
HCNTL1
SS
V
BCLKX1
DD
CV
BFSX0
HRDY
BFSX1
DD
DV
SS
HD0
V
BDX0
IACK
BDX1
HBIL
NMI
INT0
INT1
INT2
INT3
DD
CV
HINT/TOUT1
Figure 2−2. 144-Pin PGE Low-Profile Quad Flatpack (Top View)
December 2000 − Revised October 2008SPRS153D
HD1
SS
NC
NC
V
Introduction
TERMINAL
TYPE
DESCRIPTION

2.3 Signal Descriptions

Table 2−2 lists each signal, function, and operating mode(s) grouped by function. See Section 2.2 for exact pin locations based on package type.
Table 2−2. Signal Descriptions
TERMINAL
NAME
DATA SIGNALS
A19 (MSB) A18 A17 A16 A15 A14 A13 A12 A11 A10 A9 A8 A7 A6 A5 A4 A3 A2 A1 A0 (LSB)
D15 (MSB) D14 D13 D12 D11 D10 D9 D8 D7 D6 D5 D4 D3 D2 D1 D0 (LSB)
I = input, O = output, Z = high impedance, S = supply
All revisions of the 5401 can be operated with an external clock source, provided that the proper voltage levels be driven on the X2/CLKIN pin. It should be noted that the X2/CLKIN pin is referenced to the device 1.8-V power supply (CVDD), rather than the 3-V I/O supply (DVDD). Refer to the recommended operating conditions section of this document for the allowable voltage levels of the X2/CLKIN pin.
§
Although this pin includes an internal pulldown resistor, a 470-Ω external pulldown is required. If the TRST pin is connected to multiple DSPs, a buffer is recommended to ensure the VIL and VIH specifications are met.
O/Z Parallel address bus A19 [most significant bit (MSB)] through A0 [least significant bit (LSB)]. The lower sixteen
address pins (A0 to A15) are multiplexed to address all external memory (program, data) or I/O, while the upper four address pins (A16 to A19) are only used to address external program space. These pins are placed in the high-impedance state when the hold mode is enabled, or when OFF is low.
I/O/Z Parallel data bus D15 (MSB) through D0 (LSB). The sixteen data pins (D0 to D15) are multiplexed to transfer data
between the core CPU and external data/program memory or I/O devices. The data bus is placed in the high-impedance state when not outputting or when RS or HOLD is asserted. The data bus also goes into the high-impedance state when OFF is low.
The data bus has bus holders to reduce the static power dissipation caused by floating, unused pins. These bus holders also eliminate the need for external bias resistors on unused pins. When the data bus is not being driven by the 5401, the bus holders keep the pins at the previous logic level. The data bus holders on the 5401 are disabled at reset and can be enabled/disabled via the BH bit of the bank-switching control register (BSCR).
December 2000 − Revised October 2008 SPRS153D
15
Introduction
Table 2−2. Signal Descriptions (Continued)
TERMINAL
TERMINAL
NAME
NAME
IACK
INT0 INT1 INT2 INT3
NMI
RS
MP/MC I
BIO I
XF O/Z
DS PS IS
MSTRB O/Z
READY I
R/W O/Z
IOSTRB O/Z
HOLD I †
I = input, O = output, Z = high impedance, S = supply
All revisions of the 5401 can be operated with an external clock source, provided that the proper voltage levels be driven on the X2/CLKIN pin. It should be noted that the X2/CLKIN pin is referenced to the device 1.8-V power supply (CVDD), rather than the 3-V I/O supply (DVDD). Refer to the recommended operating conditions section of this document for the allowable voltage levels of the X2/CLKIN pin.
§
Although this pin includes an internal pulldown resistor, a 470-Ω external pulldown is required. If the TRST pin is connected to multiple DSPs, a buffer is recommended to ensure the VIL and VIH specifications are met.
INITIALIZATION, INTERRUPT, AND RESET OPERATIONS
Interrupt acknowledge signal. IACK Indicates receipt of an interrupt and that the program counter is fetching the
O/Z
interrupt vector location designated by A15−A0. IACK also goes into the high-impedance state when OFF is low.
External user interrupts. INT0−INT3 are prioritized and are maskable by the interrupt mask register (IMR) and the
I
interrupt mode bit. INT0 −INT3 can be polled and reset by way of the interrupt flag register (IFR).
Nonmaskable interrupt. NMI is an external interrupt that cannot be masked by way of the INTM or the IMR. When
I
NMI is activated, the processor traps to the appropriate vector location. Reset. R S causes the digital signal processor (DSP) to terminate execution and causes a reinitialization of the CPU
and peripherals. When RS is brought to a high level, execution begins at location 0FF80h of program memory. RS
I
affects various registers and status bits. Microprocessor/microcomputer mode select. If active low at reset, microcomputer mode is selected, and the
internal program ROM is mapped into the upper 4K words of program memory space. If the pin is driven high during reset, microprocessor mode is selected, and the on-chip ROM is removed from program space. This pin is only sampled at reset, and the MP/MC bit of the processor mode status (PMST) register can override the mode that is selected at reset.
MULTIPROCESSING SIGNALS
Branch control. A branch can be conditionally executed when BIO is active. If low, the processor executes the conditional instruction. For the XC instruction, the BIO condition is sampled during the decode phase of the pipeline; all other instructions sample BIO during the read phase of the pipeline.
External flag output (latched software-programmable signal). XF is set high by the SSBX XF instruction, set low by the RSBX XF instruction or by loading ST1. XF is used for signaling other processors in multiprocessor configurations or used as a general-purpose output pin. XF goes into the high-impedance state when OFF is low, and is set high at reset.
MEMORY CONTROL SIGNALS
Data, program, and I/O space select signals. DS, PS, and IS are always high unless driven low for accessing a particular external memory space. Active period corresponds to valid address information. DS, PS, and IS are
O/Z
placed into the high-impedance state in the hold mode; the signals also go into the high-impedance state when OFF is low.
Memory strobe signal. MSTRB is always high unless low-level asserted to indicate an external bus access to data or program memory. MSTRB is placed in the high-impedance state in the hold mode; it also goes into the high-impedance state when OFF is low.
Data ready. READY indicates that an external device is prepared for a bus transaction to be completed. If the device is not ready (READY is low), the processor waits one cycle and checks READY again. Note that the processor performs ready detection if at least two software wait states are programmed. The READY signal is not sampled until the completion of the software wait states.
Read/write signal. R/W indicates transfer direction during communication to an external device. R/W is normally in the read mode (high), unless it is asserted low when the DSP performs a write operation. R/W is placed in the high-impedance state in hold mode; it also goes into the high-impedance state when OFF is low.
I/O strobe signal. IOSTRB is always high unless low-level asserted to indicate an external bus access to an I/O device. IOSTRB is placed in the high-impedance state in the hold mode; it also goes into the high-impedance state when OFF is low.
Hold. HOLD is asserted to request control of the address, data, and control lines. When acknowledged by the C54x DSP, these lines go into the high-impedance state.
DESCRIPTIONTYPE
DESCRIPTIONTYPE
16
December 2000 − Revised October 2008SPRS153D
Introduction
Table 2−2. Signal Descriptions (Continued)
TERMINAL
TERMINAL
NAME
NAME
HOLDA O/Z
MSC O/Z
IAQ O/Z
CLKOUT O/Z
CLKMD1 CLKMD2 CLKMD3
X2/CLKIN I
X1 O
TOUT0 O/Z
TOUT1 O/Z
BCLKR0 BCLKR1
BDR0 BDR1
BFSR0 BFSR1
BCLKX0 BCLKX1
BDX0 BDX1
BFSX0 BFSX1
I = input, O = output, Z = high impedance, S = supply
All revisions of the 5401 can be operated with an external clock source, provided that the proper voltage levels be driven on the X2/CLKIN pin. It should be noted that the X2/CLKIN pin is referenced to the device 1.8-V power supply (CVDD), rather than the 3-V I/O supply (DVDD). Refer to the recommended operating conditions section of this document for the allowable voltage levels of the X2/CLKIN pin.
§
Although this pin includes an internal pulldown resistor, a 470-Ω external pulldown is required. If the TRST pin is connected to multiple DSPs, a buffer is recommended to ensure the VIL and VIH specifications are met.
MEMORY CONTROL SIGNALS (CONTINUED)
Hold acknowledge. HOLDA indicates that the 5401 is in a hold state and that the address, data, and control lines are in the high-impedance state, allowing the external memory interface to be accessed by other devices. HOLDA also goes into the high-impedance state when OFF is low. This pin is driven high during reset.
Microstate complete. MSC indicates completion of all software wait states. When two or more software wait states are enabled, the MSC p i n g o e s a c t i v e a t t h e b e g i n ni n g o f t h e first software wait state and goes inactive high at the beginning of the last software wait state. If connected to the READY input, MSC forces one external wait state after the last internal wait state is completed. MSC also goes into the high-impedance state when OFF is low.
Instruction acquisition signal. IAQ is asserted (active low) when there is an instruction address on the address bus. IAQ goes into the high-impedance state when OFF is low.
Master clock output signal. CLKOUT cycles at the machine-cycle rate of the CPU. The internal machine cycle is bounded by rising edges of this signal. CLKOUT also goes into the high-impedance state when OFF is low.
Clock mode select signals. These inputs select the mode that the clock generator is initialized to after reset. The logic levels of CLKMD1–CLKMD3 are latched when the reset pin is low, and the clock mode register is initialized
I
to the selected mode. After reset, the clock mode can be changed through software, but the clock mode select signals have no effect until the device is reset again.
Oscillator input. This is the input to the on-chip oscillator.
If the internal oscillator is not used, X2/CLKIN functions as the clock input, and can be driven by an external clock
source. Output pin from the internal oscillator for the crystal.
If the internal oscillator is not used, X1 should be left unconnected. X1 does not go into the high-impedance state when OFF is low.
Timer0 output. TOUT0 signals a pulse when the on-chip timer 0 counts down past zero. The pulse is a CLKOUT cycle wide. TOUT0 also goes into the high-impedance state when OFF is low.
Timer1 output. TOUT1 signals a pulse when the on-chip timer1 counts down past zero. The pulse is one CLKOUT cycle wide. The TOUT1 output is multiplexed with the HINT pin of the HPI and is only available when the HPI is disabled. TOUT1 also goes into the high-impedance state when OFF is low.
I/O/Z
I/O/Z
I/O/Z
I/O/Z
Receive clock input. BCLKR can be configured as an input or an output; it is configured as an input following reset. BCLKR serves as the serial shift clock for the buffered serial port receiver.
I Serial data receive input
Frame synchronization pulse for receive input. BFSR can be configured as an input or an output; it is configured as an input following reset. The BFSR pulse initiates the receive data process over BDR.
Transmit clock. BCLKX serves as the serial shift clock for the McBSP transmitter. BCLKX can be configured as an input or an output; it is configured as an input following reset. BCLKX enters the high-impedance state when OFF goes low.
Serial data transmit output. BDX is placed in the high-impedance state when not transmitting, when RS is asserted,
O/Z
or when OFF is low. Frame synchronization pulse for transmit input/output. The BFSX pulse initiates the transmit data process. BFSX
can be configured as an input or an output; it is configured as an input following reset. BFSX goes into the high-impedance state when OFF is low.
MULTICHANNEL BUFFERED SERIAL PORT SIGNALS
DESCRIPTIONTYPE
DESCRIPTIONTYPE
OSCILLATOR/TIMER SIGNALS
C54x is a trademark of Texas Instruments.
December 2000 − Revised October 2008 SPRS153D
17
Introduction
Table 2−2. Signal Descriptions (Continued)
TERMINAL
TERMINAL
NAME
NAME
NC No connection
HD0−HD7 I/O/Z
HCNTL0 HCNTL1
HBIL I
HCS I
HDS1 HDS2
HAS I
HR/W I
HRDY O/Z
HINT O/Z
HPIENA I
CV
DD
DV
DD
V
SS
TCK I
TDI I
TDO O/Z
I = input, O = output, Z = high impedance, S = supply
All revisions of the 5401 can be operated with an external clock source, provided that the proper voltage levels be driven on the X2/CLKIN pin. It should be noted that the X2/CLKIN pin is referenced to the device 1.8-V power supply (CVDD), rather than the 3-V I/O supply (DVDD). Refer to the recommended operating conditions section of this document for the allowable voltage levels of the X2/CLKIN pin.
§
Although this pin includes an internal pulldown resistor, a 470-Ω external pulldown is required. If the TRST pin is connected to multiple DSPs, a buffer is recommended to ensure the VIL and VIH specifications are met.
MISCELLANEOUS SIGNAL
HOST-PORT INTERFACE SIGNALS
Parallel bidirectional data bus. The HPI data bus is used by a host device bus to exchange information with the HPI registers. These pins can also be used as general-purpose I/O pins. HD0−HD7 is placed in the high-impedance state when not outputting data or when OFF is low. The HPI data bus includes bus holders to reduce the static power dissipation caused by floating, unused pins. When the HPI data bus is not being driven by the 5401, the bus holders keep the pins at the previous logic level. The HPI data bus holders are disabled at reset and can be enabled/disabled via the HBH bit of the BSCR.
Control. HCNTL0 and HCNTL1 select a host access to one of the three HPI registers. The control inputs have
I
internal pullup resistors that are only enabled when HPIENA = 0. Byte identification. HBIL identifies the first or second byte of transfer . The HBIL input has an internal pullup resistor
that is only enabled when HPIENA = 0. Chip select. HCS is the select input for the HPI and must be driven low during accesses. The chip-select input has
an internal pullup resistor that is only enabled when HPIENA = 0. Data strobe. HDS1 and HDS2 are driven by the host read and write strobes to control transfers. The strobe inputs
I
have internal pullup resistors that are only enabled when HPIENA = 0. Address strobe. Hosts with multiplexed address and data pins require HAS to latch the address in the HPIA
register. HAS has an internal pullup resistor that is only enabled when HPIENA = 0. Read/write. HR/W controls the direction of an HPI transfer . R/W has an internal pullup resistor that is only enabled
when HPIENA = 0. Ready. The ready output informs the host when the HPI is ready for the next transfer. HRDY goes into the
high-impedance state when OFF is low. Host interrupt. This output is used to interrupt the host. When the DSP is in reset, HINT is driven high. HINT can
also be configured as the timer 1 output (TOUT1), when the HPI is disabled. The signal goes into the high-impedance state when OFF is low.
HPI module select. HPIENA must be driven high during reset to enable the HPI. An internal pulldown resistor is always active and the HPIENA pin is sampled on the rising edge of RS. If HPIENA is left open or is driven low during reset, the HPI module is disabled. Once the HPI is disabled, the HPIENA pin has no effect until the 5401 is reset.
SUPPLY PNS
S +VDD. Dedicated 1.8-V power supply for the core CPU S +VDD. Dedicated 3.3-V power supply for the I/O pins S Ground
TEST PINS
IEEE standard 1149.1 test clock. TCK is normally a free-running clock signal with a 50% duty cycle. The changes on the test access port (TAP) of input signals TMS and TDI are clocked into the T AP controller, instruction register, or selected test data register on the rising edge of TCK. Changes at the TAP output signal (TDO) occur on the falling edge of TCK.
IEEE standard 1149.1 test data input pin with internal pullup device. TDI is clocked into the selected register (instruction o r data) on a rising edge of TCK.
IEEE standard 1149.1 test data output. The contents of the selected register (instruction or data) are shifted ou t of TDO on the falling edge of TCK. TDO is in the high-impedance state except when the scanning of data is in progress. TDO also goes into the high-impedance state when OFF is low.
DESCRIPTIONTYPE
DESCRIPTIONTYPE
18
December 2000 − Revised October 2008SPRS153D
Introduction
Table 2−2. Signal Descriptions (Continued)
TERMINAL
TERMINAL
NAME
NAME
TMS I
§
TRST
EMU0 I/O/Z
EMU1/OFF I/O/Z
I = input, O = output, Z = high impedance, S = supply
All revisions of the 5401 can be operated with an external clock source, provided that the proper voltage levels be driven on the X2/CLKIN pin. It should be noted that the X2/CLKIN pin is referenced to the device 1.8-V power supply (CVDD), rather than the 3-V I/O supply (DVDD). Refer to the recommended operating conditions section of this document for the allowable voltage levels of the X2/CLKIN pin.
§
Although this pin includes an internal pulldown resistor, a 470-Ω external pulldown is required. If the TRST pin is connected to multiple DSPs, a buffer is recommended to ensure the VIL and VIH specifications are met.
TEST PINS (CONTINUED)
IEEE standard 1149.1 test mode select. Pin with internal pullup device. This serial control input is clocked into the TAP controller on the rising edge of TCK.
IEEE standard 1149.1 test reset. TRST, when high, gives the IEEE standard 1149.1 scan system control of the
I
operations of the device. If TRST is driven low, the device operates in its functional mode, and the IEEE standard
1149.1 signals are ignored. Pin with internal pulldown device. Emulator 0 pin. When TRST is driven low, EMU0 must be high for activation of the OFF condition. When TRST
is driven high, EMU0 is used as an interrupt to or from the emulator system and is defined as input/output by way of the IEEE standard 1149.1 scan system.
Emulator 1 pin/disable all outputs. When TRST is driven high, EMU1/OFF is used as an interrupt to or from the emulator system and is defined as input/output by way of the IEEE standard 1149.1 scan system. When TRST is driven low, EMU1/OFF is configured as OFF. The EMU1/OFF signal, when active low, puts all output drivers into the high-impedance state. Note that OFF is used exclusively for testing and emulation purposes (not for multiprocessing applications). The OFF feature is selected by the following pin combinations: TRST = low EMU0 = high EMU1/OFF = low
DESCRIPTIONTYPE
DESCRIPTIONTYPE
December 2000 − Revised October 2008 SPRS153D
19
Functional Overview

3 Functional Overview

The following functional overview is based on the block diagram in Figure 3−1.
Cbus
Pbus
54X cLEAD
TI BUS
P, C, D, E Buses and Control Signals
Dbus
Ebus
RHEA
Bridge
RHEA Bus
Cbus
Pbus
Dbus
8K RAM
Dual Access
Program/Data
MBus
Ebus
Pbus
4K Program
ROM
GPIO
McBSP1
XIO
HPI
Enhanced XIO
HPI
Figure 3−1. TMS320VC5401 Functional Block Diagram

3.1 Memory

The 5401 device provides both on-chip ROM and RAM memories to aid in system performance and integration.

3.1.1 On-Chip ROM With Bootloader

The 5401 features a 4K-word × 16-bit on-chip maskable ROM. Customers can arrange to have the ROM of the 5401 programmed with contents unique to any particular application. A security option is available to protect a custom ROM. This security option is described in the TMS320C54x DSP Reference Set, Volume 1: CPU and Peripherals (literature number SPRU131). Note that only the ROM security option, and not the ROM/RAM option, is available on the 5401.
DMA logic
RHEAbus
RHEA bus
MBus
Clocks
McBSP2
TIMER
TIMER
APLL
JTAG
20
A bootloader is available in the standard 5401 on-chip ROM. This bootloader can be used to automatically transfer user code from an external source to anywhere in the program memory at power up. If the MP/MC pin is sampled low during a hardware reset, execution begins at location FF80h of the on-chip ROM. This location contains a branch instruction to the start of the bootloader program. The standard 5401 bootloader provides different ways to download the code to accommodate various system requirements:
Parallel from 8-bit or 16-bit-wide EPROM
Parallel from I/O space 8-bit or 16-bit mode
Serial boot from serial ports 8-bit or 16-bit mode
Host-port interface boot
December 2000 − Revised October 2008SPRS153D
The standard on-chip ROM layout is shown in Table 3−1.
ADDRESS RANGE DESCRIPTION
F000h − F7FFh Reserved F800h − FBFFh Bootloader FC00h − FCFFh µ-law expansion table FD00h − FDFFh A-law expansion table FE00h − FEFFh Sine look-up table
FF00h − FF7Fh Reserved FF80h − FFFFh Interrupt vector table
In the 5401 ROM, 128 words are reserved for factory device-testing purposes. Application code to be implemented in on-chip ROM must reserve these 128 words at addresses FF00h–FF7Fh in program space.

3.1.2 On-Chip RAM

The 5401 device contains 8K × 16-bit of on-chip dual-access RAM (DARAM). The DARAM is composed of two blocks of 4K words each. Each DARAM block can support two reads in one cycle, or a read and a write in one cycle. This allows code to be executed out of one block while two data values are read out of the other block without incurring a cycle penalty. The first DARAM block occupies two address ranges: 0060h−007Fh and 1000h−1FFFh in data space. The second DARAM block occupies 2000h−2FFFh in data space. In program space, each block occupies the same address ranges with the exception of 0060h−007Fh, which are not available.
Table 3−1. Standard On-Chip ROM Layout
Functional Overview

3.1.3 On-Chip Memory Security

The 5401 features a 16K-word × 16-bit on-chip maskable ROM. Customers can arrange to have the ROM of the 5401 programmed with contents unique to any particular
application. A security option is available to protect a custom ROM. The ROM and ROM/RAM security options are available on the 5401. These security options are described in the TMS320C54x DSP Reference Set, Volume 1: CPU and Peripherals (literature number SPRU131). When the security options are enabled, JTAG emulation is inhibited or nonfunctional.
December 2000 − Revised October 2008 SPRS153D
21
Functional Overview

3.2 Memory Map

Page 0 Program
Hex
0000
0FFF 1000
On-Chip DARAM
1FFF
2000
On-Chip DARAM
2FFF
3000
3FFF
4000
FF7F
FF80
Reserved
(OVLY = 1)
External
(OVLY = 0)
(OVLY = 1)
External
(OVLY = 0)
(OVLY = 1)
External
(OVLY = 0)
Reserved
(OVL Y = 1)
External
(OVLY = 0)
External
Interrupts (External)
Hex
0000
0FFF
1000
On-Chip DARAM
1FFF
2000
On-Chip DARAM
2FFF
3000
3FFF
4000
EFFF
F000
FEFF
FF00 FF7F
FF80
Page 0 Program
Reserved
(OVLY = 1)
External
(OVLY = 0)
(OVL Y = 1)
External
(OVLY = 0)
(OVL Y = 1)
External
(OVLY = 0)
Reserved
(OVL Y = 1)
External
(OVLY = 0)
External
On-Chip ROM
(4K x 16-bit)
Reserved
Interrupts
(On-Chip)
Hex
0000
005F
0060
007F
0080
0FFF
1000
1FFF
2000
2FFF
3000
3FFF
4000
EFFF
F000
FEFF
FF00
Data
Memory Mapped
Registers
Scratch-Pad
RAM
Reserved
On-Chip DARAM
(4K x 16-bit)
On-Chip DARAM
(4K x 16-bit)
Reserved
External
ROM (DROM=1)
or External
(DROM=0)
Reserved
(DROM=1)
or External
(DROM=0)
FFFF
MP/MC= 1
(Microprocessor Mode)
The scratch-pad RAM area is physically a part of the DARAM block starting at address 1000h. Physical location can affect multiple access performance. (See Section 3.1.2.)
FFFF
(Microcomputer Mode)
Figure 3−2. Memory Map

3.2.1 Relocatable Interrupt Vector Table

The reset, interrupt, and trap vectors are addressed in program space. These vectors are soft — meaning that the processor, when taking the trap, loads the program counter (PC) with the trap address and executes the code at the vector location. Four words are reserved at each vector location to accommodate a delayed branch instruction, either two 1-word instructions or one 2-word instruction, which allows branching to the appropriate interrupt service routine with minimal overhead.
At device reset, the reset, interrupt, and trap vectors are mapped to address FF80h in program space. However, these vectors can be remapped to the beginning of any 128-word page in program space after device reset. This is done by loading the interrupt vector pointer (IPTR) bits in the PMST register (see Figure 3−3) with the appropriate 128-word page boundary address. After loading IPTR, any user interrupt or trap vector is mapped to the new 128-word page.
22
FFFF
MP/MC= 0
December 2000 − Revised October 2008SPRS153D
Functional Overview
RESET
RESET
FUNCTION
NOTE: The hardware reset (RS) vector cannot be remapped because a hardware reset loads the IPTR with 1s. Therefore, the reset vector is always fetched at location FF80h in program space.
15
IPTR
R/W
7
IPTR MP/MC OVLY AVIS DROM CLKOFF SMUL SST
R/W R/W R/W R R R R/W R/W
LEGEND: R = Read, W = Write, n = value present after reset
6543210
Figure 3−3. Processor Mode Status (PMST) Register
Table 3−2. Processor Mode Status (PMST) Register Bit Fields
BIT
NO. NAME
15−7 IPTR 1FFh
6 MP/MC
5 OVLY 0
4 AVIS 0
3 DROM 0
2 CLKOFF 0
1 SMUL 0
0 SST 0
VALUE
MP/MC
pin
Interrupt vector pointer. The 9-bit IPTR field points to the 128-word program page where the interrupt vectors reside. The interrupt vectors can be remapped to RAM for boot-loaded operations. At reset, these bits are all set to 1; the reset vector always resides at address FF80h in program memory space. The RESET instruction does not affect this field.
Microprocessor/microcomputer mode. MP/MC enables/disables the on-chip ROM to be addressable in program memory space.
- MP/MC = 0: The on-chip ROM is enabled and addressable.
- MP/MC = 1: The on-chip ROM is not available.
MP/MC is set to the value corresponding to the logic level on the MP/MC pin when sampled at reset. This pin is not sampled again until the next reset. The RESET instruction does not affect this bit. This bit can also be set or cleared by software.
RAM overlay. OVLY enables on-chip dual-access data RAM blocks to be mapped into program space. The values for the OVLY bit are:
- OVLY = 0: The on-chip RAM is addressable in data space but not in program space.
- OVLY = 1: The on-chip RAM is mapped into program space and data space. Data page 0 (addresses
0h to 7Fh), however, is not mapped into program space.
Address visibility mode. AVIS enables/disables the internal program address to be visible at the address pins.
- AVIS = 0: The external address lines do not change with the internal program address. Control and data lines are not af fected and the address bus is driven with the last address on the bus.
- A VIS = 1: This mode allows the internal program address to appear at the pins of the 5410A so that the internal program address can be traced. Also, it allows the interrupt vector to be decoded in conjunction with IACK when the interrupt vectors reside on on-chip memory.
Data ROM. DROM enables on-chip ROM to be mapped into data space. The values for the DROM bit are:
- DROM = 0: The on-chip ROM is not mapped into data space.
- DROM = 1: A portion of the on-chip RAM is mapped into data space.
CLOCKOUT off. When the CLKOFF bit is 1, the output of CLKOUT is disabled and remains at a high level.
Saturation on multiplication. When SMUL = 1, saturation of a multiplication result occurs before performing the accumulation in a MAC of MAS instruction. The SMUL bit applies only when OVM = 1 and FRCT = 1.
Saturation on store. When SST = 1, saturation of the data from the accumulator is enabled before storing in memory. The saturation is performed after the shift operation.
8
December 2000 − Revised October 2008 SPRS153D
23
Functional Overview

3.2.2 Extended Program Memory

The 5401 uses a paged extended memory scheme in program space to allow access of up to 1024K program memory locations. In order to implement this scheme, the 5401 includes several features that are also present on the 548/549 devices:
Twenty address lines, instead of sixteen
An extra memory-mapped register, the XPC register, defines the page selection. This register is
memory-mapped into data space to address 001Eh. At a hardware reset, the XPC is initialized to 0.
Six extra instructions for addressing extended program space. These six instructions affect the XPC.
FB[D] pmad (20 bits) − Far branch
FBACC[D] Accu[19:0] − Far branch to the location specified by the value in accumulator A or accumulator B
FCALL[D] pmad (20 bits) − Far call
FCALA[D] Accu[19:0] − Far call to the location specified by the value in accumulator A or accumulator B
FRET[D] − Far return
FRETE[D] − Far return with interrupts enabled
In addition to these new instructions, two 54x instructions are extended to use 20 bits in the 5401:
READA data_memory (using 20-bit accumulator address)
WRITA data_memory (using 20-bit accumulator address)
All other instructions, software interrupts and hardware interrupts do not modify the XPC register and access only memory within the current page.
Program memory in the 5401 is organized into 16 pages that are each 64K in length, as shown in Figure 3−4.
24
December 2000 − Revised October 2008SPRS153D
Functional Overview
0 0000
Page 0
64K
Words{
0 FFFF
See Figure 3−2.
The lower 16K words of pages 1 through 15 are available only when the OVLY bit is cleared to 0. If the OVLY bit is set to 1, the on-chip RAM and reserved addresses are mapped to the lower 16K words of all program space pages.
1 0000
1 3FFF
1 4000
1 FFFF
Page 1
Lower
16K}
External
Page 1
Upper
48K
External
2 0000
2 3FFF
2 4000
2 FFFF
Page 2
Lower
16K}
External
Page 2
Upper
48K
External
. . . . . . . . .
. . .
F 0000
F 3FFF
F 4000
F FFFF
Page 15
Lower
16K}
External
Page 15
Upper
48K
External
Figure 3−4. Extended Program Memory

3.3 On-Chip Peripherals

The 5401 device has the following peripherals:
Software-programmable wait-state generator with programmable bank-switching wait states
An enhanced 8-bit host-port interface (HPI8)
Two multichannel buffered serial ports (McBSPs)
Two hardware timers
A clock generator with a phase-locked loop (PLL)
A direct memory access (DMA) controller

3.3.1 Software-Programmable Wait-State Generator

The software wait-state generator of the 5401 can extend external bus cycles by up to fourteen machine cycles. Devices that require more than fourteen wait states can be interfaced using the hardware READY line. When all external accesses are configured for zero wait states, the internal clocks to the wait-state generator are automatically disabled. Disabling the wait-state generator clocks reduces the power consumption of the
5401. The software wait-state register (SWWSR) controls the operation of the wait-state generator. The 14 LSBs
of the SWWSR specify the number of wait states (0 to 7) to be inserted for external memory accesses to five separate address ranges. This allows a different number of wait states for each of the five address ranges. Additionally, the software wait-state multiplier (SWSM) bit of the software wait-state control register (SWCR) defines a multiplication factor of 1 or 2 for the number of wait states. At reset, the wait-state generator is initialized to provide seven wait states on all external memory accesses. The SWWSR bit fields are shown in Figure 3−5 and described in Table 3−3.
December 2000 − Revised October 2008 SPRS153D
25
Functional Overview
RESET
RESET
FUNCTION
15
XPA I/O DATA DATA
R/W-0 R/W-111 R/W-111 R/W-111
7
DATA PROGRAM PROGRAM
R/W-111 R/W-111 R/W-111
LEGEND: R = Read, W = Write, n = value present after reset
14 12 11 9 8
65 32 0
Figure 3−5. Software Wait-State Register (SWWSR) [Memory-Mapped Register (MMR) Address 0028h]
Table 3−3. Software Wait-State Register (SWWSR) Bit Fields
BIT
NO. NAME
15 XPA 0
14−12 I/O 1
11−9 Data 1
8−6 Data 1
5−3 Program 1
2−0 Program 1
VALUE
Extended program address control bit. XPA is used in conjunction with the program space fields (bits 0 through 5) to select the address range for program space wait states.
I/O space. The field value (0−7) corresponds to the base number of wait states for I/O space accesses within addresses 0000−FFFFh. The SWSM bit of the SWCR defines a multiplication factor of 1 or 2 for the base number of wait states.
Upper data space. The field value (0−7) corresponds to the base number of wait states for external data space accesses within addresses 8000−FFFFh. The SWSM bit of the SWCR defines a multiplication factor of 1 or 2 for the base number of wait states.
Lower data space. The field value (0−7) corresponds to the base number of wait states for external data space accesses within addresses 0000−7FFFh. The SWSM bit of the SWCR defines a multiplication factor of 1 or 2 for the base number of wait states.
Upper program space. The field value (0−7) corresponds to the base number of wait states for external program space accesses within the following addresses:
- XPA = 0: x8000 − xFFFFh
- XPA = 1: The upper program space bit field has no effect on wait states.
The SWSM bit of the SWCR defines a multiplication factor of 1 or 2 for the base number of wait states. Program space. The field value (0−7) corresponds to the base number of wait states for external
program space accesses within the following addresses:
- XPA = 0: x0000−x7FFFh
- XPA = 1: 00000−FFFFFh
The SWSM bit of the SWCR defines a multiplication factor of 1 or 2 for the base number of wait states.
26
December 2000 − Revised October 2008SPRS153D
Loading...
+ 59 hidden pages