Texas Instruments TLV2434IPWR, TLV2434IPW, TLV2432IDR, TLV2432ID, TLV2432CPWR Datasheet

...
TLV2432, TLV2432A, TLV2434, TLV2434A
Advanced LinCMOS RAIL-TO-RAIL OUTPUT
WIDE-INPUT-VOLTAGE OPERATIONAL AMPLIFIERS
SLOS168E – NOVEMBER 1996 – REVISED NOVEMBER 1999
1
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
D
Output Swing Includes Both Supply Rails
D
D
No Phase Inversion
D
Low Noise . . . 18 nV/√Hz Typ at f = 1 kHz
D
Low Input Offset Voltage
950 µV Max at TA = 25°C (TLV243xA)
D
Low Input Bias Current ...1 pA Typ
D
Very Low Supply Current . . . 125 µA Per Channel Max
D
600- Output Drive
D
Macromodel Included
D
Available in Q-Temp Automotive
HighRel Automotive Applications Configuration Control / Print Support Qualification to Automotive Standards
description
The TLV243x and TLV243xA are low-voltage operational amplifier from T exas Instruments. The common-mode input voltage range for each device is extended over the typical CMOS amplifiers making them suitable for a wide range of applications. In addition, these devices do not phase invert when the common-mode input is driven to the supply rails. This satisfies most design requirements without paying a premium for rail-to-rail input performance. They also exhibit rail-to-rail output performance for increased dynamic range in single- or split-supply applica­tions. This family is fully characterized at 3-V and 5-V supplies and is optimized for low-voltage operation. The TLV243x only requires 100 µA (typ) of supply current per channel, making it ideal for battery-powered applications. The TLV243x also has increased output drive over previous rail-to-rail operational amplifiers and can drive 600- loads for telecom applications.
The other members in the TL V243x family are the high-power , TL V244x, and micro-power , TL V2422, versions. The TLV243x, exhibiting high input impedance and low noise, is excellent for small-signal conditioning for
high-impedance sources, such as piezoelectric transducers. Because of the micropower dissipation levels and low-voltage operation, these devices work well in hand-held monitoring and remote-sensing applications. In addition, the rail-to-rail output feature with single- or split-supplies makes this family a great choice when interfacing with analog-to-digital converters (ADCs). For precision applications, the TL V243xA is available and has a maximum input offset voltage of 950 µV.
If the design requires single operational amplifiers, see the TI TL V2211/21/31. This is a family of rail-to-rail output operational amplifiers in the SOT-23 package. Their small size and low power consumption, make them ideal for high density, battery-powered equipment.
Copyright 1999, Texas Instruments Incorporated
PRODUCTION DATA information is current as of publication date. Products conform to specifications per the terms of Texas Instruments standard warranty. Production processing does not necessarily include testing of all parameters.
Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.
Advanced LinCMOS is a trademark of Texas Instruments Incorporated.
Figure 1
TA = 125°C
TA = 85°C
TA = 25°C
TA =–40°C
VDD = 5 V
2
1
0
04812
3
4
5
16 20
VOH – High-Level Output Voltage – V
HIGH-LEVEL OUTPUT VOLTAGE
vs
HIGH-LEVEL OUTPUT CURRENT
IOH – High-Level Output Current –mA
V
OH
On products compliant to MIL-PRF-38535, all parameters are tested unless otherwise noted. On all other products, production processing does not necessarily include testing of all parameters.
TLV2432, TLV2432A, TLV2434, TLV2434A Advanced LinCMOS RAIL-TO-RAIL OUTPUT WIDE-INPUT-VOLTAGE OPERATIONAL AMPLIFIERS
SLOS168E – NOVEMBER 1996 – REVISED NOVEMBER 1999
2
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
TLV2432 and TLV2432A AVAILABLE OPTIONS
PACKAGED DEVICES
T
A
VIOmax AT 25°C
SMALL
OUTLINE
(D)
CHIP CARRIER
(FK)
CERAMIC DIP
(JG)
TSSOP
(PW)
CERAMIC FLAT
PACK
(U)
0°C to 70°C 2.5 mV TLV2432CD TLV2432CPW
°
°
950 µV TLV2432AID TLV2432AIPW
40°C to 85°C
µ
2.5 mV
TLV2432ID
°
°
950 µV TLV2432AQD
40°C to 125°C
µ
2.5 mV
TLV2432QD
°
°
950 µV TLV2432AMFK TLV2432AMJG TLV2432AMU
55°C to 125°C
µ
2.5 mV
TLV2432MFK TLV2432MJG TLV2432MU
The D packages are available taped and reeled. Add R suffix to device type (e.g., TL V2432CDR). The PW package is available only left-end taped and reeled.
TLV2434 AVAILABLE OPTIONS
PACKAGED DEVICES
T
A
VIOmax AT 25°C
SMALL
OUTLINE
(D)
TSSOP
(PW)
0°C to 70°C 2.5 mV TL V2434CD TLV2434CPW
°
°
950 µV TLV2434AID TLV2434AIPW
40°C to 125°C
µ
2.5 mV
TLV2434ID TLV2434IPW
The D packages are available taped and reeled. Add R suffix to device type (e.g., TLV2434CDR). The PW package is available only left-end taped and reeled.
1 2 3 4 5 6 7
14 13 12 11 10
9 8
1OUT
1IN–
1IN+
V
DD
+
2IN+
2IN–
2OUT
4OUT 4IN– 4IN+ V
DD–
/GND 3IN+ 3IN– 3OUT
(TOP VIEW)
TLV2434
D OR PW PACKAGE
1 2 3
4
8 7 6 5
1OUT
1IN–
1IN+
V
DD –
/GND
V
DD+
2OUT 2IN– 2IN+
NC V
DD
+ 2OUT 2IN – 2IN +
NC
1OUT
1IN – 1IN +
V
DD–
/GND
1 2 3 4 5
10
9 8 7 6
TLV2432
U PACKAGE
(TOP VIEW)
3212019
910111213
4 5 6 7 8
18 17 16 15 14
NC 2OUT NC 2IN– NC
NC
1IN–
NC
1IN+
NC
NC
1OUT
NC
2IN+
NC
NC
NC
NC
V
DD+
V
DD–
TLV2432
FK PACKAGE
(TOP VIEW)
/GND
1 2 3 4
8 7 6 5
1OUT
1IN– 1IN+
V
DD–
/GND
V
DD+
2OUT 2IN– 2IN+
NC – No internal connection
TLV2432
PW PACKAGE
(TOP VIEW)
TLV2432
D OR JG PACKAGE
(TOP VIEW)
TLV2432, TLV2432A, TLV2434, TLV2434A
RAIL-TO-RAIL OUTPUT
WIDE-INPUT-VOLTAGE OPERATIONAL AMPLIFIERS
SLOS168E – NOVEMBER 1996 – REVISED NOVEMBER 1999
Advanced LinCMOS
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
3
equivalent schematic (each amplifier)
Q27
R9
Q29Q22
Q23
Q26
Q25
Q24
Q31 Q34 Q36
Q32
Q33
Q35
Q37
D1
Q30
R10
VB3
VB2
VB4
V
DD+
V
DD–
/GND
OUT
R8
R1 R2
Q2 Q5
Q1 Q4
Q3
Q12
Q11
Q10Q6
Q7
Q8
Q9
VB3
VB4
C1
C2
C3
R5
R6
Q13 Q15
Q16
Q17
Q14
Q19
Q18
Q20
Q21
R7
R3
R4
VB2
IN+
IN–
VB1
COMPONENT
COUNT
Transistors Diodes Resistors Capacitors
69
5
26
6
TLV2432, TLV2432A, TLV2434, TLV2434A Advanced LinCMOS RAIL-TO-RAIL OUTPUT WIDE-INPUT-VOLTAGE OPERATIONAL AMPLIFIERS
SLOS168E – NOVEMBER 1996 – REVISED NOVEMBER 1999
4
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
absolute maximum ratings over operating free-air temperature range (unless otherwise noted)
Supply voltage, VDD (see Note 1) 12 V. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Differential input voltage, VID (see Note 2) ±V
DD
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Input voltage, V
I
(any input, see Note 1): C and I suffix –0.3 V to V
DD
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Input current, II (each input) ±5 mA. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Output current, IO ±50 mA. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Total current into V
DD+
±50 mA. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Total current out of V
DD–
±50 mA. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Duration of short-circuit current at (or below) 25°C (see Note 3) unlimited. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Continuous total dissipation See Dissipation Rating Table. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Operating free-air temperature range, T
A
: C suffix 0°C to 70°C. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
I suffix (dual) –40°C to 85°C. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
I suffix (quad) –40°C to 125°C. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Q suffix –40°C to 125°C. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
M suffix –55°C to 125°C. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Storage temperature range, T
stg
–65°C to 150°C. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Lead temperature 1,6 mm (1/16 inch) from case for 10 seconds 260°C. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Stresses beyond those listed under “absolute maximum ratings” may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under “recommended operating conditions” is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.
NOTES: 1. All voltage values, except differential voltages, are with respect to the midpoint between V
DD+
and V
DD –
.
2. Differential voltages are at IN+ with respect to IN–. Excessive current flows if input is brought below V
DD–
– 0.3 V.
3. The output may be shorted to either supply. Temperature and/or supply voltages must be limited to ensure that the maximum dissipation rating is not exceeded.
DISSIPATION RATING TABLE
T
25°C DERATING FACTOR T
= 70°C T
= 85°C T
= 125°C
PACKAGE
A
POWER RATING ABOVE TA = 25°CAPOWER RATINGAPOWER RATINGAPOWER RATING
D (8)
D (14)
FK JG
PW (8)
PW (14)
U
725 mW 1022 mW 1375 mW 1050 mW
525 mW
720 mW
675 mW
5.8 mW/°C
7.6 mW/°C
11.0 mW/°C
8.4 mW/°C
4.2 mW/°C
5.6 mW/°C
5.4 mW/°C
464 mW 900 mW 880 mW 672 mW 336 mW 634 mW 432 mW
377 mW 777 mW 715 mW 546 mW 273 mW 547 mW 350 mW
145 mW 450 mW 275 mW 210 mW 105 mW 317 mW 135 mW
recommended operating conditions
C SUFFIX I SUFFIX Q SUFFIX M SUFFIX
MIN MAX MIN MAX MIN MAX MIN MAX
UNIT
Supply voltage, V
DD
2.7 10 2.7 10 2.7 10 2.7 10 V
Input voltage range, V
I
V
DD–VDD+
–0.8 V
DD–VDD+
–0.8 V
DD–VDD+
–0.8 V
DD–VDD+
–0.8 V
Common-mode input voltage, V
IC
V
DD–VDD+
–1.3 V
DD–VDD+
–1.3 V
DD–VDD+
–1.3 V
DD–VDD+
–1.3 V
Operating free-air temperature, T
A
0 70 –40 125 –40 125 –55 125 °C
TLV2432, TLV2432A, TLV2434, TLV2434A
Advanced LinCMOS RAIL-TO-RAIL OUTPUT
WIDE-INPUT-VOLTAGE OPERATIONAL AMPLIFIERS
SLOS168E – NOVEMBER 1996 – REVISED NOVEMBER 1999
5
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
electrical characteristics at specified free-air temperature, VDD = 3 V (unless otherwise noted)
TLV243x
PARAMETER
TEST CONDITIONS
T
A
MIN TYP MAX
UNIT
TLV243xC,
25°C 300 2000
p
V
IC
= 0,
V
= 0,
,
TLV243xI
Full range 2500
VIOInput offset voltage
O
,
VDD± = ±1.5 V,
25°C 300 950
µ
V
RS = 50
TLV243xAI
Full range 1500
p
p
25°C
°
α
VIO
Temperature coefficient of input offset voltage
to 70°C
2µV/°C
Input offset voltage long-term drift (see Note 4)
=
=
25°C 0.003 µV/mo
p
V
IC
= 0,
VO = 0,
VDD± = ±1.5 V
,
RS = 50
25°C
0.5 p
IIOInput offset current
Full range 150
pA
p
25°C 1
p
IIBInput bias current
Full range 150
pA
p
25°C
0
to
2.5
–0.25
to
2.75
V
ICR
Common-mode input voltage range
|VIO| ≤ 5 mV
,
R
S
= 50
Full range
0
to
2.2
V
IOH = –100 µA 25°C 2.98
V
OH
High-level output voltage
25°C 2.5
V
I
OH
= –3
mA
Full range 2.25
VIC = 1.5 V, IOL = 100 µA 25°C 0.02
V
OL
Low-level output voltage
25°C 0.83
V
V
IC
=
1.5 V
,
I
OL
=
3 m
A
Full range 1
25°C 1.5 2.5
A
VD
Large-signal differential voltage amplification
VIC = 2.5 V,
R
L
=
2 k
Full range 1
V/mV
VD
gg g
V
O
= 1 V to 2
V
RL = 1 M
25°C 750
r
i(d)
Differential input resistance 25°C
1000
G
r
i(c)
Common-mode input resistance 25°C
1000
G
c
i(c)
Common-mode input capacitance f = 10 kHz 25°C 8 pF
z
o
Closed-loop output impedance f = 100 kHz, AV = 10 25°C 130
V
= 0 to 2.5 V, V
= 1.5 V,
25°C 70 83
CMRR
Common-mode rejection ratio
IC
,
O
,
RS = 50
Full range 70
dB
pp
V
= 2.7 V to 8 V,
25°C 80 95
k
SVR
Suppl
y-v
oltage rejection ratio (VDD/VIO)
DD
,
VIC = VDD/2, No load
Full range 80
dB
pp
p
25°C 98 125
IDDSupply current (per channel)
V
O
= 1.5 V,
No load
Full range 125
µ
A
Full range for the C suffix is 0°C to 70°C. Full range for the dual I suffix is – 40°C to 85°C. Full range for the quad I suffix is – 40°C to 125°C.
Referenced to 2.5 V
NOTE 4: T ypical values are based on the input offset voltage shift observed through 500 hours of operating life test at TA = 150°C extrapolated
to TA = 25°C using the Arrhenius equation and assuming an activation energy of 0.96 eV .
TLV2432, TLV2432A, TLV2434, TLV2434A Advanced LinCMOS RAIL-TO-RAIL OUTPUT WIDE-INPUT-VOLTAGE OPERATIONAL AMPLIFIERS
SLOS168E – NOVEMBER 1996 – REVISED NOVEMBER 1999
6
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
operating characteristics at specified free-air temperature, VDD = 3 V
TLV243x
PARAMETER
TEST CONDITIONS
T
A
MIN TYP MAX
UNIT
25°C 0.15 0.25
SR Slew rate at unity gain
V
O
= 1 V to 2 V,
CL = 100 pF
R
L
= 2
k
,
Full
range
0.1
V/µs
p
f = 10 Hz 25°C 120
VnEquivalent input noise voltage
f = 1 kHz 25°C 22
n
V/H
z
p
p
f = 0.1 Hz to 1 Hz 25°C 2.7
V
N(PP)
Peak-to-peak equivalent input noise voltage
f = 0.1 Hz to 10 Hz 25°C 4
µ
V
I
n
Equivalent input noise current 25°C 0.6
fAHz
p
VO = 0.5 V to 2.5 V,
AV = 1
°
0.065%
THD
+
N
Total harmonic distortion plus noise
f
= 1 kHz,
RL = 2 k
AV = 10
25°C
0.5%
Gain-bandwidth product
f = 10 kHz, CL = 100 pF
RL = 2 k‡,
25°C 0.5 MHz
B
OM
Maximum output-swing bandwidth
V
O(PP)
= 1 V,
RL = 2 k‡,
AV = 1, CL = 100 pF
25°C 220 kHz
=–
A
V
= 1,
Step = 0.5 V to 2.5 V ,
To 0.1%°6.4
tsSettling time
,
RL = 2 k‡,
25°Cµs
L
CL = 100 pF
To 0.01%
14.1
φ
m
Phase margin at unity gain
p
25°C
62°
Gain margin
R
L
= 2
k
,
C
L
=
100 pF
25°C 11 dB
Full range for the C suffix is 0°C to 70°C. Full range for the dual I suffix is – 40°C to 85°C. Full range for the quad I suffix is – 40°C to 125°C.
Referenced to 2.5 V
TLV2432, TLV2432A, TLV2434, TLV2434A
Advanced LinCMOS RAIL-TO-RAIL OUTPUT
WIDE-INPUT-VOLTAGE OPERATIONAL AMPLIFIERS
SLOS168E – NOVEMBER 1996 – REVISED NOVEMBER 1999
7
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
electrical characteristics at specified free-air temperature, VDD = 3 V (unless otherwise noted)
PARAMETER TEST CONDITIONS
T
TLV243xQ,
TLV243xM
UNIT
A
MIN TYP MAX
TLV243xQ,
25°C 300 2000
p
V
IC
= 0,
V
= 0,
,
TLV243xM
Full range 2500
VIOInput offset voltage
O
,
VDD± = ±1.5 V,
TLV243xAQ,
25°C 300 950
µ
V
RS = 50
,
TLV243xAM
Full range 2000
p
p
25°C
°
α
VIO
Temperature coefficient of input offset voltage
to 70°C
2µV/°C
Input offset voltage long-term drift (see Note 4)
=
=
25°C 0.003 µV/mo
p
V
IC
= 0,
VO = 0,
VDD± = ±1.5 V
,
RS = 50
25°C
0.5 p
IIOInput offset current
Full range 150
pA
p
25°C 1
p
IIBInput bias current
Full range 300
pA
p
25°C
0
to
2.5
–0.25
to
2.75
V
ICR
Common-mode input voltage range
|VIO| ≤ 5 mV
,
R
S
= 50
Full range
0
to
2.2
V
IOH = –100 µA 25°C 2.98
V
OH
High-level output voltage
25°C 2.5
V
I
OH
= –
3 mA
Full range 2.25
VIC = 1.5 V, IOL = 100 µA 25°C 0.02
V
OL
Low-level output voltage
25°C 0.83
V
V
IC
= 1.5 V,
I
OL
= 3
m
A
Full range 1
25°C 1.5 2.5
A
VD
Large-signal differential voltage amplification
VIC = 2.5 V,
R
L
=
2 k
Full range 0.5
V/mV
VD
gg g
V
O
= 1 V to 2
V
RL = 1 M
25°C 750
r
i(d)
Differential input resistance 25°C
1000
G
r
i(c)
Common-mode input resistance 25°C
1000
G
c
i(c)
Common-mode input capacitance f = 10 kHz 25°C 8 pF
z
o
Closed-loop output impedance f = 100 kHz, AV = 10 25°C 130
V
= 0 to 2.5 V, V
= 1.5 V,
25°C 70 83
CMRR
Common-mode rejection ratio
IC
,
O
,
RS = 50
Full range 70
dB
pp
V
= 2.7 V to 8 V,
25°C 80 95
k
SVR
Suppl
y-v
oltage rejection ratio (VDD/VIO)
DD
,
VIC = VDD/2, No load
Full range 80
dB
pp
25°C 195 250
IDDSupply current
V
O
= 1.5 V,
No load
Full range 260
µ
A
Full range is –40°C to 125°C for Q level part, –55°C to 125°C for M level part.
Referenced to 2.5 V
NOTE 4: T ypical values are based on the input offset voltage shift observed through 500 hours of operating life test at TA = 150°C extrapolated
to TA = 25°C using the Arrhenius equation and assuming an activation energy of 0.96 eV .
TLV2432, TLV2432A, TLV2434, TLV2434A Advanced LinCMOS RAIL-TO-RAIL OUTPUT WIDE-INPUT-VOLTAGE OPERATIONAL AMPLIFIERS
SLOS168E – NOVEMBER 1996 – REVISED NOVEMBER 1999
8
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
operating characteristics at specified free-air temperature, VDD = 3 V
PARAMETER TEST CONDITIONS
T
A
TLV243xQ,
TLV243xM, TLV243xAQ, TLV243xAM
UNIT
MIN TYP MAX
25°C 0.15 0.25
SR Slew rate at unity gain
V
O
= 1 V to 2 V,
CL = 100 pF
R
L
= 2
k
,
Full
range
0.1
V/µs
p
f = 10 Hz 25°C 120
VnEquivalent input noise voltage
f = 1 kHz 25°C 22
n
V/H
z
p
p
f = 0.1 Hz to 1 Hz 25°C 2.7
V
N(PP)
Peak-to-peak equivalent input noise voltage
f = 0.1 Hz to 10 Hz 25°C 4
µ
V
I
n
Equivalent input noise current 25°C 0.6
fAHz
p
VO = 0.5 V to 2.5 V,
AV = 1
°
0.065%
THD
+
N
Total harmonic distortion plus noise
f
= 1 kHz,
RL = 2 k
AV = 10
25°C
0.5%
Gain-bandwidth product
f = 10 kHz, CL = 100 pF
RL = 2 k‡,
25°C 0.5 MHz
B
OM
Maximum output-swing bandwidth
V
O(PP)
= 1 V,
RL = 2 k‡,
AV = 1, CL = 100 pF
25°C 220 kHz
=–
A
V
= 1,
Step = 0.5 V to 2.5 V ,
To 0.1%°6.4
tsSettling time
,
RL = 2 k‡,
25°Cµs
L
CL = 100 pF
To 0.01%
14.1
φ
m
Phase margin at unity gain
p
25°C
62°
Gain margin
R
L
= 2
k
,
C
L
=
100 pF
25°C 11 dB
Full range is –40°C to 125°C for Q level part, –55°C to 125°C for M level part.
Referenced to 2.5 V
TLV2432, TLV2432A, TLV2434, TLV2434A
Advanced LinCMOS RAIL-TO-RAIL OUTPUT
WIDE-INPUT-VOLTAGE OPERATIONAL AMPLIFIERS
SLOS168E – NOVEMBER 1996 – REVISED NOVEMBER 1999
9
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
electrical characteristics at specified free-air temperature, VDD = 5 V (unless otherwise noted)
TLV243x
PARAMETER
TEST CONDITIONS
T
A
MIN TYP MAX
UNIT
25°C 300 2000
p
V
IC
= 0,
V
= 0,
TLV243
x
Full range 2500
VIOInput offset voltage
O
,
VDD± = ±2.5 V,
25°C 300 950
µ
V
RS = 50
TLV243xA
Full range 1500
p
p
25°C
°
α
VIO
Temperature coefficient of input offset voltage
to 70°C
2µV/°C
Input offset voltage long-term drift (see Note 4)
=
=
25°C 0.003 µV/mo
p
V
IC
= 0,
VO = 0,
VDD± = ±2.5 V
,
RS = 50
25°C
0.5 p
IIOInput offset current
Full range 150
pA
p
25°C 1
p
IIBInput bias current
Full range 150
pA
p
25°C
0
to
4.5
–0.25
to
4.75
V
ICR
Common-mode input voltage range
|VIO| ≤ 5 mV
,
R
S
= 50
Full range
0
to
4.2
V
IOH = –100 µA 25°C 4.97
V
OH
High-level output voltage
25°C 4 4.35
V
I
OH
= –5
mA
Full range 4
VIC = 2.5 V, IOL = 100 µA 25°C 0.01
V
OL
Low-level output voltage
25°C 0.8
V
V
IC
=
2.5 V
,
I
OL
=
5 m
A
Full range 1.25
25°C 2.5 3.8
A
VD
Large-signal differential voltage amplification
VIC = 2.5 V,
R
L
=
2 k
Full range 1.5
V/mV
VD
gg g
V
O
= 1 V to 4
V
RL = 1 M
25°C 950
r
i(d)
Differential input resistance 25°C
1000
G
r
i(c)
Common-mode input resistance 25°C
1000
G
c
i(c)
Common-mode input capacitance f = 10 kHz 25°C 8 pF
z
o
Closed-loop output impedance f = 100 kHz, AV = 10 25°C 130
V
= 0 to 4.5 V, V
= 2.5 V,
25°C 70 90
CMRR
Common-mode rejection ratio
IC
,
O
,
RS = 50
Full range 70
dB
pp
V
= 4.4 V to 8 V,
25°C 80 95
k
SVR
Suppl
y-v
oltage rejection ratio (VDD/VIO)
DD
,
VIC = VDD/2, No load
Full range 80
dB
pp
p
25°C 100 125
IDDSupply current (per channel)
V
O
= 2.5 V,
No load
Full range 125
µ
A
Full range for the C suffix is 0°C to 70°C. Full range for the dual I suffix is – 40°C to 85°C. Full range for the quad I suffix is – 40°C to 125°C.
Referenced to 2.5 V
NOTE 4: T ypical values are based on the input offset voltage shift observed through 500 hours of operating life test at TA = 150°C extrapolated
to TA = 25°C using the Arrhenius equation and assuming an activation energy of 0.96 eV .
TLV2432, TLV2432A, TLV2434, TLV2434A Advanced LinCMOS RAIL-TO-RAIL OUTPUT WIDE-INPUT-VOLTAGE OPERATIONAL AMPLIFIERS
SLOS168E – NOVEMBER 1996 – REVISED NOVEMBER 1999
10
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
operating characteristics at specified free-air temperature, VDD = 5 V
TLV243x
PARAMETER
TEST CONDITIONS
T
A
MIN TYP MAX
UNIT
25°C 0.15 0.25
SR Slew rate at unity gain
V
O
= 1.5 V to 3.5 V,
=
p
R
L
= 2
k
,
Full
V/µs
C
L
=
100 F
range
0.1
p
f = 10 Hz 25°C 100
VnEquivalent input noise voltage
f = 1 kHz 25°C 18
n
V/H
z
p
p
f = 0.1 Hz to 1 Hz 25°C 1.9
V
N(PP)
Peak-to-peak equivalent input noise voltage
f = 0.1 Hz to 10 Hz 25°C 2.8
µ
V
I
n
Equivalent input noise current 25°C 0.6
fAHz
p
VO = 1.5 V to 3.5 V,
AV = 1
°
0.045%
THD
+
N
Total harmonic distortion plus noise
f
= 1 kHz,
RL = 2 k
AV = 10
25°C
0.4%
Gain-bandwidth product
f = 10 kHz, CL = 100 pF
RL =2 k‡,
25°C 0.55 MHz
B
OM
Maximum output-swing bandwidth
V
O(PP)
= 2 V,
RL = 2 k‡,
AV = 1, CL = 100 pF
25°C 100 kHz
=–
A
V
= 1,
Step = 1.5 V to 3.5 V ,
To 0.1%°6.4
tsSettling time
,
RL = 2 k‡,
25°Cµs
L
CL = 100 pF
To 0.01%
13.1
φ
m
Phase margin at unity gain
p
25°C
66°
Gain margin
R
L
= 2
k
,
C
L
=
100 pF
25°C 11 dB
Full range for the C suffix is 0°C to 70°C. Full range for the dual I suffix is – 40°C to 85°C. Full range for the quad I suffix is – 40°C to 125°C.
Referenced to 2.5 V
TLV2432, TLV2432A, TLV2434, TLV2434A
Advanced LinCMOS RAIL-TO-RAIL OUTPUT
WIDE-INPUT-VOLTAGE OPERATIONAL AMPLIFIERS
SLOS168E – NOVEMBER 1996 – REVISED NOVEMBER 1999
11
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
electrical characteristics at specified free-air temperature, VDD = 5 V (unless otherwise noted)
PARAMETER TEST CONDITIONS
T
TLV243xQ,
TLV243xM
UNIT
A
MIN TYP MAX
25°C 300 2000
p
V
IC
= 0,
V
= 0,
TLV2453
x
Full range 2500
VIOInput offset voltage
O
,
VDD± = ±2.5 V,
25°C 300 950
µ
V
RS = 50
TLV2453xA
Full range 2000
p
p
25°C
°
α
VIO
Temperature coefficient of input offset voltage
to 70°C
2µV/°C
Input offset voltage long-term drift (see Note 4)
=
=
25°C 0.003 µV/mo
p
V
IC
= 0,
VO = 0,
VDD± = ±2.5 V
,
RS = 50
25°C
0.5 p
IIOInput offset current
Full range 150
pA
p
25°C 1
p
IIBInput bias current
Full range 300
pA
p
25°C
0
to
4.5
–0.25
to
4.75
V
ICR
Common-mode input voltage range
|VIO| ≤ 5 mV
,
R
S
= 50
Full range
0
to
4.2
V
IOH = –100 µA 25°C 4.97
V
OH
High-level output voltage
25°C 4 4.35
V
I
OH
= –
5 mA
Full range 4
VIC = 2.5 V, IOL = 100 µA 25°C 0.01
V
OL
Low-level output voltage
25°C 0.8
V
V
IC
= 2.5 V,
I
OL
= 5
m
A
Full range 1.25
25°C 2.5 3.8
A
VD
Large-signal differential voltage amplification
VIC = 2.5 V,
R
L
=
2 k
Full range 0.5
V/mV
VD
gg g
V
O
= 1 V to 4
V
RL = 1 M
25°C 950
r
i(d)
Differential input resistance 25°C
1000
G
r
i(c)
Common-mode input resistance 25°C
1000
G
c
i(c)
Common-mode input capacitance f = 10 kHz 25°C 8 pF
z
o
Closed-loop output impedance f = 100 kHz, AV = 10 25°C 130
V
= 0 to 4.5 V, V
= 2.5 V,
25°C 70 90
CMRR
Common-mode rejection ratio
IC
,
O
,
RS = 50
Full range 70
dB
pp
V
= 4.4 V to 8 V,
25°C 80 95
k
SVR
Suppl
y-v
oltage rejection ratio (VDD/VIO)
DD
,
VIC = VDD/2, No load
Full range 80
dB
pp
25°C 200 250
IDDSupply current
V
O
= 2.5 V,
No load
Full range 270
µ
A
Full range is –40°C to 125°C for Q level part, –55°C to 125°C for M level part.
Referenced to 2.5 V
NOTE 4: T ypical values are based on the input offset voltage shift observed through 500 hours of operating life test at TA = 150°C extrapolated
to TA = 25°C using the Arrhenius equation and assuming an activation energy of 0.96 eV .
TLV2432, TLV2432A, TLV2434, TLV2434A Advanced LinCMOS RAIL-TO-RAIL OUTPUT WIDE-INPUT-VOLTAGE OPERATIONAL AMPLIFIERS
SLOS168E – NOVEMBER 1996 – REVISED NOVEMBER 1999
12
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
operating characteristics at specified free-air temperature, VDD = 5 V
PARAMETER TEST CONDITIONS
T
A
TLV243xQ,
TLV243xM, TLV243xAQ, TLV243xAM
UNIT
MIN TYP MAX
25°C 0.15 0.25
SR Slew rate at unity gain
V
O
= 1.5 V to 3.5 V,
=
p
R
L
= 2
k
,
Full
V/µs
C
L
=
100 F
range
0.1
p
f = 10 Hz 25°C 100
VnEquivalent input noise voltage
f = 1 kHz 25°C 18
n
V/H
z
p
p
f = 0.1 Hz to 1 Hz 25°C 1.9
V
N(PP)
Peak-to-peak equivalent input noise voltage
f = 0.1 Hz to 10 Hz 25°C 2.8
µ
V
I
n
Equivalent input noise current 25°C 0.6
fAHz
p
VO = 1.5 V to 3.5 V,
AV = 1
°
0.045%
THD
+
N
Total harmonic distortion plus noise
f
= 1 kHz,
RL = 2 k
AV = 10
25°C
0.4%
Gain-bandwidth product
f = 10 kHz, CL = 100 pF
RL =2 k‡,
25°C 0.55 MHz
B
OM
Maximum output-swing bandwidth
V
O(PP)
= 2 V,
RL = 2 k‡,
AV = 1, CL = 100 pF
25°C 100 kHz
=–
A
V
= 1,
Step = 1.5 V to 3.5 V ,
To 0.1%°6.4
tsSettling time
,
RL = 2 k‡,
25°Cµs
L
CL = 100 pF
To 0.01%
13.1
φ
m
Phase margin at unity gain
p
25°C
66°
Gain margin
R
L
=
2 k
,
C
L
=
100 pF
25°C 11 dB
Full range is –40°C to 125°C for Q level part, –55°C to 125°C for M level part.
Referenced to 2.5 V
TLV2432, TLV2432A, TLV2434, TLV2434A
Advanced LinCMOS RAIL-TO-RAIL OUTPUT
WIDE-INPUT-VOLTAGE OPERATIONAL AMPLIFIERS
SLOS168E – NOVEMBER 1996 – REVISED NOVEMBER 1999
13
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
TYPICAL CHARACTERISTICS
Table of Graphs
FIGURE
p
Distribution 2,3
VIOInput offset voltage
vs Common-mode input voltage
,
4,5
α
VIO
T emperature coef ficient Distribution 6,7
IIB/I
IO
Input bias and input offset currents vs Free-air temperature 8
V
OH
High-level output voltage vs High-level output current 9,11
V
OL
Low-level output voltage vs Low-level output current 10,12
V
O(PP)
Maximum peak-to-peak output voltage vs Frequency 13
p
vs Supply voltage 14
IOSShort-circuit output current
yg
vs Free-air temperature 15
V
ID
Differential input voltage vs Output voltage 16,17 Differential gain vs Load resistance 18
A
VD
Large-signal differential voltage amplification vs Frequency 19,20
A
VD
Differential voltage amplification vs Free-air temperature 21,22
z
o
Output impedance vs Frequency 23,24
vs Frequency 25
CMRR
Common-mode rejection ratio
qy
vs Free-air temperature 26
pp
vs Frequency 27,28
k
SVR
Suppl
y-v
oltage rejection ratio
qy
vs Free-air temperature
,
29
I
DD
Supply current vs Supply voltage 30
vs Load capacitance 31
SR
Slew rate
vs Free-air temperature 32
V
O
Inverting large-signal pulse response 33,34
V
O
Voltage-follower large-signal pulse response 35,36
V
O
Inverting small-signal pulse response 37,38
V
O
Voltage-follower small-signal pulse response 39,40
V
n
Equivalent input noise voltage vs Frequency 41, 42 Noise voltage (referred to input) Over a 10-second period 43
THD + N T otal harmonic distortion plus noise vs Frequency 44,45
p
vs Free-air temperature 46
Gain-bandwidth product
vs Supply voltage 47 vs Frequency 19,20
φmPhase margin
qy
vs Load capacitance
,
48
Gain margin vs Load capacitance 49
B
1
Unity-gain bandwidth vs Load capacitance 50
TLV2432, TLV2432A, TLV2434, TLV2434A Advanced LinCMOS RAIL-TO-RAIL OUTPUT WIDE-INPUT-VOLTAGE OPERATIONAL AMPLIFIERS
SLOS168E – NOVEMBER 1996 – REVISED NOVEMBER 1999
14
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
TYPICAL CHARACTERISTICS
Figure 2
15
5
0
–1600 –800 0
25
30
35
800 1600
20
10
408 Amplifiers From 1 Wafer Lot V
DD±
= ± 1.5 V
TA = 25°C
Precentage of Amplifiers – %
DISTRIBUTION OF TLV2432
INPUT OFFSET VOLTAGE
VIO – Input Offset Voltage – µV
Figure 3
20
15
5
0
–1600 –800 0
25
30
35
800 1600
10
408 Amplifiers From 1 Wafer Lot
Percentage of Amplifiers – %
DISTRIBUTION OF TLV2432
INPUT OFFSET VOLTAGE
VIO – Input Offset Voltage – µV
V
DD±
= ± 2.5 V
TA = 25°C
Figure 4
0
–0.5
–1.5
–2
–0.5 0 0.5 1 1.5
1
1.5
2
2 2.5 3
0.5
–1
VDD =3 V TA = 25°C
VIO – Input Offset Voltage – mV
INPUT OFFSET VOLTAGE
vs
COMMON-MODE INPUT VOLTAGE
V
IO
VIC – Common-Mode Input Voltage – V
Figure 5
0
–0.5
–1.5
–2
–0.5 0 0.5 1 1.5 2 2.5
1
1.5
2
3 3.5 4 5
0.5
–1
4.5
VDD = 5 V TA = 25°C
VIO – Input Offset Voltage – mV
INPUT OFFSET VOLTAGE
vs
COMMON-MODE INPUT VOLTAGE
V
IO
VIC – Common-Mode Input Voltage – V
TLV2432, TLV2432A, TLV2434, TLV2434A
Advanced LinCMOS RAIL-TO-RAIL OUTPUT
WIDE-INPUT-VOLTAGE OPERATIONAL AMPLIFIERS
SLOS168E – NOVEMBER 1996 – REVISED NOVEMBER 1999
15
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
TYPICAL CHARACTERISTICS
Figure 6
10
5
0
–4 –3 –2 –1 0 1
15
20
25
234
32 Amplifiers From 1 Wafer Lot VDD = ± 1.5 V TA = 25°C to 125°C
Percentage of Amplifiers – %
DISTRIBUTION OF TLV2432 INPUT OFFSET
VOLTAGE TEMPERATURE COEFFICIENT
α
VIO
– Temperature Coefficient – µV/°C
Figure 7
10
5
0
–4 –3 –2 –1 0 1
15
20
25
234
32 Amplifiers From 1 Wafer Lot VDD = ± 2.5 V TA = 25°C to 125°C
Percentage of Amplifiers – %
DISTRIBUTION OF TLV2432 INPUT OFFSET
VOLTAGE TEMPERATURE COEFFICIENT
α
VIO
– Temperature Coefficient – µV/°C
Figure 8
10
5
30
0
25 45 65 85
IIB and IIO – Input Bias and Input Offset Currents – pA
20
15
25
INPUT BIAS AND INPUT OFFSET CURRENTS
vs
FREE-AIR TEMPERATURE
35
105 125
I
IB
I
IO
V
DD±
= ±2.5 V
VIC = 0 V VO = 0 RS = 50
TA – Free-Air Temperature – °C
I
IB
I
IO
Figure 9
TA = –40°C
TA = 25°C
TA = 0°C
TA = 125°C
VDD = 3 V
1.5
1
0.5
0
03 6 9
2
2.5
3
12 15
VOH – High-Level Output Voltage – V
HIGH-LEVEL OUTPUT VOLTAGE
vs
HIGH-LEVEL OUTPUT CURRENT
IOH – High-Level Output Current – mA
V
OH
TLV2432, TLV2432A, TLV2434, TLV2434A Advanced LinCMOS RAIL-TO-RAIL OUTPUT WIDE-INPUT-VOLTAGE OPERATIONAL AMPLIFIERS
SLOS168E – NOVEMBER 1996 – REVISED NOVEMBER 1999
16
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
TYPICAL CHARACTERISTICS
Figure 10
TA = 125°C
1.4
45
TA = 85°C
TA = 25°C
TA = –40°C
VDD = 3 V
0.8
0.6
0.2
0
0123
1
1.2
0.4
VOL – Low-Level Output V oltage – V
LOW-LEVEL OUTPUT VOLTAGE
vs
LOW-LEVEL OUTPUT CURRENT
IOL – Low-Level Output Current – mA
V
OL
Figure 11
TA = 125°C
TA = 85°C
TA = 25°C
TA =–40°C
VDD = 5 V
2
1
0
04812
3
4
5
16 20
VOH – High-Level Output Voltage – V
HIGH-LEVEL OUTPUT VOLTAGE
vs
HIGH-LEVEL OUTPUT CURRENT
IOH – High-Level Output Current –mA
V
OH
Figure 12
TA = 125°C
TA = 85°C
TA = 25°C
TA = –40°C
VDD = 5 V
0.6
0.4
0.2
0
0123
0.8
1
1.2
45
VOL – Low-Level Output V oltage – V
LOW-LEVEL OUTPUT VOLTAGE
vs
LOW-LEVEL OUTPUT CURRENT
V
OL
IOL – Low-Level Output Current – mA
Figure 13
4
2
1
0
5
3
10
2
10
3
10
4
10
5
10
6
VDD = 5 V
VDD = 3 V
RL = 2 k TA = 25°C
VO(PP) – Maximum Peak-to-Peak Output Voltage – V
f – Frequency – Hz
MAXIMUM PEAK-TO-PEAK OUTPUT VOLTAGE
vs
FREQUENCY
V
O(PP)
TLV2432, TLV2432A, TLV2434, TLV2434A
Advanced LinCMOS RAIL-TO-RAIL OUTPUT
WIDE-INPUT-VOLTAGE OPERATIONAL AMPLIFIERS
SLOS168E – NOVEMBER 1996 – REVISED NOVEMBER 1999
17
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
TYPICAL CHARACTERISTICS
Figure 14
VO = VDD/2 VIC = VDD/2 TA = 25°C
0
–5
–15
–20
234567
10
15
20
8910
5
–10
IOS – Short-Circuit Output Current – mA
SHORT-CIRCUIT OUTPUT CURRENT
vs
SUPPLY VOLTAGE
I
OS
VDD – Supply Voltage – V
Figure 15
0
–5
–15
–20
–75 –50 –25 0 25 50
10
15
20
75 100 125
5
–10
VID = –100 mV
VID = 100 mV
VDD = 5 V VIC = 2.5 V VO = 2.5 V
IOS – Short-Circuit Output Current – mA
SHORT-CIRCUIT OUTPUT CURRENT
vs
FREE-AIR TEMPERATURE
TA – Free-Air Temperature – °C
I
OS
Figure 16
VO – Output Voltage – V
VDD = 3 V RL = 2 k VIC = 1.5 V TA = 25°C
0
–250
–500
–1000
0 0.5 1 1.5
– Differential Input Voltage –
500
750
DIFFERENTIAL INPUT VOLTAGE
vs
OUTPUT VOLTAGE
1000
2 2.5 3
250
–750
V
ID
Vµ
Figure 17
VDD = 5 V VIC = 2.5 V RL = 2 k TA = 25°C
0
–250
–750
–1000
0123
500
750
DIFFERENTIAL INPUT VOLTAGE
vs
OUTPUT VOLTAGE
1000
45
VO – Output Voltage – V
– Differential Input Voltage – V
ID
Vµ
250
–500
TLV2432, TLV2432A, TLV2434, TLV2434A Advanced LinCMOS RAIL-TO-RAIL OUTPUT WIDE-INPUT-VOLTAGE OPERATIONAL AMPLIFIERS
SLOS168E – NOVEMBER 1996 – REVISED NOVEMBER 1999
18
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
TYPICAL CHARACTERISTICS
VDD = 5 V
VDD = 3 V
V
O(PP)
= 2 V
TA = 25°C
1
Differential Gain – V/ mV
DIFFERENTIAL GAIN
vs
LOAD RESISTANCE
RL – Load Resistance – k
10
3
10
2
10
1
110110
2
10
3
Figure 18
10
4
VDD = 5 V RL = 2 k CL = 100 pF TA = 25°C
40
20
0
–40
80
–20
60
10
5
10
6
10
7
om – Phase Margin
φ
m
f – Frequency – Hz
LARGE-SIGNAL DIFFERENTIAL VOLTAGE
AMPLIFICATION AND PHASE MARGIN
vs
FREQUENCY
AVD – Large-Signal Differential
A
VD
Voltage Amplification – dB
180°
135°
90°
45°
0°
–45°
–90°
Figure 19
TLV2432, TLV2432A, TLV2434, TLV2434A
Advanced LinCMOS RAIL-TO-RAIL OUTPUT
WIDE-INPUT-VOLTAGE OPERATIONAL AMPLIFIERS
SLOS168E – NOVEMBER 1996 – REVISED NOVEMBER 1999
19
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
TYPICAL CHARACTERISTICS
40
20
0
–40
80
–20
60
VDD = 3 V RL = 2 k CL = 100 pF TA = 25°C
om – Phase Margin
φ
m
f – Frequency – Hz
LARGE-SIGNAL DIFFERENTIAL VOLTAGE
AMPLIFICATION AND PHASE MARGIN
vs
FREQUENCY
AVD – Large-Signal Differential
A
VD
Voltage Amplification – dB
10
4
10
5
10
6
10
7
180°
135°
90°
45°
0°
–45°
–90°
Figure 20
Figure 21
10
1
0.1
1000
100
– Differential Voltage Amplification – V/mV
A
VD
TA – Free-Air Temperature – °C
–75 –50 –25 0 25 50 75 100 125
10000
VDD = 5 V VIC = 2.5 V VO = 1 V to 4 V
RL = 1 M
RL = 2 k
DIFFERENTIAL VOLTAGE AMPLIFICATION
vs
FREE-AIR TEMPERATURE
Figure 22
10
1
0.1
1000
100
– Differential Voltage Amplification – V/mV
A
VD
DIFFERENTIAL VOLTAGE AMPLIFICATION
vs
FREE-AIR TEMPERATURE
TA – Free-Air Temperature – °C
–75 –50 –25 0 25 50 75 100 125
VDD = 3 V VIC = 2.5 V VO = 0.5 V to 2.5 V
RL = 1 M
RL = 2 k
TLV2432, TLV2432A, TLV2434, TLV2434A Advanced LinCMOS RAIL-TO-RAIL OUTPUT WIDE-INPUT-VOLTAGE OPERATIONAL AMPLIFIERS
SLOS168E – NOVEMBER 1996 – REVISED NOVEMBER 1999
20
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
TYPICAL CHARACTERISTICS
Figure 23
10
2
AV = 100
AV = 10
AV = 1
VDD = 3 V TA = 25°C
100
10
1
1000
10
3
10
4
10
5
zo – Output Impedance – 0
OUTPUT IMPEDANCE
vs
FREQUENCY
f – Frequency – Hz
z
o
Figure 24
10
2
AV = 100
AV = 10
AV = 1
VDD = 5 V TA = 25°C
100
10
1
1000
10
3
10
4
10
5
OUTPUT IMPEDANCE
vs
FREQUENCY
f – Frequency – Hz
zo – Output Impedance – 0
z
o
Figure 25
10
2
80
40
20
0
100
60
10
3
10
4
10
5
10
6
VDD = 5 V VIC = 2.5 V
VDD = 3 V VIC = 1.5 V
TA = 25°C
f – Frequency – Hz
COMMON-MODE REJECTION RATIO
vs
FREQUENCY
CMRR – Common-Mode Rejection Ratio – dB
Figure 26
TA – Free-Air Temperature – °C
CMRR – Common-Mode Rejection Ratio – dB
COMMON-MODE REJECTION RATIO
vs
FREE-AIR TEMPERATURE
–75 –50 –25 0 25 50 75 100 125
VDD = 5 V
VDD = 3 V
96
94
92
90
100
98
TLV2432, TLV2432A, TLV2434, TLV2434A
Advanced LinCMOS RAIL-TO-RAIL OUTPUT
WIDE-INPUT-VOLTAGE OPERATIONAL AMPLIFIERS
SLOS168E – NOVEMBER 1996 – REVISED NOVEMBER 1999
21
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
TYPICAL CHARACTERISTICS
Figure 27
10
1
80
60
40
0
120
20
100
10
2
10
3
10
4
10
5
10
6
VDD = 3 V TA = 25°C
f – Frequency – Hz
SUPPLY-VOLTAGE REJECTION RATIO
vs
FREQUENCY
KSVR – Supply-Voltage Rejection Ratio – dB
k
SVR
Figure 28
10
1
80
60
40
0
120
20
100
10
2
10
3
10
4
10
5
10
6
VDD = 5 V TA = 25°C
KSVR – Supply-Voltage Rejection Ratio – dB
f – Frequency – Hz
SUPPLY-VOLTAGE REJECTION RATIO
vs
FREQUENCY
k
SVR
Figure 29
TA – Free-Air Temperature – °C
SUPPLY VOLTAGE REJECTION RATIO
vs
FREE-AIR TEMPERATURE
96
94
92
90
100
–75 –50 –25 0 25 50 75 100 125
VDD = 2.7 V to 8 V VO = VDD/2
98
kSVR – Supply-Voltage Rejection Ratio – dB
k
SVR
Figure 30
150
100
50
0
024 6
200
250
300
810
VO = VDD/2 No Load
TA = 25°C
TA = –40°C
TA = 85°C
IDD – Supply Current –
SUPPLY CURRENT
vs
SUPPLY VOLTAGE
VDD – Supply Voltage – V
I
DD
Aµ
TLV2432, TLV2432A, TLV2434, TLV2434A Advanced LinCMOS RAIL-TO-RAIL OUTPUT WIDE-INPUT-VOLTAGE OPERATIONAL AMPLIFIERS
SLOS168E – NOVEMBER 1996 – REVISED NOVEMBER 1999
22
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
TYPICAL CHARACTERISTICS
Figure 31
10
1
SR+
VDD = 3 V AV = –1 TA = 25°C
SR–
0.4
0.3
0.2
0
0.6
0.1
0.5
SR – Slew Rate – v/us
SLEW RATE
vs
LOAD CAPACITANCE
sµ
V/
CL – Load Capacitance – pF
10
2
10
3
10
4
10
5
Figure 32
TA – Free-Air Temperature – °C
SLEW RATE
vs
FREE-AIR TEMPERATURE
0.25
0.2
0.15
0.1
0.35
–75 –50 –25 0 25 50 75 100 125
0.3
VDD = 5 V RL = 2 k CL = 100 pF AV = 1
µs
SR – Slew Rate – V/
Figure 33
1.5
1
0.5
0
0102030
2
2.5
3
40 50
INVERTING LARGE-SIGNAL PULSE
RESPONSE
VDD = 3 V RL = 2 k CL = 100 pF AV = –1 TA = 25°C
t – Time – µs
VO – Output Voltage – V
V
O
Figure 34
INVERTING LARGE-SIGNAL PULSE
RESPONSE
VDD = 5 V RL = 2 k CL = 100 pF AV = –1 TA = 25°C
t – Time – µs
2
1
0
0102030
3
4
5
40 50
VO – Output Voltage – V
V
O
TLV2432, TLV2432A, TLV2434, TLV2434A
Advanced LinCMOS RAIL-TO-RAIL OUTPUT
WIDE-INPUT-VOLTAGE OPERATIONAL AMPLIFIERS
SLOS168E – NOVEMBER 1996 – REVISED NOVEMBER 1999
23
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
TYPICAL CHARACTERISTICS
Figure 35
1.5
1
0.5
0
0102030
2
2.5
3
40 50
VOLTAGE-FOLLOWER LARGE-SIGNAL
PULSE RESPONSE
VDD = 3 V RL = 2 k CL = 100 pF AV = 1 TA = 25°C
t – Time – µs
VO – Output Voltage – V
V
O
Figure 36
VOLTAGE-FOLLOWER LARGE-SIGNAL
PULSE RESPONSE
VDD = 5 V RL = 2 k CL = 100 pF AV = 1 TA = 25°C
t – Time – µs
VO – Output Voltage – V
V
O
2
1
0
0 5 10 15 20 25 30
3
4
5
35 40 45 50
Figure 37
1.5
1.48
1.46
1.44 0 0.5 1 1.5 2 2.5 3
1.52
1.56
1.58
3.5 4 4.5 5
VDD= 3 V RL = 2 k CL = 100 pF AV = –1 TA = 25°C
t – Time – µs
VO – Output Voltage – V
INVERTING SMALL-SIGNAL PULSE
RESPONSE
1.54
V
O
Figure 38
2.48
2.46
2.44 0 0.5 1 1.5 2 2.5 3
2.54
2.56
2.58
3.5 4 4.5 5
INVERTING SMALL-SIGNAL
PULSE RESPONSE
VDD = 5 V RL = 2 k CL = 100 pF AV = –1 TA = 25°C
VO – Output Voltage – V
V
O
t – Time – µs
2.52
2.5
TLV2432, TLV2432A, TLV2434, TLV2434A Advanced LinCMOS RAIL-TO-RAIL OUTPUT WIDE-INPUT-VOLTAGE OPERATIONAL AMPLIFIERS
SLOS168E – NOVEMBER 1996 – REVISED NOVEMBER 1999
24
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
TYPICAL CHARACTERISTICS
Figure 39
1.5
1.48
1.46
1.44 0 0.5 1 1.5 2 2.5 3
1.54
1.56
1.58
3.5 4 4.5 5
VOLTAGE-FOLLOWER SMALL-SIGNAL
PULSE RESPONSE
VDD = 3 V RL = 2 k CL = 100 pF AV = 1 TA = 25°C
VO – Output Voltage – V
V
O
t – Time – µs
1.52
Figure 40
2.5
2.46
2.44 0 0.5 1 1.5 2 2.5 3
2.52
2.56
2.58
3.5 4 4.5 5
VOLTAGE-FOLLOWER SMALL-SIGNAL
PULSE RESPONSE
t – Time – µs
VO – Output Voltage – V
V
O
VDD = 5 V RL = 2 k CL = 100 pF AV = 1 TA = 25°C
2.54
2.48
Figure 41
10
1
80
60
20
0
120
40
100
VN – Equivalent Input Noise Voltage – nv//Hz
f – Frequency – Hz
EQUIVALENT INPUT NOISE VOLTAGE
vs
FREQUENCY
nV/ Hz
V
n
VDD = 3 V RS = 20 TA = 25°C
10
2
10
3
10
4
Figure 42
10
1
80
60
20
0
120
40
100
VN – Equivalent Input Noise Voltage – nv//Hz
f – Frequency – Hz
EQUIVALENT INPUT NOISE VOLTAGE
vs
FREQUENCY
nV/ Hz
V
n
VDD = 5 V RS = 20 TA = 25°C
10
2
10
3
10
4
TLV2432, TLV2432A, TLV2434, TLV2434A
Advanced LinCMOS RAIL-TO-RAIL OUTPUT
WIDE-INPUT-VOLTAGE OPERATIONAL AMPLIFIERS
SLOS168E – NOVEMBER 1996 – REVISED NOVEMBER 1999
25
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
TYPICAL CHARACTERISTICS
0
–500
–1500
–2000
0123456
500
1500
2000
78910
Noise Voltage – nV
t – Time – s
NOISE VOLTAGE OVER A 10-SECOND PERIOD
VDD = 5 V f = 0.1 Hz to 10 Hz TA = 25°C
1000
–1000
Figure 43
Figure 44
10
1
1
0.1
0.01
10
THD + N – Total Harmonic Distortion Plus Noise – %
f – Frequency – Hz
TOTAL HARMONIC DISTORTION PLUS NOISE
vs
FREQUENCY
AV = 10
AV = 1
VDD = 5 V TA = 25°C
AV = 10
AV = 1
RL = 2 k Tied to 2.5 V RL = 2 k Tied to 0 V
10
2
10
3
10
4
10
5
Figure 45
10
1
THD + N – Total Harmonic Distortion Plus Noise – %
f – Frequency – Hz
TOTAL HARMONIC DISTORTION PLUS NOISE
vs
FREQUENCY
AV = 10
AV = 1
VDD = 3 V TA = 25°C
AV = 10
AV = 1
RL = 2 k Tied to 1.5 V RL = 2 k Tied to 0 V
1
0.1
0.01
10
10
2
10
3
10
4
10
5
TLV2432, TLV2432A, TLV2434, TLV2434A Advanced LinCMOS RAIL-TO-RAIL OUTPUT WIDE-INPUT-VOLTAGE OPERATIONAL AMPLIFIERS
SLOS168E – NOVEMBER 1996 – REVISED NOVEMBER 1999
26
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
TYPICAL CHARACTERISTICS
Figure 46
400
300
100
0
–50 –25 0 25 50
500
700
800
75 100 125
Gain-Bandwidth Product – kHz
GAIN-BANDWIDTH PRODUCT
vs
FREE-AIR TEMPERATURE
TA – Free-Air Temperature – °C
RL = 2 k CL =
100 pF
f = 10 kHz
600
200
Figure 47
600
550
500
01 23 4
650
700
750
5678
Gain-Bandwidth Product – kHz
GAIN-BANDWIDTH PRODUCT
vs
SUPPLY VOLTAGE
VDD – Supply Voltage – V
f = 10 kHz RL = 2 k CL = 100 pF TA = 25°C
Figure 48
10
1
75°
om – Phase Margin
PHASE MARGIN
vs
LOAD CAPACITANCE
CL – Load Capacitance – pF
m
φ
R
null
= 500
R
null
= 1000
R
null
= 0
R
null
= 100
TA = 25°C RL = 2 k
R
null
= 200
60°
45°
30°
15°
0°
10
2
10
3
10
4
10
5
Figure 49
10
1
15
10
5
0
20
Gain Margin – dB
GAIN MARGIN
vs
LOAD CAPACITANCE
CL – Load Capacitance – pF
TA = 25°C RL = 2 k
R
null
= 200
R
null
= 0
R
null
= 100
R
null
= 500
R
null
= 1 k
10
2
10
3
10
4
10
5
TLV2432, TLV2432A, TLV2434, TLV2434A
Advanced LinCMOS RAIL-TO-RAIL OUTPUT
WIDE-INPUT-VOLTAGE OPERATIONAL AMPLIFIERS
SLOS168E – NOVEMBER 1996 – REVISED NOVEMBER 1999
27
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
TYPICAL CHARACTERISTICS
10
1
400
300
200
0
600
100
500
– Unity-Gain Bandwidth – kHz
UNITY-GAIN BANDWIDTH
vs
LOAD CAPACITANCE
CL – Load Capacitance – pF
ÁÁ
B
1
TA = 25°C RL = 2 k
10
2
10
3
10
4
10
5
Figure 50
TLV2432, TLV2432A, TLV2434, TLV2434A Advanced LinCMOS RAIL-TO-RAIL OUTPUT WIDE-INPUT-VOLTAGE OPERATIONAL AMPLIFIERS
SLOS168E – NOVEMBER 1996 – REVISED NOVEMBER 1999
28
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
APPLICATION INFORMATION
macromodel information
Macromodel information provided was derived using Microsim
Parts
, the model generation software used
with Microsim
PSpice
. The Boyle macromodel (see Note 5) and subcircuit in Figure 51 are generated using the TLV243x typical electrical and operating characteristics at TA = 25°C. Using this information, output simulations of the following key parameters can be generated to a tolerance of 20% (in most cases):
D
Maximum positive output voltage swing
D
Maximum negative output voltage swing
D
Slew rate
D
Quiescent power dissipation
D
Input bias current
D
Open-loop voltage amplification
D
Unity-gain frequency
D
Common-mode rejection ratio
D
Phase margin
D
DC output resistance
D
AC output resistance
D
Short-circuit output current limit
NOTE 4: G. R. Boyle, B. M. Cohn, D. O. Pederson, and J. E. Solomon, “Macromodeling of Intergrated Circuit Operational Amplifiers”,
IEEE
Journal of Solid-State Circuits,
SC-9, 353 (1974).
OUT
+
+
+
+
+ –
+
+
+
+
.SUBCKT TLV2432 1 2 3 4 5
C1 11 12 3.560E–12 C2 6 7 15.00E–12 DC 5 53 DX DE 54 5 DX DLP 90 91 DX DLN 92 90 DX DP 4 3 DX EGND 99 0 POLY (2) (3,0) (4,0) 0 .5 .5 FB 7 99 POLY (5) VB VC VE VLP + VLN 0 21.04E6 –30E6 30E6 30E6 –30E6 GA 6 0 11 12 47.12E–6 GCM 0 6 10 99 4.9E–9 ISS 3 10 DC 8.250E–6 HLIM 90 0 VLIM 1K J1 11 2 10 JX J2 12 1 10 JX R2 6 9 100.0E3
RD1 60 11 21.22E3 RD2 60 12 21.22E3 R01 8 5 120 R02 7 99 120 RP 3 4 26.04E3 RSS 10 99 24.24E6 VAD 60 4 –.6 VB 9 0 DC 0 VC 3 53 DC .65 VE 54 4 DC .65 VLIM 7 8 DC 0 VLP 91 0 DC 1.4 VLN 0 92 DC 9.4 .MODEL DX D (IS=800.0E–18) .MODEL JX PJF (IS=500.0E–15 BETA=281E–6 + VTO=–.065) .ENDS
V
CC+
RP
IN –
2
IN+
1
V
CC–
VAD
RD1
11
J1 J2
10
RSS ISS
3
12
RD2
60
VE
54
DE
DP
VC
DC
4
C1
53
R2
6
9
EGND
VB
FB
C2
GCM
GA
VLIM
8
5
RO1
RO2
HLIM
90
DLP
91
DLN
92
VLNVLP
99
7
Figure 51. Boyle Macromodel and Subcircuit
PSpice
and
Parts
are trademarks of MicroSim Corporation.
TLV2432, TLV2432A, TLV2434, TLV2434A
Advanced LinCMOS RAIL-TO-RAIL OUTPUT
WIDE-INPUT-VOLTAGE OPERATIONAL AMPLIFIERS
SLOS168E – NOVEMBER 1996 – REVISED NOVEMBER 1999
29
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
MECHANICAL DATA
D (R-PDSO-G**) PLASTIC SMALL-OUTLINE PACKAGE
14 PIN SHOWN
4040047/D 10/96
0.228 (5,80)
0.244 (6,20)
0.069 (1,75) MAX
0.010 (0,25)
0.004 (0,10)
1
14
0.014 (0,35)
0.020 (0,51)
A
0.157 (4,00)
0.150 (3,81)
7
8
0.044 (1,12)
0.016 (0,40)
Seating Plane
0.010 (0,25)
PINS **
0.008 (0,20) NOM
A MIN
A MAX
DIM
Gage Plane
0.189
(4,80)
(5,00)
0.197
8
(8,55)
(8,75)
0.337
14
0.344
(9,80)
16
0.394
(10,00)
0.386
0.004 (0,10)
M
0.010 (0,25)
0.050 (1,27)
0°–8°
NOTES: A. All linear dimensions are in inches (millimeters).
B. This drawing is subject to change without notice. C. Body dimensions do not include mold flash or protrusion, not to exceed 0.006 (0,15). D. Falls within JEDEC MS-012
TLV2432, TLV2432A, TLV2434, TLV2434A Advanced LinCMOS RAIL-TO-RAIL OUTPUT WIDE-INPUT-VOLTAGE OPERATIONAL AMPLIFIERS
SLOS168E – NOVEMBER 1996 – REVISED NOVEMBER 1999
30
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
MECHANICAL DATA
FK (S-CQCC-N**) LEADLESS CERAMIC CHIP CARRIER
4040140/D 10/96
28 TERMINAL SHOWN
B
0.358 (9,09)
MAX
(11,63)
0.560
(14,22)
0.560
0.458
0.858 (21,8)
1.063 (27,0)
(14,22)
A
NO. OF
MINMAX
0.358
0.660
0.761
0.458
0.342 (8,69)
MIN
(11,23)
(16,26)
0.640
0.739
0.442
(9,09)
(11,63)
(16,76)
0.962
1.165
(23,83)
0.938
(28,99)
1.141
(24,43)
(29,59)
(19,32)(18,78)
**
20
28
52
44
68
84
0.020 (0,51)
TERMINALS
0.080 (2,03)
0.064 (1,63)
(7,80)
0.307
(10,31)
0.406
(12,58)
0.495
(12,58)
0.495
(21,6)
0.850
(26,6)
1.047
0.045 (1,14)
0.045 (1,14)
0.035 (0,89)
0.035 (0,89)
0.010 (0,25)
12
1314151618 17
11
10
8
9
7
5
432
0.020 (0,51)
0.010 (0,25)
6
12826 27
19
21
B SQ
A SQ
22
23
24
25
20
0.055 (1,40)
0.045 (1,14)
0.028 (0,71)
0.022 (0,54)
0.050 (1,27)
NOTES: A. All linear dimensions are in inches (millimeters).
B. This drawing is subject to change without notice. C. This package can be hermetically sealed with a metal lid. D. The terminals are gold plated. E. Falls within JEDEC MS-004
TLV2432, TLV2432A, TLV2434, TLV2434A
Advanced LinCMOS RAIL-TO-RAIL OUTPUT
WIDE-INPUT-VOLTAGE OPERATIONAL AMPLIFIERS
SLOS168E – NOVEMBER 1996 – REVISED NOVEMBER 1999
31
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
MECHANICAL DATA
JG (R-GDIP-T8) CERAMIC DUAL-IN-LINE PACKAGE
0.310 (7,87)
0.290 (7,37)
0.014 (0,36)
0.008 (0,20)
Seating Plane
4040107/C 08/96
5
4
0.065 (1,65)
0.045 (1,14)
8
1
0.020 (0,51) MIN
0.400 (10,20)
0.355 (9,00)
0.015 (0,38)
0.023 (0,58)
0.063 (1,60)
0.015 (0,38)
0.200 (5,08) MAX
0.130 (3,30) MIN
0.245 (6,22)
0.280 (7,11)
0.100 (2,54)
0°–15°
NOTES: A. All linear dimensions are in inches (millimeters).
B. This drawing is subject to change without notice. C. This package can be hermetically sealed with a ceramic lid using glass frit. D. Index point is provided on cap for terminal identification only on press ceramic glass frit seal only. E. Falls within MIL-STD-1835 GDIP1-T8
TLV2432, TLV2432A, TLV2434, TLV2434A Advanced LinCMOS RAIL-TO-RAIL OUTPUT WIDE-INPUT-VOLTAGE OPERATIONAL AMPLIFIERS
SLOS168E – NOVEMBER 1996 – REVISED NOVEMBER 1999
32
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
MECHANICAL DATA
PW (R-PDSO-G**) PLASTIC SMALL-OUTLINE PACKAGE
4040064/E 08/96
14 PIN SHOWN
Seating Plane
1,20 MAX
1
A
7
14
0,19
4,50 4,30
8
6,20
6,60
0,30
0,75 0,50
0,25
Gage Plane
0,15 NOM
0,65
M
0,10
0°–8°
0,10
PINS **
A MIN
A MAX
DIM
2,90
3,10
8
4,90
5,10
14
6,60
6,404,90
5,10
16
7,70
20
7,90
24
9,60
9,80
28
0,15 0,05
NOTES: A. All linear dimensions are in millimeters.
B. This drawing is subject to change without notice. C. Body dimensions do not include mold flash or protrusion not to exceed 0,15. D. Falls within JEDEC MO-153
TLV2432, TLV2432A, TLV2434, TLV2434A
Advanced LinCMOS RAIL-TO-RAIL OUTPUT
WIDE-INPUT-VOLTAGE OPERATIONAL AMPLIFIERS
SLOS168E – NOVEMBER 1996 – REVISED NOVEMBER 1999
33
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
MECHANICAL DATA
U (S-GDFP-F10) CERAMIC DUAL FLATPACK
4040179/B 03/95
1.000 (25,40)
0.080 (2,03)
0.250 (6,35)
0.250 (6,35)
0.019 (0,48)
0.025 (0,64)
0.300 (7,62)
0.045 (1,14)
0.006 (0,15)
0.050 (1,27)
0.015 (0,38)
0.005 (0,13)
0.026 (0,66)
0.004 (0,10)
0.246 (6,10)
0.750 (19,05)
1
10
5
6
0.250 (6,35)
0.350 (8,89)0.350 (8,89)
0.250 (6,35)
0.050 (1,27)
NOTES: A. All linear dimensions are in inches (millimeters).
B. This drawing is subject to change without notice. C. This package can be hermetically sealed with a ceramic lid using glass frit. D. Index point is provided on cap for terminal identification only. E. Falls within MIL STD 1835 GDFP1-F10 and JEDEC MO-092AA
IMPORTANT NOTICE
T exas Instruments and its subsidiaries (TI) reserve the right to make changes to their products or to discontinue any product or service without notice, and advise customers to obtain the latest version of relevant information to verify, before placing orders, that information being relied on is current and complete. All products are sold subject to the terms and conditions of sale supplied at the time of order acknowledgement, including those pertaining to warranty, patent infringement, and limitation of liability.
TI warrants performance of its semiconductor products to the specifications applicable at the time of sale in accordance with TI’s standard warranty. Testing and other quality control techniques are utilized to the extent TI deems necessary to support this warranty. Specific testing of all parameters of each device is not necessarily performed, except those mandated by government requirements.
CERT AIN APPLICATIONS USING SEMICONDUCTOR PRODUCTS MAY INVOLVE POTENTIAL RISKS OF DEATH, PERSONAL INJURY, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE (“CRITICAL APPLICATIONS”). TI SEMICONDUCTOR PRODUCTS ARE NOT DESIGNED, AUTHORIZED, OR WARRANTED TO BE SUITABLE FOR USE IN LIFE-SUPPORT DEVICES OR SYSTEMS OR OTHER CRITICAL APPLICATIONS. INCLUSION OF TI PRODUCTS IN SUCH APPLICA TIONS IS UNDERSTOOD T O BE FULLY AT THE CUSTOMER’S RISK.
In order to minimize risks associated with the customer’s applications, adequate design and operating safeguards must be provided by the customer to minimize inherent or procedural hazards.
TI assumes no liability for applications assistance or customer product design. TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right of TI covering or relating to any combination, machine, or process in which such semiconductor products or services might be or are used. TI’s publication of information regarding any third party’s products or services does not constitute TI’s approval, warranty or endorsement thereof.
Copyright 2000, Texas Instruments Incorporated
Loading...