Texas Instruments TLV2254AMWB, TLV2254AMFKB, TLV2254AMJB, TLV2254AIPWR, TLV2254AIPWLE Datasheet

...
TLV225x, TLV225xA
Advanced LinCMOS RAIL-TO-RAIL
VERY LOW-POWER OPERATIONAL AMPLIFIERS
SLOS185B – FEBRUARY 1997 – REVISED – JULY 1999
D
Output Swing Includes Both Supply Rails
D
D
Low Input Bias Current ...1 pA Typ
D
Fully Specified for Both Single-Supply and Split-Supply Operation
D
Very Low Power ...34 µA Per Channel Typ
D
Common-Mode Input Voltage Range Includes Negative Rail
description
The TLV2252 and TLV2254 are dual and quadruple low-voltage operational amplifiers from T exas Instruments. Both devices exhibit rail-to-rail output performance for increased dynamic range in single- or split-supply applications. The TLV225x family consumes only 34 µA of supply current per channel. This micropower operation makes them good choices for battery-powered applications. This family is fully characterized at 3 V and 5 V and is optimized for low-voltage applications. The noise performance has been dramatically improved over previous generations of CMOS amplifiers. The TLV225x has a noise level of 19 nV/√Hz competitive micropower solutions.
The TLV225x, exhibiting high input impedance and low noise, are excellent for small-signal conditioning for high-impedance sources, such as piezoelectric transducers. Because of the micro­power dissipation levels combined with 3-V operation, these devices work well in hand-held monitoring and remote-sensing applications. In addition, the rail-to-rail output feature with single or split supplies makes this family a great choice when interfacing with analog-to-digital converters (ADCs). For precision applications, the TLV225xA family is available and has a maximum input offset voltage of 850 µV.
at 1kHz, four times lower than
D
Low Input Offset Voltage
850 µV Max at TA = 25°C
D
Wide Supply Voltage Range
2.7 V to 8 V
D
Macromodel Included
D
Available in Q-Temp Automotive
HighRel Automotive Applications Configuration Control / Print Support Qualification to Automotive Standards
HIGH-LEVEL OUTPUT VOLTAGE
vs
HIGH-LEVEL OUTPUT CURRENT
3
2.5 TA = –40°C
2
1.5
1
– High-Level Output Voltage – V
0.5
OH
V
0
0 200 400
| IOH | – High-Level Output Current – µA
Figure 1
VDD = 3 V
TA = 25°C
TA = 85°C
TA = 125°C
600 800
The TL V2252/4 also make great upgrades to the TLV2322/4 in standard designs. They offer increased output dynamic range, lower noise voltage, and lower input offset voltage. This enhanced feature set allows them to be used in a wider range of applications. For applications that require higher output drive and wider input voltage range, see the TLV2432 and TLV2442 devices. If your design requires single amplifiers, please see the TL V221 1/21/31 family . These devices are single rail-to-rail operational amplifiers in the SOT -23 package. Their small size and low power consumption, make them ideal for high density, battery-powered equipment.
Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.
Advanced LinCMOS is a trademark of Texas Instruments Incorporated.
PRODUCTION DATA information is current as of publication date. Products conform to specifications per the terms of Texas Instruments standard warranty. Production processing does not necessarily include testing of all parameters.
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
Copyright 1999, Texas Instruments Incorporated
On products compliant to MIL-PRF-38535, all parameters are tested unless otherwise noted. On all other products, production processing does not necessarily include testing of all parameters.
1
TLV225x, TLV225xA
40°C to 125°C
µ
40°C to 125°C
µ
40°C to 125°C
µ
40°C to 125°C
µ
Advanced LinCMOS RAIL-TO-RAIL VERY LOW-POWER OPERATIONAL AMPLIFIERS
SLOS185B – FEBRUARY 1997 – REVISED – JULY 1999
TLV2252 AVAILABLE OPTIONS
PACKAGED DEVICES
T
A
°
°
–55°C to 125°C
The D packages are available taped and reeled. Add R suffix to device type (e.g., TL V2252CDR).
The PW package is available only left-end taped and reeled.
§
Chips are tested at 25°C.
°
°
–55°C to 125°C
The D packages are available taped and reeled. Add R suffix to device type (e.g., TL V2254CDR).
The PW package is available only left-end taped and reeled.
§
Chips are tested at 25°C.
°
°
T
A
°
°
VIOmax AT 25°C
850 µV TLV2252AID TLV2252AIP TLV2252AIPWLE
1500 µV
850 µV TLV2252AQD
1500 µV
850 µV
1500 µV
VIOmax AT 25°C
850 µV TLV2254AID TLV2254AIN TLV2254AIPWLE
1500 µV
850 µV TLV2254AQD
1500 µV
850 µV
1500 µV
SMALL
(D)
— —
SMALL
(D)
— —
OUTLINE
TLV2252ID TLV2252IP
TLV2252QD
OUTLINE
TLV2254ID TLV2254IN
TLV2254QD
CHIP
CARRIER
(FK)
TLV2252AMFK TLV2252MFK
TLV2254 AVAILABLE OPTIONS
CHIP
CARRIER
(FK)
TLV2254AMFK TLV2254MFK
CERAMIC
DIP
(JG)
TLV2252AMJG
TLV2252MJG
PACKAGED DEVICES
CERAMIC
DIP
(J)
TLV2254AMJ
TLV2254MJ
PLASTIC
PLASTIC
DIP
(P)
— —
DIP
(N)
— —
TSSOP
(PW)
— —
TSSOP
(PW)
— —
CERAMIC
FLATPACK
(U)
TLV2252AMU TLV2252MU
CERAMIC
FLATPACK
(W)
TLV2254AMW
TLV2254MW
2
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
TLV2252I, TLV2252AI
E
TLV2252Q, TLV2252AQ D, P, OR PW PACKAGE
(TOP VIEW)
TLV225x, TLV225xA
Advanced LinCMOS RAIL-TO-RAIL
VERY LOW-POWER OPERATIONAL AMPLIFIERS
SLOS185B – FEBRUARY 1997 – REVISED – JULY 1999
TLV2254I, TLV2254AI, TLV2254Q, TL V2254AQ...D OR N PACKAG
TLV2254M, TLV2254AM ...J OR W PACKAGE
(TOP VIEW)
10
8 7 6 5
8 7 6 5
9 8 7 6
V
DD+
2OUT 2IN– 2IN+
V
DD+
2OUT 2IN– 2IN+
NC V
CC
2OUT 2IN – 2IN +
+
1OUT
1IN–
1IN+
V
/GND
DD–
TLV2252M, TLV2252AM . . . JG PACKAGE
1OUT
1IN– 1IN+
V
/GND
DD–
TLV2252M, TLV2252AM ...U PACKAGE
1OUT
1IN – 1IN +
V
/GND
CC–
TLV2252M, TLV2252AM . . . FK PACKAGE
NC
1 2 3 4
(TOP VIEW)
1 2 3 4
(TOP VIEW)
1 2 3 4 5
(TOP VIEW)
1
14 13 12
10
14
4OUT 4IN– 4IN+
11
V
/GND
DD–
3IN+
9
3IN–
8
3OUT
4OUT 4IN – 4IN + V
/GND
DD –
3IN + 3IN –
8
3OUT
1OUT
DD+
2 3 4 5 6 7
(TOP VIEW)
1
1IN– 1IN+
V
2IN+ 2IN–
2OUT
TLV2254I, TLV2254AI . . . PW PACKAGE
1OUT
1IN – 1IN + V
DD+
2IN + 2IN –
2OUT
TLV2254M, TLV2254AM . . . FK PACKAGE
7
(TOP VIEW)
NC
1IN–
NC
1IN+
NC
NC
1OUT
NC
3 2 1 20 19
4 5 6 7 8
910111213
NC
NC
/GND
DD–
V
DD+
V
2IN+
NC
18 17 16 15 14
NC
NC 2OUT NC 2IN– NC
1IN+
V
DD+
2IN+
NC
NC
1OUT
NC
4OUT
1IN –
3212019
4 5 6 7 8
910111213
NC
2IN –
2OUT
3OUT
4IN –
18 17 16 15 14
3IN –
4IN+ NC V
DD–
NC 3IN+
/GND
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
3
T l
R l
D
7 11
94
4
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
equivalent schematic (each amplifier)
Q3 Q6 Q9 Q12 Q14 Q16
IN+
IN–
Q4Q1
R6
R5
V
DD+
C1
TLV225x, TLV2252xA
VERY LOW-POWER OPERATIONAL AMPLIFIERS
SLOS185B – FEBRUARY 1997 – REVISED JULY 1999
Advanced LinCMOS RAIL-TO-RAIL
emp ate
e ease
ate:
OUT
Q17Q15Q13
– –
Q2 Q5 Q7 Q8 Q10 Q11
R3 R4 R1 R2
V
DD–/GND
ACTUAL DEVICE COMPONENT COUNT
COMPONENT TLV2252 TLV2254
Transistors 38 76 Resistors 30 56 Diodes 9 18 Capacitors 3 6
Includes both amplifiers and all ESD, bias, and trim circuitry
D1
TLV225x, TLV225xA
PACKAGE
A
UNIT
Advanced LinCMOS RAIL-TO-RAIL
VERY LOW-POWER OPERATIONAL AMPLIFIERS
SLOS185B – FEBRUARY 1997 – REVISED – JULY 1999
absolute maximum ratings over operating free-air temperature range (unless otherwise noted)
Supply voltage, VDD (see Note 1) 8 V. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Differential input voltage, VID (see Note 2) ±V Input voltage range, V
(any input, see Note 1) V
I
Input current, II (each input) ±5 mA. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Output current, IO ±50 mA. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Total current into V Total current out of V
±50 mA. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
DD+
±50 mA. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
DD–
Duration of short-circuit current (at or below) 25°C (see Note 3) unlimited. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Continuous total power dissipation See Dissipation Rating Table. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Operating free-air temperature range, T
Storage temperature range, T
–65°C to 150°C. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
stg
Lead temperature 1,6 mm (1/16 inch) from case for 10 seconds: D, N, P, and PW packages 260°C. . . . . . .
Stresses beyond those listed under “absolute maximum ratings” may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under “recommended operating conditions” is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.
NOTES: 1. All voltage values, except differential voltages, are with respect to V
2. Differential voltages are at the noninverting input with respect to the inverting input. Excessive current flows when input is brought below V
3. The output may be shorted to either supply. Temperature and/or supply voltages must be limited to ensure that the maximum dissipation rating is not exceeded.
DD–
– 0.3 V.
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
: I Suffix –40°C to 125°C. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
A
DD–
Q Suffix –40°C to 125°C. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
M Suffix –55°C to 125°C. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
J, JG, U, and W packages 300°C. . . . . . .
.
DD –
–0.3 V to V
DD+
DD
DISSIPATION RATING TABLE
T
25°C DERATING FACTOR T
POWER RATING ABOVE TA = 25°CAPOWER RATINGAPOWER RATING
D–8 725 mW 5.8 mW/°C 377 mW 145 mW
D–14 950 mW 7.6 mW/°C 494 mW 190 mW
FK 1375 mW 11.0 mW/°C 715 mW 275 mW
J 1375 mW 11.0 mW/°C 715 mW 275 mW
JG 1050 mW 8.4 mW/°C 546 mW 210 mW
N 1150 mW 9.2 mW/°C 598 mW 230 mW P 1000 mW 8.0 mW/°C 520 mW 200 mW
PW–8 525 mW 4.2 mW/°C 273 mW 105 mW
PW–14 700 mW 5.6 mW/°C 364 mW 140 mW
U 700 mW 5.5 mW/°C 370 mW 150 mW
W 700 mW 5.5 mW/°C 370 mW 150 mW
recommended operating conditions
TLV225xI TLV225xQ TLV225xM
MIN MAX MIN MAX MIN MAX
Supply voltage, VDD(see Note 1) Input voltage range, V Common-mode input voltage, V Operating free-air temperature, T
NOTE 1: All voltage values, except differential voltages, are with respect to V
I
IC
A
2.7 8 2.7 8 2.7 8 V
V
DD–VDD+
V
DD–VDD+
–40 125 –40 125 –55 125 °C
–1.3 V –1.3 V
DD –
= 85°C T
DD–VDD+ DD–VDD+
.
–1.3 V –1.3 V
= 125°C
DD–VDD+ DD–VDD+
–1.3 V –1.3 V
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
5
TLV225x, TLV225xA
PARAMETER
TEST CONDITIONS
T
UNIT
VIOIn ut offset voltage
µV
0.5
0.5µV/°C
V
V
V
O
R
S
V
ICR
R
S
|V
IO
mV
V
V
OH
g
I
OH
µA
V
Low-level output
V
IC
I
OL
500 µA
voltage
V
IC
I
OL
m
A
L
diff
l
V
R
100 k
voltage am lification
V
O
V
CMRR
IC
dB
Advanced LinCMOS RAIL-TO-RAIL VERY LOW-POWER OPERATIONAL AMPLIFIERS
SLOS185B – FEBRUARY 1997 – REVISED – JULY 1999
TLV2252I electrical characteristics at specified free-air temperature, VDD = 3 V (unless otherwise noted)
A
p
α
I
I
V
A
r
r
c
z
† ‡
NOTE 4: Typical values are based on the input offset voltage shift observed through 500 hours of operating life test at TA = 150°C extrapolated
Temperature coefficient
VIO
of input offset voltage Input offset voltage
long-term drift (see Note 4)
Input offset current
IO
Input bias current
IB
Common-mode input voltage range
High-level output voltage
OL
VD
i(d)
i(c)
i(c)
o
Full range is – 40°C to 125°C. Referenced to 1.5 V
arge-signal
Differential input resistance
Common-mode input resistance
Common-mode input capacitance
Closed-loop output impedance
Common-mode VIC = 0 to 1.7 V, rejection ratio
to TA = 25°C using the Arrhenius equation and assuming an activation energy of 0.96 eV .
p
erentia
p
= ±1.5 V,
DD±
= 0,
= 50 Ω,
IOH = –20 µA 25°C 2.98 2.98
= –75
IOH = –150 µA 25°C 2.8 2.8 VIC = 1.5 V, IOL = 50 µA 25°C 10 10
= 1.5 V,
= 1.5 V,
= 1.5 V,
IC
= 1 V to 2
f = 10 kHz, P package 25°C 8 8 pF
f = 25 kHz, AV = 10 25°C 220 220
VO = 1.5 V, RS = 50
= 0,
IC
=
= 50
| ≤5
=
= 1
=
L
RL = 1 M
25°C 200 1500 200 850
Full range 1750 1000
25°C
to 85°C
25°C 0.003 0.003 µV/mo
25°C 0.5 0.5
–40°C
to 85°C
Full range 1000 1000
25°C 1 1
–40°C
to 85°C
Full range 1000 1000
25°C
Full range
25°C 2.9 2.9
Full range 2.8 2.8
25°C 100 100
Full range 150 150 mV
25°C 200 200
Full range 300 300
25°C 100 250 100 250
Full range 10 10 V/mV
25°C 800 800 25°C 10
25°C 10
25°C 65 75 65 77
Full range 60 60
TLV2252I TLV2252AI
MIN TYP MAX MIN TYP MAX
150 150
150 150
0 –0.3 0 –0.3
to to to to
2 2.2 2 2.2 0 0
to to
1.7 1.7
12
12
10
10
12
12
°
pA
pA
6
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
TLV225x, TLV225xA
PARAMETER
TEST CONDITIONS
T
UNIT
k
SVR
rejection ratio
DD
dB
IDDSu ly current
V
O
No load
µA
PARAMETER
TEST CONDITIONS
T
UNIT
0.07
0.1
0.07
0.1
O
C
0.05
0.05
V
q V/H
V
V
,
,
Gain-bandwidth product
f 1 kHz,
R
L
k ,
25°C
0.187
0.187
MH
B
g
O(PP)
,
V
,
25°C6060
kH
L,L
Advanced LinCMOS RAIL-TO-RAIL
VERY LOW-POWER OPERATIONAL AMPLIFIERS
SLOS185B – FEBRUARY 1997 – REVISED – JULY 1999
TLV2252I electrical characteristics at specified free-air temperature, VDD = 3 V (unless otherwise noted) (continued)
A
Supply voltage
(VDD /∆VIO)
pp
Full range is – 40°C to 125°C.
VDD = 2.7 V to 8 V, VIC = VDD/2, No load
= 1.5 V,
25°C 80 95 80 100
Full range 80 80
25°C 68 125 68 125
Full range 150 150
TLV2252I operating characteristics at specified free-air temperature, VDD = 3 V
A
TLV2252I TLV2252AI
MIN TYP MAX MIN TYP MAX
TLV2252I TLV2252AI
MIN TYP MAX MIN TYP MAX
SR Slew rate at unity gain
n
N(PP)
I
n
OM
φ
m
Full range is –40°C to 125°C.
Referenced to 1.5 V
Equivalent input noise voltage
Peak-to-peak equivalent input noise voltage
Equivalent input noise current
Maximum output-swing V bandwidth
Phase margin at unity gain
Gain margin
p
p
VO = 1.1 V to 1.9 V, RL = 100 k‡,
= 100 pF
L
f = 10 Hz 25°C 35 35 f = 1 kHz
f = 0.1 Hz to 1 Hz 25°C 0.6 0.6 f = 0.1 Hz to 10 Hz
f = 1 kHz CL = 100 pF
= 1 V, A
RL = 50 k‡,
RL = 50 k‡, CL = 100 pF
R
= 50 k
50
= 1,
CL = 100 pF
25°C
Full
range
25°C 19 19
25°C 1.1 1.1
25°C 0.6 0.6
°
°
25°C 63° 63° 25°C 15 15 dB
V/µs
n
µ
fA/Hz
z
z
z
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
7
TLV225x, TLV225xA
PARAMETER
TEST CONDITIONS
T
UNIT
VIOInput offset voltage
V
0.5
0.5µV/°C
V
V
IC
V
|V
| ≤5 mV
R
50 Ω
V
VOHHigh-level output voltage
I
A
V
V
2.5 V
I
500 µA
V
I
m
A
R
100 k
voltage am lification
V
O
V
V
CMRR
j
IC
O
dB
Advanced LinCMOS RAIL-TO-RAIL VERY LOW-POWER OPERATIONAL AMPLIFIERS
SLOS185B – FEBRUARY 1997 – REVISED – JULY 1999
TLV2252I electrical characteristics at specified free-air temperature, VDD = 5 V (unless otherwise noted)
A
p
α
I
I
V
A
r
r
c
z
† ‡
NOTE 4: Typical values are based on the input offset voltage shift observed through 500 hours of operating life test at TA = 150°C extrapolated
Temperature coefficient
VIO
of input offset voltage Input offset voltage long-
term drift (see Note 4)
Input offset current
IO
Input bias current
IB
Common-mode input
ICR
voltage range
p
Low-level output voltage
OL
Large-signal differentialpVIC = 2.5 V,
VD
Differential input
i(d)
resistance Common-mode input
i(c)
resistance Common-mode input
i(c)
capacitance Closed-loop output
o
impedance Common-mode rejection VIC = 0 to 2.7 V,
ratio
Full range is – 40°C to 125°C. Referenced to 2.5 V
to TA = 25°C using the Arrhenius equation and assuming an activation energy of 0.96 eV .
= ±2.5 V,
DD±
VO = 0,
IO
IOH = –20 µA 25°C 4.98 4.98
= –75 µ
OH
IOH = –150 µA 25°C 4.8 4.88 4.8 4.88 VIC = 2.5 V, IOL = 50 µA 25°C 0.01 0.01
=
IC
= 2.5 V,
IC
= 1 V to 4
f = 10 kHz, P package 25°C 8 8 pF
f = 25 kHz, AV = 10 25°C 200 200
RS = 50
,
,
= 0,
IC
RS = 50
=
S
=
OL
= 1
OL
=
L
RL = 1 M
= 2.5 V,
O
25°C 200 1500 200 850
Full range 1750 1000
25°C
to 85°C
25°C 0.003 0.003 µV/mo 25°C 0.5 0.5
–40°C
to 85°C
Full range 1000 1000
25°C 1 1
–40°C
to 85°C
Full range 1000 1000
25°C
Full range
25°C 4.9 4.94 4.9 4.94
Full range 4.8 4.8
25°C 0.09 0.15 0.09 0.15
Full range 0.15 0.15
25°C 0.2 0.3 0.2 0.3
Full range 0.3 0.3
25°C 100 350 100 350
Full range 10 10
25°C 1700 1700 25°C 10
25°C 10
25°C 70 83 70 83
Full range 70 70
TLV2252I TLV2252AI
MIN TYP MAX MIN TYP MAX
150 150
150 150
0
3.5
–0.3
to
to
4
4.2
0
to
12
12
3.5
0
–0.3
to
to
4
4.2
0
to
12
10
12
10
µ
°
pA
pA
V
V/mV
8
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
TLV225x, TLV225xA
PARAMETER
TEST CONDITIONS
T
UNIT
k
ygj
DD
dB
IDDSu ly current
V
O
No load
µA
PARAMETER
TEST CONDITIONS
T
UNIT
25°C
0.07
0.12
0.07
0.12
V
R
100 k
C
L
100 F
0.05
0.05
V
q V/H
V
equivalent input
V
THD
N
f
kHz
25°C
,
L
,
25°C
0.2
0.2
MH
B
g
O(PP)
,
V
,
25°C3030
kH
L,L
Advanced LinCMOS RAIL-TO-RAIL
VERY LOW-POWER OPERATIONAL AMPLIFIERS
SLOS185B – FEBRUARY 1997 – REVISED – JULY 1999
TLV2252I electrical characteristics at specified free-air temperature, VDD = 5 V (unless otherwise noted) (continued)
A
Supply voltage rejection VDD = 4.4 V to 8 V,
SVR
ratio (∆VDD/VIO)
pp
Full range is – 40°C to 125°C.
VIC = VDD/2, No load
= 2.5 V,
25°C 80 95 80 95
Full range 80 80
25°C 70 125 70 125
Full range 150 150
TLV2252I operating characteristics at specified free-air temperature, VDD = 5 V
A
TLV2252I TLV2252AI
MIN TYP MAX MIN TYP MAX
TLV2252I TLV2252AI
MIN TYP MAX MIN TYP MAX
SR Slew rate at unity gain
n
N(PP)
I
n
OM
φ
m
Full range is – 40°C to 125°C.
Referenced to 2.5 V
Equivalent input noise voltage
Peak-to-peak
noise voltage Equivalent input noise
current
Total harmonic
+
distortion plus noise
Gain-bandwidth product
Maximum output-swing V bandwidth
Phase margin at unity gain
Gain margin
p
= 1.5 V to 3.5 V,
O
=
p
=
f = 10 Hz 25°C 36 36 f = 1 kHz
f = 0.1 Hz to 1 Hz 25°C 0.7 0.7 f = 0.1 Hz to 10 Hz
VO = 0.5 V to 2.5 V,
= 20
RL = 50 k f = 50 kHz, RL = 50 k‡,
CL = 100 pF
RL = 50 k
RL = 50 k‡, CL = 100 pF
,
= 2 V, A
‡,
=
L
AV = 1 AV = 10
= 1,
CL = 100 pF
,
Full
range
25°C 19 19
25°C 1.1 1.1
25°C 0.6 0.6
0.2% 0.2% 1% 1%
°
°
25°C 63° 63° 25°C 15 15 dB
V/µs
n
µ
fA/Hz
z
z
z
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
9
TLV225x, TLV225xA
PARAMETER
TEST CONDITIONS
T
UNIT
VIOInput offset voltage
V
coefficient of input
0.5
0.5µV/°C ,
V
DD±
±1.5 V,
V
IC
0,
O
S
25°C
V
S
|V
mV
V
Full range
V
g
I
A
V
L
t
V
I
500 µA
voltage
V
I
A
gg
V
R
100 k
V
O
V
CMRR
IC
O
dB
Advanced LinCMOS RAIL-TO-RAIL VERY LOW-POWER OPERATIONAL AMPLIFIERS
SLOS185B – FEBRUARY 1997 – REVISED – JULY 1999
TLV2254I electrical characteristics at specified free-air temperature, VDD = 3 V (unless otherwise noted)
A
p
Temperature
α
VIO
offset voltage Input offset voltage
long-term drift (see Note 4)
I
I
V
A
r
r
c
z
† ‡
NOTE 4: Typical values are based on the input offset voltage shift observed through 500 hours of operating life test at TA = 150°C extrapolated
Input offset current
IO
Input bias current
IB
Common-mode input RS = 50 Ω,
ICR
voltage range
High-level output
OH
voltage
OL
VD
i(d)
i(c)
i(c)
o
Full range is – 40°C to 125°C. Referenced to 1.5 V
ow-level outpu
Large-signal differential voltage amplification
Differential input resistance
Common-mode input resistance
Common-mode input capacitance
Closed-loop output impedance
Common-mode VIC = 0 to 1.7 V, VO = 1.5 V, rejection ratio
to TA = 25°C using the Arrhenius equation and assuming an activation energy of 0.96 eV .
p
V
= ±1.5 V,V
VO = 0,
IOH = –20 µA 25°C 2.98 2.98
= –75 µ
OH
IOH = –150 µA 25°C 2.8 2.8 VIC = 1.5 V, IOL = 50 µA 25°C 10 10
= 1.5 V,
IC
= 1.5 V,
IC
= 1.5 V,
IC
= 1 V to 2
f = 10 kHz, N package 25°C 8 8 pF
f = 25 kHz, AV = 10 25°C 220 220
RS = 50
= 0
RS = 50
| ≤5
IO
=
OL
= 1
m
OL
=
L
RL = 1 M
25°C 200 1500 200 850
Full range 1750 1000
25°C
to 85°C
25°C 0.003 0.003 µV/mo
25°C
–40°C
to 85°C
Full range 1000 1000
25°C 1 1
–40°C
to 85°C
Full range 1000 1000
°
25°C 2.9 2.9
Full range 2.8 2.8
25°C 100 100
Full range 150 150 mV
25°C 200 200
Full range 300 300
25°C 100 225 100 225
Full range 10 10 V/mV
25°C 800 800 25°C 10
25°C 10
25°C 65 75 65 77
Full range 60 60
TLV2254I TLV2254AI
MIN TYP MAX MIN TYP MAX
0.5 0.5 150 150
150 150
0 –0.3 0 –0.3
to 2 to 2.2 to 2 to 2.2
0 0
to 1.7 to 1.7
12
12
10
10
12
12
µ
°
pA
pA
10
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
TLV225x, TLV225xA
PARAMETER
TEST CONDITIONS
T
UNIT
k
rejection ratio
DD
dB
I
DD
y
V
O
No load
µA
PARAMETER
TEST CONDITIONS
T
UNIT
V
O
0.07
0.1
0.07
0.1
SR
Slew rate at unity gain
R
100 k
V/µs
C
F
Full range
0.05
0.05
VnEquivalent input noise voltage
V/H
V
q
V
Gain-bandwidth product
R
k
25°C
0.187
0.187
MH
B
g
V
,
25°C6060
kH
L
,
Advanced LinCMOS RAIL-TO-RAIL
VERY LOW-POWER OPERATIONAL AMPLIFIERS
SLOS185B – FEBRUARY 1997 – REVISED – JULY 1999
TLV2254I electrical characteristics at specified free-air temperature, VDD = 3 V (unless otherwise noted) (continued)
A
Supply voltage
SVR
(VDD/VIO) Supply current
(four amplifiers)
Full range is – 40°C to 125°C.
VDD = 2.7 V to 8 V, VIC = VDD/2, No load
= 1.5 V,
25°C 80 95 80 100
Full range 80 80
25°C 135 250 135 250
Full range 300 300
TLV2254I operating characteristics at specified free-air temperature, VDD = 3 V
A
N(PP)
I
n
OM
φ
m
Full range is – 40°C to 85°C.
Referenced to 1.5 V
Peak-to-peak equivalent input noise voltage
Equivalent input noise current 25°C 0.6 0.6
Maximum output-swing bandwidth
Phase margin at unity gain Gain margin
= 0.7 V to 1.7 V,
=
L
= 100 p
L
p
p
f = 10 Hz 25°C 35 35 f = 1 kHz 25°C 19 19 f = 0.1 Hz to 1 Hz 25°C 0.6 0.6 f = 0.1 Hz to 10 Hz
f = 1 kHz,
= 50
L
CL = 100 pF V
O(PP)
AV = 1, RL = 50 k‡, CL = 100 pF
RL = 50 k‡, CL = 100 pF
,
,
= 1 V,
25°C
25°C 1.1 1.1
°
25°C 63° 63° 25°C 15 15 dB
TLV2254I TLV2254AI
MIN TYP MAX MIN TYP MAX
TLV2254I TLV2254AI
MIN TYP MAX MIN TYP MAX
n
µ
fA/Hz
z
z
z
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
11
TLV225x, TLV225xA
PARAMETER
TEST CONDITIONS
T
UNIT
VIOInput offset voltage
V
coefficient of input
0.5
0.5µV/°C
V
DD±
±2.5 V,
V
IC
O
S
25°C
V
|V
R
V
Full range
V
g
I
75 µA
V
L
t
V
I
500 µA
voltage
V
2.5 V
I
A
Large signal V
R
100 k
VD
V
O
V
CMRR
IC
,
O
,
dB
Advanced LinCMOS RAIL-TO-RAIL VERY LOW-POWER OPERATIONAL AMPLIFIERS
SLOS185B – FEBRUARY 1997 – REVISED – JULY 1999
TLV2254I electrical characteristics at specified free-air temperature, VDD = 5 V (unless otherwise noted)
A
p
Temperature
α
VIO
offset voltage Input offset voltage
long-term drift (see Note 4)
I
I
V
A
r
r
c
z
† ‡
NOTE 4: Typical values are based on the input offset voltage shift observed through 500 hours of operating life test at TA = 150°C extrapolated
Input offset current
IO
Input bias current
IB
Common-mode input
ICR
voltage range
High-level output
OH
voltage
OL
VD
i(d)
i(c)
i(c)
o
Full range is – 40°C to 125°C. Referenced to 2.5 V
ow-level outpu
Large-signal differential voltage amplification
Differential input resistance
Common-mode input resistance
Common-mode input capacitance
Closed-loop output impedance
Common-mode V rejection ratio
to TA = 25°C using the Arrhenius equation and assuming an activation energy of 0.96 eV .
p
V
= ±2.5 V,V
VO = 0,
| ≤5 mV,
IO
IOH = –20 µA 25°C 4.98 4.98
= –
OH
IOH = –150 µA 25°C 4.8 4.88 4.8 4.88 VIC = 2.5 V, IOL = 50 µA 25°C 0.01 0.01
= 2.5 V,
IC
,
=
IC
= 2.5 V,
IC
= 1 V to 4
f = 10 kHz, N package 25°C 8 8 pF
f = 25 kHz, AV = 10 25°C 200 200
= 0 to 2.7 V, V
RS = 50
= 0,
0,
RS = 50
= 50
S
=
OL
= 1
OL
=
L
RL = 1 M
= 2.5 V,
m
25°C 200 1500 200 850
Full range 1750 1000
25°C
to 85°C
25°C
25°C
–40°C
to 85°C
Full range 1000 1000
25°C 1 1
–40°C
to 85°C
Full range 1000 1000
°
25°C 4.9 4.94 4.9 4.94
Full range 4.8 4.8
25°C 0.09 0.15 0.09 0.15
Full range 0.15 0.15
25°C 0.2 0.3 0.2 0.3
Full range 0.3 0.3
25°C 100 350 100 350
Full range 10 10
25°C 1700 1700 25°C 10
25°C 10
25°C 70 83 70 83
Full range 70 70
TLV2254I TLV2254AI
MIN TYP MAX MIN TYP MAX
0.003 0.003 µV/mo
0.5 0.5 150 150
150 150
0 –0.3 0 –0.3
to 4 to 4.2 to 4 to 4.2
0 0
to 3.5 to 3.5
12
12
10
10
12
12
µ
°
pA
pA
V
V/mV
12
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
TLV225x, TLV225xA
PARAMETER
TEST CONDITIONS
T
UNIT
k
rejection ratio
DD
dB
I
y
V
No load
A
PARAMETER
TEST CONDITIONS
T
UNIT
Slew rate at unit
V
R
100 k
V
q V/H
V
equivalent input
V
THD
N
distortion plus
f
kHz
25°C
,
L
,
25°C
0.2
0.2
MH
B
O(PP)
,
V
,
25°C3030
kH
L,L
Advanced LinCMOS RAIL-TO-RAIL
VERY LOW-POWER OPERATIONAL AMPLIFIERS
SLOS185B – FEBRUARY 1997 – REVISED – JULY 1999
TLV2254I electrical characteristics at specified free-air temperature, VDD = 5 V (unless otherwise noted) (continued)
A
Supply voltage
SVR
(VDD/VIO) Supply current
DD
(four amplifiers)
Full range is – 40°C to 125°C.
VDD = 4.4 V to 8 V, VIC = VDD/2, No load
= 2.5 V,
O
25°C 80 95 80 95
Full range 80 80
25°C 140 250 140 250
Full range 300 300
TLV2254I operating characteristics at specified free-air temperature, VDD = 5 V
A
25°C
,
Full
range
25°C 19 19
25°C 0.6 0.6
°
°
°
25°C 63° 63° 25°C 15 15 dB
SR
n
N(PP)
I
n
OM
φ
m
Full range is – 40°C to 125°C.
Referenced to 2.5 V
gain
Equivalent input noise voltage
Peak-to-peak
noise voltage Equivalent input
noise current Total harmonic
+
noise Gain-bandwidth
product Maximum output- V
swing bandwidth Phase margin at
unity gain Gain margin
p
p
y
= 1.4 V to 2.6 V,
O
CL = 100 pF f = 10 Hz 25°C 36 36
f = 1 kHz f = 0.1 Hz to 1 Hz 25°C 0.7 0.7
f = 0.1 Hz to 10 Hz 25°C 1.1 1.1
VO = 0.5 V to 2.5 V,
= 20
RL = 50 k f = 50 kHz, RL = 50 k‡,
CL = 100 pF
RL = 50 k‡,
R
= 50 k‡, C
,
= 2 V, A
=
L
AV = 1 AV = 10
= 1,
CL = 100 pF
= 100 pF
TLV2254I TLV2254AI
MIN TYP MAX MIN TYP MAX
TLV2254I TLV2254AI
MIN TYP MAX MIN TYP MAX
0.07 0.12 0.07 0.12
0.05 0.05
0.2% 0.2% 1% 1%
µ
V/µs
n
µ
fA/Hz
z
z
z
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
13
TLV225x, TLV225xA
A
VIOIn ut offset voltage
µV
0.5
0.5µV/°C
V
V
V IIOIn ut offset current
A
IIBIn ut bias current
A
V
ICR
R
S
|V
IO
mV
V
V
OH
g
I
OH
µA
V
Low-level output
V
IC
I
OL
500 µA
voltage
V
IC
I
OL
m
A
L
diff
l
V
R
100 k
voltage am lification
V
O
V
CMRR
j
IC
O
dB
k
SVR
ygj
DD
dB
IDDSupply current
V
No load
A
Advanced LinCMOS RAIL-TO-RAIL VERY LOW-POWER OPERATIONAL AMPLIFIERS
SLOS185B – FEBRUARY 1997 – REVISED – JULY 1999
TLV2252Q, and TLV2252M electrical characteristics at specified free-air temperature, VDD = 3 V (unless otherwise noted)
TLV2252Q,
PARAMETER TEST CONDITIONS
p
α
V
A
r
r
c
z
† ‡
NOTE 4: Typical values are based on the input offset voltage shift observed through 500 hours of operating life test at TA = 150°C extrapolated
Temperature coefficient
VIO
of input offset voltage Input offset voltage
long-term drift (see Note 4)
p
p
Common-mode input voltage range
High-level output voltage
OL
VD
i(d)
i(c)
i(c)
o
Full range is –40°C to 125°C for Q level part, –55°C to 125°C for M level part. Referenced to 1.5 V
arge-signal
Differential input resistance
Common-mode input resistance
Common-mode input capacitance
Closed-loop output impedance
Common-mode rejection VIC = 0 to 1.7 V, VO = 1.5 V, ratio
Supply voltage rejection VDD = 2.7 V to 8 V, ratio (∆VDD /∆VIO)
pp
to TA = 25°C using the Arrhenius equation and assuming an activation energy of 0.96 eV .
p
erentia
p
= ±1.5
DD±
VO = 0,
= 50 Ω,
IOH = –20 µA 25°C 2.98 2.98
= –75
IOH = –150 µA 25°C 2.8 2.8 VIC = 1.5 V, IOL = 50 µA 25°C 10 10
= 1.5 V,
= 1.5 V,
= 1.5 V,
IC
= 1 V to 2
f = 10 kHz, P package 25°C 8 8 pF
f = 25 kHz, AV = 10 25°C 220 220
RS = 50
VIC = VDD/2, No load
= 1.5 V,
O
,
IC
RS = 50
RL = 1 M
L
= 0,
| ≤5
=
= 1
=
T
25°C 200 1500 200 850
Full range 1750 1000
25°C
to 85°C
25°C
25°C 0.5 0.5
125°C 500 500
25°C 1 1
125°C 500 500
25°C
Full range
25°C 2.9 2.9
Full range 2.8 2.8
25°C 100 150 100 150
Full range 165 165 mV
25°C 200 300 200 300
Full range 300 300
25°C 100 250 100 250
Full range 10 10 V/mV
25°C 800 800 25°C 10
25°C 10
25°C 65 75 65 77
Full range 60 60
25°C 80 95 80 100
Full range 80 80
25°C 68 125 68 125
Full range 150 150
TLV2252M
MIN TYP MAX MIN TYP MAX
0.003 0.003 µV/mo
0 –0.3 0 –0.3
to to to to
2 2.2 2 2.2 0 0
to to
1.7 1.7
12
12
TLV2252AQ, TLV2252AM
12
10
12
10
UNIT
°
p
p
µ
14
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
TLV225x, TLV225xA
A
25°C
0.07
0.1
0.07
0.1
V
R
100 k
C
L
100 F
0.05
0.05
V
q V/H
V
t
V
,
f 1 kHz,
R
L
k ,
25°C
0.187
0.187
MH
B
O(PP)
,
V
,
25°C6060
kH
L,L
Advanced LinCMOS RAIL-TO-RAIL
VERY LOW-POWER OPERATIONAL AMPLIFIERS
SLOS185B – FEBRUARY 1997 – REVISED – JULY 1999
TLV2252Q, and TLV2252M operating characteristics at specified free-air temperature, VDD = 3 V
PARAMETER TEST CONDITIONS
TLV2252Q,
T
TLV2252M
MIN TYP MAX MIN TYP MAX
TLV2252AQ,
TLV2252AM
UNIT
= 0.8 V to 1.4 V,
SR Slew rate at unity gain
n
N(PP)
I
n
OM
φ
m
Full range is –40°C to 125°C for Q level part, –55°C to 125°C for M level part.
Referenced to 1.5 V
Equivalent input noise voltage
Peak-to-peak equivalent inpu noise voltage
Equivalent input noise current
Gain-bandwidth product
Maximum
p
output-swing bandwidth
Phase margin at unity gain
Gain margin
p
O
=
=
f = 10 Hz 25°C 35 35 f = 1 kHz
f = 0.1 Hz to 1 Hz 25°C 0.6 0.6 f = 0.1 Hz to 10 Hz
f = 1 kHz, R CL = 100 pF
V RL = 50 k‡,
RL = 50 k‡, CL = 100 pF
p
= 1 V, A
=
L
= 50 k
50
= 1,
CL = 100 pF
,
Full
range
25°C 19 19
25°C 1.1 1.1
25°C 0.6 0.6
°
°
25°C 63° 63° 25°C 15 15 dB
V/µs
n
fA/Hz
z
µ
z
z
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
15
TLV225x, TLV225xA
A
VIOInput offset voltage
V
0.5
0.5µV/°C
V
V
IIOInput offset current
pA
IIBInput bias current
pA
V
|V
| ≤5 mV
R
50 Ω
V
VOHHigh-level output voltage
I
A
V
V
2.5 V
I
500 µA
V
I
m
A
R
100 k
voltage am lification
V
O
V
CMRR
j
IC
,
dB
k
ygj
DD
dB
Advanced LinCMOS RAIL-TO-RAIL VERY LOW-POWER OPERATIONAL AMPLIFIERS
SLOS185B – FEBRUARY 1997 – REVISED – JULY 1999
TLV2252Q, and TLV2252M electrical characteristics at specified free-air temperature, VDD = 5 V (unless otherwise noted)
TLV2252Q,
PARAMETER TEST CONDITIONS
p
α
V
A
r
r
c
z
† ‡
NOTE 4: Typical values are based on the input offset voltage shift observed through 500 hours of operating life test at TA = 150°C extrapolated
Temperature coefficient
VIO
of input offset voltage Input offset voltage long-
term drift (see Note 4)
p
p
Common-mode input
ICR
voltage range
p
Low-level output voltage
OL
Large-signal differentialpVIC = 2.5 V,
VD
Differential input
i(d)
resistance Common-mode input
i(c)
resistance Common-mode input
i(c)
capacitance Closed-loop output
o
impedance Common-mode rejection
ratio Supply voltage rejection VDD = 4.4 V to 8 V,
SVR
ratio (∆VDD/VIO)
Full range is –40°C to 125°C for Q level part, –55°C to 125°C for M level part. Referenced to 2.5 V
to TA = 25°C using the Arrhenius equation and assuming an activation energy of 0.96 eV .
= ±2.5 V,
DD±
VO = 0,
IO
IOH = –20 µA 25°C 4.98 4.98
= –75 µ
OH
IOH = –150 µA 25°C 4.8 4.88 4.8 4.88 VIC = 2.5 V, IOL = 50 µA 25°C 0.01 0.01
=
IC
= 2.5 V,
IC
= 1 V to 4
f = 10 kHz, P package 25°C 8 8 pF
f = 25 kHz, AV = 10 25°C 200 200
V
= 0 to 2.7 V,
VO = 2.5 V, RS = 50
VIC = VDD/2, No load
,
,
= 0,
IC
RS = 50
=
S
=
OL
= 1
OL
=
L
RL = 1 M
T
25°C 200 1500 200 850
Full range 1750 1000
25°C
to 85°C
25°C 25°C 0.5 0.5
125°C 500 500
25°C 1 1
125°C 500 500
25°C
Full range
25°C 4.9 4.94 4.9 4.94
Full range 4.8 4.8
25°C 0.09 0.15 0.09 0.15
Full range 0.15 0.15
25°C 0.2 0.3 0.2 0.3
Full range 0.3 0.3
25°C 100 350 100 350
Full range 10 10
25°C 1700 1700 25°C 10
25°C 10
25°C 70 83 70 83
Full range 70 70
25°C 80 95 80 95
Full range 80 80
TLV2252M
MIN TYP MAX MIN TYP MAX
0.003 0.003 µV/mo
0
–0.3
to
to
4
4.2
0
to
3.5
12
12
TLV2252AQ,
TLV2252AM
0
–0.3
to
4
4.2
0
to
3.5
12
10
12
10
UNIT
µ
°
p
p
to
V
V/mV
16
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
TLV225x, TLV225xA
A
IDDSupply current
V
No load
A
A
0.07
0.12
0.07
0.12
C
F
0.05
0.05
V
q V/H
V
equivalent input
V
THD
N
f
kHz
25°C
Gain-bandwidth product
,
L
,
25°C
0.2
0.2
MH
B
g
O(PP)
,
V
,
25°C3030
kH
L,L
Advanced LinCMOS RAIL-TO-RAIL
VERY LOW-POWER OPERATIONAL AMPLIFIERS
SLOS185B – FEBRUARY 1997 – REVISED – JULY 1999
TLV2252Q, and TLV2252M electrical characteristics at specified free-air temperature, VDD = 5 V (unless otherwise noted) (continued)
TLV2252Q,
PARAMETER TEST CONDITIONS
pp
Full range is –40°C to 125°C for Q level part, –55°C to 125°C for M level part.
= 2.5 V,
O
Full range 150 150
T
25°C 70 125 70 125
TLV2252M
MIN TYP MAX MIN TYP MAX
TLV2252Q, and TLV2252M operating characteristics at specified free-air temperature, VDD = 5 V
TLV2252Q,
PARAMETER TEST CONDITIONS
T
TLV2252M
MIN TYP MAX MIN TYP MAX
TLV2252AQ,
TLV2252AM
TLV2252AQ,
TLV2252AM
UNIT
µ
UNIT
VO = 1.25 V to 2.75 V,
SR Slew rate at unity gain
n
N(PP)
I
n
OM
φ
m
Full range is –40°C to 125°C for Q level part, –55°C to 125°C for M level part.
Referenced to 2.5 V
Equivalent input noise voltage
Peak-to-peak
p
noise voltage Equivalent input noise
current
Total harmonic
+
distortion plus noise
Maximum output-swing V bandwidth
Phase margin at unity gain
Gain margin
p
RL = 100 k‡,
= 100 p
L
f = 10 Hz 25°C 36 36 f = 1 kHz
f = 0.1 Hz to 1 Hz 25°C 0.7 0.7 f = 0.1 Hz to 10 Hz 25°C 1.1 1.1
VO = 0.5 V to 2.5 V,
= 20
RL = 50 k f = 50 kHz, RL = 50 k‡,
CL = 100 pF
RL = 50 k‡,
RL = 50 k‡, CL = 100 pF
,
= 2 V, A
AV = 1 AV = 10
= 1,
CL = 100 pF
25°C
Full
range
25°C 19 19
25°C 0.6 0.6
0.2% 0.2%
°
1% 1%
°
°
25°C 63° 63° 25°C 15 15 dB
V/µs
n
µ
fA/Hz
z
z
z
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
17
TLV225x, TLV225xA
A
VIOInput offset voltage
V
0.5
0.5µV/°C
IIOInput offset current
pA
IIBInput bias current
pA
V
R
50 Ω
|V
| ≤5 mV
V
g
V
g
I
A
V
L
t
V
1.5 V
I
500 µA
voltage
V
I
1
A
L
diff
l
V
R
100 k
VD
voltage am lification
V
O
V
CMRR
IC
O
dB
k
SVR
rejection ratio
DD
dB
Advanced LinCMOS RAIL-TO-RAIL VERY LOW-POWER OPERATIONAL AMPLIFIERS
SLOS185B – FEBRUARY 1997 – REVISED – JULY 1999
TLV2254Q, and TLV2254M electrical characteristics at specified free-air temperature, VDD = 3 V (unless otherwise noted)
TLV2254Q,
PARAMETER TEST CONDITIONS
p
α
V
A
r
r
c
z
† ‡
NOTE 4: Typical values are based on the input offset voltage shift observed through 500 hours of operating life test at TA = 150°C extrapolated
Temperature coefficient 25°C
VIO
of input offset voltage to 125°C Input offset voltage
long­term drift (see Note 4)
p
p
Common-mode input
ICR
voltage range
High-level output
OH
voltage
OL
VD
i(d)
i(c)
i(c)
o
Full range is –40°C to 125°C for Q level part, –55°C to 125°C for M level part. Referenced to 1.5 V
ow-level outpu
arge-signal
Differential input resistance
Common-mode input resistance
Common-mode input capacitance
Closed-loop output impedance
Common-mode VIC = 0 to 1.7 V, VO = 1.5 V, rejection ratio
Supply voltage
(VDD/VIO)
to TA = 25°C using the Arrhenius equation and assuming an activation energy of 0.96 eV .
erentia
p
V
= ±1.5 V ,
DD±
VO = 0,
,
=
S
IOH = –20 µA 25°C 2.98 2.98
= –75 µ
OH
IOH = –150 µA 25°C 2.8 2.8 VIC = 1.5 V, IOL = 50 µA 25°C 10 10
=
IC
= 1.5 V,
IC
= 1.5 V,
IC
= 1 V to 2
f = 10 kHz, N package 25°C 8 8 pF
f = 25 kHz, AV = 10 25°C 220 220
RS = 50 VDD = 2.7 V to 8 V,
VIC = VDD/2, No load
,
VIC = 0, RS = 50
IO
=
OL
=
OL
=
L
RL = 1 M
m
T
25°C 200 1500 200 850
Full range 1750 1000
25°C
25°C 0.5 0.5
125°C 500 500
25°C 1 1
125°C 500 500
25°C
Full range
25°C 2.9 2.9
Full range 2.8 2.8
25°C 100 150 100 150
Full range 165 165 mV
25°C 200 300 200 300
Full range 300 300
25°C 100 225 100 225
Full range 10 10
25°C 800 800 25°C 10
25°C 10
25°C 65 75 65 77
Full range 60 60
25°C 80 95 80 100
Full range 80 80
TLV2254M
MIN TYP MAX MIN TYP MAX
0.003 0.003 µV/mo
0 –0.3 0 –0.3
to to to to
2 2.2 2 2.2 0 0
to to
1.7 1.7
12
12
TLV2254AQ,
TLV2254AM
12
10
12
10
UNIT
µ
°
p
p
V/mV
18
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
TLV225x, TLV225xA
A
I
DD
y
V
O
No load
µA
A
SR
Slew rate at unity gain
R
100 k
V/µs
C
F
Full range
0.05
0.05
VnEquivalent input noise voltage
V/H
V
q
V
Gain-bandwidth product
R
k
25°C
0.187
0.187
MH
B
g
V
,
25°C6060
kH
L
,
Advanced LinCMOS RAIL-TO-RAIL
VERY LOW-POWER OPERATIONAL AMPLIFIERS
SLOS185B – FEBRUARY 1997 – REVISED – JULY 1999
TLV2254Q, and TLV2254M electrical characteristics at specified free-air temperature, VDD = 3 V (unless otherwise noted) (continued)
TLV2254Q,
PARAMETER TEST CONDITIONS
Supply current (four amplifiers)
Full range is –40°C to 125°C for Q level part, –55°C to 125°C for M level part.
= 1.5 V,
Full range 300 300
T
25°C 135 250 135 250
TLV2254M
MIN TYP MAX MIN TYP MAX
TLV2254Q, and TLV2254M operating characteristics at specified free-air temperature, VDD = 3 V
TLV2254Q,
PARAMETER TEST CONDITIONS
VO = 0.5 V to 1.7 V,
=
L
= 100 p
L
p
N(PP)
I
n
OM
φ
m
Full range is –40°C to 125°C for Q level part, –55°C to 125°C for M level part.
Referenced to 1.5 V
Peak-to-peak equivalent input noise voltage
Equivalent input noise current 25°C 0.6 0.6
p
Maximum output-swing bandwidth
Phase margin at unity gain Gain margin
f = 10 Hz 25°C 35 35 f = 1 kHz 25°C 19 19 f = 0.1 Hz to 1 Hz 25°C 0.6 0.6 f = 0.1 Hz to 10 Hz
f = 1 kHz,
= 50
L
CL = 100 pF V
O(PP)
AV = 1, RL = 50 k‡, CL = 100 pF
RL = 50 k‡, CL = 100 pF
,
,
= 1 V,
T
25°C
25°C 1.1 1.1
25°C 63° 63° 25°C 15 15 dB
°
°
TLV2254M
MIN TYP MAX MIN TYP MAX
0.07 0.1 0.07 0.1
TLV2254AQ,
TLV2254AM
TLV2254AQ,
TLV2254AM
UNIT
UNIT
n
µ
fA/Hz
z
z
z
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
19
TLV225x, TLV225xA
A
VIOInput offset voltage
V
0.5
0.5µV/°C
IIOInput offset current
pA
IIBInput bias current
pA
V
|V
| ≤5 mV
R
50 Ω
V
g
V
g
I
A
V
L
t
V
I
500 µA
voltage
V
I
A
L
diff
l
V
2.5 V
R
100 k
VD
voltage am lification
V
O
V
CMRR
IC
O
dB
k
rejection ratio
DD
,
dB
Advanced LinCMOS RAIL-TO-RAIL VERY LOW-POWER OPERATIONAL AMPLIFIERS
SLOS185B – FEBRUARY 1997 – REVISED – JULY 1999
TLV2254Q, and TLV2254M electrical characteristics at specified free-air temperature, VDD = 5 V (unless otherwise noted)
PARAMETER TEST CONDITIONS
p
α
V
A
r
r
c
z
† ‡
NOTE 4: Typical values are based on the input offset voltage shift observed through 500 hours of operating life test at TA = 150°C extrapolated
Temperature coefficient 25°C
VIO
of input offset voltage to 125°C Input offset voltage
long-term drift (see Note 4)
p
p
Common-mode input
ICR
voltage range
High-level output
OH
voltage
OL
VD
i(d)
i(c)
i(c)
o
SVR
Full range is –40°C to 125°C for Q level part, –55°C to 125°C for M level part. Referenced to 2.5 V
ow-level outpu
arge-signal
Differential input resistance
Common-mode input resistance
Common-mode input capacitance
Closed-loop output impedance
Common-mode VIC = 0 to 2.7 V, VO = 2.5 V, rejection ratio
Supply voltage
(VDD/VIO)
to TA = 25°C using the Arrhenius equation and assuming an activation energy of 0.96 eV .
erentia
p
V
= ±2.5 V ,
DD±
VO = 0,
IO
IOH = –20 µA 25°C 4.98 4.98
= –75 µ
OH
IOH = –150 µA 25°C 4.8 4.88 4.8 4.88 VIC = 2.5 V, IOL = 50 µA 25°C 0.01 0.01
= 2.5 V,
IC
= 2.5 V,
IC
=
IC
= 1 V to 4
f = 10 kHz, N package 25°C 8 8 pF
f = 25 kHz, AV = 10 25°C 200 200
RS = 50
V
= 4.4 V to 8 V,
VIC = VDD/2, No load
,
,
VIC = 0, RS = 50
=
S
=
OL
= 1
OL
=
L
RL = 1 M
m
T
A
25°C 200 1500 200 850
Full range 1750 1000
25°C
25°C 0.5 0.5
125°C 500 500
25°C 1 1
125°C 500 500
25°C
Full range
25°C 4.9 4.94 4.9 4.94
Full range 4.8 4.8
25°C 0.09 0.15 0.09 0.15
Full range 0.15 0.15
25°C 0.2 0.3 0.2 0.3
Full range 0.3 0.3
25°C 100 350 100 350
Full range 10 10
25°C 1700 1700 25°C 10
25°C 10
25°C 70 83 70 83
Full range 70 70
25°C 80 95 80 95
Full range 80 80
TLV2254Q, TLV2254M
MIN TYP MAX MIN TYP MAX
0.003 0.003 µV/mo
0 –0.3 0 –0.3
to to to to
4 4.2 4 4.2 0 0
to to
3.5 3.5
12
12
TLV2254AQ,
TLV2254AM
12
10
12
10
UNIT
µ
°
p
p
V
V/mV
20
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
TLV225x, TLV225xA
A
I
y
V
No load
A
A
Slew rate at unit
V
R
100 k
gain
C
L
100 F
0.05
0.05
V
q V/H
V
equivalent input
V
THD
N
distortion plus
f
kHz
25°C
,
L
,
25°C
0.2
0.2
MH
B
O(PP)
,
V
,
25°C3030
kH
L,L
Advanced LinCMOS RAIL-TO-RAIL
VERY LOW-POWER OPERATIONAL AMPLIFIERS
SLOS185B – FEBRUARY 1997 – REVISED – JULY 1999
TLV2254Q, and TLV2254M electrical characteristics at specified free-air temperature, VDD = 5 V (unless otherwise noted) (continued)
TLV2254Q, TLV2254M
MIN TYP MAX MIN TYP MAX
PARAMETER TEST CONDITIONS
Supply current
DD
(four amplifiers)
Full range is –40°C to 125°C for Q level part, –55°C to 125°C for M level part.
= 2.5 V,
O
Full range 300 300
T
A
25°C 140 250 140 250
TLV2254Q, and TLV2254M operating characteristics at specified free-air temperature, VDD = 5 V
TLV2254Q,
PARAMETER TEST CONDITIONS
y
= 0.5 V to 3.5 V,
SR
n
N(PP)
I
n
OM
φ
m
Full range is –40°C to 125°C for Q level part, –55°C to 125°C for M level part.
Referenced to 2.5 V
Equivalent input noise voltage
Peak-to-peak
noise voltage Equivalent input
noise current Total harmonic
+
noise Gain-bandwidth
product Maximum output- V
swing bandwidth Phase margin at
unity gain Gain margin
p
p
O
=
p
f = 10 Hz 25°C 36 36 f = 1 kHz
f = 0.1 Hz to 1 Hz 25°C 0.7 0.7 f = 0.1 Hz to 10 Hz
VO = 0.5 V to 2.5 V,
= 20
RL = 50 k f = 50 kHz, RL = 50 k‡,
CL = 100 pF
RL = 50 k‡,
R
,
= 2 V, A
= 50 k‡, C
=
L
AV = 1 AV = 10
= 1,
CL = 100 pF
= 100 pF
,
T
25°C
Full
range
25°C 19 19
25°C 1.1 1.1
25°C 0.6 0.6
°
°
°
25°C 63° 63° 25°C 15 15 dB
TLV2254M
MIN TYP MAX MIN TYP MAX
0.07 0.12 0.07 0.12
0.2% 0.2% 1% 1%
TLV2254AQ,
TLV2254AM
TLV2254AQ,
TLV2254AM
UNIT
µ
UNIT
V/µs
n
µ
fA/Hz
z
z
z
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
21
TLV225x, TLV225xA Advanced LinCMOS RAIL-TO-RAIL VERY LOW-POWER OPERATIONAL AMPLIFIERS
SLOS185B – FEBRUARY 1997 – REVISED – JULY 1999
TYPICAL CHARACTERISTICS
Table of Graphs
V
IO
α
VIO
IIB/I V
I
V
OH
V
OL
V
O(PP)
I
OS
V
ID
A
VD
A
VD
z
o
CMRR Common-mode rejection ratio
k
SVR
I
DD
SR Slew rate V
O
V
O
V
O
V
O
V
n
THD + N Total harmonic distortion plus noise vs Frequency 53
φ
m
B
1
Input offset voltage Input offset voltage temperature coefficient Distribution 8 – 11
Input bias and input offset currents vs Free-air temperature 12
IO
Input voltage High-level output voltage vs High-level output current 15, 18
Low-level output voltage vs Low-level output current 16, 17, 19 Maximum peak-to-peak output voltage vs Frequency 20
Short-circuit output current Differential input voltage vs Output voltage 23, 24
Differential voltage amplification vs Load resistance 25 Large-signal differential voltage amplification Output impedance vs Frequency 30, 31
Supply-voltage rejection ratio Supply current vs Supply voltage 37, 38
Inverting large-signal pulse response 41, 42 Voltage-follower large-signal pulse response 43, 44 Inverting small-signal pulse response 45, 46 Voltage-follower small-signal pulse response 47, 48 Equivalent input noise voltage vs Frequency 49, 50 Input noise voltage Over a 10-second period 51 Integrated noise voltage vs Frequency 52
Gain-bandwidth product
Phase margin Gain margin vs Load capacitance 57
Unity-gain bandwidth vs Load capacitance 58 Overestimation of phase margin vs Load capacitance 59
Distribution vs Common-mode voltage
vs Supply voltage vs Free-air temperature
vs Supply voltage vs Free-air temperature
vs Frequency vs Free-air temperature
vs Frequency vs Free-air temperature
vs Frequency vs Free-air temperature
vs Load capacitance vs Free-air temperature
vs Supply voltage vs Free-air temperature
vs Frequency vs Load capacitance
FIGURE
2 – 5
6, 7
13 14
21 22
26, 27 28, 29
32 33
34, 35
36
39 40
54 55
26, 27
56
22
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
Advanced LinCMOS RAIL-TO-RAIL
VERY LOW-POWER OPERATIONAL AMPLIFIERS
TYPICAL CHARACTERISTICS
TLV225x, TLV225xA
SLOS185B – FEBRUARY 1997 – REVISED – JULY 1999
DISTRIBUTION OF TLV2252
INPUT OFFSET VOLTAGE
20
1020 Amplifiers From 1 Wafer Lot VDD = ±1.5 V TA = 25°C
15
10
5
Precentage of Amplifiers – %
0
–1.6 – 0.8 0 0.8 1.6
VIO – Input Offset Voltage – mV
Figure 2
DISTRIBUTION OF TLV2254
INPUT OFFSET VOLTAGE
35
682 Amplifiers From 1 Wafer Lot V
= ±1.5 V
DD±
30
TA = 25°C
DISTRIBUTION OF TLV2252
INPUT OFFSET VOLTAGE
20
1020 Amplifiers From 1 Wafer Lot VDD = ±2.5 V TA = 25°C
15
10
5
Precentage of Amplifiers – %
0 –1.6 – 0.8 0 0.8 1.6
VIO – Input Offset Voltage – mV
Figure 3
DISTRIBUTION OF TLV2254
INPUT OFFSET VOLTAGE
35
682 Amplifiers From 1 Wafer Lot V
= ±2.5 V
DD±
TA = 25°C
30
25
20
15
10
Percentage of Amplifiers – %
5
0 –1.6 –0.8 0 0.8 1.6
VIO – Input Offset Voltage – mV
Figure 4
25
20
15
10
Percentage of Amplifiers – %
5
0
–1.6 –0.8 0 0.8 1.6
VIO – Input Offset Voltage – mV
Figure 5
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
23
TLV225x, TLV225xA Advanced LinCMOS RAIL-TO-RAIL VERY LOW-POWER OPERATIONAL AMPLIFIERS
SLOS185B – FEBRUARY 1997 – REVISED – JULY 1999
TYPICAL CHARACTERISTICS
INPUT OFFSET VOLTAGE
vs
COMMON-MODE INPUT VOLTAGE
1
VDD = 3 V
0.8
RS = 50 TA = 25°C
0.6
0.4
0.2
0 –0.2 –0.4
– Input Offset Voltage – mV
–0.6
IO
V
–0.8
–1
–1 0 1 2
VIC – Common-Mode Input Voltage – V
Figure 6
DISTRIBUTION OF TLV2252 INPUT OFFSET
VOLTAGE TEMPERATURE COEFFICIENT
25
62 Amplifiers From 1 Wafer Lot V
= ±1.5 V
DD±
P Package
20
TA = 25°C to 85°C
INPUT OFFSET VOLTAGE
vs
COMMON-MODE INPUT VOLTAGE
1
VDD = 5 V
0.8
RS = 50 TA = 25°C
0.6
0.4
0.2
0 –0.2 –0.4
– Input Offset Voltage – mV
IO
–0.6
V
–0.8
–1
3
1012345
VIC – Common-Mode Input Voltage – V
Figure 7
DISTRIBUTION OF TLV2252 INPUT OFFSET
VOLTAGE TEMPERATURE COEFFICIENT
25
62 Amplifiers From 1 Wafer Lot V
= ±2.5 V
DD±
P Package
20
TA = 25°C to 85°C
15
10
Percentage of Amplifiers – %
5
0
–2 –1 0 1 2
α
– Temperature Coefficient – µV/°C
VIO
Figure 8
For all curves where VDD = 5 V, all loads are referenced to 2.5 V. For all curves where VDD = 3 V, all loads are referenced to 1.5 V.
24
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
15
10
Percentage of Amplifiers – %
5
0
–2 –1 0 1 2
α
– Temperature Coefficient – µV/°C
VIO
Figure 9
Advanced LinCMOS RAIL-TO-RAIL
VERY LOW-POWER OPERATIONAL AMPLIFIERS
TYPICAL CHARACTERISTICS
TLV225x, TLV225xA
SLOS185B – FEBRUARY 1997 – REVISED – JULY 1999
DISTRIBUTION OF TLV2254 INPUT OFFSET
VOLTAGE TEMPERATURE COEFFICIENT
25
62 Amplifiers From 1 Wafer Lot V
= ±1.5 V
DD±
P Package TA = 25°C to 85°C
20
15
10
Percentage of Amplifiers – %
5
0
–2 –1 0 1 2
α
– Temperature Coefficient
VIO
of Input Offset Voltage – µV/°C
Figure 10
INPUT BIAS AND INPUT OFFSET CURRENTS
vs
FREE-AIR TEMPERATURE
35
V
= ±2.5 V
DD±
VIC = 0
30
VO = 0 RS = 50
25
DISTRIBUTION OF TLV2254 INPUT OFFSET
VOLTAGE TEMPERATURE COEFFICIENT
25
62 Amplifiers From 1 Wafer Lot V
= ±2.5 V
DD±
P Package TA = 25°C to 85°C
20
15
10
Percentage of Amplifiers – %
5
0
–2 –1 0 1 2
α
– Temperature Coefficient
VIO
of Input Offset Voltage – µV/°C
Figure 11
2.5 RS = 50
2
TA = 25°C
1.5
1
INPUT VOLTAGE
vs
SUPPLY VOLTAGE
20
15
10
I
IB
5
IO
I
0
IB
IIB and IIO – Input Bias and Input Offset Currents – pA
I
25 45 65
TA – Free-Air Temperature – °C
85
I
IO
105 125
Figure 12
Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
0.5
0
–0.5
– Input Voltage – V
–1
I
V
–1.5
–2
–2.5
1 1.5 2 2.5
| V
| – Supply Voltage – V
DD±
Figure 13
| VIO | ≤5 mV
3 3.5 4
25
TLV225x, TLV225xA Advanced LinCMOS RAIL-TO-RAIL VERY LOW-POWER OPERATIONAL AMPLIFIERS
SLOS185B – FEBRUARY 1997 – REVISED – JULY 1999
TYPICAL CHARACTERISTICS
INPUT VOLTAGE
vs
FREE-AIR TEMPERATURE
5
VDD = 5 V
4
3
2
1
– Input Voltage – V
I
V
0
–1
–55 –35 –15 5 25 45 65 85
TA – Free-Air Temperature – °C
| VIO | ≤5 mV
Figure 14
LOW-LEVEL OUTPUT VOLTAGE
vs
LOW-LEVEL OUTPUT CURRENT
1.2 VDD = 3 V
TA = 25°C
1
VIC = 0
0.8
VIC = 0.75 V
0.6
0.4
– Low-Level Output Voltage – V
0.2
OL
V
†‡
VIC = 1.5 V
105 125
3
2.5
2
1.5
1
– High-Level Output Voltage – V
0.5
OH
V
0
1.4
1.2
1
0.8
0.6
0.4
– Low-Level Output Voltage – V
OL
V
0.2
HIGH-LEVEL OUTPUT VOLTAGE
vs
HIGH-LEVEL OUTPUT CURRENT
0 200 400
| IOH | – High-Level Output Current – µA
Figure 15
LOW-LEVEL OUTPUT VOLTAGE
vs
LOW-LEVEL OUTPUT CURRENT
VDD = 3 V VIC = 1.5 V
TA = 125°C
TA = 85°C
TA = 25°C
†‡
VDD = 3 V
TA = –40°C
TA = 25°C
TA = 85°C
TA = 125°C
600 800
†‡
TA = – 40°C
0
0123
IOL – Low-Level Output Current – mA
45
Figure 16
Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.
For all curves where VDD = 5 V, all loads are referenced to 2.5 V. For all curves where VDD = 3 V, all loads are referenced to 1.5 V.
26
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
0
012 3
IOL – Low-Level Output Current – mA
Figure 17
45
Advanced LinCMOS RAIL-TO-RAIL
VERY LOW-POWER OPERATIONAL AMPLIFIERS
TYPICAL CHARACTERISTICS
TLV225x, TLV225xA
SLOS185B – FEBRUARY 1997 – REVISED – JULY 1999
HIGH-LEVEL OUTPUT VOLTAGE
vs
HIGH-LEVEL OUTPUT CURRENT
5
4
3
2
– High-Level Output Voltage – V
1
OH
V
0
0 200 400
| IOH | – High-Level Output Current – µA
Figure 18
MAXIMUM PEAK-TO-PEAK OUTPUT VOLTAGE
vs
FREQUENCY
5
VDD = 5 V
4
†‡
VDD = 5 V
TA = –40°C
TA = 25°C
TA = 85°C
TA = 125°C
600 800
RI = 50 k TA = 25°C
1.4
1.2
1
0.8
0.6
0.4
– Low-Level Output Voltage – V
0.2
OL
V
0
10
9 8 7
LOW-LEVEL OUTPUT VOLTAGE
vs
LOW-LEVEL OUTPUT CURRENT
VDD = 5 V VIC = 2.5 V
TA = 25°C
01 2 3
IOL – Low-Level Output Current – mA
TA = 125°C
TA = 85°C
TA = –40°C
456
Figure 19
SHORT-CIRCUIT OUTPUT CURRENT
vs
SUPPLY VOLTAGE
VID = –100 mV
†‡
3
VDD = 3 V
2
1
– Maximum Peak-to-Peak Output Voltage – V
O(PP)
0
V
10
2
3
10
f – Frequency – Hz
10
4
10
5
Figure 20
Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.
For all curves where VDD = 5 V, all loads are referenced to 2.5 V. For all curves where VDD = 3 V, all loads are referenced to 1.5 V.
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
6 5
VO = VDD/2
4
TA = 25°C
3
VIC = VDD/2
2
– Short-Circuit Output Current – mA
1
OS
I
0
–1
2345
VDD – Supply Voltage – V
Figure 21
VID = 100 mV
678
27
TLV225x, TLV225xA
Advanced LinCMOS RAIL-TO-RAIL VERY LOW-POWER OPERATIONAL AMPLIFIERS
SLOS185B – FEBRUARY 1997 – REVISED – JULY 1999
TYPICAL CHARACTERISTICS
SHORT-CIRCUIT OUTPUT CURRENT
vs
FREE-AIR TEMPERATURE
11 10
9 8 7 6 5 4 3 2
– Short-Circuit Output Current – mA
1
OS
I
0
–1
–75 125
VID = –100 mV
VID = 100 mV
–50 –25 0 25 50 75 100
TA – Free-Air Temperature – °C
VO = 2.5 V VDD = ±5 V
Figure 22
DIFFERENTIAL INPUT VOLTAGE
vs
OUTPUT VOLTAGE
1000
Vµ
–200
800 600
400
200
0
VDD = 5 V VIC = 2.5 V RL = 50 k TA = 25°C
DIFFERENTIAL INPUT VOLTAGE
vs
OUTPUT VOLTAGE
1000
800
Vµ
600
400
200
0
–200 –400
– Differential Input Voltage –
–600
ID
V
–800
–1000
0 0.5 1 1.5
VO – Output Voltage – V
VDD = 3 V RI = 50 k VIC = 1.5 V TA = 25°C
2 2.5 3
Figure 23
DIFFERENTIAL VOLTAGE AMPLIFICATION
vs
LOAD RESISTANCE
4
10
V
= 2 V
O(PP)
TA = 25°C
3
10
10
2
VDD = 5 V
VDD = 3 V
†‡
–400
– Differential Input Voltage –
–600
ID
V
–800
–1000
01 3
245
VO – Output Voltage – V
Figure 24
Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.
For all curves where VDD = 5 V, all loads are referenced to 2.5 V. For all curves where VDD = 3 V, all loads are referenced to 1.5 V.
28
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
1
10
– Differential Voltage Amplification – V/mV
VD
A
1
110110
RL – Load Resistance – k
Figure 25
2
10
3
TLV225x, TLV225xA
Advanced LinCMOS RAIL-TO-RAIL
VERY LOW-POWER OPERATIONAL AMPLIFIERS
SLOS185B – FEBRUARY 1997 – REVISED – JULY 1999
TYPICAL CHARACTERISTICS
LARGE-SIGNAL DIFFERENTIAL VOLTAGE
AMPLIFICATION AND PHASE MARGIN
vs
FREQUENCY
80
VDD = 5 V RL = 50 k CL= 100 pF
60
TA = 25°C
180°
135°
40
20
0
Voltage Amplification – dB
VD
AVD – Large-Signal Differential
A
–20
–40
3
10
Gain
4
10
f – Frequency – Hz
LARGE-SIGNAL DIFFERENTIAL VOLTAGE
AMPLIFICATION AND PHASE MARGIN
80
VDD = 3 V RL= 50 k CL= 100 pF
60
TA = 25°C
Phase Margin
5
10
Figure 26
vs
FREQUENCY
10
90°
45°
0°
–45°
6
10
–90°
7
180°
135°
m
om – Phase Margin
φ
40
20
0
Voltage Amplification – dB
VD
AVD – Large-Signal Differential
A
–20
–40
3
10
Gain
4
10
f – Frequency – Hz
10
5
Phase Margin
6
10
10
90°
45°
0°
–45°
–90° 7
m
om – Phase Margin
φ
Figure 27
For all curves where VDD = 5 V, all loads are referenced to 2.5 V. For all curves where VDD = 3 V, all loads are referenced to 1.5 V.
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
29
TLV225x, TLV225xA Advanced LinCMOS RAIL-TO-RAIL VERY LOW-POWER OPERATIONAL AMPLIFIERS
SLOS185B – FEBRUARY 1997 – REVISED – JULY 1999
TYPICAL CHARACTERISTICS
LARGE-SIGNAL DIFFERENTIAL
VOLTAGE AMPLIFICATION
vs
FREE-AIR TEMPERATURE
4
10
VDD = 3 V VIC = 1.5 V VO = 0.5 V to 2.5 V
3
10
2
10
Amplification – V/mV
– Large-Signal Differential Voltage
VD
A
1
10
–75 125
–50 –25 0 25 50 75 100
TA – Free-Air Temperature – °C
RL = 1 M
RL = 50 k
Figure 28
†‡
LARGE-SIGNAL DIFFERENTIAL
4
10
3
10
2
10
Amplification – V/mV
– Large-Signal Differential Voltage
VD
A
1
10
–50 –25 0 25 50 75 100 125
–75
†‡
VOLTAGE AMPLIFICATION
vs
FREE-AIR TEMPERATURE
VDD = 5 V VIC = 2.5 V VO = 1 V to 4 V
RL = 1 M
RL = 50 k
TA – Free-Air Temperature – °C
Figure 29
10
OUTPUT IMPEDANCE
vs
FREQUENCY
1000
VDD = 5 V TA = 25°C
100
AV = 100
10
AV = 10
– Output Impedance –
1
o
z
5
10
6
0.1 10
AV = 1
2
3
10
f– Frequency – Hz
10
4
Figure 31
OUTPUT IMPEDANCE
vs
FREQUENCY
1000
VDD = 3 V TA = 25°C
100
– Output Impedance –
o
z
10
0.1
1
10
AV = 100
AV = 10
AV = 1
2
3
10
f– Frequency – Hz
10
4
Figure 30
Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.
For all curves where VDD = 5 V, all loads are referenced to 2.5 V. For all curves where VDD = 3 V, all loads are referenced to 1.5 V.
10
5
10
6
30
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
Advanced LinCMOS RAIL-TO-RAIL
VERY LOW-POWER OPERATIONAL AMPLIFIERS
TYPICAL CHARACTERISTICS
TLV225x, TLV225xA
SLOS185B – FEBRUARY 1997 – REVISED – JULY 1999
COMMON-MODE REJECTION RATIO
vs
FREQUENCY
100
VDD = 5 V VIC = 2.5 V
80
VDD = 3 V VIC = 1.5 V
60
40
20
CMRR – Common-Mode Rejection Ratio – dB
0
10
1
2
10
10
f – Frequency – Hz
3
10
4
Figure 32
TA = 25°C
5
10
COMMON-MODE REJECTION RATIO
†‡
vs
FREE-AIR TEMPERATURE
94
92
10
90
88
86
84
82
CMMR – Common-Mode Rejection Ratio – dB
6
80
– 75 125
– 50 – 25 0 25 50 75 100
TA – Free-Air Temperature – °C
VDD = 5 V
VDD = 3 V
Figure 33
SUPPLY-VOLTAGE REJECTION RATIO
100
80
60
40
20
– Supply-Voltage Rejection Ratio – dB
0
SVR
k
–20
10
1
2
10
f – Frequency – Hz
Figure 34
vs
FREQUENCY
k
SVR–
3
10
10
4
VDD = 3 V TA = 25°C
k
SVR+
5
10
SUPPLY-VOLTAGE REJECTION RATIO
vs
FREQUENCY
100
10
80
60
40
20
– Supply-Voltage Rejection Ratio – dB
0
SVR
k
–20
6
10
1
k
SVR+
k
SVR–
2
10
f – Frequency – Hz
10
3
10
4
VDD = 5 V TA = 25°C
5
10
10
6
Figure 35
For all curves where VDD = 5 V, all loads are referenced to 2.5 V. For all curves where VDD = 3 V, all loads are referenced to 1.5 V.
Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
31
TLV225x, TLV225xA
Á
Advanced LinCMOS RAIL-TO-RAIL VERY LOW-POWER OPERATIONAL AMPLIFIERS
SLOS185B – FEBRUARY 1997 – REVISED – JULY 1999
TYPICAL CHARACTERISTICS
SUPPLY-VOLTAGE REJECTION RATIO
FREE-AIR TEMPERATURE
110
VDD = 2.7 V to 8 V VIC = VO = VDD /2
105
100
95
– Supply-Voltage Rejection Ratio – dB
SVR
k
90
–50 –25 0 25 50 75 100
TA – Free-Air Temperature – °C
Figure 36
vs
TLV2252
SUPPLY CURRENT
vs
SUPPLY VOLTAGE
120
VO = 0 No Load
100
Aµ
80
60
TA = 25°C
– Supply Current –
40
DD
I
20
125–75
0
012345
VDD – Supply Voltage – V
TA = –40°C
TA = 85°C
678
Figure 37
TLV2254
SUPPLY CURRENT
SLEW RATE
vs
SUPPLY VOLTAGE
240
VO = 0 No Load
200
Aµ
160
120
– Supply Current –
80
DD
I
40
0
012345
| V
| – Supply Voltage – V
DD±
TA = –40°C
TA = 85°C
TA = 25°C
678
0.2 VDD = 5 V
AV = –1
0.18 TA = 25°C
0.16
sµ
0.14
V/
0.12
0.1
0.08
SR – Slew Rate –
0.06
0.04
0.02
0
1
10
Figure 38
Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.
For all curves where VDD = 5 V, all loads are referenced to 2.5 V. For all curves where VDD = 3 V, all loads are referenced to 1.5 V.
LOAD CAPACITANCE
2
10
CL – Load Capacitance – pF
Figure 39
vs
SR–
SR+
3
10
10
4
32
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
Advanced LinCMOS RAIL-TO-RAIL
VERY LOW-POWER OPERATIONAL AMPLIFIERS
TYPICAL CHARACTERISTICS
TLV225x, TLV225xA
SLOS185B – FEBRUARY 1997 – REVISED – JULY 1999
SLEW RATE
†‡
vs
FREE-AIR TEMPERATURE
0.2
0.16
sµ
V/
0.12
SR+
0.08
SR – Slew Rate –
0.04
0
–50 –25 0 25 50 75 100
–75 125
TA – Free-Air Temperature – °C
VDD = 5 V RL = 50 k CL = 100 pF AV = 1
SR–
Figure 40
INVERTING LARGE-SIGNAL PULSE
RESPONSE
5
VDD = 5 V RL = 50 k CL = 100 pF
4
AV = –1 TA = 25°C
3
INVERTING LARGE-SIGNAL PULSE
3
VDD = 3 V RL = 50 k CL = 100 pF
2.5 AV = –1
TA = 25°C
2
1.5
1
– Output Voltage – V
O
V
0.5
0
0 102030405060
Figure 41
VOLTAGE-FOLLOWER LARGE-SIGNAL
PULSE RESPONSE
3
VDD = 3 V RL = 50 k CL = 100 pF
2.5 AV = 1
TA = 25°C
2
RESPONSE
t – Time – µs
70 80 90 100
1.5
2
– Output Voltage – V
O
V
1
0
0 102030405060
t – Time – µs
70 80 90 100
Figure 42
Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.
For all curves where VDD = 5 V, all loads are referenced to 2.5 V. For all curves where VDD = 3 V, all loads are referenced to 1.5 V.
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
– Output Voltage – V
1
O
V
0.5
0
0 102030405060
Figure 43
70 80 90 100
t – Time – µs
33
TLV225x, TLV225xA Advanced LinCMOS RAIL-TO-RAIL VERY LOW-POWER OPERATIONAL AMPLIFIERS
SLOS185B – FEBRUARY 1997 – REVISED – JULY 1999
TYPICAL CHARACTERISTICS
VOLTAGE-FOLLOWER LARGE-SIGNAL
PULSE RESPONSE
5
VDD = 5 V RL = 50 k CL = 100 pF
4
AV = 1 TA = 25°C
3
2
– Output Voltage – V
O
V
1
0
0 102030405060
Figure 44
INVERTING SMALL-SIGNAL
PULSE RESPONSE
2.65 VDD = 5 V RL = 50 k CL = 100 pF
2.6
AV = –1 TA = 25°C
t – Time – µs
70 80 90 100
INVERTING SMALL-SIGNAL
PULSE RESPONSE
0.95 VDD = 3 V
RL = 50 k
0.9 CL = 100 pF
AV = –1
0.85
0.75
– Output Voltage – V
O
V
0.65
TA = 25°C
0.8
0.7
0.6
0102030
t – Time – µs
Figure 45
VOLTAGE-FOLLOWER SMALL-SIGNAL
PULSE RESPONSE
0.95
0.85
0.9
VDD = 3 V RL = 50 k CL = 100 pF AV = 1 TA = 25°C
40 50
2.55
2.5
O
V
VO – Output Voltage – V
2.45
2.4 0102030
t – Time – µs
40 50
Figure 46
For all curves where VDD = 5 V, all loads are referenced to 2.5 V. For all curves where VDD = 3 V, all loads are referenced to 1.5 V.
34
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
0.8
0.75
O
0.7
V
VO – Output Voltage – V
0.65
0.6 0102030
t – Time – µs
Figure 47
40 50
Advanced LinCMOS RAIL-TO-RAIL
VERY LOW-POWER OPERATIONAL AMPLIFIERS
TYPICAL CHARACTERISTICS
TLV225x, TLV225xA
SLOS185B – FEBRUARY 1997 – REVISED – JULY 1999
VOLTAGE-FOLLOWER SMALL-SIGNAL
PULSE RESPONSE
2.65 VDD = 5 V
RL = 50 k CL = 100 pF
2.6
AV = 1 TA = 25°C
2.55
2.5
O
V
VO – Output Voltage – V
2.45
2.4 0102030
t – Time – µs
Figure 48
EQUIVALENT INPUT NOISE VOLTAGE
FREQUENCY
60
50
VDD = 5 V RS = 20 TA = 25°C
Hz
nV/
vs
40 50
EQUIVALENT INPUT NOISE VOLTAGE
vs
FREQUENCY
60
VDD = 3 V RS = 20
50
40
30
20
10
0
10
TA = 25°C
1
2
10
f – Frequency – Hz
10
3
10
4
nV/ Hz
– Equivalent Input Noise Voltage –
n
V
Figure 49
1000
VDD = 5 V f = 0.1 Hz to 10 Hz
750
TA = 25°C
500
INPUT NOISE VOLTAGE OVER
A 10-SECOND PERIOD
40
30
20
10
– Equivalent Input Noise Voltage –
n
V
0
10
1
2
10
f – Frequency – Hz
10
3
10
4
Figure 50
For all curves where VDD = 5 V, all loads are referenced to 2.5 V. For all curves where VDD = 3 V, all loads are referenced to 1.5 V.
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
250
0
–250
Noise Voltage – nV
–500
–750
–1000
0246
t – Time – s
Figure 51
810
35
TLV225x, TLV225xA Advanced LinCMOS RAIL-TO-RAIL VERY LOW-POWER OPERATIONAL AMPLIFIERS
SLOS185B – FEBRUARY 1997 – REVISED – JULY 1999
TYPICAL CHARACTERISTICS
100
Vµ
10
Integrated Noise Voltage –
0.1
220
210
INTEGRATED NOISE VOLTAGE
vs
FREQUENCY
Calculated Using Ideal Pass-Band Filter Low Frequency = 1 Hz TA = 25°C
1
110110
f – Frequency – Hz
2
10
3
Figure 52
GAIN-BANDWIDTH PRODUCT
vs
SUPPLY VOLTAGE
10
TOTAL HARMONIC DISTORTION PLUS NOISE
vs
FREQUENCY
1
AV = 100
0.1 AV = 10
0.01
0.001
4
10
5
THD + N – Total Harmonic Distortion Plus Noise – %
10
1
AV = 1
2
10
f – Frequency – Hz
10
VDD = 5 V RL = 50 k TA = 25°C
3
10
4
10
5
Figure 53
GAIN-BANDWIDTH PRODUCT
vs
FREE-AIR TEMPERATURE
300
260
†‡
VDD = 5 V f = 10 kHz RL = 50 kHz CL = 100 pF
200
190
Gain-Bandwidth Product – kHz
180
170
0235
146
VDD – Supply Voltage – V
78
Figure 54
For all curves where VDD = 5 V, all loads are referenced to 2.5 V. For all curves where VDD = 3 V, all loads are referenced to 1.5 V.
36
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
220
180
Gain-Bandwidth Product – kHz
140
100
–50 –25 0 25 50 10075
TA – Free-Air Temperature – °C
Figure 55
125–75
Advanced LinCMOS RAIL-TO-RAIL
VERY LOW-POWER OPERATIONAL AMPLIFIERS
TYPICAL CHARACTERISTICS
TLV225x, TLV225xA
SLOS185B – FEBRUARY 1997 – REVISED – JULY 1999
75°
TA = 25°C
60°
45°
30°
m
om – Phase Margin
φ
15°
200
175
0°
10
50 k
V
I
1
TA = 25°C
PHASE MARGIN
vs
LOAD CAPACITANCE
R
= 200
null
R
= 500
null
R
= 100
null
R
= 50
null
R
= 10
null
50 k
V
DD+
R
null – +
V
DD–
2
10
CL – Load Capacitance – pF
R
= 0
null
C
L
3
10
Figure 56
UNITY-GAIN BANDWIDTH
vs
LOAD CAPACITANCE
10
Gain Margin – dB
4
GAIN MARGIN
vs
LOAD CAPACITANCE
20
R
= 500
null
15
R
= 200
null
R
= 100
null
10
R
= 50
null
R
= 10
5
0 10
1
null
R
= 0
null
2
10
CL – Load Capacitance – pF
10
3
Figure 57
OVERESTIMATION OF PHASE MARGIN
vs
LOAD CAPACITANCE
25
TA = 25°C
R
= 500
null
20
TA = 25°C
4
10
5
10
150
125
100
75
50
– Unity-Gain Bandwidth – kHz
1
B
25
0
10
1
2
10 CL – Load Capacitance – pF
10
3
10
4
10
5
Figure 58
For all curves where VDD = 5 V, all loads are referenced to 2.5 V. For all curves where VDD = 3 V, all loads are referenced to 1.5 V.
Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
15
R
= 100
null
10
R
= 50
null
R
= 10
null
5
Overestimation of Phase Margin
0
1
10
See application information
2
10
CL – Load Capacitance – pF
Figure 59
10
R
= 200
null
3
10
4
10
5
37
TLV225x, TLV225xA Advanced LinCMOS RAIL-TO-RAIL VERY LOW-POWER OPERATIONAL AMPLIFIERS
SLOS185B – FEBRUARY 1997 – REVISED – JULY 1999
APPLICATION INFORMATION
driving large capacitive loads
The TLV2252 is designed to drive larger capacitive loads than most CMOS operational amplifiers. Figure 56 and Figure 57 illustrate its ability to drive loads up to 1000 pF while maintaining good gain and phase margins (R
= 0).
null
A smaller series resistor (R when driving large capacitive loads. Figure 55 and Figure 56 show the effects of adding series resistances of 10 Ω, 50 Ω, 100 Ω, 200 Ω, and 500 Ω. The addition of this series resistor has two effects: the first adds a zero to the transfer function and the second reduces the frequency of the pole associated with the output load in the transfer function.
The zero introduced to the transfer function is equal to the series resistance times the load capacitance. To calculate the improvement in phase margin, equation 1 can be used.
) at the output of the device (see Figure 60) improves the gain and phase margins
null
∆φm1+
tan
–1
ǒ
2 × π × UGBW × R
null
× C
Ǔ
L
(1)
Where :
∆φm1+
improvement in phase margin
UGBW+unity-gain bandwidth frequency
R
+
null
CL+
output series resistance load capacitance
The unity-gain bandwidth (UGBW) frequency decreases as the capacitive load increases (see Figure 58). To use equation 1, UGBW must be approximated from Figure 58.
Using equation 1 alone overestimates the improvement in phase margin as illustrated in Figure 59. The overestimation is caused by the decrease in the frequency of the pole associated with the load, providing additional phase shift and reducing the overall improvement in phase margin.
Using Figure 60, with equation 1 enables the designer to choose the appropriate output series resistance to optimize the design of circuits driving large capacitance loads.
50 k
V
DD+
50 k
V
I
– +
V
DD–
/GND
R
null
C
L
38
Figure 60. Series-Resistance Circuit
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
macromodel information
TLV225x, TLV225xA
Advanced LinCMOS RAIL-TO-RAIL
VERY LOW-POWER OPERATIONAL AMPLIFIERS
SLOS185B – FEBRUARY 1997 – REVISED – JULY 1999
APPLICATION INFORMATION
Macromodel information provided was derived using Microsim with Microsim
PSpice
. The Boyle macromodel (see Note 5) and subcircuit in Figure 61 are generated using
the TLV2252 typical electrical and operating characteristics at T
Parts
, the model generation software used
= 25°C. Using this information, output
A
simulations of the following key parameters can be generated to a tolerance of 20% (in most cases):
D
Maximum positive output voltage swing
D
Maximum negative output voltage swing
D
Slew rate
D
Quiescent power dissipation
D
Input bias current
D
Open-loop voltage amplification
NOTE 5: G. R. Boyle, B. M. Cohn, D. O. Pederson, and J. E. Solomon, “Macromodeling of Integrated Circuit Operational Amplifiers,”
of Solid-State Circuits,
V
CC+
RP
2
IN –
DP
IN+
1
V
CC–
.SUBCKT TLV225x 1 2 3 4 5
C1 11 12 6.369E–12 C2 6 7 25.00E–12 DC 5 53 DX DE 54 5 DX DLP 90 91 DX DLN 92 90 DX DP 43DX EGND 99 0 POLY (2) (3,0) (4,0) 0 .5 .5 FB 7 99 POLY (5) VB VC VE VLP + VLN 0 57.62E6 –60E6 60E6 60E6 –60E6 GA 6 0 11 12 26.86E–6 GCM 0 6 10 99 2.686E–9 ISS 3 10 DC 3.1E–6 HLIM 90 0 VLIM 1K J1 11 2 10 JX J2 12 1 10 JX R2 6 9 100.0E3
SC-9, 353 (1974).
3
RSS ISS
10
J1 J2
11
RD1
VAD
+ –
12
C1
RD2
60
4
VE
+
VC
DC
DE
54
+
R2
53
6
9
GCM
D
Unity-gain frequency
D
Common-mode rejection ratio
D
Phase margin
D
DC output resistance
D
AC output resistance
D
Short-circuit output current limit
99
EGND
+
FB
+
VB
C2
GA
RD1 60 11 37.23E3 RD2 60 12 37.23E3 R01 8 5 84 R02 7 99 84 RP 3 4 71.43E3 RSS 10 99 64.52E6 VAD 60 4 –.5 VB 9 0 DC 0 VC 3 53 DC .605 VE 54 4 DC .605 VLIM 7 8 DC 0 VLP 91 0 DC –0.235 VLN 0 92 DC 7.5 .MODEL DX D (IS=800.0E–18) .MODEL JX PJF (IS=500.0E–15 BETA=139E–6 + VTO=–.05) .ENDS
7
VLIM
RO2
HLIM
8
5
OUT
90
+
RO1
+
DLP
DLN
91
+
IEEE Journal
92
VLNVLP
+
PSpice
and
Figure 61. Boyle Macromodel and Subcircuit
Parts
are trademarks of MicroSim Corporation.
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
39
TLV225x, TLV225xA Advanced LinCMOS RAIL-TO-RAIL VERY LOW-POWER OPERATIONAL AMPLIFIERS
SLOS185B – FEBRUARY 1997 – REVISED – JULY 1999
MECHANICAL INFORMATION
D (R-PDSO-G**) PLASTIC SMALL-OUTLINE PACKAGE
14 PIN SHOWN
0.050 (1,27)
14
1
0.069 (1,75) MAX
A
0.020 (0,51)
0.014 (0,35)
0.010 (0,25)
0.004 (0,10)
DIM
8
7
PINS **
0.010 (0,25)
0.157 (4,00)
0.150 (3,81)
M
0.244 (6,20)
0.228 (5,80)
Seating Plane
0.004 (0,10)
8
14
0.008 (0,20) NOM
0°–8°
16
Gage Plane
0.010 (0,25)
0.044 (1,12)
0.016 (0,40)
A MAX
A MIN
NOTES: A. All linear dimensions are in inches (millimeters).
40
B. This drawing is subject to change without notice. C. Body dimensions do not include mold flash or protrusion, not to exceed 0.006 (0,15). D. Falls within JEDEC MS-012
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
0.197
(5,00)
0.189
(4,80)
0.344 (8,75)
0.337 (8,55)
0.394
(10,00)
0.386 (9,80)
4040047/D 10/96
TLV225x, TLV225xA
Advanced LinCMOS RAIL-TO-RAIL
VERY LOW-POWER OPERATIONAL AMPLIFIERS
SLOS185B – FEBRUARY 1997 – REVISED – JULY 1999
MECHANICAL INFORMATION
FK (S-CQCC-N**) LEADLESS CERAMIC CHIP CARRIER
28 TERMINAL SHOWN
A SQ
B SQ
19
20
21
22
23
24
25
12826 27
12
1314151618 17
0.020 (0,51)
0.010 (0,25)
MIN
0.342
(8,69)
0.442
0.640
0.739
0.938
1.141
A
0.358
(9,09)
0.458
(11,63)
0.660
(16,76)
0.761
(19,32)(18,78)
0.962
(24,43)
1.165
(29,59)
NO. OF
TERMINALS
**
11
10
9
8
7
6
5
432
20
28
44
52
68
84
0.020 (0,51)
0.010 (0,25)
(11,23)
(16,26)
(23,83)
(28,99)
MINMAX
0.307 (7,80)
0.406
(10,31)
0.495
(12,58)
0.495
(12,58)
0.850 (21,6)
1.047 (26,6)
0.080 (2,03)
0.064 (1,63)
B
MAX
0.358 (9,09)
0.458
(11,63)
0.560
(14,22)
0.560
(14,22)
0.858 (21,8)
1.063 (27,0)
0.055 (1,40)
0.045 (1,14)
0.028 (0,71)
0.022 (0,54)
0.050 (1,27)
NOTES: A. All linear dimensions are in inches (millimeters).
B. This drawing is subject to change without notice. C. This package can be hermetically sealed with a metal lid. D. The terminals are gold plated.
E. Falls within JEDEC MS-004
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
0.045 (1,14)
0.035 (0,89)
0.045 (1,14)
0.035 (0,89)
4040140/D 10/96
41
TLV225x, TLV225xA Advanced LinCMOS RAIL-TO-RAIL VERY LOW-POWER OPERATIONAL AMPLIFIERS
SLOS185B – FEBRUARY 1997 – REVISED – JULY 1999
MECHANICAL INFORMATION
J (R-GDIP-T**) CERAMIC DUAL-IN-LINE PACKAGE
14 PIN SHOWN
14
1
B
0.100 (2,54)
0.070 (1,78)
0.065 (1,65)
0.045 (1,14)
8
C
7
0.020 (0,51) MIN
0.200 (5,08) MAX
PINS **
DIM
A MAX
A MIN
B MAX
B MIN
C MAX
C MIN
Seating Plane
0.310
(7,87)
0.290 (7,37)
0.785
(19,94)
0.755
(19,18)
0.280 (7,11)
0.245
(6,22)
0.310
(7,87)
0.290
(7,37)
0.785
(19,94)
0.755
(19,18)
0.300
(7,62)
0.245
(6,22)
0.310
(7,87)
0.290 (7,37)
0.910
(23,10)
0.300 (7,62)
0.245 (6,22)
A
20181614
0.310
(7,87)
0.290
(7,37)
0.975
(24,77)
0.930
(23,62)
0.300
(7,62)
0.245
(6,22)
22
0.410
(10,41)
0.390 (9,91)
1.100
(28,00)
0.388 (9,65)
0.130 (3,30) MIN
0.100 (2,54)
0.023 (0,58)
0.015 (0,38)
NOTES: A. All linear dimensions are in inches (millimeters).
B. This drawing is subject to change without notice. C. This package can be hermetically sealed with a ceramic lid using glass frit. D. Index point is provided on cap for terminal identification only on press ceramic glass frit seal only.
E. Falls within MIL STD 1835 GDIP1-T14, GDIP1-T16, GDIP1-T18, GDIP1-T20, and GDIP1-T22.
0°–15°
0.014 (0,36)
0.008 (0,20) 4040083/B 04/95
42
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
TLV225x, TLV225xA
Advanced LinCMOS RAIL-TO-RAIL
VERY LOW-POWER OPERATIONAL AMPLIFIERS
SLOS185B – FEBRUARY 1997 – REVISED – JULY 1999
MECHANICAL INFORMATION
JG (R-GDIP-T8) CERAMIC DUAL-IN-LINE PACKAGE
0.400 (10,20)
0.355 (9,00)
0.063 (1,60)
0.015 (0,38)
0.100 (2,54)
8
1
5
4
0.065 (1,65)
0.045 (1,14)
0.020 (0,51) MIN
0.280 (7,11)
0.245 (6,22)
0.200 (5,08) MAX
0.130 (3,30) MIN
0.023 (0,58)
0.015 (0,38)
0.310 (7,87)
0.290 (7,37)
Seating Plane
0°–15°
0.014 (0,36)
0.008 (0,20)
NOTES: A. All linear dimensions are in inches (millimeters).
B. This drawing is subject to change without notice. C. This package can be hermetically sealed with a ceramic lid using glass frit. D. Index point is provided on cap for terminal identification only on press ceramic glass frit seal only.
E. Falls within MIL-STD-1835 GDIP1-T8
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
4040107/C 08/96
43
TLV225x, TLV225xA Advanced LinCMOS RAIL-TO-RAIL VERY LOW-POWER OPERATIONAL AMPLIFIERS
SLOS185B – FEBRUARY 1997 – REVISED – JULY 1999
MECHANICAL INFORMATION
N (R-PDIP-T**) PLASTIC DUAL-IN-LINE PACKAGE
16 PIN SHOWN
16
1
0.035 (0,89) MAX
PINS **
DIM
A
9
0.260 (6,60)
0.240 (6,10)
8
0.070 (1,78) MAX
0.020 (0,51) MIN
0.200 (5,08) MAX
A MAX
A MIN
Seating Plane
14
0.775
(19,69)
0.745
(18,92)
16
0.775
(19,69)
0.745
(18,92)
18
0.920
(23.37)
0.850
(21.59)
20
0.975
(24,77)
0.940
(23,88)
0.310 (7,87)
0.290 (7,37)
0.100 (2,54)
0.021 (0,53)
0.015 (0,38)
NOTES: A. All linear dimensions are in inches (millimeters).
B. This drawing is subject to change without notice.
C. Falls within JEDEC MS-001 (20 pin package is shorter then MS-001.)
0.010 (0,25)
M
0.125 (3,18) MIN
0°–15°
0.010 (0,25) NOM
14/18 PIN ONL Y
4040049/C 08/95
44
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
TLV225x, TLV225xA
Advanced LinCMOS RAIL-TO-RAIL
VERY LOW-POWER OPERATIONAL AMPLIFIERS
SLOS185B – FEBRUARY 1997 – REVISED – JULY 1999
MECHANICAL INFORMATION
P (R-PDIP-T8) PLASTIC DUAL-IN-LINE PACKAGE
0.400 (10,60)
0.355 (9,02)
58
0.260 (6,60)
0.240 (6,10)
41
0.070 (1,78) MAX
0.020 (0,51) MIN
0.200 (5,08) MAX
0.125 (3,18) MIN
0.100 (2,54)
0.021 (0,53)
0.015 (0,38)
NOTES: A. All linear dimensions are in inches (millimeters).
B. This drawing is subject to change without notice. C. Falls within JEDEC MS-001
0.010 (0,25)
M
0.310 (7,87)
0.290 (7,37)
Seating Plane
0°–15°
0.010 (0,25) NOM
4040082/B 03/95
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
45
TLV225x, TLV225xA Advanced LinCMOS RAIL-TO-RAIL VERY LOW-POWER OPERATIONAL AMPLIFIERS
SLOS185B – FEBRUARY 1997 – REVISED – JULY 1999
MECHANICAL INFORMATION
PW (R-PDSO-G**) PLASTIC SMALL-OUTLINE PACKAGE
14 PIN SHOWN
0,65
14
1
1,20 MAX
0,30 0,19
8
6,60
4,50 4,30
6,20
7
A
0,15 0,05
M
0,10
Seating Plane
0,10
0,15 NOM
Gage Plane
0,25
0°–8°
0,75 0,50
PINS **
DIM
A MAX
A MIN
NOTES: A. All linear dimensions are in millimeters.
B. This drawing is subject to change without notice. C. Body dimensions do not include mold flash or protrusion not to exceed 0,15. D. Falls within JEDEC MO-153
8
3,10
2,90
14
5,10
4,90
16
5,10
20
6,60
6,404,90
24
7,90
7,70
28
9,80
9,60
4040064/E 08/96
46
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
TLV225x, TLV225xA
Advanced LinCMOS RAIL-TO-RAIL
VERY LOW-POWER OPERATIONAL AMPLIFIERS
SLOS185B – FEBRUARY 1997 – REVISED – JULY 1999
MECHANICAL INFORMATION
U (S-GDFP-F10) CERAMIC DUAL FLATPACK
0.250 (6,35)
0.246 (6,10)
0.006 (0,15)
0.080 (2,03)
0.050 (1,27)
0.004 (0,10)
0.045 (1,14)
0.026 (0,66)
0.250 (6,35) 1
0.250 (6,35)
5
NOTES: A. All linear dimensions are in inches (millimeters).
B. This drawing is subject to change without notice. C. This package can be hermetically sealed with a ceramic lid using glass frit. D. Index point is provided on cap for terminal identification only.
E. Falls within MIL STD 1835 GDFP1-F10 and JEDEC MO-092AA
0.300 (7,62)
1.000 (25,40)
0.750 (19,05)
10
0.350 (8,89)0.350 (8,89)
0.250 (6,35)
0.019 (0,48)
0.015 (0,38)
0.050 (1,27)
6
0.025 (0,64)
0.005 (0,13)
4040179/B 03/95
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
47
TLV225x, TLV225xA Advanced LinCMOS RAIL-TO-RAIL VERY LOW-POWER OPERATIONAL AMPLIFIERS
SLOS185B – FEBRUARY 1997 – REVISED – JULY 1999
MECHANICAL INFORMATION
W (R-GDFP-F16) CERAMIC DUAL FLATPACK
0.085 (2,16)
0.045 (1,14)
0.440 (11,18)
0.371 (9,42)
0.285 (7,24)
0.245 (6,22)
0.305 (7,75)
0.355 (9,02) 0.355 (9,02)
0.235 (5,97)
0.275 (6,99)
161
Base and Seating Plane
0.235 (5,97)
0.006 (0,15)
0.004 (0,10)
0.045 (1,14)
0.026 (0,66)
0.019 (0,48)
0.015 (0,38)
0.050 (1,27)
NOTES: A. All linear dimensions are in inches (millimeters).
B. This drawing is subject to change without notice. C. This package can be hermetically sealed with a ceramic lid using glass frit. D. Index point is provided on cap for terminal identification only.
E. Falls within MIL-STD-1835 GDFP1-F16 and JEDEC MO-092AC
0.025 (0,64)
0.015 (0,38)
98
1.025 (26,04)
0.745 (18,92) 4040180-3/B 03/95
48
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
IMPORTANT NOTICE
T exas Instruments and its subsidiaries (TI) reserve the right to make changes to their products or to discontinue any product or service without notice, and advise customers to obtain the latest version of relevant information to verify, before placing orders, that information being relied on is current and complete. All products are sold subject to the terms and conditions of sale supplied at the time of order acknowledgement, including those pertaining to warranty, patent infringement, and limitation of liability.
TI warrants performance of its semiconductor products to the specifications applicable at the time of sale in accordance with TI’s standard warranty. Testing and other quality control techniques are utilized to the extent TI deems necessary to support this warranty . Specific testing of all parameters of each device is not necessarily performed, except those mandated by government requirements.
CERTAIN APPLICA TIONS USING SEMICONDUCT OR PRODUCTS MAY INVOLVE POTENTIAL RISKS OF DEATH, PERSONAL INJURY, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE (“CRITICAL APPLICATIONS”). TI SEMICONDUCTOR PRODUCTS ARE NOT DESIGNED, AUTHORIZED, OR WARRANTED TO BE SUITABLE FOR USE IN LIFE-SUPPORT DEVICES OR SYSTEMS OR OTHER CRITICAL APPLICA TIONS. INCLUSION OF TI PRODUCTS IN SUCH APPLICATIONS IS UNDERST OOD TO BE FULLY AT THE CUSTOMER’S RISK.
In order to minimize risks associated with the customer’s applications, adequate design and operating safeguards must be provided by the customer to minimize inherent or procedural hazards.
TI assumes no liability for applications assistance or customer product design. TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right of TI covering or relating to any combination, machine, or process in which such semiconductor products or services might be or are used. TI’s publication of information regarding any third party’s products or services does not constitute TI’s approval, warranty or endorsement thereof.
Copyright 1999, Texas Instruments Incorporated
Loading...